


Game Interface
Design
Brent Fox



SVP, Thomson Course
Technology PTR:
Andy Shafran

Publisher:
Stacy L. Hiquet

Senior Marketing Manager:
Sarah O’Donnell

Marketing Manager:
Heather Hurley

Manager of Editorial Services:
Heather Talbot

Senior Acquisitions Editor:
Emi Smith

Senior Editor:
Mark Garvey

Associate Marketing Manager:
Kristin Eisenzopf

Marketing Coordinator:
Jordan Casey

Project Editor/Copy Editor:
Estelle Manticas

Technical Reviewer:
Les Pardew

PTR Editorial Services
Coordinator:
Elizabeth Furbish

Interior Layout Tech:
William Hartman

Cover Designer:
Mike Tanamachi

CD-ROM Producer:
Brandon Penticuff

Indexer:
Kelly Talbot

Proofreader:
Gene Redding

© 2005 by Thomson Course Technology PTR. All rights reserved. No part of this book may be reproduced
or transmitted in any form or by any means, electronic or mechanical, including photocopying, record-
ing, or by any information storage or retrieval system without written permission from Thomson Course
Technology PTR, except for the inclusion of brief quotations in a review.

The Premier Press and Thomson Course Technology PTR logo and related trade dress are trademarks of
Thomson Course Technology PTR and may not be used without written permission.

Trial version of Flash MX 2004 is Copyright © Macromedia® Flash™ MX 2004. Macromedia, Inc. and its
suppliers. All rights reserved.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software support. Please contact the appro-
priate software manufacturer’s technical support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted throughout this book to distinguish
proprietary trademarks from descriptive terms by following the capitalization style used by the manufac-
turer.

Information contained in this book has been obtained by Thomson Course Technology PTR from sources
believed to be reliable. However, because of the possibility of human or mechanical error by our sources,
Thomson Course Technology PTR, or others, the Publisher does not guarantee the accuracy, adequacy, or
completeness of any information and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of the fact that the Internet is an ever-
changing entity. Some facts may have changed since this book went to press.

Educational facilities, companies, and organizations interested in multiple copies or licensing of this book
should contact the publisher for quantity discount information. Training manuals, CD-ROMs, and por-
tions of this book are also available individually or can be tailored for specific needs.

ISBN: 1-59200-593-4

Library of Congress Catalog Card Number: 2004111222

Printed in the United States of America

04 05 06 07 08 BU 10 9 8 7 6 5 4 3 2 1

Thomson Course Technology PTR, a division of Thomson Course Technology
25 Thomson Place ■ Boston, MA 02210 ■ http://www.courseptr.com



For my wife Amy, a beautiful and intelligent woman. 

Without her support and patience, I would not be the person I am today.



Acknowledgments

Many people worked hard
to make this book possi-
ble. Steve Taylor helped

immensely with the content; he pro-
vided technical information and even
some early editing. I thank my editor,
Estelle Manticas, for the many hours
she spent helping me through the
writing process. Thanks to Les
Pardew, my technical editor and an 
all around good guy. Also, thanks 
go to Emi Smith and the entire team
at Premier Press, who not only pro-
vided the opportunity to write this
book, but also shared their expertise
with me.

I also want to give a special thanks to
my family for their patience while I
spent many hours away from them
working on this book.



About the Author

Brent Fox worked his way
through college as an art
director for a package design

company. While in college, he took a
class in 3D animation and was
hooked. Brent received his degree 
in Graphic Design from Brigham
Young University, and shortly after
graduation he began creating video
games. He has worked in the video
game industry for more than eight
years, and he has worked on games
for a wide variety of platforms.
His title list includes games on the
PC, Game Boy Color, PlayStation,
Nintendo 64, Dreamcast, PlayStation
2, and GameCube.

Brent has not only created art for the
games he has worked on, but he has
also served as project manager and art
director on many other games as well.
He has managed development teams
with up to 28 team members. He has
created artwork for games published
by Blizzard, EA, Midway, 3DO, and
Konami, just to name a few. His pub-
lished title list includes games such as
Brood War (a Starcraft expansion set),
Army Men: Sarge’s Heroes, and many
more.



Contents at a Glance

Introduction..............................................................................................................xv

Chapter 1
Introduction to Video Games....................................................................................1

Chapter 2
Planning Menu Flow..................................................................................................7

Chapter 3
The Look and Feel of Your Interface......................................................................27

Chapter 4
Basic Design Principles.............................................................................................43

Chapter 5
Console or PC? .........................................................................................................61

Chapter 6
Button States............................................................................................................73

Chapter 7
Creating a Focal Point .............................................................................................81



Chapter 8
Using Text in Your Interface....................................................................................87

Chapter 9
Technical Requirements and Tricks .........................................................................99

Chapter 10
Tools of the Trade ..................................................................................................113

Chapter 11
Using Animation ....................................................................................................125

Chapter 12
Icons, Icons, Icons ...................................................................................................139

Chapter 13
Designing the HUD ................................................................................................145

Chapter 14
Designing an Interface ..........................................................................................155

Chapter 15
Creating an Interactive Mock-Up..........................................................................179

Index .......................................................................................................................199

Contents at a Glance vii



Contents

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . .xv

Chapter 1
Introduction to Video Games  . . . . . . . . . . . . . . .1
The Importance of the Interface  . . . . . . . . . . . . . . . . . . .1
Real-Life Game Development  . . . . . . . . . . . . . . . . . . . . .2
Working with a Team  . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Listen to Others  . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Ask Questions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

A Career in Video Games  . . . . . . . . . . . . . . . . . . . . . . . . .4
The Publisher / Developer Relationship  . . . . . . . . . . . . . .5

Chapter 2
Planning Menu Flow  . . . . . . . . . . . . . . . . . . . . . .7
Why Is Planning So Valuable?  . . . . . . . . . . . . . . . . . . . . .7
Creativity in Planning  . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Getting Approval  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Interface Planning Helps Game Design  . . . . . . . . . . . . .10

Game Design Goals  . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Possible Game Goals  . . . . . . . . . . . . . . . . . . . . . . .11
Breaking Down Your Goal into Specifics  . . . . . . .12
How Priorities Affect Decision-Making  . . . . . . . . .12

Charting Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Button Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Sliders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Toggle Switches  . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Lists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Input Text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Drop-Down Menus  . . . . . . . . . . . . . . . . . . . . . . . .22
Other Variations  . . . . . . . . . . . . . . . . . . . . . . . . . .22

Common Menu Screens  . . . . . . . . . . . . . . . . . . . . . . . . .23
Simplicity versus Depth  . . . . . . . . . . . . . . . . . . . . . . . . .23
Planning for HUD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Creativity versus Conventional Methods  . . . . . . . . . . . .25



Chapter 3
The Look and Feel of Your Interface  . . . . . . . . .27
Define a Look  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Create a Mock-Up  . . . . . . . . . . . . . . . . . . . . . . . . .27
Working with Logos  . . . . . . . . . . . . . . . . . . . . . . .29
Define a Color Scheme  . . . . . . . . . . . . . . . . . . . . .29

Express Yourself in the Design  . . . . . . . . . . . . . . . . . . . .31
Research and Inspiration  . . . . . . . . . . . . . . . . . . . . . . . .32

Make Lists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Search for Images  . . . . . . . . . . . . . . . . . . . . . . . . .32

Thumbnails  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Work Quickly  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Push for Variation  . . . . . . . . . . . . . . . . . . . . . . . . .34

Creativity versus Standards  . . . . . . . . . . . . . . . . . . . . . .35
Using Photographs  . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Illustrations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
3D Solutions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Pre-Rendered 2D Art  . . . . . . . . . . . . . . . . . . . . . . .38
Involve the Programmers  . . . . . . . . . . . . . . . . . . .39
Combining 3D and 2D  . . . . . . . . . . . . . . . . . . . . . .39
3D Challenges  . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Don’t Get Too Attached to Your Ideas  . . . . . . . . . . . . .40
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

Chapter 4
Basic Design Principles . . . . . . . . . . . . . . . . . . . .43
Getting Back to Basics  . . . . . . . . . . . . . . . . . . . . . . . . . .43

Really See Your Design  . . . . . . . . . . . . . . . . . . . . .44
Using Color  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Creating Color Harmony  . . . . . . . . . . . . . . . . . . . .45

Finding Complementary Colors  . . . . . . . . . . . . . . .45
Using More Than Two Colors  . . . . . . . . . . . . . . . .47
Subjective Color  . . . . . . . . . . . . . . . . . . . . . . . . . .48
Balancing Color Strength  . . . . . . . . . . . . . . . . . . .49
Warm and Cold Colors  . . . . . . . . . . . . . . . . . . . . .49
Color on a Monitor or TV  . . . . . . . . . . . . . . . . . . .50
Creating Digital Colors  . . . . . . . . . . . . . . . . . . . . .51

Visual Organization  . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Unity and Variation  . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Negative Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Movement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

Eye Movement  . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Balance and Weight  . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Unbalancing Your Design to Create Tension  . . . .58
Odd Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Dividing an Image  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Intersections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Chapter 5
Console or PC?  . . . . . . . . . . . . . . . . . . . . . . . . . .61
Bad Conversions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Console Development  . . . . . . . . . . . . . . . . . . . . . . . . . .62

Console Hardware Manufacturers  . . . . . . . . . . . .62
Developer Approval  . . . . . . . . . . . . . . . . . . . . . . .62
Concept Approval  . . . . . . . . . . . . . . . . . . . . . . . . .63
Technical Approval  . . . . . . . . . . . . . . . . . . . . . . . .63
Console Game Cost  . . . . . . . . . . . . . . . . . . . . . . . .64
Effect on the Interface  . . . . . . . . . . . . . . . . . . . . .64

Handheld Development  . . . . . . . . . . . . . . . . . . . . . . . . .65

Contents ix



Contentsx

PC Development  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Minimum Requirements for PC Games  . . . . . . . . .65

The Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Getting the Timing Right  . . . . . . . . . . . . . . . . . . .67
Limiting Buttons  . . . . . . . . . . . . . . . . . . . . . . . . . .68
Displaying Navigation Information  . . . . . . . . . . . .68

The Mouse  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Keep the Design Simple  . . . . . . . . . . . . . . . . . . . .69
Image-Based Interfaces  . . . . . . . . . . . . . . . . . . . . .69

Resolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
PC Game Resolution  . . . . . . . . . . . . . . . . . . . . . . .70
Front-End Menu Resolution  . . . . . . . . . . . . . . . . .70
Standard TV Resolution  . . . . . . . . . . . . . . . . . . . .70
PAL versus NTSC Television  . . . . . . . . . . . . . . . . . .71

TV Color  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Interlace Flicker  . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Color Variation  . . . . . . . . . . . . . . . . . . . . . . . . . . .72

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

Chapter 6
Button States  . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Controller Button States  . . . . . . . . . . . . . . . . . . . . . . . .74

The Standard Button State  . . . . . . . . . . . . . . . . . .74
The Selected Button State  . . . . . . . . . . . . . . . . . .74
The Pressed Button State  . . . . . . . . . . . . . . . . . . .75
The Active Button State  . . . . . . . . . . . . . . . . . . . .75
The Active-Selected Button State  . . . . . . . . . . . . .76
The Disabled Button State  . . . . . . . . . . . . . . . . . .77

PC Button States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Other States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Animated States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Workload  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

Saving Time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Audio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

Chapter 7
Creating a Focal Point  . . . . . . . . . . . . . . . . . . . .81
The Most Important Element  . . . . . . . . . . . . . . . . . . . .81
Size Variation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Color  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Movement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

Chapter 8
Using Text in Your Interface  . . . . . . . . . . . . . . .87
Using Text Wisely  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Type Anatomy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

Serif versus Sans-Serif  . . . . . . . . . . . . . . . . . . . . . .88
Ascenders and Descenders  . . . . . . . . . . . . . . . . . .89
Uppercase and Lowercase  . . . . . . . . . . . . . . . . . . .90
Points and Picas  . . . . . . . . . . . . . . . . . . . . . . . . . . .90
File Size and DPI  . . . . . . . . . . . . . . . . . . . . . . . . . .91
Kerning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Thicks and Thins  . . . . . . . . . . . . . . . . . . . . . . . . . .92
Scaling Fonts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93



Font Choice  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Theme Fonts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
Multiple Fonts  . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

Know Your Fonts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Creating a Game Font  . . . . . . . . . . . . . . . . . . . . . . . . . .95
Icons in Fonts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
Font Effects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

Chapter 9
Technical Requirements and Tricks  . . . . . . . . . .99
File Sizes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

Limited RAM  . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Disk Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Load Time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
Online Content  . . . . . . . . . . . . . . . . . . . . . . . . . .102
File Compression  . . . . . . . . . . . . . . . . . . . . . . . . .102
Using Palettes  . . . . . . . . . . . . . . . . . . . . . . . . . . .103
Using Programmer Art  . . . . . . . . . . . . . . . . . . . .105
Texture Size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Scalable Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
Tiling Textures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Alpha Channels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Localization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Source Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

Chapter 10
Tools of the Trade  . . . . . . . . . . . . . . . . . . . . . .113
Tools for Creating Mock-Ups  . . . . . . . . . . . . . . . . . . . .113
Asset Management  . . . . . . . . . . . . . . . . . . . . . . . . . . .114
Adjusting Game Properties  . . . . . . . . . . . . . . . . . . . . .115
Using Custom Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . .115

Plug-Ins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
Stand-Alone Software  . . . . . . . . . . . . . . . . . . . . .116
In-Game Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . .117

Advantages of Using Custom Tools  . . . . . . . . . . . . . . .117
Disadvantages of Using Custom Tools  . . . . . . . . . . . . .117
Commercial Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

Advantages of Using Commercial Tools  . . . . . . .118
Disadvantages of Using Commercial Tools  . . . . .118

Middleware  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
Commonly Used Commercial Software  . . . . . . . . . . . .119
Features of Good Tools  . . . . . . . . . . . . . . . . . . . . . . . .121

The Ideal Situation versus Reality  . . . . . . . . . . . .122
Software or the Artist?  . . . . . . . . . . . . . . . . . . . . . . . .122

3D Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

Chapter 11
Using Animation  . . . . . . . . . . . . . . . . . . . . . . .125
Movement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
How Animation Works  . . . . . . . . . . . . . . . . . . . . . . . .125

Frame Rate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
Interface Frame Rates  . . . . . . . . . . . . . . . . . . . . .126

Key Frames and Tweening  . . . . . . . . . . . . . . . . . . . . . .127
Interpolation  . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

Contents xi



Contentsxii

Animation Principles  . . . . . . . . . . . . . . . . . . . . . . . . . .129
Squash and Stretch  . . . . . . . . . . . . . . . . . . . . . . .129
Anticipation  . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Ease In and Ease Out  . . . . . . . . . . . . . . . . . . . . . .130
Follow Through  . . . . . . . . . . . . . . . . . . . . . . . . . .131
Arcs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
Exaggeration  . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

Designing Transitions  . . . . . . . . . . . . . . . . . . . . . . . . . .132
Consider Experienced Users  . . . . . . . . . . . . . . . .134

Properties That Can Be Animated  . . . . . . . . . . . . . . . .134
Translation, Rotation, and Scale  . . . . . . . . . . . . .134
Transparency and Color  . . . . . . . . . . . . . . . . . . . .135

Using Effects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
Overlaid Animations  . . . . . . . . . . . . . . . . . . . . . .136
Particle Systems  . . . . . . . . . . . . . . . . . . . . . . . . . .137
Other In-Game Effects  . . . . . . . . . . . . . . . . . . . . .137

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

Chapter 12
Icons, Icons, Icons . . . . . . . . . . . . . . . . . . . . . . .139
Use Text Sparingly  . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

Budget Constraints  . . . . . . . . . . . . . . . . . . . . . . .140
Using Icons Instead of Text  . . . . . . . . . . . . . . . . . . . . .140

Image Choice  . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
Standard Icons  . . . . . . . . . . . . . . . . . . . . . . . . . . .141
Non-Game Standard Icons  . . . . . . . . . . . . . . . . .141

Every Pixel Counts  . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
Photo Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

Chapter 13
Designing the HUD  . . . . . . . . . . . . . . . . . . . . .145
Screen Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

In-Game Information  . . . . . . . . . . . . . . . . . . . . .147
Pop-Up Menus  . . . . . . . . . . . . . . . . . . . . . . . . . . .148
Dynamic Content  . . . . . . . . . . . . . . . . . . . . . . . .148
Combining Information  . . . . . . . . . . . . . . . . . . .149

Legibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Eye Movement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Ease of Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
Making HUD Look Cool  . . . . . . . . . . . . . . . . . . . . . . . .151
Game-Play Adjustments  . . . . . . . . . . . . . . . . . . . . . . . .151
Graphic Information Display  . . . . . . . . . . . . . . . . . . . .152
Standard Elements versus Non-Standard Elements  . . .153
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

Chapter 14
Designing an Interface . . . . . . . . . . . . . . . . . . .155
Nomad Design Goals  . . . . . . . . . . . . . . . . . . . . . . . . . .155
The Rough Sketches  . . . . . . . . . . . . . . . . . . . . . . . . . . .156

Temporary Art  . . . . . . . . . . . . . . . . . . . . . . . . . . .159
Re-Do’s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160

Nomad Colors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Using Color as a Tool  . . . . . . . . . . . . . . . . . . . . . .161

Creating the Art  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
Breaking Up the Art  . . . . . . . . . . . . . . . . . . . . . .163
Selected Rows  . . . . . . . . . . . . . . . . . . . . . . . . . . .167

Photoshop Techniques  . . . . . . . . . . . . . . . . . . . . . . . . .167



Step-by-Step Art Creation  . . . . . . . . . . . . . . . . . . . . . .169
The Ship Information Panel  . . . . . . . . . . . . . . . .169
The Trade Dialog Box  . . . . . . . . . . . . . . . . . . . . .173

The Big Change  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177
Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178

Chapter 15
Creating an Interactive Mock-Up . . . . . . . . . . .179
The Ideal Situation  . . . . . . . . . . . . . . . . . . . . . . . . . . . .180
Realizing Your Vision  . . . . . . . . . . . . . . . . . . . . . . . . . .180

Experimentation  . . . . . . . . . . . . . . . . . . . . . . . . .180
Commercial Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

Why Flash?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
Introduction to Flash  . . . . . . . . . . . . . . . . . . . . . . . . . .182

Using Frames  . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
Animation in Flash  . . . . . . . . . . . . . . . . . . . . . . .186
Playback Speed  . . . . . . . . . . . . . . . . . . . . . . . . . .188
Using Scripting  . . . . . . . . . . . . . . . . . . . . . . . . . .188
Creating Buttons in Flash  . . . . . . . . . . . . . . . . . .190
Putting Scripts on Buttons  . . . . . . . . . . . . . . . . .192
Seeing Your Button Work  . . . . . . . . . . . . . . . . . .193
Publishing Files  . . . . . . . . . . . . . . . . . . . . . . . . . .194
Flash Summary  . . . . . . . . . . . . . . . . . . . . . . . . . .195

The Sample Flash File  . . . . . . . . . . . . . . . . . . . . . . . . . .195
Actions on Frames  . . . . . . . . . . . . . . . . . . . . . . . .196
Actions on Buttons  . . . . . . . . . . . . . . . . . . . . . . .196

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199

Contents xiii



This page intentionally left blank



Introduction

An interface, as you no doubt
already know, is the part of
the game that allows the user

to interact with the game. Interaction
is what makes a video game different
from a movie. When playing a video
game, the user can make choices and
respond to events. An interface is the
connection between the user and the
game, and a well-designed interface
makes the video game experience
more fun.

Interface design is a creative, exciting,
and challenging subject. The purpose
of this book is to introduce you to the
game interface design principles and
concepts used in the game industry.
There is a huge amount of informa-
tion to learn about interface design,

and I couldn’t hope to cover it all.
This book will, however, cover all of
the basics you need to know in order
to design your own game interface.

An interface has many pieces. This
book will cover the interface from the
first image that appears on the screen
to the information displayed on
screen during game-play. The player
of your game interacts with buttons,
sliders, menus, and many other com-
ponents of an interface, and this book
will show you how and when to use
each of these input methods.

I hope that this book inspires you to
create better and more effective game
interfaces. You are capable of making
a great, unique interface. Don’t limit
your vision by what has been done in
the past.

Who Should Read This
Book?
If you are just getting started in the
game industry, this book will serve as
a great introduction to interface
design. It will also provide a little
insight into the video game industry
itself.

Game development is a unique and
interesting field. It is fun, rewarding,
and a lot of hard work. In this book
you will get a glimpse at the developer
and publisher relationship, as well as
at the schedules, budget constraints,
and politics that are found in the
video game development industry.



Introductionxvi

Even if you are an experienced inter-
face designer, this book will provide
hints and tricks that can help you in
your daily tasks. After reading this
book, you will be able to better evalu-
ate the effectiveness of an interface,
and you will be aware of the areas in
which you can improve.

The application of the principles I will
show you in this book will help
improve your design skills. It will also
provide inspiration to go beyond the
norm and create interfaces that capti-
vate and entertain the user.

What’s in This Book?
Great interfaces never happen by acci-
dent. They require a lot of planning.
This book will outline the steps to
good planning. You will be encour-
aged to define goals that will guide
you through the design process and
be shown how to plan and chart your
menus before you begin to create art.
You will learn how to be innovative
and creative in the planning stages of
the design process.

I will also walk you through the early
planning stages for a game interface
and present methods for crafting a
unique look and feel for your inter-
face. Creating icons, animation, and
buttons will be covered.

Basic design and art principles are
essential for any interface designer to
understand. As you read through
these pages, you will learn about these
basic concepts and how they can
guide you through the design process.
You can use these design principles to
effectively evaluate your own design
and identify areas for improvement.
You will begin to understand how
much skill and talent is needed to
produce a great interface. It’s hard
work, but it’s worth it.

In this book, you will also explore 
the world of interface buttons. This
simple-sounding topic is actually
very complex. I will explain the con-
cept of button states and teach you
how to make a functioning button for
a game interface. You’ll learn how to
create buttons that are easy to use and
that look cool.

I will also show you how to avoid
using too much text in your interface
and how to replace as much text as
possible with images and icons. This
is not always an easy task, but a good
use of icons can separate an extraor-
dinary interface from a mediocre one.
A screen full of text will turn users
away; learn about methods you can
use to communicate with the user
without text.

Make it move! Animations can be a
game interface designer’s greatest
asset. I’m not just talking about a
spinning logo, but about serious ani-
mation. Understanding and applying
solid animation techniques can bring
a static interface to life. Learn these
animation principles and how you
can use them in an interface.

Chapter 14 will walk you through the
step-by-step process of creating an
interface. You will see how an inter-
face is created using Photoshop.
This process will help you understand
how complex serious interface design
can be.



In Chapter 15, you’ll learn how to use
Flash to create an interface with real
interactivity. This software provides
an effective method to mock-up and
test a game interface design. Don’t
wait for a programmer to write code
to see your design in action. You can
do it yourself. Learn how to use Flash
to make buttons function and objects
move.

What’s on the CD?
This book also comes with a CD con-
taining images and examples. You will
have access to many of the images in
this book. You will also be able to
open the Flash file created in the last
chapter of the book and see it move.
The CD also includes a free game
demo and trial version of Macro-
media Flash.

Introduction xvii



This page intentionally left blank



1

Welcome to the world of
interface design for video
games. Of course, the

best instruction you can receive is
real-life experience. No matter how
good a game artist is before he begins
developing video games, he learns a
lot during the development process.
Gaining this experience will take time.
In the meantime, I hope to share a lit-
tle of my experience with you and give
you a head start.

The Importance of the
Interface
Too often, video game interfaces are
an afterthought. Sufficient time is not
scheduled for interface design because
too many project managers assume
anyone can whip up an interface.
They feel that interface design does
not require any particular talent or
very much time, so they assign the
new guy to work on the interface. This
is a big mistake, and when it happens,
it’s apparent to anyone who plays the
game. It isn’t hard for the user to
immediately see poor quality. The

visual quality of a game is very impor-
tant; it is hard to sell a game if it looks
bad, even if the game-play is fun.

Great art can do amazing things to
boost game sales. Many game pub-
lishers claim that their number-one
priority is game-play, but I’ve seen
these same publishers look at a game
and respond with “that looks great,”
even though they never picked up a
controller or mouse. If a game doesn’t
look good, no one may ever play it
and find out if the game-play is good.
Consumers are used to seeing great
art, and they demand high quality in

Introduction to
Video Games

Chapter 1



Chapter 1   ■ Introduction to Video Games2

any game they play. Great visuals can
actually make a game more fun to
play.

Even more important than the visual
aspect of interface design is the func-
tionality. A poor interface can ruin the
entire video game experience. The
game experience will be negative if
the user is confused and can’t figure
out how to navigate the front-end
menu or if he can’t understand where
to find information while playing the
game. The more the user has to search
for information and think about how
to play, the less enjoyable the game
becomes. The interface is a vital com-
ponent of a game and should not be
treated as a component that is unre-
lated to the game or as an unimpor-
tant task.

On the other hand, a great interface
can significantly enhance the experi-
ence. A simple-to-use and visually
appealing menu can set the tone for
the game. The first thing that the user
sees when he starts a game is the
front-end menu. A good-looking
interface with a lot of well-designed
features can actually be fun to use and
even seem like a game itself. Have you
ever played around with a quality

“player editor”? Changing character
outfits, hair, skin color, and tattoos
can be a lot of fun. All of this takes
place in the menu. Without ever start-
ing the core game, the user feels like
he is already playing.

Real-Life Game
Development
In this book, I will discuss interface
design for video games under perfect
conditions—if there is no limit on
time or budget. I will assume that you
have been given total creative freedom
and, as the interface designer, you can
make decisions. In an ideal situation,
a producer or designer won’t mandate
that the interface should look like a
previous version of the game (most
likely designed by a less-competent
artist and designer than you) or direct
that the interface must be in his
favorite color. Too often, someone at
your company notes that a competing
game has a hair-color option in the
player editor and demands that your
game must have the same feature. It
then becomes a requirement that this
feature must be implemented exactly
how it was done in the other game.
Another one of my least-favorite

restrictions goes something like, “The
Marketing Department says the game
will sell better if the colors are
brighter.” Who can argue with that?

Artists who are new to video game
development often believe that the
perfect conditions I mentioned might
actually exist. When these conditions
don’t exist at their current company,
they assume that other developers at
other companies have this freedom.
These inexperienced interface design-
ers don’t understand all of the factors
that contribute to final decisions when
developing games. Unfortunately,
total creative freedom is not usually
given to most interface designers.
Because of the restrictions that exist
while making a game, I have rarely fin-
ished a game and felt like I had creat-
ed the very best interface I was capable
of creating. I feel satisfied if it was the
best I could do under the circum-
stances and restrictions I was given.

Many factors apply to real-life inter-
face design. Time and budget can
greatly affect the amount of effort
that can be applied. The bottom line
is that budgets and schedules may
have been set that may not allow 
for full 3D models to be used in the



interface or for trips to a junkyard to
collect photo references. Although the
extra effort may result in a better
interface, not working under the
restrictions of the game can have dis-
astrous results.

I have worked on many games that
were canceled before they were fin-
ished. These games were cancelled for
many reasons—most of them out of
my control. If the game publisher
thinks that they can’t complete the
game within the budget, they have a
decision to make: They can try to
come up with the extra money to
complete the game or they can cut
their losses and cancel the game. A
surprising number of publishers
decided to cancel the game.

Choose your battles and work well
with others. Feedback and direction
can actually make the completed
game better. Sometimes the guys in
charge actually know what they are
talking about! If you are closed to
ideas and suggestions, you may pass
up some really good advice. Your
skills and abilities will be trusted
more as you demonstrate your skills
and you learn more about the game
development process. This will take

time. Telling everyone that you always
know better than they do won’t
inspire others to join your cause (even
if after reading this book you really do
know better).

Don’t be afraid to explain that you
don’t agree with feedback, but make
sure you can explain why. “It will look
better” is not as convincing as offering
the explanation that serif fonts are
hard to read at low resolutions. Don’t
be shy—offer constructive options,
and tactfully point out potential
problems. After a focus group has
found a flaw in the design, you won’t
be very convincing when you try to
explain that you knew it should have
been done differently but didn’t want
to say anything.

Don’t ever let these real-world limita-
tions keep you from designing amaz-
ing interfaces, though. Let them serve
as a challenge. Learn to work your
best under these conditions. They
aren’t an excuse for poor design—if
you really are good, you can still cre-
ate great interfaces.

I have worked on games with very
small budgets. One such game is on
the CD that comes with this book. On

this game, we had to make some care-
ful decisions about what to leave out
and what to add. If we had had a big-
ger budget and more time, I would
have done many things differently. I
am proud of this game, not because it
is the best game in the world, but
because it was made really quickly by
a few artists and programmers. It still
is very fun, and it got some great
reviews.

Working with a Team
Video game development requires a
team effort. This is especially true
with the really cool, big-budget
games. While there may be few exam-
ples of a group of three or four people
who make an entire game, these are
rare exceptions, and it is often evident
in the final product if a full team did
not work on the game. The triple-A
blockbuster games often involve
amazingly large teams. The members
of these big teams must learn to work
well with one another.

Often, problems occur during game
development because team members
just can’t get along. Fighting and
arguing can cause just as many prob-
lems as incompetence. Because of

Working with a Team 3



Chapter 1   ■ Introduction to Video Games4

this, putting 20 people who do not
work well together on the same team
may not be twice as effective as
putting 10 people together who do.
On the other hand, putting 20 people
who work really well together on the
same team can produce more than
twice the results of a 10-person team.
Cooperation is key.

Listen to Others
You may actually be right. You might
even know more than the decision-
makers. Your ideas may be better. But
this doesn’t mean that you should
argue. Express your opinion politely
when it is appropriate to do so. If you
have an “I’m right, you’re wrong” atti-
tude, you won’t get far.

Whether you have the authority over
your co-workers or they have the abil-
ity to enforce their ideas, the best thing
you can do is listen. Take the time to
listen to their ideas and seriously con-
sider what they are telling you. The
best game and interface designers are
not afraid to change things if they
come across a better idea. They are
able to recognize good ideas, even if
the ideas are not their own.

Ask Questions
If someone has an idea that you think
is wrong, the best thing to do is ask
questions. Good questions require a
lot of thought and effort on your part.
These questions can demonstrate that
you understand their point of view.
Try to get all of the information you
can. Make sure you completely under-
stand the opposing point of view
before you offer your suggestion. If
you feel that an idea has flaws, polite-
ly ask if the person you are talking to
has considered these problems. They
may have a solution to the problems
that they just have not described well.
Or they may see the flaws and change
their mind without an argument.

I once worked with a great game
designer who was really good at this.
Everyone liked him, and no one was
afraid to approach him with a sugges-
tion. The great thing was that when he
made a decision, he was usually right.
If anyone disagreed, he would talk
things through with them and ask a
lot of questions, like: “Have you
thought about . . .” or “Why do you
think that it would be better to do it
that way?” Because of his great com-
munication skills, everyone came out

of the conversation understanding
why he made his decision, even if they
did not agree with it.

The bottom line is that working in a
team is essential for game develop-
ment. Don’t be a problem in the game
development process. Even if you are
talented, you need to work well in a
team.

A Career in Video
Games
Reading about the potential obstacles
may make video game development
sound like a terrible experience. In
reality, making video games is great! It
is not easy, but that’s one of the rea-
sons it’s so rewarding. If it were easy,
anyone could do it.

The game industry is not easy to
break into. The best way to get into
the industry is to be really good. You
will also need to be able to demon-
strate how good you are. This is why a
good portfolio is key. Having a great
portfolio is essential to getting your
first job in the game industry.

Interface design is important when
developing games, but only big studios



can afford to have an interface expert
who spends all of his time creating
interfaces. It may be harder to land a
job at these bigger developers because
they have more experienced artists
who are applying for the same job.
The way to combat this problem is to
diversify. Make sure you have other
skills that can be used when develop-
ing video games. Smaller develop-
ment studios may have the same guy
designing the interface and building
3D models. If you are trying to break
into the industry as an interface
designer, you might want to choose
another area of game development
and develop these skills along with
your interface design skills.

I was lucky that a discerning art direc-
tor saw my potential. When I think
back to my portfolio when I first
graduated from college and started
looking for a job, I am not sure that I
would have hired myself! I worked my
way through college at a company
that did packaging. I was hired just as
the company was creating a Design
department. By the time I graduated,
I had been promoted to the Art
Director position. This management
experience is what helped me get my

first job in the game development
industry. I found a company that was
looking for someone to fill the role of
art lead. I had more than just art
skills, and that is why I got the job.

You should do something you love for
a living. The best artists are the ones
who have a passion for making great
art and great games. The game indus-
try is too demanding if you don’t love
it. It is very rewarding to see your
game on the shelf in a store, but it is
not easy to get it there. Many late
nights must be spent and tedious
tasks must be completed during the
game-development process. If the
process is not fun and rewarding for
you, it will be hard to push through
the tough spots.

I always get a good reaction when I
tell teenagers what I do for a living,
but I don’t always get the same enthu-
siastic response from their parents.
Many people assume that because
some video games contain offensive
material, all games are bad. This is
tantamount to declaring that all
movies are bad because some movies
are violent. If you plan on working in
the game industry, it is a good idea to
decide early on what you are and

aren’t willing to work on. A wide vari-
ety of games exist, from those that
involve pornography and gambling to
religious and educational games. If
you want to work on a particular type
of game, it is a good idea to develop a
portfolio that fits with the kind of
game you want to make.

After you have broken into the indus-
try, you should continue to build your
portfolio. Improve your skills and
find a way to prove you can do the
job. The most important thing for
your next job is your title list. The
most important game on your title list
is the last one you worked on. Because
games take so long to make, it is not
easy to build this list. The experience
you gain in making a game in invalu-
able.

The Publisher /
Developer Relationship
Most of my experience has been
developing video games for consoles.
The most common model for console
development is that a game publisher
provides all (or part) of the funding
to develop a game. The publisher also
funds marketing, packaging, and 

The Publisher / Developer Relationship 5



Chapter 1   ■ Introduction to Video Games6

distribution. Because the publisher is
paying for the game, they have the
final say. The power is in the money.
Publishers often give a developer a
great deal of creative freedom, but
they always have the final say. They
are taking the financial risk and,
therefore, they have the right to get
what they want.

The publisher typically pays for devel-
opment by giving the developer pay-
ments along the development process.
A milestone schedule is created at the
beginning of development that out-
lines what will need to be completed
for each milestone. The developer
then presents these items to the pub-
lisher on the date they are due. If the
publisher approves these milestones,
then they make a payment to the
developer. Because money is tied to
each payment, getting these approvals
from a publisher becomes very
important to the developer.

In this book, I will refer to the pub-
lisher/developer relationship often. I
will assume that a publisher is provid-
ing funding and that the publisher
makes any final decisions. This is not
always the case. Many independent
game developers fund their own

games and are, in essence, their own
publisher. Many publishers do their
own internal development. Even in
these instances, there is often a person
or group in charge of giving direction
and making final decisions. This per-
son or group fills the role of publish-
er. Every developer would like to
make these decisions himself, but it is
very expensive to develop a game. The
reality is that most developers do not
have the money to produce the big
budget games on their own dime.



7

Planning is vital to a successful
interface. If budget or time
requirements are tight and

corners must be cut, then cut some-
thing else. If you cut out the planning
stage, your project will probably end
up taking longer and costing more
than it would have with careful plan-
ning. If you really want to complete
an interface design quickly, spend
more time planning. A large-budget
project may afford the luxury of more
experimentation and trials, but with a
lean project, you need to get it right
the first time.

Why Is Planning So
Valuable?
The best way to speed up the design
process is to only do things once, and
careful planning gives you a shot at
getting things right the first time. It
may seem impossible to get a perfect
interface on the first attempt, but if
you don’t plan your process, then you
almost guarantee that things will need
to be redone. You know that you will
make changes, but that doesn’t mean
you should avoid planning. If you
don’t plan, you will end up having to
make even more changes.

Without good planning, it is hard to
know what needs to be done. It is easy
for artists to waste time creating art
for things that will never appear in the
game. How many screens are needed?
What pieces of art can be re-used in
different areas? What information
must be displayed in game? All of
these questions should be answered in
the planning stage. Good planning
will generate a list of assets that are
needed and there will never be a ques-
tion of what art needs to be created.

Just like with everything else in the
game development process, you
should strive for the best but plan for

Planning Menu Flow

Chapter 2



Chapter 2   ■ Planning Menu Flow8

the worst. In the ideal scenario, all of
the details can be planned in advance
and never changed. But in reality,
some changes will always be neces-
sary. Plan time for revisions but do all
you can to avoid them. A trap many
interface designers fall into is, when
they see that time is planned for mak-
ing changes, they use this “extra” time
to justify incomplete work. “I can
always fix it later,” is a bad attitude.
What usually happens in these cases is
that the final polish is never added,
and the game ships with an inferior
interface.

Solid planning can also help deter-
mine schedules. If the design requires
100 screens, each with unique art, it
may just take too long to create a fully
animated 3D scene for each of these
screens. If the design can be simplified
and the resulting design only requires
a handful of screens, then more time
and attention can be given to each
screen. More time will be required if
the game design is so complicated
that a large number of options and a
lot of information must be displayed.
You can make more reliable time esti-
mates if the quantity of art needed for
the game can be determined.

If I know how many screens will be
needed for the front-end menu, then I
can simply do a little math and know
how much time I have for each indi-
vidual screen. This will make it easy to
determine if I am on schedule or if I
am falling behind. You will need to
ramp up and expect that the first tasks
will take longer than the tasks at the
end. If you have designed five other
screens, it will be easy to make a sixth
screen that fits into the design of the
first five. Of course, make sure not to
cut it too tight—add some time for
revisions and adjustments. Without a
good plan, it is difficult to know how
much time you can spend on a task
and if you are ahead or behind.

Accurate scheduling can reduce the
panic level at the end of the project.
There will always be a push at the end
of the project, but you will be able to
better manage things if you have a
plan early on—you can attack prob-
lems early. A common result of poor
planning is a string of “all-nighters” at
the end of a project. This is one of the
situations that cause your significant
other to insist you find a job outside
the video game industry. While
crunch time is part of the industry it

can be greatly reduced by smart plan-
ning early in a project. This will only
be beneficial if you are willing and
able to react and adjust to the risks
you identify early in the project.

Creativity in Planning
At first glance, the planning process
may not seem very creative. It might
even seem boring. Charts and graphs
that are kept intentionally visually
plain are often used in the planning
stage. Little or no art is being created,
and it can seem very tedious to some-
one who is bursting with creative
energy.

If you have a complete understanding
of the entire interface design process,
this attitude will vanish. There are
some very important and potentially
creative decisions that are made in the
planning process. Truly creative and
innovative ideas can be conceived at
this point. You can ask questions like,
“What if we tried it this way?”
Arguably, these ideas can be more
important to the ultimate game than
pretty art. It may be more important
that you decide to have a 3D animat-
ed character guiding the user through
the interface than it will be if you take



the same approach as in every other
game and just make a cool logo. In the
planning stage, you can make these
types of decisions. You are choosing
the most important places in which to
put your time and effort. If a 3D guide
is not going to significantly add to the
user’s experience, you may find it bet-
ter to spend your time creating cool,
animated transitions between screens.

An interface designer who truly
understands interface design can plan
for creative and elegant concepts in
the planning stage. It is much harder
to find a designer who understands
this concept and can come up with
creative ideas that are also possible
under the budget. These designers are
more valuable than those who can
create only cool-looking art. Creative
planning is an area wherein an inter-
face designer can become truly great.
If you can come up with great ideas
and you can skillfully execute these
ideas, you will be in demand.

Getting Approval
Another reason for good planning is
to get proper approval before starting
to create art. A well-planned interface

offers the game designer, project
manger, or other team members the
opportunity to give the go-ahead or
voice concerns. Time can be wasted if
the decision-makers decide halfway
through the project that everything
should be done differently. A produc-
er could decide that the user should
be able to choose a weapon before
starting a level. If the producer has a
chance to review the plan early, he
could point this out.

You won’t be able to avoid changes
from the person in charge, but you
can reduce the amount of changes
you get. You can make it much easier
for the producer to give you direction
early if you present him with a good
plan. He may not even know what he
wants himself, and planning can help
him to figure it out.

As you are presenting your plan to
your boss or publisher, make sure that
he understands that you are seeking
approval and that this is the best stage
to provide feedback. If the person in
charge glosses over the plan, it can
cause problems later. If you can make
adjustments now, everything will go
much more smoothly.

Getting approval can avoid your
being blamed later because you can
always refer back to the approved
plan. Once you have received
approval, it should never be used as a
threat. This will make everyone hesi-
tant to give you approval. You don’t
want to give the impression that you
will fight against any reasonable
changes after your plan has received
approval, but the person giving
approval needs to understand that
there is a certain level of commitment
in the approval.

Get as much information as you can
before you even start to plan. This will
help you get approval faster. If you
understand the expectations, it is
much easier to get approval. The
more difficult problem comes when
the publisher or producer doesn’t
know or can’t articulate what he
wants. This is where good communi-
cation skills come in. It is your job to
understand what the producers or
publishers are looking for and give it
to them, even if they don’t know what
they want.

After a plan has been laid out, suffi-
cient time must be spent evaluating
the details of this plan. This should be

Getting Approval 9



Chapter 2   ■ Planning Menu Flow10

done by anyone who has veto power.
You can help make this clear by asking
something like, “I need to get your
approval on this layout to make sure
that everything is the way you want it.
This will help avoid changes.” A polite
request like this one conveys the idea
that you expect this to be final
approval. Just because flow charts
don’t look pretty doesn’t mean they
don’t deserve serious consideration.

Interface Planning
Helps Game Design
A detailed plan for a video game
interface can really help drive game
design. Fleshing out all of the details
in the menus and the HUD will force
many game-play decisions to be made
early. It may also bring up important
issues that may not have been consid-
ered until later in the game-creation
process. The game designer may
change actual game-play based on
serious consideration of the interface
design.

You can ask a lot of good questions in
the planning stage. These questions
can stimulate the imagination of the
game designer. For example, a seem-

ingly simple screen wherein the user
chooses an environment can prompt
questions that will help determine the
game’s ultimate design. Will the user
be able to choose between different
environments? How many choices
will he have? Will some environments
be locked and not available to the user
until he completes certain tasks? Can
the user choose an environment in
every mode of the game or are there
some modes that will dictate environ-
ment choice? Will environment
choices, in the menu, be affected by
other choices made during game-
play? The questions could go on and
on. They are questions that affect the
flow of the menu. It is easy to see how
game-play can be affected when seri-
ous thought is given the interface. It is
difficult to have a solid plan if the
game design is underdeveloped.

Don’t forget to show your plan to a
programmer. The planning stage is a
great time to get feedback and sugges-
tions from the programmer who will
be working on the interface code. The
features planned in an interface great-
ly affect the programming schedule.
Something that may seem easy to an
artist can provide a big headache for a

programmer. If you plan on playing
full-motion video in your menu while
animating buttons on top of the
movie, you will need to see if the
engine has this capability. If you plan
on using real-time 3D in the front-
end menu, the programmer will need
to make this possible. Do your best to
work well with the programmer. Both
of you will have to work as a team to
get a functional interface—No one
can go it alone.

Game Design Goals
A good way to for a game designer to
make decisions about the features of a
game is to have goals. If the interface
designer also understands these goals,
it will be much easier for him to make
decisions about the interface. It’s not
always easy to define the overall game
goals, but if the game designer takes
the time to create concise goals for the
entire game and the interface design-
er clearly understands these, many
decisions will be easy to make. Goal-
oriented design produces great
results.

You may be wondering,“What kind of
goals do I need to set when designing
an interface?” Make the coolest inter-



face ever may be the first thing that
comes to mind. This goal sounds
great, but it probably shouldn’t be the
first priority. As much as everyone
wants a cool interface, there may be
other things that are more important.
If you are making a kids’ game, for
example, it might be more important
that the menu is easy for a six-year-
old to use than that it looks cool.
Prioritization is key to using these
goals to guide your design.

The game designer, publisher, and
project manager may need to work
out the game goals. Everyone will
need to agree on the goals. Each of
these people has a different role and
may have a different prospective. If
they can agree on a prioritized list of
goals, it can help everyone work
together.

Some goals may not be what you
would expect. For example, the first
goal of the game may be to reach a
broad market. If you are creating an
online game that will be used to pro-
mote soap, the client’s goal may be to
reach a broad audience. This goal may
not lend itself to the type of design
that hard-core gamers might consider
the coolest interface ever. You might

choose a completely different art style
because of this goal. You might use a
little less rust and grunge than you
would use in a game aimed at hard-
core gamers, for example.

Possible Game Goals
Below is a list of possible goals that a
developer or publisher may have.
These goals may not match perfectly
with your personal goals, but it is
important to understand the goals of
the guy in charge. This list is by no
means a complete list of goals that
could ever be used for game design. In
fact, it is a very brief list. This list is
just meant to stimulate thought about
the real goals of your next game.

■ Promote an existing license or
famous personality.

■ Capitalize on an existing license
or famous personality.

■ Meet a particular schedule.

■ Reach a particular audience.

■ Create something completely
unique.

■ Outdo a competing game.

■ Capitalize on the success of a
competing game.

■ Continue a successful series.

■ Sell another product (other
than the game itself).

■ Promote a moral issue.

■ Create a buzz using controversy.

■ Create an educational experi-
ence.

■ Pass the approval process of the
console manufacturer.

■ Please the Marketing depart-
ment.

■ Tell a story.

Don’t treat goals lightly. As an inter-
face designer, if you are not given
goals for the game, you might want to
present the goals that you think every-
one would agree on. This will give you
a chance to see if you understand
what everyone else is expecting. Ask
questions about the target market,
subject matter of the game, budget,
schedule requirements, what the most
important feature of the game is,
what makes the game unique, what
other games might be similar, and so
on. A clear understanding of all
aspects of the game will make it much
easier to understand the overall goals
of the game.

Game Design Goals 11



Chapter 2   ■ Planning Menu Flow12

If you have input on creating the
game goals, be honest with yourself.
Get honest information from the
game publisher. It may take a little
coaxing to get a publisher to give you
the direction you need. It is, however,
very important to understand the
publisher’s vision. He is paying for the
project, and therefore his goals and
opinions are always the most impor-
tant. It won’t do any good to pretend
that the number-one goal of the game
is to be innovative when the number
one goal of the publisher really is to
reach a sales goal.

If you are working on a game that has
a movie tie-in, the number-one goal
may be to get the game on the shelf at
the same time as the movie is released.
This may be more important than
adding cool new features. In such a
case, the schedule should rule. Any
feature that has the potential to delay
the project may need to be scrapped,
even if it would make the game “super
cool.” When making decisions, it will
be easy to throw out anything that
would jeopardize the schedule and
choose the features wisely.

Breaking Down Your Goal
into Specifics
Avoid the temptation to set one large
goal that is actually several goals in
one. This is often the easy way out—it
is more difficult to articulate specific
goals than it is to generalize. But a
goal like “Make a cool game” is not
nearly as clear as “Add three new and
creative features that are not found in
competing racing games.” You could
even break down this goal into sever-
al more detailed goals: Create one new
feature that appeals to avid racing
game fans and add two new features
that appeal to the more casual gamer.
All of these goals could be a subhead-
ing of “Create a game that will sell
more copies than the last version.”
The point is to define useful goals that
will provide direction during devel-
opment. Understanding the motive
behind the goal is very important.

How Priorities Affect
Decision-Making
Now think about how priorities can
affect decisions. Let’s say that the first
priority of a game is to be education-

al and teach kids about animals. A
secondary goal is to make the inter-
face intuitive and easy to use. This
secondary goal is important, but it is
lower on the priority list. If you are
armed with this information about
the game’s priorities, decisions will be
easier to make. For example, a lot of
text describing the difference between
amphibians and reptiles may be used
in the interface. Using all of this text
may not support the goal of a simple
interface, but as the first goal of edu-
cation is more important, the text
must be kept. This does not mean that
the lesser goal of a simple interface
can be dumped. There may be ways to
work around the text and create the
best possible solutions that includes
the text.

In the case described above, you may
need to be a little creative and include
the necessary text but not clutter an
interface. One solution could be to
create an information button with a
recognizable icon. This button could
be placed next to animals. When the
information button is selected, a pop-
up window appears with all of the
text. This window can be closed and



other information buttons can be
selected. This way, the user can easily
access all of the information, but the
screens with the images of the animals
can be kept simple.

Charting Methods
The menu system that appears before
the game begins is often referred to as
the front-end. This term helps distin-
guish this menu from all of the in-
game and pause menus that can
appear in a game. The best way to
plan and organize a front-end menu
is to create a flow chart. This will give
you the chance to organize your ideas.
Once you have a chart, it is also easy
to give this information to others for
approval or feedback. A great flow
chart can even allow the programmer
to begin programming the interface
with temporary art, before the final
art is completed. A flow chart makes it
easy to see what tasks need to be done.

The important thing to remember
when charting a menu is to be consis-
tent and clear. The purpose of creat-
ing a flow chart is to be organized.
Clear communication of the flow of
the interface is the number one goal

of a flow chart. Don’t worry about
what the chart looks like so much as
what information and options will be
displayed on each screen. Just get the
flow on paper and make it easy to
understand. You can waste time mak-
ing pretty borders and cool-looking
backgrounds. Simplicity and clarity
should be the governing factors.

There are many software programs
that can help you create charts. I pre-
fer to use Adobe Illustrator because I
know it well and use it for other parts
of game development. There are pro-
grams, like Visio, that are specifically
made for creating flow charts. These
programs can be much more efficient
than a standard art program. Making
changes should be easy. If you don’t
plan on using a program that was
made for creating flow charts, I would
strongly suggest at least using a vector
program, like Illustrator, and not a
raster program such as Photoshop.
Vector files will be much more flexible
when it comes to editing; they create
smaller files and print clearly. I have
seen some cool-looking flow charts
created in Photoshop, but they were
big files that were hard to send in an

e-mail, and it was much harder to
make changes to them.

I have come up with a charting
method that works well for me. There
are many other methods that would
work equally well, but I’ll share my
method as an example. Feel free to
develop your own methods and sym-
bols. The important thing is that your
chart includes all of the information
discussed here and is easy for others
to understand.

Start by creating a box that represents
the first screen that is seen when the
user starts the game. Make a box that
is large enough to fit several lines of
text. All of the options for that screen
should be listed in this box. Place a
title at the top. As you choose the size
of the document and the size of all of
the elements that appear in this flow-
chart, you should take several things
into account. Most likely, this chart
will be printed at some point. The text
and images will need to be large
enough to be easily read on paper.
Think about the total number of
screens that will appear in the flow
chart, and make sure that the spacing
and size will allow for all of these
items to fit (See Figure 2.1).

Charting Methods 13



Figure 2.1
Create a box that
represents the
title screen.
Carefully plan the
size and spacing
of your chart.

Chapter 2   ■ Planning Menu Flow14

T i p

Your menu may become too compli-
cated to fit on one page. Most software
programs provide the option to print
one document on multiple pages—
when the chart is printed, these pages
can be pasted together to make one
big chart.

Charting may not be easy. It is very
likely that you’ll have questions that
aren’t easily answered during this
charting process, and you’ll need to
make changes to your chart once
these decisions have been made.
Don’t let this intimidate you. The best
way to root out problems is just to get
started. Take your best guess at the
options that should appear in this
first menu and type them into your
chart. As you move onto other

screens, you may discover something
that will cause you to come back to
the first screen and make changes.
This is a natural part of the charting
process.

Once you’ve listed the options, you
need to decide where each of these
buttons will take the user. Create new
boxes, just like the first box, for each
of these new screens. Type in all the
options that should appear on these
screens and decide where each of the
buttons in these menus will send the
user. Use this method to chart out the
entire front-end menu. If important
information or images (such as a
tournament bracket in a sports game)
will need to be displayed, make sure to
list these items. Make sure that they
are visually distinct from the items
that will be interactive. I have created
a sample of a chart that could be used
for a sports game interface. All of the
items that are not interactive have
been italicized in this example. (See
Figure 2.2.)

The next thing you need to do is cre-
ate arrows that show the flow of the
interface. Use these arrows to connect
all of the various screens. Don’t forget

the Back buttons. Use a different col-
ored arrow to represent the transition
when the user presses a Back button.
This will help keep things clear.

Video games often have items that are
locked and are only accessible after
certain tasks have been performed in
the game. Levels may need to be
unlocked by completing a previous
level. The user may only have access to
certain cars until he has won enough
races. Most games have some items
that are not available, or locked, at the
beginning of the game. This is a good
time to identify these items. Once an
item is identified as one that is initial-
ly locked, it will be easier to visually
design this screen later. (See Figure
2.3.) If you know that in the end 20
different soccer fields will be available,
but in the beginning the user can only
play in one of the three available
fields, this will affect your design.

You may want to let the user know
how many options are possible to
unlock. In the example above, you
might want to display all 20 fields and
just mark some as locked. This is
important to know before you start to
design these screens.



Charting Methods 15

Figure 2.2  Create boxes for every screen in the menu and list all of the options on each of the screens.



Chapter 2   ■ Planning Menu Flow16

Figure 2.3  Notice the transitions and the locked items. This is a relatively simple menu.



The charting process may seem sim-
ple, but it can take a lot of thought to
get it right. This first example is rela-
tively simple and straightforward. It
doesn’t take long for a menu to
become very complex, however. Take
a look at Figure 2.4 and see how this
same game, but with a bigger budget
and more features, is more complex
and will take more time to plan.

Notice another type of screen in
Figure 2.4. These are pop-up menus.
The traditional pop-up menu is dif-
ferent from a regular screen in two
important ways. These menus are not
stand-alone screens; they appear on
top of the current screen. When they
are activated, they “pop up” over the
current screen. The screen that was
visible before the pop-up appeared
can often be seen in the background.
The pop-up menu only covers part of
the screen. Pop-up menus often
appear when there is a small amount
of information that needs to be dis-
played and this information does not
justify a full-screen menu.

A common technique, used to avoid
confusion, is to darken the previous
menu, which is in the background.
This way, the user does not think that
the buttons on that part of the menu
are active. Occasionally, a pop-up
menu can advance a user onto a
brand-new screen, but it is much
more common to have these pop-up
menus close and return the user to the
screen he just came from—they are
sort of “dead ends” in the menu flow.
Because they are often small, they typ-
ically do not contain as many options
and information as a full screen does.

Button Types
This is a good stage at which to exam-
ine the interactive aspects of the
menu. How does the user make
adjustments or choices? Most menus
have several different ways of accept-
ing user input. Buttons, sliders, and
toggles are very common and are all
used in many menus. The trick is to
choose the appropriate input method
for each item. What information does
the user need to input, and what is
the simplest method to get this infor-
mation?

I will assume that the user will be
using a mouse or a controller as an
input device. There are, however,
many other options. Voice recogni-
tion technology has improved and
there are some games that use a
microphone as an input device. Some
systems use other input devices such
as guns or drums. Not as many inter-
faces have taken advantage of these
interesting input devices. This does
not mean that there are not any great
solutions that use this non-standard
hardware.

The way to get input from the user is
to detect which buttons have been
chosen by the user. The user makes
choices that advance him through the
menu. Every time the user makes a
selection, the game engine detects
these choices and the appropriate
changes are made when the game
starts. Simply put, the user chooses
features such as Single Player mode
and Easy difficulty level by pressing
the buttons or pressing Select on the
controller. When the game starts,
these settings take effect.

Button Types 17



Chapter 2   ■ Planning Menu Flow18

Figure 2.4  It is easy to see why a flow chart is necessary to visualize how the menu will work.



Sliders
Sliders are a great way to adjust values
that have a wide range of possibilities.
If the value that is being adjusted only
has a small number of distinct choic-
es, such as Easy, Moderate, and
Difficult, then other methods work
better. Numeric values like a range
from 1 to 10 or 0 to 100 percent work
great for sliders. Music volume is
another good example of an input that
could use a slider—the user can move
the slider left and right and get a wide
range of volumes. When using sliders,
the settings are typically remembered
by the game engine. If the user sets the
volume at 3, and leaves the menu, the
volume should remain at 3. If the
game system has a method to save
information on the hard drive or on a
memory card, this setting should also
remain the next time the user plays.

Just because you’re using the stan-
dard input method for a slider does-
n’t mean there isn’t any creativity
involved. All sliders don’t need to
look the same. This is another area
where you are only limited by your
creative ability—the only thing that
is important is that the user recog-
nizes the control as a slider and

instinctively knows what to do with
it. (See Figure 2.5.)

Toggle Switches
You can use a toggle input method
when there are two possible states,
such as On and Off. Methods for dis-
playing these two states and getting
the user input can vary. As the word
toggle implies, the user can change
from one state to the other by toggling
or changing the switch.

A radio button is a commonly used
toggle switch that is placed next to
text or an icon. The text or icon repre-
sents one of the two states. When the

box is checked or the button filled,
this means that the state represented
is on. If it is empty, the state is off. For
example, a radio button may be
placed next to a line of text that reads
“High Level of Detail.” If the circle is
empty, then High Level is off. If a dot
appears in the circle, then this option
is turned on. A radio button does not
always have be a circle with a dot. For
example, the same functionality could
be accomplished with a check box. It
is important that the empty version
looks empty and the filled version
looks filled. The user should be able to
recognize it as a radio button.

Changing a toggle switch can be
accomplished using several different
methods. When playing a console
game, the user can make a change by
moving the control stick left and right
when the option is highlighted. The
toggle can also change as the user
presses the Select button when the

Button Types 19

Figure 2.5  Be creative when designing
the look of sliders. Just be sure not to
confuse the user!

Figure 2.6  These are some standard
looks for a radio button.



Chapter 2   ■ Planning Menu Flow20

option is highlighted. Look at the
methods used by other games and see
what will work best for your game.
The goals are to use what you think
will come naturally to the user, and to
be consistent throughout the entire
menu.

Lists
Lists are used in many different ways.
If all of the screen options can be seen
on the screen at once, then the user
can move the selection indicator to
the option he wants and the options
remain in place. (See Figure 2.7.)

If there are too many options to dis-
play all at once, you can handle the
situation in a couple of different ways.
One method is to keep the selection
indicator stationary and the options
scroll on and off screen and move into
place. (See Figure 2.8.)

You can use a combination method,
but this can become confusing if it’s
not executed well. In the combination
method, the cursor moves from
option to option if it is visible on
screen. Once the selection reaches the
last visible option on the screen, and
the user continues to move it in the

same direction, then the selection
indicator remains still while the
options move onscreen. (See Figure
2.9.)

Input Text
In some cases, the user may need to
input text. For example, the user may
be given the option to enter a name
for his character. This can be a simple
process when playing a game on a PC,
but it can become very complicated

Figure 2.8  The selection indicator remains
still and the options move.

Figure 2.7  The selection indicator moves,
and the options stay stationary.



without a keyboard, as when playing a
game on a console.

This challenge has been addressed in
basically the same way ever since the
old arcade games asked the user to
enter initials after receiving a high
score. The most common method is
to make three or four rows of text.
This list should include every letter of
the alphabet and any characters that
can be used for input. There are also
two additional options: Delete and
Done (the Done button is only need-
ed if the number of characters is not

pre-determined). One of the letters is
always highlighted, and the user can
move this highlight left, right, up, and
down. When the correct letter is high-
lighted, the user presses the Select
button on the controller and this let-
ter is added. If the user makes a mis-
take, he can select the Delete button
and delete one letter. Each time the
Delete button is selected, another let-
ter is deleted. This method is effective
and it can work with a very simple
controller, such as a joystick and one
button. The problem with this

method is that it can take a long time
to enter a name—it is much slower
than typing. Figure 2.10 shows an
example of this method for entering
text.

Another approach is to start with one
letter blinking. If the user moves the
joystick up, the list cycles backward
through the alphabet. If the user
moves the joystick down, it moves
forward through the alphabet. In both
cases, the letter cycling wraps around
and continues when at the end or
beginning of the alphabet. When the

Button Types 21

Figure 2.9  The selection indicator moves
until it reaches the edge, and then the options
move onto the screen

Figure 2.10  This is the traditional solution for entering text
on a console or arcade machine.



Chapter 2   ■ Planning Menu Flow22

user moves the joystick right, another
letter is added. When the user moves
the joystick left, a letter is deleted.
Pressing the Select button on the con-
troller finalizes the input and
advances the menu.

These are just some of the most com-
mon solutions for allowing users to
input text. There are many more that
have been used, and I have heard
some solutions described that would
make the entry process much faster. I
challenge interface designers to come

up with a better text-
entry solution for a
console game, but I
do so with caution. A
new method can
cause confusion and
frustration in users. It
must be very intuitive
or explained really
well. Neither of the
methods described
here is simple. The
first time someone
uses these methods to
enter text, he is usual-
ly a bit confused.
These methods do,
however, have a huge

advantage: Almost everyone who’s
played a game has used one of these
methods and is familiar with them—
in fact, users have come to expect
them.

Drop-Down Menus
Drop-down menus are commonly
used as an input method in PC games,
but they are seldom used on a console
game. Technically, a drop-down menu
is just another way to use a list of
items as input. It is just hidden until

the user selects the correct option.
Drop-down menus are a common
solution in most PC operating sys-
tems and are very standard with
application software. There aren’t
many software applications that don’t
use drop-down menus extensively.

While drop-down menus can be use-
ful, remember that you are making a
game. A lot of the Windows conven-
tions may be very familiar to the user,
but they aren’t much fun. In general,
it is better to get away from the feel of
the operating system and make your
game feel like a game. Drop-down
menus typically don’t make you feel
like you’re playing.

If you determine that a drop-down
menu is still best for your game, you
can at least do some variations. These
menus can drop to the side or “drop”
up. Interesting animations used for
the transitions can also help give these
menus a fun look. Just remember that
you are making a game.

Other Variations
Not all of the methods for accepting
input are listed in this book. In fact,
there are many still waiting to be con-

Figure 2.11  This solution is also common. The advantage to
this solution is that it uses much less space than the one shown
in Figure 2.10.



ceived. This is an area where vision
and creativity can have a great impact
on game design. Just be very careful
when implementing new methods—
if a new method makes the interface
confusing, then it is not a better solu-
tion, even if it looks really cool. The
user should know what to do without
having to think very much. Stick with
generally accepted methods most of
the time; the user is familiar with
these methods and will expect them.
Use new and innovative methods
sparingly and only when they will
have a positive impact on the design.

Common Menu
Screens
Some of the sample menus that were
charted previously were simple. A big-
budget game with a lot of options can
get very complicated. Take a look at
Figure 2.4. You can see that creating a
flow chart for a menu like this can be
complicated. I’ve worked on games
that had interfaces that are even more
complicated than this sample.

Below is a list of some commonly
used menu screens. Again, this is by
no means an exhaustive list. There are
many other screens that appear in
many games. Looking at this list may
help you to begin to make a flow chart
for your next game. Think about
which of these menus could be used
in your game and what your game
might need that is not listed here.

■ Legal screen. This can be a
short sentence or a screen full
of text. It will include legal
issues like copyright notices.

■ Publisher logo screen. It can be
a requirement to show this
screen before the developer
logo. There may also be a
requirement for how long it
needs to be displayed before the
user can move on.

■ Developer logo screen. This is
where your company logo is
seen.

■ Console logo screen. Some
consoles require or encourage
developers to display the system
logo.

■ Title screen. The name of the
game appears here. It can also
include interactive options.

■ Options. An option screen
allows the user to change many
game settings.

■ Credits. This is where everyone
who worked on the game is
listed.

■ Environment or level select.
This is used in games where the
user can choose a level of loca-
tion to play.

■ Player editor. A player editor
will allow the user to change
the look and attributes of char-
acters in the game.

■ Information. This screen can
have extra information, such as
story, maps, and so on.

■ Save / Load game. This screen
lists how many games are saved
and allows the user to load and
save games.

Simplicity versus Depth
After you have created a flow chart,
it’s time to evaluate the flow of your

Simplicity versus Depth 23



Chapter 2   ■ Planning Menu Flow24

menu. Before you move on to creating
art is a good time to make changes to
the flow. It is much easier to change
your chart than to change elements
after art is created and is working in
the game. The goal is always to make
the menu simple and easy to use. Ask
yourself the following questions:

■ How many options appear on
each screen?

■ Are they logically grouped?

■ How fast can a new player get
into a game?

■ How fast can an experienced
player get into the game?

■ Which options will the player
want to adjust often?

■ Which options will be changed
rarely?

■ How does this menu compare
with similar games?

■ How many dead-ends are there?
(When the user must back up
to start the game.)

When designing interfaces, you
should try to limit the number of
screens you present. You should also
try to limit the number of options on

any one screen. These two goals
sometimes conflict, and you must bal-
ance your solution. The user does not
want to be forced to go through a lot
of screens to accomplish what he
wants to do. At the same time, if too
many options are listed on a single
screen, the menu can be more diffi-
cult to negotiate. It is much easier to
quickly understand small amounts of
information. This applies to both
console and PC games, but too many
options on a console can be even
more problematic than on a PC. If
there are too many options, screen
resolution limitations can make them
hard to read; it can also be tedious to
scroll through a long list of items with
a controller. A mouse allows the user
to go directly to the option he is look-
ing for. (The user will still need to
read and comprehend all of the
options on a PC game.)

A good test to see if your interface is
designed well is this: When a user
begins your game and just hits the
Enter button repeatedly, can he get
into the game? How many presses will
it take to get into a game? Which
options will be chosen with this
default method? If your game has an

option such as Multiplayer that will
be used often but does not fall in this
default path, how easy is it to choose
this option and get into the game?

Make sure that the user is only forced
to back up (go back to a previous
screen) when he is adjusting options
that most likely will not be accessed
often. For example, music volume
may only be set once and then left at
the same level every time the user
plays the game. Another option is to
allow the user to start a game from
what would be a dead end without a
Start Game option. This doesn’t
always make sense, and it will only
work if there aren’t any other options
that need to be selected before begin-
ning a game.

Planning for HUD
What is HUD? It is not a replacement
for a swear word. HUD is short for
Heads Up Display, which refers to the
interface that is displayed during
game play—stuff like the radar, health
meters, and score.

Because of the nature of the HUD, a
flow chart is not typically necessary,



but organization is important. You
will need to know all of the informa-
tion that will need to be displayed
during game play and you will need to
know any options that might need to
be accessed in a Pause menu. You may
need to get the information from a
game designer. Get it as soon as possi-
ble. Many other screens may be need-
ed for a game. Pop-up menus may
occur at various stages and the player
may need access to other information
that is not visible in the HUD while
playing the game. The user may need
to check inventory or look at a map,
for example. Do your best to get all of
the information and list all of the pos-
sibilities that could occur during the
entire game.

Because of the nature of the HUD, no
matter how well you plan in the
beginning, the game will change at
least a little before you’re done. It
changes because of the close tie with
game-play. You will discover that the
user needs information that you did
not anticipate displaying. You may
also learn that when playing the
game, some information is not neces-
sary and should be removed. Many of
these problems won’t be discovered

until the game is at a stage where it
can be played. You will need to be
flexible and even look for ways to
improve the HUD.

I have changed the HUD partway
through the development process on
most of the games I have worked on.
A great example is a change we made
to the game demo on the CD of this
book. We began by displaying a num-
ber as a percentage for the rating of
the station. We later discovered that
this number was confusing—the test
users were not sure what the number
meant. We changed to a five star sys-
tem. I created five empty stars and the
stars filled in as the rating increased.
The disadvantage is that the user did
not know if he was at 3.2 or 3.3 stars,
but this information could be checked
in the Goals pop-up menu. We found
that this was a much better solution.
All of the users seem to intuitively
understand what three stars meant.

Get our your pencil and begin to
sketch your HUD early. What you
need to design will vary greatly from
game to game. It also can be a little
harder to design than the front-end
interface, because there are fewer ways

to chart the flow HUD. Just because
the HUD is a little harder to plan does
not mean it should be left until later.
Get all of the information you can.
List everything that could be possibly
displayed! Prioritize all of the display
items and determine how the user will
access information that is not typical-
ly displayed on-screen. Determine
what will be automatically displayed
and what will require a separate
menu. Identify any game events that
will change the HUD. Organize all of
the information to be displayed into
logical categories, and plan as much
as possible!

Creativity versus
Conventional Methods
Most interface designers are bursting
with creativity. They want to do
things better than has been done in
the past. They want to discover and
implement original ideas—this is
what makes the video game industry
fun! The passion and desire to contin-
ually improve are essential.

When designing an interface (or
working on any aspect of a game),
remember that thousands of creative

Creativity versus Conventional Methods 25



Chapter 2   ■ Planning Menu Flow26

people have been doing the same
thing for a long time. Most likely,
someone else has already thought up
what seems like a new idea to you. If it
has never been implemented, then
there might be a good reason. Be cau-
tious when trying out new ideas—use
your creativity wisely.

Video-game players have also come to
expect the thing they have already
experienced. Take advantage of this
often by using these conventional
methods. Don’t give up on creativity,
but don’t think that something is bet-
ter just because it is different. Make
sure it really is better.



27

This chapter will discuss the
best way to make a cool-
looking interface. I will dis-

cuss how to decide what the interface
should look like and will give you
some hints on how to find inspira-
tion. I will also explain thumbnail
sketches and what is a good use of
photographs and illustrations. The
use of real-time 3D in an interface
will also be covered.

Define a Look
Defining the look and feel of an inter-
face is the fun part of the design

process. Artist and designers with a
passion for creativity look forward to
this stage of development. The early
concept stage is the fun part of the
process. The hard work comes at the
end of a project, after you have been
working for months and you are told,
for instance, to change the highlight
color for the entire interface for the
fourth time.

When working on the look and feel of
a game, have fun and take the oppor-
tunity to be creative. This is a great
place to experiment and to come up
with something totally unique. The
look of the design is what the end

users will remember. If the function-
ality of an interface is good, the user
won’t even notice it. If you don’t enjoy
designing the look of a game, you may
not be cut out for interface design.

Create a Mock-Up
The best way to define a distinctive
look for your game is to create sample
art, or a mock-up of the interface. The
goal of creating this sample art is not
to have a final product but to define
and visualize the look and feel of the
entire interface. Don’t worry about
having the right options listed. It is
more important to show what your

The Look and Feel of
Your Interface

Chapter 3



Chapter 3   ■ The Look and Feel of Your Interface28

buttons will look like than it is to get
the right button. By creating art that
looks like a real interface, you make it
easy for anyone who needs to review
and approve your design. It does not
require a lot of imagination or guess-
work on the part of the producer or
art director to get the idea if they can
simply see it.

A mock-up can guide your design
throughout the process. Once your
mock-up has been created, reviewed,
and approved, a standard has been
set. The rest of the interface can be
designed to fit in with the look and

feel of the sample art. The entire
interface should look and feel just like
this sample art. It will be much faster
to design the rest of the interface once
you have set the look and feel. Much
less experimentation is needed once
you’ve found the style for your inter-
face. Figure 3.1 shows an example of a
mock-up.

A mock-up of a single screen of the
interface and just a few more pieces of
art, such as some important buttons
from other screens, is all you need to
define a look. Figure 3.2 shows a cou-
ple of these extra elements that you

might want to include in the mock-up
phase. You don’t need every detail to
establish your interface style. Often,
the best screen to mock-up is the title
screen. Legal screens, company logo
screens, and even the opening cine-
matic sequence may appear before
this title screen in the final game, but
typically the title screen is the first in
which options appear for the user.
There are some games that have a sep-
arate title screen from the main menu,
but it is usually the first screen with
active buttons, and it will often con-
tain the game logo, as well. Because it

Figure 3.1  The mock-up of the title screen defines the colors
and style of the entire interface.

Figure 3.2  Creating a few more interface elements helps to
better establish the look of the interface.



contains so many important ele-
ments, the title screen is ideal to use as
a mock-up screen.

Working with Logos
Working with publishers and their
game logos can be tricky business.
The game publisher often provides
the logo, and it is important to get this
logo as early as you can. Too often, the
publisher waits until near the end of
the project to even decide on the
name of the game, much less the
design logo.

If the publisher is dragging its feet on
coming up with a logo, create a tem-
porary logo that captures the feel that
will be used in the final logo. This may
not be easy to guess, but it is better to
have some reference, however flawed,
than to have no reference.

Try to establish the look of the logo
early, even if the name must change
later. Communicate with the publish-
er and make sure they agree with the
direction you’re taking. It is always a
pain when, say, the game has a black-
and-orange interface and the publish-
er brings you a green and purple logo
at the end of the project and asks you
to change the entire interface to

match the cool, new
logo. Even if the new
logo is cool looking, if
it doesn’t mach the
rest of the interface,
it can mean you’ll
have to spend weeks
reworking the art.
Figure 3.3 shows how
a logo can be out of
place if the interface
was not designed
around the look of
the logo.

Define a Color
Scheme
Color is a very important part of an
interface. What color is your game?
This is a good question to answer
early. Anyone who looks at your inter-
face should be able to see at a glance
the color scheme of the entire game.
Keeping the colors consistent
throughout the game creates a unified
look. Everything from the box cover
to the in-game interface should reflect
this color scheme and help define
your game. Too many dramatic
changes in color from screen to screen
will make the game feel inconsistent.

When creating a color chart, make
sure it feels like you want your game
to feel. If you are working on a game
for young children, for example, then
bright, saturated colors may be
appropriate. The colors would proba-
bly be very different for a game based
on a horror story. In such a game, the
colors should look like they belong in
a horror movie—a lot of black with
orange or green accents may be a
good choice for such a scary game.
Take a look at Figure 3.4 and compare
the two color charts to see how a feel
can be created using only color.

Define a Look 29

Figure 3.3  The colors in this logo don’t go well with the rest
of the interface.



Chapter 3   ■ The Look and Feel of Your Interface30

The subject matter of the game can
often direct the color choice. If you
are working on a game that takes
place in a jungle, green is probably the
wise color choice. If you are working
on a game with demons and gar-
goyles, then red and black may be a
logical choice. Your colors should feel
like they fit with the subject matter.

Images sometimes actually get in the
way of making a color choice. If you
have an illustration or photo of a
cool-looking red car, you may be
influenced to choose red as one of the
colors for your interface, even if red
isn’t the best color choice. It is better
to make the color choice first and

then adjust the image to match your
color scheme. This way, you have
made the color choice independent of
the colors in an image.

A good way to separate the color
choice from all of the other decisions
is to make a color chart. Create a file
that is made up of the colors you will
use in the interface. This color chart
should not only contain the colors
you will use in the design, but it
should also have the correct propor-
tions of each of the colors. It should
roughly represent the amount of each
color you will use in the actual inter-
face. If an accent
color is used in the
design, it should only
take up a small
amount of space on
the color chart. This
way, the colors in
your chart will feel
like the final inter-
face. Make sure to
refer to this chart
when working on the
interface, so that you
don’t lose the color
balance you’ve estab-
lished.

Take a look at the color chart in
Figure 3.5 and see how the yellow
color is much smaller than the green
tones. Now look at the final interface
screen in Figure 3.6 and see how the
color is balanced similarly to the color
chart.

Figure 3.4  Just by looking at these two
different color schemes, you can tell what
kind of games they might be used for.

Figure 3.5  This color chart establishes
the colors of an interface.

Figure 3.6  Compare the color chart with this final interface.



Express Yourself in
the Design
Go for it! Make your design unique.
This is your chance to really express
your creativity. The best interface
designs push the feel of the game. If
you decide to design an interface with
a retro, 1950s-America feel, then
make sure that all of the elements fit
together. Don’t just design a standard
interface that has a few elements that
fit the 1950s theme—make it really
feel like the 1950s. Look at clothing

styles, colors, cars, and kitchen appli-
ances that were used in the 1950s.
Choose some of the elements that
capture the feeling you are looking
for. A button on a radio or the grill of
a car may inspire the shape, color, and
design of your interface. If the game
takes place in ancient Japan and you
decide to design the interface with a
classic Japanese feel, then go all the
way. Look at ancient Japanese art and
calligraphy. Choose a font that looks
Asian or like calligraphy. Use colors,

plants, cloth patterns, or anything
that imparts the feel you’re striving
for.

Take a look at Figure 3.7 to see how a
design is less effective if a theme is
only partially implemented. Then
take a look at Figure 3.8 and see how
this same theme produces a much
more interesting design when it is
pushed further. Choose an art direc-
tion and go with it—don’t get caught
with just an average design.

Express Yourself in the Design 31

Figure 3.7  There may be nothing wrong with this interface,
but it could be more interesting.

Figure 3.8  This menu takes advantage of the interesting
images offered by the subject matter of the game.



Chapter 3   ■ The Look and Feel of Your Interface32

Research and
Inspiration
Coming up with ideas for your design
is not always easy. It’s not uncommon
to hit a creative roadblock when
designing an interface. When you feel
like you can’t come up with any good
ideas, there are a couple of techniques
that you can use to help inspire your-
self. Don’t let a slump hold you back
for long!

Make Lists
A common and very effective brain-
storming method is to create lists. Sit
down and just start writing. Write
down good ideas and even ideas that
may not seem so good at the
moment—just let them flow. Create
several lists. List objects associated
with the game. List emotions associat-
ed with the game. List actions associ-
ated with the game. Create as many
categories as you can. Combine differ-
ent words and phrases from different
lists and see what you can come up
with. You may come up with some
unexpected solutions using this tech-
nique. Figure 3.9 shows an example of

the beginnings of a brainstorming
list.

T i p

Some of the most creative ideas come
from mixing words from two very dif-
ferent lists that, at first, may not seem
to work together. Don’t be afraid to
experiment. See if you can come up
with something really interesting.

Search for Images
Another great creativity-inspiring
technique is searching the Internet 
for cool, interesting, or thought-
provoking images. You can go on a
virtual field trip anywhere in world
and see what things—buildings,
clothing, flora, fauna, and so on—
look like. If you are unfamiliar with
the subject, you can quickly find 

Figure 3.9  These are lists that were created for a children’s game about a family of
monsters that live in the jungle.



visuals to help you approximate the
look you’re going for in your design.
When creating an interface for a
Formula One racing game, for exam-
ple, you could search the Internet for
photographs of the cars, the crowds,
the tracks, and the drivers. You may
find images of elements you wouldn’t
have thought of without looking at
photos. Skid marks on the track, dent-
ed railing along the track, and helmets
worn by the drivers may all provide
inspiration and direction—and you
may not have thought of them if you
hadn’t searched for images online.

T i p

The Web site http://www.google.com
offers a great way to search for images.
Click on the Images heading and enter
any subject to find images on the Inter-
net. You may want to have some sort of
filtering turned on—you never know
what you may see!

An amazingly large amount of infor-
mation and photos can be found on
the Internet. Be very careful not to
violate any copyright laws, though.
Use the photos and images you find
for inspiration, but don’t actually use

any photos if you don’t have the copy-
right on them. If you really need a
specific photo, you may be able to
purchase the rights to use it. Stock
photography vendors will be happy to
help you out.

You can find inspiration in other
places, as well. Art galleries, libraries,
and the theater can all be places where
you can find inspiration. Constantly
keep your eyes open. On my drive
into the office, I pass several old facto-
ries with rusted metal walls, steel, and
rivets. I think of how many great
images and textures that can be found
in these old, beat-up buildings. I often
carry a digital camera so that I can
stop and take a picture of anything
visually arresting I come across dur-
ing the day.

Another place I find a lot of inspira-
tion is at the movies. There are so
many visually stunning movies. For
example, if I am working on a game
that takes place in ancient Egypt, I will
rent (or go see, if there is anything
out) a great movie that shows archi-
tecture and art from Egypt. Animated
movies are also great for inspiration. I
have watched many movies with a

sketchbook in my hand, ready to cap-
ture any inspiring image I see.

Check out your competition. Find out
what they came up with when con-
fronted with a similar design chal-
lenge. See what you’re competing
against and learn if any unique and
interesting design solutions have
appeared in other games. Understand
what users have come to expect of
games in the genre you’re working in.

Avoid any urge to copy the design of
other games, though. It’s easy to make
a game that looks only slightly differ-
ent to a competing game. Playing a
game like this won’t be very enjoyable
or impressive for users. Make your
design original. Don’t sell your own
abilities short—even if a competitor
has a great interface design, their
design doesn’t represent the only
great solution available.

Thumbnails
Thumbnails are very small sketches.
They are often only an inch or two
wide. They are used to quickly run
through a bunch of concepts. These
little sketches can be very useful when

Thumbnails 33



Chapter 3   ■ The Look and Feel of Your Interface34

designing an interface. When I skip
thumbnails and go straight to work-
ing on a full size image, most of the
time I end up getting stuck and hav-
ing to go back and create the thumb-
nails after all.

It is easy to get too excited about an
interface and either skip or spend too
little time on the thumbnail sketch
stage. Be patient, and make a lot of
thumbnails. Thumbnails are easy and
fast to make, and they can allow you
to try out literally hundreds of ideas
quickly. If you dig right in and start
creating full-size color layouts before
you make thumbnails, you’ll only be
able to try a limited number of
approaches. Take advantage of the
ease of creating thumbnails and create
a lot of them.

Work Quickly
Keep your thumbnail designs small
and simple. As the name implies,
thumbnails are typically small, and
they do not contain much detail; they
are simply meant to help you arrange
the basic layout. If they are drawn too
large, you may be tempted to add too
much unnecessary detail. Such

unnecessary detail will slow you down
and can distract you from finishing
the basic layout.

Make your thumbnails quickly and
keep them rough. They should be
used for internal direction and should
not be shown to a publisher until they
have been cleaned up. Spending extra
time creating tight thumbnails can be
a waste. Even without the details, it is
amazing how much information you
can convey in a small thumbnail. The
best way to make thumbnails is the
old fashioned way—with a pencil and
paper. It is hard to match the speed of
using a pencil for thumbnail sketches.
Speed is the key with thumbnail
sketches. You want to try a lot of ideas
quickly.

Some artists struggle to maintain a
small scale and to get the screen pro-
portions correct. The best way to
solve this problem is to print out a
page of small, blank boxes that are the
correct size and proportions. These
boxes can then be used as borders for
hand-drawn thumbnails. I have
included a digital file on the CD
included with this book that you can

use to print borders for thumbnail
sketches. Figure 13.10 shows a page
full of thumbnails sketches.

Push for Variation
It is a good idea to push yourself to
create more thumbnails than you’re
initially inclined to make. You will
often be more creative the further you
go into the thumbnail process. At
first, you may tend to create thumb-
nails that look similar to other inter-
faces you have created. Once you have
run through your standard set of
ideas, you will be forced to come up
with more creative ideas. Don’t stop
when it starts to become difficult to
come up with another idea. This is
often the point when new ideas
appear. When you get stuck, you can
create variations on each design. It is
also a good idea to create many com-
pletely new layouts.

Although it’s good practice to create a
lot of thumbnails, it’s often a mistake
to present hundreds of ideas to the
publisher for approval. The publisher
may legally own all of the art created
in association with the game, but they
seldom require that you show them



Creativity versus
Standards
Creativity is essential, but make sure
that you use it in the right place. You
must balance new and original ideas
with standard approaches. Gamers
have come to expect certain stan-
dards, and in many cases, it is better if
they don’t have to think too much
about a new approach. Just because
you think it will be cool to, say, have
the “highlighted” button grow dark
instead of light up does not mean it is
necessarily a good idea; it may con-
fuse the user and take him longer to
understand which button is selected.
This does not mean that darkening
the selected button will never work.
You just need to consider what the
user is expecting to see and under-
stand that if your menu does some-
thing different, then it may make it
harder for the user to navigate.

Using Photographs
Photographs can be very useful and
cool-looking in your interface, but
they must be used correctly or they
will hurt your design. In some cases,
using photos may be the very best
solution or even a requirement. If you

Using Photographs 35

Figure 3.10  Keep thumbnail sketches small and simple.

every scribble and sketch. Not only
does it take longer for the publisher to
sort through a large number of
thumbnails, but inevitably the pub-
lisher will choose the one you like the
least. Not everyone has the ability to
envision a finished product from a
thumbnail. Don’t run the risk that a
publisher can’t see past your pencil

scribbling to the magic beneath. As I
said before, most thumbnails should
only be used internally; if a publisher
requests to see thumbnails, it is a good
idea to clean up and present one or
two sketches. Choose the thumbnails
that you have already determined to
be the best solutions.



Chapter 3   ■ The Look and Feel of Your Interface36

are making a game that uses the name
of the latest sports star, you may need
to include a photo of the athlete on
the box and in the interface. A game
with a movie license may also require
a photo of the star. In many other
instances, photos can be a crutch and
can make a very bad or uninteresting
interface. Photos should only be used
when they are the logical solution,
and not just because it’s easier to use a
photo than an illustration or to create
your own background. It is very obvi-
ous when an interface designer uses a
bunch of stock photographs that have
not been properly touched up just to
save time. It just looks bad.

I have a personal preference for using
illustrations over photos. I usually
avoid photos in an interface. Other
than when you need to show a like-
ness of a famous person, I suggest
always using an illustration. It will
take more time and require more
skill, but I think that a quality illustra-
tion has the potential to look much
better than a photo. You will find that
only a small percentage of the big,
triple-A games use photos in the
interface. Photos rarely fit well with
the art in the game.

If your budget is tight, of course, you
may need to use photos instead of
illustrations. You need to be aware
that this may be a weak point in your
interface if you don’t take the extra
time to use the photos well. Making
your own collage of several photos,
using filters and effects, and making
other adjustments to these photos can
really help. Do your best to choose
your photos wisely. I have seen some
instances wherein an interface design-
er used photos and it resulted in a
quality interface, but these instances
are rare.

If you use pho-
tographs in your
design, make sure
they are of good qual-
ity. A digital camera
can be incredibly use-
ful when making
games. The problem
that comes along
with using digital
cameras, however, is
that they are so easy
to use that everyone
thinks that he or she
is a great photogra-
pher and that there is

no need to spend money on a profes-
sional photographer or purchase
stock photography. Many designers
think, “I can take a picture of my own
football and get it just the way I want
it.” But in reality, the shot they end up
with is not nearly as good as a profes-
sional photographer could do. Photos
you have taken yourself are great for
reference, but they must be high qual-
ity if you want to use them in your
interface. Figure 3.11 is a photo that I
took that is a little washed out. It is
not a high-quality photo.

Figure 3.11  Digital photos that are not taken by a
professional can hurt an interface design.



Don’t be afraid to take digital photos,
just understand your limits. There are
many, many uses for photos. For
example, they can serve as great refer-
ences, as they capture details that you
might not be able to remember with-
out them. They can also provide a
great start for textures. They can be
used the same way the Internet can be
used for research.

Photos that are to be used in your
game can be touched up and edited.
It’s hard to fix a bad photo, but it’s
easy to improve a good photo.
Whether you took the photos or they
were taken by a professional photog-
rapher, there are many techniques
that can be used to make the photo
more interesting. Simple adjustments
include changing the image levels and
saturation. You can also try tech-
niques like colorizing the photos or
adding other filters. If you plan on
using photos often, learn as many
techniques as you can to get the most
out of your photos. Figure 3.12 shows
a photo that has been touched up
using several different methods.

Illustrations
In place of a photograph, you might
want to consider using an illustration.
This approach can really improve the
look of an interface. The subject mat-
ter of your game can determine which

to use. For example, while a sports
game may be a great place to use a
photograph of all the players, an illus-
tration may be much better solution
for a fantasy game. The style of illus-
trations used in an interface can help
define the look and feel of a game. Are

Illustrations 37

Figure 3.12  An average photo has been adjusted in several different way to help enhance
the photo and make it more suitable for use in an interface.



Chapter 3   ■ The Look and Feel of Your Interface38

the illustrations stylized or realistic,
detailed or simple, colorful or de-
saturated? As with photographs, poor
illustrations will hurt a design, but
great illustrations can improve an
interface significantly.

If you are confident in your skills as
an illustrator, then you should do
your own illustrations. If you can’t
produce top-notch illustrations in the
style that would best fit your interface,
get an illustrator with the style you
need for your game. Just because your

illustration style does not fit the game
does not make you a bad illustrator.
Don’t force your illustration or illus-
tration style into a design if it doesn’t
work just because you want the design
to be “all yours.” Figure 3.13 shows a
sample of an illustration that would
be hard to beat with a photograph.

3D Solutions
3D interfaces can be very compelling,
and the idea of creating a 3D interface
seems really cool. 3D interfaces can

also be very expensive
and time-consuming,
though. Make sure to
schedule plenty of
time and prepare for
the extra work that a
3D interface will
demand. It will
always take longer
than you think, and
you will run into
more unanticipated
problems than you
would in creating a
2D interface.

Pre-Rendered 2D Art
One way to get the look of a 3D inter-
face without all of the hassle is to use
pre-rendered 3D instead of real-time
3D. This option does not offer all of
the advantages of a real-time 3D
interface, but it certainly simplifies
things. A pre-rendered 3D interface
actually is just a 2D interface in which
the 2D artwork is created using a 3D
program. This approach doesn’t allow
for camera movement, but small
objects can be animated and rendered
in a 3D package and these frames can
be played back. These animations typ-
ically need to be small because of
memory limitations, but they can also
look really cool.

I used this technique when making a
Tiger Woods golf game for the N64.
This game had an arcade feel, and we
wanted to have a cool effect when the
ball was hit perfectly. We wanted the
3D ball to morph and warp while in
flight. The game engine would not
have been able to handle the polygons
needed to make this kind of anima-
tion in 3D. We instead rendered really
cool animations and placed these 2D
rendered animations over the ball
when the effect happened.

Figure 3.13  Using an illustration instead of a photo here
allowed for brighter colors. This image would have been difficult
to photograph.



This same effect can be used in the
interface. You can use a 3D model to
render a spinning animation of a but-
ton. These rendered frames can then
be played back in the menu. It appears
to be 3D even thought it is pre-ren-
dered.

Involve the Programmers
Programmers should be involved
from the beginning when you’re con-
sidering an interface that involves
real-time 3D. Real-time 3D involves a
lot of technology, and the game
engine must support all of the fea-
tures that you plan to put in the inter-
face. Good communication, tools,
and patience are even more important
when creating a real-time 3D inter-
face than when creating a 2D inter-
face.

Combining 3D and 2D
A common approach nowadays is to
use real-time 3D in just a small part of
the interface. 3D models are used in
important areas where they are most
effective. The trick is to determine
where 3D models can provide the

biggest benefit. For example, many
games offer a player editor wherein
the user can make changes to the
character in the game. Many options,
including clothes, hair, skin color, and
even tattoos can be adjusted in these
editors. Player editors often use the
same models and textures that are
used in the game. This way, the user
can make adjustments and see the
results instantly. In this combined
approach, the 3D model is drawn on
top of a 2D interface.

Cars in a racing game are an example
of a common use of a 3D model on
top of a 2D background. The user can
often see the 3D model of the car he is
choosing, right in the interface. One
way to take advantage of 3D models
that are used in an interface is to ani-
mate them or spin them around. This
kind of movement would be very dif-
ficult with a 2D-only menu but it is
simple when using a 3D model.

This can be a challenge when creating
the 2D section of these menus. You
will often need to guess at what the
menu will look like after the 3D
model has been incorporated. You

will not be able to see the 3D model
until everything works in the game
engine.

3D Challenges
Making big changes to a 3D interface
can be more difficult than making
changes to a 2D interface. It can take a
long time to build geometry and cre-
ate textures for a 3D interface, and if
you make too many changes you can
waste a lot of precious time. Because
each piece of art takes longer to cre-
ate, changing or replacing this art is
also more time-consuming. Spend a
fair amount of time planning and
designing before building a 3D model
for an interface—and make sure you
have solid concept designs.

This book covers many design princi-
ples. Principles like color balance, and
eye movement should not be discard-
ed because your interface is done in
3D. All of the same principles apply to
3D menus, just as they do to a 2D
menu. Don’t ignore any design prin-
ciples just because you are using 3D.

3D Solutions 39



Chapter 3   ■ The Look and Feel of Your Interface40

Even though the source of the image
on the screen may be a real-time 3D
model, the end result is a 2D image on
a computer or TV screen. This final
image should be designed to take into
account all the design principles for
2D art.

One of the big advantages of a com-
pletely real-time 3D interface is the
ability to move the camera. Take
advantage of this ability but do not
abuse it. Too much movement can
disorient the user. If the camera
movement is too slow and takes too
long, it can cause annoying delays in
the game-play. Camera movement
can be a benefit, but it can also be a
challenge. As soon as you begin mov-
ing the camera, you will need to spend
a lot of time trying to get it just right.
Making these camera changes can
take a lot of time.

Creating 3D interfaces can be a com-
plex task. Experience is the best
teacher. A good understanding of how
3D works in other aspects of the game
is a must when using 3D in an inter-
face. I have seen some incredible-
looking interfaces that use 3D. If you
have the time and the budget, these
3D interfaces can be very cool.

Don’t Get Too
Attached to Your Ideas
A big mistake that many designers
often make is to get too attached to an
idea early in the design process—they
latch on to an idea that sounds
appealing and then try to create the
rest of the design around this ele-
ment. It can be hard to do, but if an
idea doesn’t work well, you may need
to scrap it.

For example, while working on a rac-
ing game, a designer may decide that
using tires for buttons sounds really
cool. But the black tires may stick out
and not look good with the blue and
yellow colors (which must be used
because they are the colors of the
sponsors) in the interface. The round
shape of the button may not fit in well
with the rest of the design, either.
Rather than use a different image for
the buttons, though, the designer
wastes a lot of time changing every-
thing else to match the tires.

If any element of the design is causing
problems, just grit your teeth and
throw it out. When something is bro-
ken, don’t be afraid to fix it. You will
be surprised how much better a

design will turn out if you’re not
afraid to make dramatic changes.

In a game I worked on, we created an
interface splash screen early in the
process. It had a look and feel that we
felt was appropriate for the game—a
bright color scheme and a little bit of
a retro feel to it. Our goal was to re-
create the look of an old science-
fiction movie. The game was goofy
and fun. Both the game and the inter-
face were created with the intention of
appealing to a wide audience and not
just to hard-core gamers.

The problem came when we showed
the game to publishers and friends.
They immediately thought that it was
a game aimed at really young chil-
dren. The game was a little too com-
plex for really young players, and we
did not want to scare off teenagers or
adults, so we decided to scrap this
interface and make adjustments that
made it feel a little more sophisticat-
ed. The new interface still has the
goofy cartoon characters, but because
of the desaturated colors, it has a
slightly more grown-up feel. Figure
3.14 shows the old design that was
drastically changed before release.



Summary
The best interfaces have a very dis-
tinctive style. They capture the appro-
priate feel for the game. Great inter-
faces have a unique look and feel.
These interfaces do not happen by
accident. They are often a result of a
lot of hard work. Good research and a
lot of thumbnail sketches can really
help you in this creative process. If
you get stuck, do some brainstorm-

ing. Armed with the techniques dis-
cussed in this chapter and your per-
sonal creativity, you can create the
best interface ever conceived by man.

Summary 41

Figure 3.14  This interface design appeared to be a little too
young for the target audience.

Figure 3.15  A slightly more mature interface replaced the
previous design.



This page intentionally left blank



43

Nothing will improve your
design skills better than an
understanding of basic

design principles. Many interface
designers learn these principles in col-
lege or a specialized art school but
they forget them later—it is easy to go
out and find a job in the industry,
start working on real games, and just
get sort of rusty on design basics.
Ignoring or forgetting basic design
principles will adversely affect your
design ability. Once you have learned
basic design principles, keep using
them to evaluate and improve your

interfaces. The best interface design-
ers apply these principles every day.

Getting Back to Basics
I graduated from the design depart-
ment of a large university. In my first
year of college, I didn’t get to design
anything “real.” All of my early assign-
ments focused on abstract shapes and
color because understanding how to
design with abstract images will help
you design anything better. Images of
real objects can actually get in the way
of seeing the real design. If you are
looking at a racecar, it is harder to see

the shapes and colors created by the
car in the composition. It is easy to get
lost in the illustration or photo of the
car and not see how it works as a
design element.

As you create your design game inter-
face, try to look past any images of
concrete objects, such as a ball, gun,
or zombie, and look at the pure
design. What shapes and colors are in
your design, and how pleasing—or
not—are they? If the images and text
in your design were changed to
abstract shapes and colors, would the
design still have the right feel? Treat

Basic Design Principles

Chapter 4



Chapter 4   ■ Basic Design Principles44

images and text in your interface as
design elements. Be aware of their
shape and color, and place them
thoughtfully. Figure 4.1 demonstrates
how you can look at all of the text and
images in a design as shapes. This will
help you better see the design and not
be distracted by the basketball.

Really See Your Design
Looking past the images and focusing
on the pure design may sound simple
enough, but it is often difficult to do.
It is especially difficult for the design-
er who has spent hours composing a
design. Because of this, it is always
easier to evaluate a design done by
someone else. I have had the experi-
ence of not being able to evaluate my
own design until it was being
reviewed by the art director. As soon
as I saw my design on his computer
screen, I could see flaws that I didn’t
see on my computer monitor.

Try to get a fresh look on a design that
you have been working on for a long
time by squinting your eyes and mak-
ing everything blurry, or by turning
an image upside down. Flip it hori-

zontally. Shrink it down so it is really
small or look at the image from across
the room. This will help you to ignore
the details and look at the overall
design—these details can be hard to
ignore if you have spent a lot of time
adjusting them. You want to make
your viewing experience closer to that
of a first-time viewer. It is surprising
how problem areas will jump out at
you when you use one of these meth-
ods to get a fresh look at your design.

Using Color
Color can be a very powerful design
tool. Never underestimate the ability
of color to set a mood. Color can

express emotion and set an atmos-
phere. Colors are often linked to emo-
tions—you’ve heard the phrases “feel-
ing blue” or “green with envy.” You
can probably picture what these col-
ors look like. The blue color is not
very bright and saturated. It would
most likely be a very gray-blue color.
Gray, cloudy skies have a sad feeling
associated with them. A design that
uses a lot of neutral gray and very de-
saturated colors can also have the
same sad feeling. On the other hand,
bright yellows and blues feel very
cheerful. What colors do you associate
with a birthday party?

Figure 4.1  This design is easier to evaluate when you look at text and images as shapes.



In order to harness the power of color,
you need to have an understanding of
how color works. Color is a complex
subject and there is much more to
learn about it than I can possibly
cover in this book. I will briefly dis-
cuss a few of the important concepts
in the next sections, though.

Johannes Itten published a book
about color theory in Germany in
1961; check it out if you want to learn
more about color. It is a very compre-
hensive and scientific approach to
color and has been translated into
many languages. The English version
of the original book, The Art of Color,
is not light reading, but there is a con-
densed version, called Itten, The
Elements of Color – A Treatise On The
Color System Of Johannes Itten Based
On His Book The Art Of Color. This
book contains just about everything
you would want to know about color
theory. Of course, every good library
or book store carries other books on
color and color theory. Pick up a few
of these to become an expert at wield-
ing color effectively in any situation.

Creating Color Harmony
One of the major challenges when
working with color is finding a set of
colors that work well together. When
colors look good together, the effect is
often referred to as color harmony.
This subject has been studied for a
long time and there are many interest-
ing facts that have been discovered. If
you understand the basic concepts of
color harmony, it is easy to find colors
that go well together.

Color harmony can be defined in a
way that is very scientific and much
less subjective than you may expect.
There are scientific reasons that cer-
tain colors work well together. Color
theory has been studies in depth by
many people. Johannes Itten, whom I
mentioned in the last section, is a
great example of someone who has
devoted his life to the study of color.
He is considered by many people to be
the greatest authority on color in
modern times. He and many others
have discovered that color harmony
can be explained scientifically—color
harmony is not just based on person-
al color preference.

Finding Complementary
Colors
It is easy for someone without a
strong art background to confuse
color terms. Harmonious colors are
colors that look good together. This
can include colors that are similar to
one another. For example, a range of
blue colors can look good together.
The term harmonious colors also
includes a set of colors referred to as
complementary colors. These are a spe-
cial sub-set of harmonious colors.

If you need to use two colors that
work well together, complementary
colors are always a good choice.
Complementary colors are the two
colors opposite each other on the
color wheel. Pick any color and draw
a line to the exact opposite side on the
color wheel to find the complemen-
tary color. (See Figure 4.2.) It is help-
ful to know the complementary color
of all of the primary and secondary
colors, as you may not always have a
color wheel handy.

Getting Back to Basics 45



Chapter 4   ■ Basic Design Principles46

When you use very saturated comple-
mentary colors together, they not only
go well together but they impart a
lively feel to your design. If you are
looking for a less lively color scheme,
you can use less saturated versions of
these complementary colors.

There is a reason that complementary
colors are pleasing to the eye when
they are used together: If you mix two
complementary colors together, the
result is a neutral gray color. This neu-
tral gray color is easy on the eye. The

further away from neutral gray, the
tougher time the human eye has see-
ing the color clearly. Think of how
you would feel in a room with every
wall painted a bright yellow. If the
color is too strong, it can be hard to
look at. Your eye (actually your brain,
of course) reacts to colors by trying to
adjust what it sees. Your eyes always
try to shift colors as close as possible
to this neutral gray.

In the room full of bright yellow
walls, you could help out confused
eyes by adding the complementary
color. Adding a lot of purple can help
counterbalance the bright yellow. A
strong purple color would help your
eyes better adjust to the yellow color.
This counterbalancing effect is one of
the reasons that complementary col-
ors work well together. Yellow and
purple may not be the best set of col-
ors for interior decorating, but they
might look good on a box of laundry
detergent. Very saturated comple-
mentary colors are very lively and
may be too powerful for every situa-
tion. However a soft yellow and a very
calm purple might work well as an
interior color scheme.

Figure 4.2  Complementary colors are found directly opposite each other on the color wheel.



Afterimages

Stare at the box of color in Figure 4.3
for about 15 seconds, and then close
your eyes tightly. For a couple of sec-
onds after you close your eyes, you
should see a box in the complemen-
tary color; this image is referred to as
an afterimage. Your eyes have not had
a chance to adjust to the fact that you

are no longer looking at a block of
color. The afterimage reveals a little
about what your eyes are doing while
you are looking the block of color—
attempting to counteract the color in
the square.

What you will see in the afterimage of
a red square is a green square. The
afterimage of a blue square is orange.

Your eyes are trying to
counterbalance the
color you’re staring at,
and so when you close
your eyes, you’ll always
“see” the complemen-
tary color. If you are
looking at a black
square, then the after-
image will be white,
and if you are looking
at a white square, the
afterimage will be
black.

Complementary col-
ors look good together
because they are natu-
rally counterbalancing
one another. If these
complementary colors

were mixed, they would create the
gray color that your eye is striving
for—your eyes don’t have to work as
hard to do the counterbalancing. It is
probably no surprise that a neutral
gray square does not produce any
afterimage.

Using More Than Two Colors
The same concept of finding colors
that are pleasing to the eye can be
applied to a color scheme with more
than two colors. If you need three col-
ors that work well together, you can
use a color wheel and either an isosce-
les or equilateral triangle to find
them. (See Figure 4.4.) By drawing a
triangle inside the color wheel, you
can find a set of colors that work well
together by using the colors at each of
the three angles in the triangle. You
can also find four colors that go well
together by drawing a square or rec-
tangle in the middle of the color
wheel. The principle is that when you
mix all of the colors in any one of
these color sets together they create a
neutral gray color. (See Figure 4.5.)

Getting Back to Basics 47

Figure 4.3  Stare at this color, close your eyes, and see what
color the afterimage is.



Chapter 4   ■ Basic Design Principles48

Subjective Color
Each person has his or her own per-
sonal color preference. This can have
a big effect on the colors that you find
pleasing. You may assume that color
preferences are a manifestation of
one’s individuality, but this may not
be entirely true. Past experiences and
personality do play a role in color

preference, but it is interesting to
learn the results of research done in
this area. Some studies indicate that
color preferences have a slight tenden-
cy to correlate with eye and hair
color—blondes with blue eyes have a
slight tendency to prefer very pure
colors and brunettes with dark eyes
tend to prefer color combinations

that include black. (Obviously, this is
not universal, and undoubtedly other
factors apply to color preference.)
These results would suggest that color
preference is, at least partially, tied to
the function of the eye. Blue-eyed
blonds have different pigmentation in
the eye and possibly see color differ-
ently than brunettes with dark-col-
ored eyes.

Figure 4.4  Using either type of triangle, you can find three colors
that will mix to a neutral gray. Spin the triangles to see all of the
possible color combinations.

Figure 4.5  Using a rectangle or square, you can find four colors
that will mix to a neutral gray. Spin the square or rectangle to see all
of the possible color combination



Balancing Color Strength
Some colors have more visual
strength than others. For instance,
colors like yellow, red, and orange
have more visual strength than the
colors on the opposite side of the
color wheel. When two colors of
unequal visual strength are used in
physically equal amounts—that is,
half and half—the stronger color will
appear to take over and will attract
more attention than the other color.
The saturation level of a color has a
big effect on the visual strength of a
color. A pure blue, for example, is
much stronger than a gray-blue.

being warm or cold. Yellow, red and
orange are said to be warm colors.
Colors like purple, blue, and green are
said to be cool colors. Images that use
these colors effectively can actually
make the viewer perceive different
temperatures in an illustration. Along
with temperatures, emotions tend to
be associated with these colors. Warm
colors are perceived as happy, cheer-
ful, and loud, while cool colors are
more calm and quiet.

If your game takes place at night, or in
the middle of Winter, blues and pur-
ples may be appropriate for the inter-
face. These colors will help the users
feel more like they are in the game
world. Not only are these colors good
for the interface, but also blue lighting
can make a scene look cold. If your
game takes place at midday on a trop-
ical island, on the other hand, yellow
and oranges can help set the mood.
The lighting in a hot scene should also
be bright and warm. Figures 4.8 and
4.9 demonstrate color temperature.

Getting Back to Basics 49

Figure 4.6  The yellow and purple cover
an equal amount of space, but the yellow
overpowers the purple.

Figure 4.7  The yellow and purple don’t
cover an equal amount of space. There is
now less yellow, but the design is much
closer to balancing visually.

You should consider the balance and
strength of each of the colors in your
design. An exact balance between col-
ors is seldom the goal, but you must
be aware that even small amounts of a
very strong color can have a big
impact on your design. Figures 4.6
and 4.7 demonstrate how colors can
differ in visual strength.

Warm and Cold Colors
Color “temperature” can be used to
create a mood in your design. Certain
colors seem to have visual tempera-
ture, and they are often referred to as



Chapter 4   ■ Basic Design Principles50

Color on a Monitor or TV
Color on a computer monitor or a TV
is created by three colors of light. Red,
green, and blue lights are projected
onto your screen and combinations of
these three colors produce all of the
colors you see on your monitor. All
three colors at their full intensity pro-
duce a pure white. The absence of all
three colors produces black.

Working with colors that are pro-
duced with light is very different from
working with paint. When working
with light, the more light you add, the
closer the color is to white; the less
light you add, the closer to black. A
pure white color occurs when all col-
ors of light are present, and black is
the result of the absence of light. This
is why RGB values work the way they
do. I’ll discuss RGB colors in more
detail next.

Technically speaking, when you’re
working with paint, light still creates
color. The difference is that you are
not adjusting the light; you’re adjust-
ing the material that reflects the light.
When a white light hits colored paint,
some of the light rays are absorbed by
the paint and others are reflected back
to the eye. The color you see is the
color of the light rays that are reflect-
ed back to your eye.

Figure 4.8  These blue colors have a cool temperature and feel
very calm.

Figure 4.9  These orange colors are much warmer and feel
cheerful.



Creating Digital Colors
When creating colors digitally, there
are several color systems you can use.
Various software packages allow you
to make these color adjustments in
different ways. The most common
color systems include RGB, CMYK,
and HSB, but several other color sys-
tems, such as PANTONE, do exist.
These other systems are used mainly
in printing, and there is little need to
use them in designing game inter-
faces. Figure 4.10 is Adobe
Photoshop’s Color Picker. You can
choose any of these methods to
choose a color.

RGB

RGB stands for red, green and blue.
The RGB system allows you to adjust
the values for each color from 0 to
255. Televisions and computer moni-
tors use the red, green, and blue lights,
just like the RGB system. Because tele-
visions and monitors are using light,
they can produce a much broader
range of color than can be produced
in the printing process. Because inks
are not capable of reflecting every
color back to the eye, they are limited
as to the amount of colors they can
produce. This is great for game devel-
opers—they can take advantage of the

broader range of values that
can be produced with light.

This wide range of colors
you get with RGB is not
found in the CMYK system,
and it is the advantage of
using the RGB color system
to define digital colors. The
RGB color system will offer
the broadest range of colors.
The difficulty with the RGB

system comes in understanding how
to adjust the values to get the color
you want. It is often counter-intuitive
to adjust the RGB values because they
function like light. Unlike with paint
and ink, adding more color makes the
color brighter and less color makes
the color darker. Figure 4.11 shows
how RGB values can be adjusted in
Adobe Photoshop.

Getting Back to Basics 51

Figure 4.10  Adobe Photoshop’s Color Picker allows
you to choose between several different methods for
mixing color.

Figure 4.11  Adobe Photoshop users can
adjust colors using RGB sliders.



Chapter 4   ■ Basic Design Principles52

T i p

Using the RGB color system can result
in an unprintable color. Adobe Photo-
shop warns you when a color falls out-
side the printable range. If you click on
the exclamation point that appears
when these out-of-range colors are cre-
ated, the printable color closest to the
non-printable color will be selected.
(See Figure 4.12.) Not all software will
warn you when you fall out of the
printable range. If you are creating art
that will be printed, you may need to
account for this discrepancy.

CMYK

Everyone mixed paint as a kid. If you
are an artist (and even if you aren’t),
your finger painting mess may have
been beneficial to your understanding
of colors and color mixing. And
artists who have worked with tradi-
tional media understand mixing paint
and ink even better than your average
kid. These experiences make the
CMYK system a little easier to under-
stand because CMYK works just like
mixing paint.

Paint and ink actually absorb some
light and reflect back the rest. The col-
ors that are reflected are what the eye
can see. This is why mixing ink or
paint produces a darker color. When
the colors mix, the colors absorbed by
the two individual colors are now all
absorbed by the new color. Less light
is reflected back to the eye, and the
resulting color is darker.

The CMYK color system is derived
from the printing process. Printers
use cyan, magenta, yellow, and black
inks to print full-color images. Small
dot patterns are printed in each of
these colors. The dots are printed in a
range of sizes across the image. The
eye then mixes the colors, and it
appears that the image contains a
wide range of colors.

If you take any full-color, printed
image and look at it through a power-
ful magnifying glass, you can see the
dot pattern. It is much more visible in
lighter areas because the dots are
smaller and further apart. Many home
printers also use CMYK ink. They also
print using these small dots. Printers
will often tout their printing capabili-
ties by giving you a number for DPI.
DPI stands for Dots Per Iinch. The
more dots a printer can print in an
inch, the smaller the dots must be. The
smaller the dots, the harder they are to
see and the better the image looks.

Figure 4.12  Adobe Photoshop alerts the
user when a color has been created that is
out of the printable range.



Understanding how the CMYK sys-
tem works can make it much easier to
mix colors. The problem with this
color system is it can’t produce a wide
range of colors like the RGB system
can. Figure 4.13 shows you what
Photoshop’s CMYK mixing system
looks like.

HSB

The HSB system offers the same range
of colors as the RGB system and is
easier to understand. HSB stands for
hue, saturation, and brightness. If you
understand these terms, it can be easy
to mix colors using the HSB system.

Hue is what most people think of
when they use the word color.
Changing the hue can change a color
from red to blue. Saturation defines
how powerful the color is. When satu-
ration is low, the color is closer to
gray. When saturation is high, the
color is much closer to the full color.
Brightness works like it sounds: The
higher the brightness value, the closer
to white the color is; the lower the
brightness value, the closer to black.
Figure 4.14 shows Photoshop’s HSB
mixing system.

Visual Organization 53

Figure 4.13  Adobe Photoshop also offers
the option of mixing colors using the CMYK
system.

Figure 4.14  HSB may be the easiest
color system to understand.

Visual Organization
A good rule when creating an inter-
face is to space elements evenly and
align them well. Paying attention to
spacing and alignment results in visu-
al organization. If the elements in
your design are scattered and the
spacing between them isn’t consistent,
your design will appear unorganized.
This is displeasing to the user. Most
people are attracted to organization.



Chapter 4   ■ Basic Design Principles54

If your design calls for objects that are
not aligned, then make sure that these
elements are not positioned only
slightly off-alignment with other
objects—in other word, move them
far enough out of alignment that
there is no doubt that it was inten-
tional. It can be very disconcerting to
the user if objects look like they
should be aligned but they aren’t.
Many designs can be improved by
simply fixing the spacing between
objects.

Use your eyes and not your ruler
when creating spacing between
objects. Visual spacing may not always
be exactly the same as the actual phys-
ical spacing. For example, elements
with circular edges may need to be
closer than objects with square edges.
The important thing is that every-
thing appears evenly spaced. Trust
your eyes. It is often helpful to imag-
ine that you will fill the space between
two objects with sand. If the spacing is
visually correct, the amount of sand
between each object should be rough-
ly equal.

In Figure 4.15, the upper set of shapes
is evenly spaced and aligned along the
bottom of all three shapes. The mid-
dle set of shapes is center aligned.
This improves the alignment but even
though they are technically spaced
evenly, the circle seems a little too far
away. The bottom set of shapes is
visually spaced correctly.

Unity and Variation
When you’re creating an interface
design, one of the biggest challenges is
striking a balance between unity and
variation. If your design is composed
of a group of unrelated elements, then

Figure 4.15  The bottom image is visually
spaced correctly.

there is no unity. If all of the elements
in your design are a different shape or
color, then the composition will
appear to be thrown together and it
will lack the cohesiveness found in
good design. On the other hand, if all
of the colors and shapes in your
design are exactly the same, then your
design won’t be very visually interest-
ing. A little variation is required to
make a design pleasing to the eye.

The best approach is to start with
unity. Everything should feel like it
fits together. Unity in your design is
accomplished by repeating visual ele-
ments such as color, shape, and size.
An obvious place to start is color. Use
color consistently throughout the
interface. Look at the rest of the ele-
ments in your design and make sure
that shapes, sizes, and other elements
repeat often. If you are using circular
shapes in your design, then be sure to
use these curved shapes throughout
the design. A square shape with harsh
edges may not fit with the rest of your
design.



When you’ve achieved visual unity,
then you can create some variations
that will create visual interest. If your
design consists of circular shapes, you
can make them different sizes or col-
ors. If you are using square shapes,
you can set them at different angles.
The difficult part is striking the bal-
ance between making the variation
different enough to be interesting and
not losing the unity of the design.

Negative Space
When placing an element in your
design, you should be aware of the
negative space that is created by the
object. Negative space is the empty
area around an object—not the shape
of the object itself, but the shape of
the background. Negative space is just
as important a design element as the
shape of the object. The negative
shape will contribute to the overall
feeling of your design just as the pos-
itive space does.

At first, it may be difficult to see the
negative space. It may take practice
before you are able to instinctively
notice the shapes created in the nega-
tive space. Your natural reaction is to
only see the positive space. Figure 4.16
illustrates negative space.

Movement
Even if an image is static—without
any animation—it can still impart the
feeling of movement. Certain shapes
have an inherent movement, while
others appear to be stationary. Angled
lines give the feeling of motion, for

Movement 55

Figure 4.16  The fancy F creates a negative shape. Part of this shape can be seen in
red in the smaller image.



Chapter 4   ■ Basic Design Principles56

example. The more visual space and
power the angled object has, the
stronger the feeling of motion. Figure
4.17 demonstrates how angled lines
have an inherent motion. You can also
line objects up in a way that together
they produce an angle with motion.

If you are working on a racing game,
you might want to consider a design
with a strong angled line. If move-
ment and speed are important ele-
ments of your game, then angles may
be much better than vertical lines. If

you have a design that seems too stat-
ic, you might improve the design by
simply tilting the entire menu at an
angle.

If you are working on a city simula-
tion game, it may be more important
to give a feeling of power and stability
than a feeling of motion. A feeling of
stability comes from lines that are ver-
tical or horizontal. These lines do not
have much movement, but they feel
much more solid. If your interface
needs to feel strong and stable, verti-
cal or horizontal lines can really help.

Figure 4.18 demonstrates how these
lines have a feeling of stability.

Eye Movement
In addition to the inherent motion of
the shapes in an image, you should
think about eye movement. Eye move-
ment refers to the order in which a
viewer looks at an image. What is the
first thing the viewer sees? Is this the
most important object in the scene?
Where is his eye drawn next? At any
point is the viewer drawn out of the

Figure 4.17  These angled lines create a feeling of motion. Figure 4.18  The solid vertical lines give the appearance of
strength and stability.



design and off the screen, rather than
on to the next item? As the designer,
you can control the user’s eye move-
ment with the composition of ele-
ments.

Many attributes of the objects in your
scene can contribute to eye move-
ment. Size, color, and shape can all
attract attention and control the
movement of the user’s eye. You can
see how your eye moves across the
image in Figure 4.19. Figure 4.19 does
a better job of keeping the viewer’s eye

on the page than Figure 4.20 does. To
test your own designs you will need to
learn how to recognize your own eye
movement.

Balance and Weight
Shapes and objects in any image have
a visual weight. Dark areas appear
heavier than thin, light-colored
objects. When designing an interface,
pay attention to the overall layout and
control how the visual weight is dis-

tributed. Look to see where the heavy
areas are located in relationship to the
light areas. Visual weight can be
affected by the color, size, and shape
of an object.

If all of the elements in your design
appear to have equal visual weight,
your design may not have enough
variation to be interesting. Not all
designs require dramatic differences
in visual weight, but if your design
lacks energy, you can try adjusting
visual weight.

Balance and Weight 57

Figure 4.19  The eye movement starts at the large shape,
moves to the medium shape, and then the curved line draws the
eye to the shapes in the bottom-right.

Figure 4.20  This design is similar to that in Figure 4.19, but
the curved line now draws the viewer’s eye off the screen before
it reaches the shapes in the bottom-right.



Chapter 4   ■ Basic Design Principles58

In the real world, physical objects that
are unbalanced don’t stay that way
very long. They fall over. We are used
to seeing objects in a balanced state. It
is the same with visual weight within
a design. We expect to see visual
weight distributed in a way that feels
stable. When objects with more visual
weight appear at the bottom of an
image, it brings a feeling of stability.
When these objects appear at the top
of an image, the design can appear a
little top-heavy. This effect can appear

even more dramatic if the visual
weight is off-center. Figure 4.21 is a
design that is not balanced. It seems
like it is just about to fall over.

There are two types of balance that
can be used in a design. The first is
formal, or symmetrical, balance. If
you can draw a line down the center
of the screen, all the objects on one
side of the screen are mirrored on the
other side. All of the objects do not
need to be exact copies of the objects
on the other side, but they may be

similar in size,
shape, and color.

The second type of
balance is informal,
or asymmetrical,
balance. If you
divide the screen,
when using infor-
mal balance, a large
item on one side
balances several
smaller items on the
other side. Size is
not the only
attribute that can be

used to informally balance your
design. A darker item may be used to
balance several lighter items. It is
much harder to achieve balance using
informal balance. When using formal
balance, you can simply mirror the
image. Informal balance requires
more planning and skill, but it also
can be much more visually interesting
and appealing.

Unbalancing Your Design to
Create Tension
If you understand how to use visual
balance, you can use this knowledge to
create a feeling of tension. If a design
is very top-heavy, it can appear as
though the objects in your scene are
about to fall over. A feeling of stability
is not always what you’re shooting for.
Many times, you can correct a design
by making changes in the visual
weight of objects that result in a stable
and grounded-feeling design. Other
times, you can make an interface that
is a little boring much more dynamic
by shifting the visual weight into a
position that appears unbalanced.

Figure 4.21  This design is top-heavy. It looks as though it
would be easy to tip over.



Odd Numbers
When placing repeating objects into
your design, you will find that having
an odd numbers of objects is more
visually pleasing than an even num-
bers of objects. One of the reasons
that odd numbers are appealing is
that they have a center object. This is
more comfortable to look at. Even
numbers of objects can work if they
are well placed, but if you have a
choice, it is good to remember the
odd-even rule.

It is easiest to see the effect of odd
numbers when working with a small
number of items. Three or five objects
is much more visually interesting
than two, four, or six objects. Once
the number of objects in your design
gets much past seven, it is harder for
your eye to even detect if there is an
even or odd amount of objects. Figure
4.22 demonstrates how odd numbers
look best.

Dividing an Image
When introducing an element into
your design that divides the image,
make sure to carefully place the divi-
sion. Any object that stretches the
length or height of the screen could
possibly divide your image. The divi-
sion doesn’t have to completely divide
the screen. You should treat a division
that covers a large portion of the
screen in the same way you treat a
complete division, though.

Dividing an image evenly can make it
much more pleasing to the eye. If an
image is divided near the center but
the division is not centered, it may
look like a mistake. Good places to
divide an image are in the center, at
the two-thirds point, and at the quar-
ter point. A two-thirds division tends
to be particularly visually pleasing.
Figure 4.23 illustrates how even divi-
sion is visually pleasing.

Dividing an Image 59

Figure 4.22  Notice how the odd
numbers seem more interesting.

Figure 4.23  The images on the left are
divided in half and in thirds. Notice how
this is more visually pleasing then dividing
an image at positions that are a little off.



Chapter 4   ■ Basic Design Principles60

Intersections
When objects intersect, it is particu-
larly important to make sure that
there is nothing that looks like a mis-
take. If two objects intersect in such a
way that they do not line up perfectly
but are close to lining up, make some
adjustments—either make them line
up perfectly with one another or
move them so they are far enough off
that no one thinks you tried to line
them up and missed. Figure 4.24
demonstrates how alignment can be
important to your design.

Summary
If your interface does not boast as
good of a visual design as you would
like, it might be helpful to go through
a checklist of basic design principles.
If you follow these basic design prin-
ciples, you can create great interfaces.
These principles apply to everyone—
no one becomes a good designer and
then can ignore these principles.
Following the guidelines presented in
this chapter makes an interface
designer effective.

Figure 4.24  The top image looks as if
the designer tried to align the boxes and
just messed up. The bottom image looks
better because the two boxes are clearly
not intended to be aligned.



61

Big differences exist between
video game development for
consoles and development for

PC games. Each platform has its ben-
efits and drawbacks. One of the
biggest and most apparent differences
between the PC and a console is that
they use different input devices. A
mouse is very different from a con-
troller. The entire game can change if
it is on a console instead of a PC.
Understanding these differences can
help an interface designer create a
better interface for either platform.

Bad Conversions
The differences between a console
and a PC are most apparent when a
PC game is converted to a console
game. PC games are often converted
to a console, but the conversion is not
always successful. Most PC games
have been created so that both the
interface and game-play work well
with a mouse. When these games are
converted to console without all of
the necessary adjustments, a great PC
game can become difficult or impos-
sibly hard to play.

An interface designed for a mouse
may be very difficult to navigate with
a controller. Buttons can be placed
almost anywhere on the screen in a
PC game. They don’t need be placed
the same way they are placed on a
console. Often, this means that a PC
interface needs to be redesigned for
the console.

When converting a PC game to con-
sole, it is imperative that the entire
game, including the interface, be
modified to work well with a con-
troller. It is not always easy to switch a

Console or PC?

Chapter 5



Chapter 5   ■ Console or PC?62

game from mouse control to console-
style control without changing the
core game mechanics. In some con-
versions, an attempt has been made to
turn the controller into a mouse. A
cursor appears on the screen, and the
user moves the cursor around with
the joystick or d-pad as if it were a
mouse. This is seldom a good solu-
tion. It can be very tedious to move
the cursor completely across the
screen using a joystick because the
joystick can’t move as fast—but if it
moved fast, the cursor would be hard
to control. It is much easier to move a
mouse around your desk at varying
speeds than it is to use a controller to
move a cursor like a mouse. A con-
troller can’t easily vary the speed of
movement. Moving a mouse is much
faster than it is to fake mouse control
with a controller.

Console Development
The more you know about the entire
game-development process, the more
effective you will be at creating great

interfaces. I will give you a little back-
ground about how games are made
and explain how this can have an
effect on the interface. Some of the
differences between PC games and
console games are not only a result of
the differences between a mouse and a
controller, but are a result of the dif-
ferences in the development process
as well.

Console Hardware
Manufacturers
The current major hardware manu-
facturers for console systems are
Nintendo, Sony, and Microsoft.
Because these companies manufac-
ture the consoles and all of the games
that can be played on their game sys-
tems, they make the rules. Even if
another company has actually devel-
oped the game, the hardware manu-
facturers themselves actually make
the game disks. The only way to get a
game on the market for one of these
console systems is to learn and follow
the manufacturer’s rules.

The console game developer is not the
only one who must comply with all of
the guidelines set by the hardware
manufacturer—the game publisher
must also work around the hardware
manufacturer’s schedule. This can get
really tricky when everyone is trying
to get games out for Christmas and
they all need to get approval and have
the disks created at one company.
This can cause a bottleneck, and it can
take a lot longer to get a game into the
stores. Because of this potential delay,
PC games often have a much quicker
turnaround time from completion to
the shelf. This means that delays in
console development can be even
more detrimental and harder to over-
come than they might be for a PC
game. Console games cannot be man-
ufactured overnight.

Developer Approval
Before a developer can use develop-
ment hardware and gain access to the
technical information he needs to
make a game for a console, the hard-
ware manufacturer must approve the



company. This approval is not simple
to obtain. One of the only ways for a
new developer to get such approval is
to find an experienced publisher that
is willing to pay a less-experienced
developer to make a game. The pub-
lisher can then ask the hardware man-
ufacturer to approve the developer.
The problem is that publishers are
looking for experienced developers
who are already approved. Yes, this is
as complicated as it sounds.

Concept Approval
Even after a developer has received
approval, he can’t just make any game
he wants. Most of the console manu-
facturers require a concept approval
for each game. Because of this con-
cept approval requirement, most pub-
lishers hesitate to invest money into a
concept that has not been approved.
Even after the concept is approved
and the game is complete, the game
still needs to meet certain technical
requirements.

If the game concept does not appear
up to the standards of the hardware
manufacturer, it will not be approved.
This decision is completely up to the
hardware manufacturer—they and
they alone decide if your game is good
enough. The game is judged on a
number of factors, including depth,
quality, target audience, competing
products, release schedule, expected
sales, and whether they believe that it
will be good enough for their system.

Technical Approval
Each hardware manufacturer has
stringent technical requirements that
must be met before a completed game
can be approved for final manufactur-
ing. These requirements affect the
programmers, and they also affect the
interface design. For example, saving
and loading games usually must be
done in a specific way. Often there are
also specific text requirements that
need to be met in the interface. I’ve
had a game rejected because I didn’t
use a capital letter when referring to a
piece of hardware.

Each hardware manufacturer pro-
vides a lot of documentation and
online help. All of these guidelines are
listed in this documentation. Even
with all of the documentation they
provide, you may come across situa-
tion in which you are unsure what to
do. When this happens, you can ask
questions. But you must be an
approved developer to have access to
this information.

When developing a game for a con-
sole, make sure to follow the manu-
facturer’s guidelines strictly. Even one
tiny mistake can cause a game to be
rejected and result in costly delays.
The problems will need to be fixed
and the game re-submitted. Even if
the developer can make the changes
and have the game ready the next day,
it can take anywhere from a couple of
days up to a couple of weeks for the
game to be reviewed again.

You will save time if you read and fol-
low these requirements from the
beginning of a project. Rejection can
come as a nasty surprise at the end of
a project, especially for inexperienced

Console Development 63



Chapter 5   ■ Console or PC?64

developers who planned on getting
approval quickly. You should do your
best on your first game submission to
a console manufacturer, but prepare
to be rejected—a high percentage of
games don’t pass on the first attempt.

Console Game Cost
It typically costs a lot more to make a
console game than it does to make
most PC games. And because the cost
is higher, the stakes are also higher.
While console games average more
sales, the higher costs of development
can still make them a bigger risk.
Because of this bigger risk, it is diffi-
cult to convince a publisher to make a
new and original game. Publishers are
looking for guaranteed successes.

One of the reasons for the higher cost
of developing console games is that
the development equipment is
extremely expensive. A lot of equip-
ment is needed to program and test a
console game. Each programmer may
need a special development system
that allows him to actually program
and run the game on the console sys-
tem. These systems come directly

from the hardware manufacturers
and some of them cost more than
your car—especially right after a new
console has been released. Often, spe-
cial hardware is used to burn the CDs
that can only run on special versions
of the consoles. All of this hardware is
expensive and can only be obtained
by approved developers. Even the
disks needed for a final submission
are costly.

Another reason for the high cost of
console game development is that
these games must meet the standards
of the hardware manufacturers. This
often means that console games need
more features than a PC game. The
hardware manufacturer may not
approve your game if the feature set is
not up their standards. If you have
made a kids’ dodge-ball game and you
only have 10 characters to choose
from, you may be obliged to bump
the number of characters up to 30 or
40 before the game will be approved.
No matter what your budget is, you
will be compared with all of the other
big games on the market. More fea-
tures means a bigger team, and large
teams can be expensive.

Not only is the actual development
cost higher for console games, but
also it is more expensive to actually
produce the final game disks. The
game publisher must pay the hard-
ware manufacturer a fee for every disk
that is produced. This is how the
hardware manufacturers make
money. Because of this extra cost, it is
much more expensive for the publish-
er to get a console game on the shelf
than to release a PC game.

Effect on the Interface
A publisher may ask you to design
your interface exactly like that of
another game that has already been
approved. This may be frustrating,
especially when what you really want
is to try something new. Under-
standing the approval process can
help you understand why the publish-
er wants you to design something
tried-and-true—any small deviation
may cause the game to be rejected. If
you don’t pass on your first submis-
sion because of this change, it will
take time to correct the problem. This
time-delay could cause the game to
miss shipping in the correct quarter.



It would be great to be able to design
your game interface without thinking
about the business side of game devel-
opment, but unfortunately, business
decisions do often directly affect an
interface designer.

The biggest business question is, of
course: How many copies of the game
will be sold? This may have an effect
on your design. The Marketing
department may have a different idea
of what will sell than you do. You may
need to follow their advice even if you
think your idea is much cooler than
what the Marketing department
thinks will sell best. If they feel that
the ability to scan your own face and
put it on the player is the hottest new
technology, you may have to build the
interface to do this.

Handheld
Development
Handheld development is much like
console development. The control is
often similar to a console, and the
approval process is also similar. The
difference is that traditionally, the
game sizes and budgets have been

smaller than for console games. The
hardware and the price of the games
have limited the amount of money
that can be spent on development.
This may change in the future.

Both Sony and Nintendo’s latest
handheld systems will add their own
new twist. The PSP will be very pow-
erful for a handheld game system, and
the DS will introduce a new control
system with both a touch screen and a
second screen.

PC Development
Developing video games for the PC
presents its own unique challenges.
Many of the differences from console
development are a result of the varia-
tion in PC hardware. When you’re
developing for a console, you can
count on the hardware remaining the
same on every system—every
Playstation2 has the same video card,
for example. There are no variations.
You can’t buy a Playstation2 with a
better processor or video card than all
of the other Playstation2 systems.
They are all identical. If the game
works on one GameCube, it will work
on all GameCubes.

This is dramatically different for PC
games. A huge variety of computers
will be used to play your game—there
are countless types of video cards
alone. Compound this with sound
cards, RAM, operating systems, and
so on and you’ve got thousands of
possible configurations for a personal
PC. When creating PC games, the
developer must be aware and design
the game to run on large variety of
these possible configurations.

Minimum Requirements for
PC Games
PC games list the minimum hardware
requirements needed to run the game
right on the box. The lower the mini-
mum requirement, the bigger the
potential audience for the game—
meaning more people may buy it.
Because of this reality, many publish-
ers want the minimum requirements
to be kept low. These lower require-
ments limit the kinds of features you
can have in the game.

The minimum requirements for a
game can directly affect its interface
design. The video card affects the

PC Development 65



Chapter 5   ■ Console or PC?66

amount, size, and shape of the tex-
tures that can be used in an interface.
Once the minimum requirements are
established, work with the program-
mers to see how they affect the inter-
face.

Often, big-budget PC games support
cool features that are only in the latest
video cards, but they must still sup-
port much lower minimum require-
ments. In these cases, the game may
require different art for high-end
machines. The questions that must be
answered early in development are:
What percentage of end users will
have good enough PCs to see the
advanced effects, and are they worth
the effort? The target market of the
game can greatly the answers to these
questions. If you are developing a
first-person shooter game that is
directly aimed at hard-core gamers,
then you can safely assume that much
better hardware will be used to play it.
If you are creating a puzzle game that
may be played mostly by middle-aged
people, then you’ll need to account
for the fact that older people tend to
own older computers.

Find out what the minimum require-
ments are early and learn the limita-
tions of the low-end hardware. Create
the best interface you can under the
restrictions. Establish any special
advanced features that your game 
will support, and determine whether
these features will affect the interface.
Early planning will prevent time-
consuming changes to the interface
later.

The Controller
One of the big challenges for develop-
ers who are familiar with PC games
but have never designed an interface
for a console game is to create menus
that work well with a controller.
Controllers have many buttons, but
they do not give you the freedom of
movement you get with a mouse. A
mouse can be moved around a com-
puter screen rapidly, so the location of
the buttons onscreen is much less
important than when using a con-
troller.

The basic principle when designing
interfaces for a controller is to place
all of the onscreen buttons in a row.
The user should be able to cycle

between all of the buttons by moving
the onscreen cursor in a single direc-
tion by pressing buttons on the con-
troller. All of the options should be
accessible by moving the cursor either
up and down or left and right, but not
in both directions. If the buttons are
stacked vertically, so that moving the
onscreen cursor up and down moves
the player from option to option, then
moving the controller left and right
should change the settings for the
selected option. In this case, if you
have difficulty levels selected, moving
left or right should cycle through
Difficult, Medium, and Easy.

In addition to moving the controller
left and right, the user could also
change some options by using the
button on the controller that is desig-
nated as the Select button. The Select
button can also be used to advance
the user to the next screen. Figures 5.1
and 5.2 demonstrate how buttons
should be aligned in a row. They don’t
need to be perfectly aligned, but the
user should recognize that moving
the button down will change options,
it won’t make changes to the current-
ly selected option.



Getting the Timing Right
Changing options by moving the stick
or direction pad can cause problems if
the speed of this change is not imple-
mented properly. Game programmers
often address most of the problems
that can occur with bad timing, but it
is important to understand how
changing highlighted options in your
menu should function.

The challenge of getting the timing
correct comes in adjusting how the
stick or directional pad works. There

are several viable options, but I sug-
gest using the most common
approach. If the user presses the con-
troller in one direction and holds the
d-pad or joystick down, the onscreen
selection should change once. After
the selection stays on this new option
for just under a second, the selection
should change again, and it should
then continue to change fairly rapidly
until the button on the controller is
released.

It is sometimes tough to get the tim-
ing right. When the button on the
controller is held down, the cursor
changes the first time it pauses on the
next selection for an instant. This
pause should hold long enough so
that the user does not accidentally
move further than he wants to. If the
pause is too brief, the user could acci-
dentally hold the button on the con-
troller too long and move two spaces
instead of one. It should also not
pause so long that if he wants to move

The Controller 67

Figure 5.2  Moving left and right moves the selection from
button to button. Moving up and down makes changes.

Figure 5.1  Moving up and down moves the selection from
button to button. Moving left and right makes changes.



Chapter 5   ■ Console or PC?68

more than one space, he feels as if the
controls are unresponsive. The
option-changing speed should be
rapid enough that the user can change
options quickly but still be able to
stop at his desired location. The
options shouldn’t change so fast that
the player overshoots the one he
wants.

Limiting Buttons
Another rule for console interfaces is
to use only a limited number of but-
tons on each screen. Too many 
buttons on a single screen can make
navigation tedious. Because the user
must cycle through all of the buttons,
it can take an unacceptable amount of
time to get from an option at the top
of the screen to an option at the bot-
tom. With a mouse, a player can skip
all of the intermediate buttons and go
directly to the correct button, but
with a controller he can’t. If a screen
begins to have too many options, you
should probably create another
screen and move several of these
options to it.

You also don’t want to have too many
screens. You may have to work to
reduce the total number of options so

they are manageable on a console.
Striking the perfect balance is not
easy.

Displaying Navigation
Information
Because the controls for navigating an
interface in a console game are not
necessarily as intuitive as clicking on
buttons with a mouse, it’s often
important to display more help infor-
mation in a console interface than
you would in a PC game interface.
Some console games display a list of
buttons and their associated actions.
Some designate a Help button that,
when pushed, shows a new window
summarizing the functionality of the
buttons on the current screen.

The Mouse
The mouse opens up a lot more
opportunities for interface layout. The
ability of a mouse to move the cursor
quickly to any spot on the screen
allows much more freedom of design
and layout. Buttons do not necessarily
need to be positioned in a row as they
do when using a controller.

Power Controller Users
At the same time that you make the
interface easier for new gamers to nav-
igate, you can also make the interface
easy for the expert gamer, too. Consider
allowing the user to use the shoulder
buttons (the buttons on the top-side of
the controller) to pick minimum and
maximum option settings, for instance,
or provide shortcuts for jumping from
screen to screen.

A well-designed console interface can
actually be quicker for a power console
user to navigate than for a user with a
mouse. For instance, a few quick button
presses can bring up a menu to which a
mouse user would have to carefully nav-
igate using movement and clicks. Don’t
just adapt to the limitations of the con-
sole controller—embrace the advan-
tages of it, including the directness,
simplicity, and feel.

In addition, take into account the
uniqueness of a given console’s con-
troller compared to the controllers on
other console systems. Play other
games on the specific target hardware
and decide what you like and don’t like
about how the designers implemented
navigation and control using that spe-
cific hardware.



Keep the Design Simple
The design freedom a mouse affords
is no excuse for a disorganized layout
or having too many options on the
screen. Simplicity and organization
should still be your design goal. The
user will enjoy being able to look at a
screen and instantly know what to do.
Keep your design simple.

If there is a chance that the game will
be converted to a console game in the
future, it is a good idea to design an
interface that is simple to convert.
Design the menu as though you were
designing it for a console. Think
about how the menu would work
with a controller. This will prepare
your menu to be converted and it will
help keep your PC game menu simple
and easy to understand.

Console interfaces tend to be much
easier to convert to the PC. If the lay-
out works well for a controller, it is
easy to turn the console buttons 
into buttons that can be selected 
with a mouse. Converting the game-
play mechanics can be a little more
difficult.

Image-Based Interfaces
A common approach to designing a
PC interface is to use a detailed image
as the interface. In such a design, the
buttons are actually objects in the
image. As the user moves the mouse
over the image, areas light up for each
option. For example, an image of a
locker room might be used for a foot-
ball game; as the user moves the
mouse over the chalkboard, it lights
up, and if he clicks on it he can create
and modify plays. As the user moves
the mouse over the team logo, it lights
up, and if he clicks on
it he can switch
teams.

This approach can
create a very interest-
ing interface, but it
also can be problem-
atic—images can
look really cool, but
they can make it easy
for a user to get lost.
The user should
never have to stop
and figure out what
(or where) all of the
options are. A quick

glance should reveal all of the options
and tell the user where to click.

A game menu is not a good place to
play hide and seek. The screen should
include a clear visual identification of
each clickable area. This can be done
in many ways. For example, a brightly
colored border around each clickable
object will clearly indicate their loca-
tions onscreen. It is also helpful to
make each clickable object relate logi-
cally to the option. It wouldn’t make
much sense if objects led to random
options that had no real correlation to

The Mouse 69

Figure 5.3  An interface that uses images as buttons can be
interesting, but you need to make sure that it is still easy to use.



Chapter 5   ■ Console or PC?70

the object. If your interface was an
illustration of a rural village, and an
image of a well was a button that led
to game options and an image of a
donkey led to the scenario select
screen, the user could get really con-
fused. It requires a lot of creativity to
design an interface that has the cor-
rect combination of objects to fit all of
the options.

Resolution
PC monitors and televisions are very
different from one another. One of the
big differences between a television
and a computer monitor is resolution.
Resolution refers to the number of col-
ored dots that are used to make up the
image on the screen. The more colored
dots, the sharper the picture. The more
of these dot or pixels that are displayed,
the higher the resolution. A standard
TV resolution is 640×480, and a com-
puter monitor can display a resolution
like 1280×1024 or even higher.

PC Game Resolution
The resolution capability of a PC
depends on the video card in the com-
puter. The more pixels that are dis-
played, the harder the computer needs

to work. Often, the game developers
make the choice to support various
resolutions in one game. In these cases,
the user can change the game resolu-
tion in the options menu. If the user
chooses an option that is too high for
his computer, he may experience slug-
gish game play. Allowing the user to
change the resolutions allows the game
to be played on a larger variety of com-
puters. Slower computers can simply
run the game at a lower resolution.

Most PC games don’t run any lower
than 640×480 and some offer very
large resolutions, such as 1024×768 or
higher. The resolution of a game can
affect game-play. For example, if you
are playing a network first-person
shooter against a buddy with a com-
puter that can’t handle the resolution
that your computer can handle, you
will have the advantage. You will be
able to see more, as objects in the dis-
tance will be comprised of more pix-
els than on your buddy’s computer.
These resolution changes often only
affect the in-game resolution.

Front-End Menu Resolution
In PC games that offer changes in res-
olution, typically, the front-end menu

remains at a fixed resolution no mat-
ter what game resolution the player
chooses—only the in-game resolu-
tion changes. The HUD (or in-game
interface) is much more affected by
changes in resolution than the front-
end menu. The simple way to handle
resolution changes is to design the
HUD for the lowest resolution; if the
game runs at a higher resolution, then
the HUD elements appear propor-
tionately smaller. When you are creat-
ing mock-ups and making final art,
create and design your interface at the
smallest game resolution. If you work
at larger resolutions and then reduce
the size later, critical detail can be lost.
You need to know if text can be read
and that everything is clear at the low-
est resolution. If you create art that is
too small and it is scaled larger, it will
become blurry. This applies to both
the front-end interface and the HUD.

Standard TV Resolution
Traditionally, the resolution of a tele-
vision has been really low. A standard
TV in North America has a resolution
of 640×480. This is smaller than the
lowest resolution of most PC games.
This low resolution can pose a 



challenge for console game develop-
ers, as there is not much room to
work with. Fonts can’t be too small,
and icons may need to be displayed
with a limited number of pixels. Every
pixel is very important on a television
and you can’t hide anything. As
HDTV becomes more popular, more
console games will support higher
resolutions. The need to also support
standard TV resolutions will remain
in place for a long time. Console
games will need to look good at 640 ×
480 even as HD resolutions become
more common. It is important to
determine whether your game will
support a higher resolution even if it
is a console game.

PAL versus NTSC Television
When designing your interface, you’ll
need to take into account the fact that
there are several different television
standards in the world, not counting
HDTV. The two most common stan-
dards are NTSC, which is used mostly
in North America and Japan, and
PAL, which is used primarily in
Europe. Among other differences,
NTSC and PAL televisions have dif-
ferent refresh rates and resolutions.

The PAL television has a resolution of
640×512.

Overscan

The term overscan refers to the fact
that not all of an image is displayed
on a TV screen. Almost no television
displays the entire available image. All
four edges of the image that the con-
sole is sending to the TV are cut off.
The amount that is cut off varies from
TV to TV. When working with con-
sole games, it’s essential that you
account for overscan and do not put
important information on the very
edges of the screen. In fact, console
hardware manufacturers require you
to keep critical data away from the
edges, and will usually not approve
your title if a piece of text, for exam-
ple, is too close to the edge. Review
the specific approval requirements for
the target platform to make sure your
design and final work take overscan
into account.

TV Color
Computer monitors have the capabil-
ity to display a much broader color
range than a television can. Many
software packages provide filters that

help keep your colors within a range
that works well on a television. For
example, Adobe Photoshop has an
NTSC colors filter. This filter is found
under the Filter/Video/NTSC color. It
will take any of the colors in your
image that are out of the color range
for television and convert them to
colors that work well on a TV. This fil-
ter is helpful in many cases, but it can
also produce some unexpected
results. When the colors are convert-
ed, they may not look good with the
other colors in your image. It is always
best to work within a safe color range
rather than working in a broader
range of color and running this filter.
You can’t rely on the NTSC filter to fix
all of your images.

Figure 5.4 demonstrates how the
bright colors in the image were dark-
ened by the NTSC Color filter.

There are two color issues to remem-
ber when creating an interface for a
console game. The first is that saturat-
ed colors in the range of yellow to red
should be used sparingly. Even if your
colors fall within the NTSC range,
these colors can bleed, and the edges
of these brightly colored objects can
become very fuzzy on a television

TV Color 71



Chapter 5   ■ Console or PC?72

screen. The second thing to remem-
ber is that any high-contrast colors,
such as pure black on pure white, may
also bleed on a TV. Small white text
on a black background can be much
harder to read than light gray text on
a dark gray background.

Interlace Flicker
Small, high-contrast lines and text can
flicker on a television screen because
most televisions actually display half
the lines of an image in one 1/60th of a
second update (1/50th of a second in

the PAL standard) and
the other half in the
next update. This is
called interlacing.
Some console systems
have hardware that
reduce the effect. It’s
important to check
your art as displayed
by the target hardware
on a television. Your
development team
should have test
machines or develop-
ment hardware that
you can use to check
your art before you
commit to a specific

look.

If your images flicker, you will need to
make adjustments. The problem is
most visible when the contrasting
areas become a pixel or smaller. In
such a case, you can make the con-
trasting areas larger and less contrast-
ing. This will help the flicker.

Color Variation
Colors vary greatly from television to
television. What you see on your
monitor is different from what will be

displayed on a television. Every televi-
sion will also display colors slightly
differently. It is essential that you
review your work. Make sure to look
at your menu on many different tele-
visions and not depend on how it
looks on a computer monitor. If slight
color changes on various TVs cause
problems, you may need to adjust
your colors so they work well across a
variety of televisions.

Summary
Learn the differences between console
game development and PC game
development. Understanding these
differences can help you design for
either system. Don’t assume that
because you have developed for one
of these platforms you can automati-
cally develop for the other. Consider
the resolution of your game when
designing the interface and be careful
to use safe colors when working on a
game that will be displayed on a TV.
You must look at your art on the final
platform before you know how it will
really look.

Figure 5.4  This filter can help but if you use too many colors
that are out of the NTSC range, the filter may not be enough to
fix the problem.



73

In this chapter, I will be discussing
buttons. When I use the word
button, I am referring to anything

that can be used to make a selection in
a game interface. I call these controls
buttons because they often appear to
be a button that can be pressed. They
are shaped, colored, and appear to be
raised like a button on a VCR or dish-
washer. These buttons also often
function like a button. When they are
pressed, they give the illusion that
they are moving down. Using art that
looks like a button helps the player
understand how to use the interface.

Everyone has used buttons. At an
early age, we all learn that buttons
should be pressed. If you hand a tod-
dler a television remote or telephone
that she has never seen before, she will
instantly begin pressing the buttons.
This does not mean that images that
don’t look like buttons can’t be used
in an interface. Images that look like a
bullet or space ship can be used as
buttons. The player will still need to
know that they function like buttons.
In the rest of this chapter, I will refer
to any image that can be clicked or
selected to navigate the interface as a
button.

Buttons change appearance when
they are selected or when they are
pressed. Each of these changes is
referred to as a button state. Although
the three button states (standard,
selected, and pressed) may seem to
cover every possible situation, there
are many more possibilities, some of
which you will read about in this
chapter. You should carefully consider
what button states will be needed for
your interface. The number of states
needed for an interface can vary.

Button States

Chapter 6



Figure 6.1  This is a
button in a standard
state. This is what it looks
like when no action has
been taken.

Chapter 6   ■ Button States74

Controller Button
States
When you are designing an interface
that will rely on a controller to navi-
gate it, you must include some basic
button states. However, it isn’t always
necessary to support all button states
for every game. Look at all of the
screens that will appear in your menu
and decide what will be necessary for
your game. The only two states that
are always necessary are standard and
selected. It is possible to create a very
simple interface using only these two
button states.

Some button states make the interface
look better, and some button states
provide information that will help the
player navigate the interface. The fol-
lowing is a list of the basic button
states for a controller interface:

■ Standard

■ Selected

■ Pressed

■ Active

■ Active-selected

■ Disabled

The Standard Button State
A standard state of a button is just
what it sounds like. This is the normal
state of a button when nothing has
happened—meaning the player has
not pressed or selected it. A button in
this state should appear to be a button
(or something clickable) so that the
player knows that it can be clicked.
This state should be designed with the
other states in mind. Think about
what the button will look like in all of
the other states. If you want the but-
ton to glow when it is selected, you
will need to make sure that the button
is designed in a way that the glow does
not obscure anything important. If
you want the button to appear to
move down when it is pressed, you
will want to design a button that has a
component that looks like it can be
pressed down.

Figure 6.1 shows a set of buttons in a
standard state. Each of the three
images has been placed on a box with
rounded corners. This box has slight-
ly beveled edges that provide a little
visual depth and have the appearance

of a button. Each icon helps the play-
er understand what each button does.

The Selected Button State
The selected state is the state of a but-
ton after it has been selected. This
state is often referred to as “highlight-
ed” because typically the button
appears to glow or appears in a
brighter color. The player’s eye should
be drawn to the selected button first.
The selected button state should be
the most visually powerful state of all
of the buttons on the screen—there
should be no doubt that this button is
selected.

Because of the importance of this
state, the selected effect is often ani-
mated. When the highlighted button
is moving, it can really catch your eye.



It tells the player to look here and
make a decision. A simple pulsing
glow can be effective. Figure 6.2 shows
the center button in a selected state.

pressed state is usually only necessary
when there is a delayed reaction from
the time of selection until the player
sees the change. If the player presses
the button on the controller and there
is no visual change on the screen, he
may think that something is wrong.

Some option selections may require
the game to load something from a
disk, and this can causes a delay. For
example, if the player chooses to start
a game and nothing moves on the
screen, he won’t know if the button
press worked. That’s where the
pressed state comes in handy. The
delay may not be long enough to jus-
tify a loading bar, but the wait may be
long enough to cause confusion. Even
a one-second delay can seem like a
long time when you’re expecting an
instant reaction. Without the visual
feedback indicated by the pressed
button state, it may appear to the
player that his selection did not regis-
ter. He might even become confused
and try to select the option again if he
does not see any change.

T i p

Audio clues can really improve an
interface. Adding a sound to a button
selection event helps the player to rec-
ognize that a button has been selected.

Controller Button States 75

Figure 6.2  The
selected button state is
used when the current
button has been selected
(or when the mouse
curser moves over the
button on a PC).

Figure 6.3  The pressed
button state is used right
after the player presses
the Select button on the
controller (or clicks the
mouse on a PC).

The Pressed Button State
The pressed button state occurs when
the player presses the Select button on
the controller. The highlighted button
often appears to move down.
Darkening this button is also a com-
mon effect used for a pressed button
state. This change tells the player that
the game recognized that a controller
button was pressed.

The pressed button state is frequently
included in games, often just because
it looks good. This is a state that can
usually be left out of a game. The

Figure 6.3 shows the middle button in
the pressed state. It looks as though
the button has been pressed down.
The lighting has changed to create
this illusion.

The Active Button State
Some menus are designed so that but-
tons can be active even when other
buttons are selected (or highlighted).
For example, a soccer game may
include the option to choose between
15 different stadiums. The player



Chapter 6   ■ Button States76

needs to know which stadium is cur-
rently active, even when the Start
Game button is selected. The Current
Stadium button should appear as if it
is active. Figure 6.4 shows a button in
the active state.

player recognize that this button is
active. Figure 6.5 has a small arrow to
the side of the button to make it clear
that the button is active.

The active-selected state can help the
appearance of the interface and at the
same time provide more information
for the player. The problem with not
using an active-selected button state is
that it may not be clear to the player
that the selected button is also active.
The only way the player will know
that the selected button is also active
is if he remembers that the button was
active before it was selected.

This may sound confusing in print,
but everyone has seen the active-
selected button state in action, and
when it is executed well, it is not con-
fusing at all—The active button state
is very common in many software
programs. For example, the latest ver-
sion of Internet Explorer uses the
active-selected button state. When the
Search button is active (it has been
pressed) and then the player moves
the mouse over it and it becomes
selected, the highlight effect is differ-
ent from the highlighted state when
the button is not active.

Figure 6.4  When a
button has been selected
but the player has moved
to another button, the
active button state is
used.

Figure 6.5  When a
button has been selected
but the player has moved
to another button, the
active button state is
used.

The active state should be second in
visual power, after the selected state. It
should be clear that that this button
or option is active, but it shouldn’t
overpower the selected button. If you
are using a glowing and brightening
effect for the selected button state,
then the effect on the active item
shouldn’t be as bright. Another com-
mon method is to place a marker
object around or next to the active
button. This extra image is helpful
when other effects in the active button
state are subtle because it can help the

The Active-Selected Button
State
The active-selected button state
occurs when the player selects the
button that is also active. The active-
selected state is optional. It provides
more information, but it is only nec-
essary when an item can be active.
Even in this case, it is not completely
necessary. The normal selected state
can be used in place of active-selected
if the active button is similar to the
selected state.



Figure 6.6 is a button in the active-
selected state. The glow around the
effect has a green tint that is similar to
the active state, but it is brighter than
the active state so that the player will
know it is selected. Visually, it is a
combination of the active and select-
ed button states.

the advantage of using the disabled
button state is that the player can see
how many levels are left to play.

The disabled button state is not only
for options that need to be unlocked;
it can also be used when other choic-
es limit the options that are available.
For example, if the player chooses the
single-player option, then multi-play-
er levels become disabled.

Buttons in a disabled state should not
appear to be click-able. A common
solution for creating disabled buttons
is to have the programmers cover the
button with a gray color at 50 percent
opacity or make the button itself
semi-transparent. Because of the
appearance of the buttons when using
these techniques, these buttons are
often referred to as being “grayed
out.”

PC Button States
Many of the button states for a PC
game are the same as those for a game
with a controller. There are some
slight differences, though. It is less
important to draw attention to the
selected button state, for example.
The selected button will always be
under the mouse cursor. For this rea-
son, the selected state in a PC game is
often called the mouseover state.

Other States
You might need to design for unique
button states in your game. There are
many cases in which a button state
that is not one of the standard states
described in this book could be use-
ful. For example, there may be a need
to select a button that is disabled. If
you display information about a level
when it is selected and you want to
display this information about levels
that are locked, you will need to allow
the player to select the disabled levels.
In this case, a disabled-selected state
might be appropriate. If you are mak-
ing a multi-player sports game and
you allow both players to move

Other States 77

Figure 6.6  The active-
selected button state is
used when a button has
been selected previously
so it is active and it is the
selected button (the
mouse is hovering over
this button on the PC).

Figure 6.7  When a
button can’t be selected,
the disabled button state
should be used.

The Disabled Button State
When certain options are not avail-
able but the player needs to be aware
that they still exist, a disabled button
state can be used. When the player
must play through the game levels in
order—say, he can’t skip to a higher
level but is allowed to go back and
play a previous level—the levels that
can’t be played yet are disabled. You
could simply not show the buttons for
the levels that can’t be played yet, but



Chapter 6   ■ Button States78

around the Team Select screen at the
same time, you will need a Player One
button select state and a Player Two
button select state. You might even
want to have a new button state if
both players have one team selected at
the same time.

There is no real limit to the number of
button states that could be used in an
interface. You may come up with
many innovative ways to give the
player more information by creating
new button states. Don’t be limited to
the states listed above. Let your game
dictate how many button states you
will use.

Animated States
Animation can add a lot of impact to
an interface. Movement is always
more interesting than a static screen.
Movement can also be very effective
in attracting attention (see Figure
6.8). While animation can be a power-
ful tool, if it is used incorrectly, it can
also cause problems. For example, if
every button is animating in the stan-
dard button state, the interface can
become confusing. Be sure that but-
ton animation does not conflict with
any background animation.

The most logical place to use an ani-
mation is in the selected button state.
This is where you want the player to
look first, as it is the most important
location on the screen. Movement on
the selected button will let the player
know that this is the location where a
choice can be made.

One way to create animated buttons is
for the artist to actually create all of
the frames and give these frames to
the programmer. The game engine
then cycles through these frames to
create the animation. A simple,
cycling animation is usually the best.
In cycling animation, when the engine
reaches the last frame in the anima-
tion it starts over at the beginning. If
the animation is created correctly, the
transition is smooth. The number of
frames you can use in the animation
will usually be limited—talk to the

programmer and determine how
many frames you can use. An anima-
tion created by the artists instead of
by the programmer allows for 3D
rotation and other impressive effects,
even if everything in the interface is
really just 2D.

The game programmers can also do
some of the animations; this can save
time and file space. They may be able
to animate the opacity, position, rota-
tion, or scale of any piece of 2D art
you give them. For example, if you
give the programmer a button and
then give him a separate glowing
highlight, he can place this highlight
over the button. He then can animate
the opacity of the highlight and make
it appear to pulsate.

One advantage of having a program-
mer do the animation is that if it is
done correctly, a programmer can

Figure 6.8  The arrow
next to the button
pulsates.



make adjustments like changing the
animation speed of all of the buttons
at once. These types of adjustments
can be made easily, and a large
amount of time that it would take an
artist to create animations can also be
cut out. The problem with this solu-
tion is that the interface designer gives
up a little control. You will need to
rely on the programmer to set the
speed and amount of movement in an
animation. Unless the animation is
done using good software, it will also
limit the effects that can be animated.

If you are creating a game using a pro-
gram like Macromedia Flash, you may
have more control over animations.
Even if you are working with a pro-
grammer who will be doing the
scripting, this tool offers you the abil-
ity to animate interfaces right in the
game environment. Many of the high-
end 3D game engines also have tools
for creating interfaces. In both of
these instances, the artists may have
more control over the final look of
animations than they would if they
are in a situation where the program-
mer is creating animations.

Another solution for creating animat-
ed buttons is to use real-time 3D
geometry instead of 2D art. You could
use an actual 3D model as a button,
for example. It is a greater technical
challenge to use 3D elements in an
interface, but it can provide more
options. For example, longer anima-
tions can be used because they do not
require a lot of 2D frames. Also, a
greater number of animations can be
used because of the small file size of
3D animations. 3D interface elements
can also rotate and move in 3D space.
These effects are much more difficult
to accomplish in a totally 2D interface.

Workload
When making the decision about how
many button states you will support
in your interface, make sure to con-
sider the workload added for every
button state. If your interface has 50
buttons and you add just two more
states, this could mean you have 100
new buttons to create. Your schedule
may limit the amount of button states
you can support.

I recently worked on a game that was
a modification of another game. One
of the changes we made to the new
game was to change the colors in the
interface. The game had a lot of but-
tons and a lot of states for each but-
ton. It took me a lot of time to get
them all switched to the correct color.

Saving Time
There are some techniques you can
use to greatly reduce the workload
when designing for button states. For
example, if you design the buttons
correctly, you create one piece of art
for a new button state rather than a
new piece of art for every button in
the game. If you design the buttons in
your interface so that the background
of the button is always the same, and
text or icons are placed on top of the
background in the game, the pro-
grammer can combine art to create
different button states. This way, you
create one piece of art for each state
and a different icon for each button.
Everything is put together in the
game. If you decide that the selection
button state should be a little brighter,
you only have to change one piece of

Workload 79



Chapter 6   ■ Button States80

art and all of the buttons change. The
disadvantage to this technique is that
the icons do not change for each but-
ton state. If you want the icon to light
up or darken in any of the button
states, the method of combining art
will not work.

The programmers can use several
techniques to limit the amount of art
that needs to be created. They can
take the standard state button and use
transparency to create a disabled state
so that the artist does not need to cre-
ate a disabled button state, for exam-
ple. Or the pressed buttons can be a
darkened version of the standard but-
ton that is created in the game engine.
While these techniques can save time,
again they also limit the variety of
visual effects that can be used. If you
want the pressed button to actually
look like a button that has been
pressed down, you may need to create
the art yourself.

Audio
Good audio can really add to an inter-
face. Interface designers typically do
not have complete control over the
audio used in an interface, but they
can make suggestions for creating the
audio or making it better. When cre-
ating the art, it can be helpful to pic-
ture what the object you are creating
might sound like. Do your buttons
beep or honk when they are selected?
When your screens transition, does
the player hear a whoosh sound or a
ding? You don’t need to stick with a
traditional click for your buttons. Pick
a sound that helps set the mood of the
game.

As always, the number one goal is to
make the interface player-friendly.
Don’t confuse the player by adding
too many sounds. The sounds need to
seem right for the actions they are
attached to. This may mean that
sound effects for a button in a select-
ed state may need to be subtle, so that
the button-press sound will stand out
more.

Summary
Examine the button states of your
favorite game or software. If they have
been designed correctly, you may not
have noticed before how many are
used but you still understood how to
use the interface. Button states should
provide information that will help the
player. Evaluate your game and deter-
mine how many button states are nec-
essary for your game. Some of the
most common button states are stan-
dard, selected, pressed, active, active-
selected, and disabled. You will use
these states a lot, but you will also
now and then need to come up with
more useful button states that are
specifically designed for your game.



81

The concept of creating a focal
point and creating a compo-
sition that leads the eye is a

common art and design principle.
Painters, illustrators, and designers
pay close attention to the focal point
in their art. The principles discussed
in this chapter are even more impor-
tant for video game interfaces.
Because the player must interact with
a game interface, it is critical that he
knows where to look and what to do.

The Most Important
Element
When designing an interface, you
should figure out what is the most
important object on screen, and then
determine what is the second most
important object, and so on. Your
design should correlate with this hier-
archy of importance. A well-designed
interface will help the player quickly
find the most important element on
screen without having to search.
Good design will lead the player’s eye
where you want it to go.

Put careful thought into determining
the most important element on your
screen. The most important element
may not always be obvious, and the
decision might be difficult to make.
For example, should the game title be
the most prominent or the Select but-
ton? A natural reaction might be to
have the name of the game the
biggest, brightest image on the screen,
but is the name really the most
important item on the screen? The
player usually knows what game he is
playing before he gets to the title
screen. If the Start Game button is

Creating a Focal Point

Chapter 7



Chapter 7   ■ Creating a Focal Point82

selected, it might be more important
to let the player that know if he press-
es the Select button on the controller,
the game will start.

Don’t fall into the trap of making no
one element stand out because you
think several elements carry equal
importance—this will seriously limit
the visual power of your design. You
should always have one element that
is undoubtedly the most prominent
element on the screen. If you included
three elements that have equal visual
weight because you can’t decide
which to make prominent, then the

interface will be harder to navigate.
You don’t need to fear that everything
other than the main element will be
lost. Just because the visual impact of
the second object is not as strong as
the first does not mean that it will be
overlooked. In fact, I would suggest it
is more likely to be seen if there is a
clear path for the player to follow.

This concept of creating a visual hier-
archy can be applied to all kinds of
design and layout, including text doc-
uments. If you are typing a proposal
or design document, you can apply
this design principle. For example, if

you use bold text too often, nothing
will stand out. I have seen many peo-
ple make half of the text on the page
bold because they believe that every-
thing is important. If you use bold
text on only one phrase on the entire
page, this phrase will immediately
catch the reader’s eye. Figure 7.1 illus-
trates how much more effective a bold
phrase is if it is the only bold text on
the page.

It is easy to find examples of bad doc-
ument design. I get them delivered to
my house every week—my mailbox is
filled with poorly designed coupons.

Figure 7.1  Notice how the bold phrase stands out on the second page.



The designers of these ads seem to
think that everything is terribly
important, and so they make all of the
text the same size or surrounded by a
different bright color. When every-
thing is highlighted, nothing stands
out. This visual confusion can cause
people to stop reading because they
don’t know what to look at next and
they can’t be bothered to search for
the main point. The average viewer’s
attention span (and patience) is short,
and in a split-second of confusion the
viewer can give up.

Figure 7.2 is a fictional advertisement
that is similar to some of the junk
mail I routinely receive. The sad thing
is that I have even seen worse design
than this! In Figure 7.3 you can see
how much the same advertisement
can be improved by creating focal
point. The ad still includes basically
the same colors and text; the only
major change is that a visual hierarchy
has been created. It still may not be
great design, but it looks much better
than in Figure 7.2.

Size Variation
One of the obvious ways to get the
player to look where you want him to
look is to adjust the size of the visual
elements. Usually the largest object
gets the most attention, so make the
most important object the biggest
(see Figure 7.4). Make the size differ-
ences dramatic to show the impor-
tance of one element over another.

Size Variation 83

Figure 7.2  This ad is poorly designed—everything has the
same visual strength and nothing stands out.

Figure 7.3  This may not be great design, but look how much
better the advertisement looks when there is more variation in
the visual weight of the elements.



Chapter 7   ■ Creating a Focal Point84

In cases where a group of objects need
to be the same size, other properties
can be changed to give more or less
visual impact. If you have a row of
icons across the bottom of the screen
in the HUD, these icons may need to
be small, and they are likely to all be
the same size. Once an icon is selected,
it should stand out so that the player
knows where to look. You may not
have enough room to make the high-
lighted button bigger when it is select-
ed. Size is important, but it is not the

only way to draw attention. For exam-
ple, changing color may be a good
option in a multiple-icon scenario.

Color
Color can be a great way to highlight
important objects in your menu.
Even small objects that are a vibrant
color can really attract attention.
Using complementary colors can
really make an item stand out. Just 
as with the other techniques for

establishing a focal point, color is
most effective when it is used dra-
matically and should be reserved for
only the most important items on the
screen. In Figure 7.5, a white outline
is used to attract attention. The title
gets the attention first and the high-
lighted button next. The white color
stands out on this screen because all
of the other colors are darker and
very saturated. The white outline is
used sparingly.

Figure 7.4  The first thing that catches your eye in this design
is the biggest object.

Figure 7.5  Color can be used to grab attention.



Value
Just like color, value can help you
attract attention. The brightness or
darkness of an image can help create a
focal point. When using value to
guide the player’s eye, the key is to
have a lot of contrast. Bright objects
stand out much more on a dark back-
ground, and dark objects stand out
better on a light background. Figure
7.6 doesn’t have any color, but the
selected button stands out because it
is so much brighter than the rest of
the screen.

Movement
Use animation, or movement, on
every screen. A static screen is much
less interesting than a moving screen.
Movement brings life to your inter-
face. Animation will attract attention,
so you need to use it wisely—choose
important elements to animate and
avoid animating unimportant back-
ground images. If possible, the player
should never have to look at a static
screen. Creating animation is not a
trivial task. Creating good animation
requires a lot more effort than a

motionless screen,
but it is worth it. Even
simple animations
can liven up your
interface.

We are inundated by
movement onscreen
every day. Web pages
and Internet adver-
tisements often move.
And of course, televi-
sion images move. In
an attempt to push
more information
and grab your atten-

tion, TV commercials move even
faster than they did in the past.
Images flash rapidly in front of your
eyes—it is amazing how much a view-
er can comprehend in a split second.
Video game players have also come to
expect movement in their games. A
static screen can be very boring; it is
harder and harder to get attract atten-
tion in a game without using move-
ment.

Movement can easily add visual
power to anything on screen.
Animation is by far the best way to get
attention. Even if you use some or all
of the other techniques that can
attract attention, the player will
almost always see the movement first.
A small and simple animation can be
powerful, and a dramatic animation
can overpower everything else on the
screen.

Imagine a slow-moving fog in the
background of your interface. This
could be really cool as long as the
movement is slow and does not
detract from the rest of the interface.
Highlighted buttons should attract
attention so that you can really make

Movement 85

Figure 7.6  Even without color, value can be used to create a
focal point.



Chapter 7   ■ Creating a Focal Point86

them move. A simple, pulsating glow
is a common approach, but you can
get more creative than that. The but-
ton could bounce, spin, scale up, or
ripple like water. Decide what kind of
motion would fit your subject matter.
In a basketball game, for instance,
basketball-shaped icons could spin on
a finger when they are highlighted.
Figure 7.7 shows how a spinning ani-
mation could be used to emphasize
the highlighted button.

Be careful to only use animations on
important elements. Because of the
power of movement, the player can
be easily distracted from other
important elements on the screen.
The most important object on the
screen can be a great place for an ani-
mation. If you use background ani-
mations, make them subtle so as not
to distract the player from quickly
using the interface.

Summary
Creating a focal point will help your
design and also help the player know
how to navigate the interface. You can
use several techniques to attract atten-
tion. You can use size, color, value,
and movement to designate the area
on the screen where you want the
player to look. The most important
item will not stand out by accident.
Carefully plan your interface with a
focal point in mind.

Figure 7.7  A spinning ball would really attract attention.



87

Text is a powerful tool that is
often overlooked or at least
underestimated by designers

working on game interfaces. The style
of text in an interface can set the
mood of the game. Each font has a
personality. A font that is handwritten
and “scratched up-looking” might be
a great choice for an extreme sports
game. A smooth, flowing script font
might be great for a horse riding game
targeted at young girls.

It is possible to make a great interface
design using only text. Font choice,

size, placement, color, and type effects
can greatly improve the design of an
interface. Become a type expert and
take the time to tweak your fonts until
they are perfect. There is a lot more to
learn on this subject than I can pre-
sent in one chapter. Consider this a
quick overview and learn more every
chance you get.

Using Text Wisely
No one likes to read a lot of text when
playing a video game; therefore, text
should only be used when it absolute-
ly necessary. Your number-one priori-

ty when using text is legibility—if the
information is so important that you
must put it in the interface, then it
needs to be easy to read. If text is hard
to read because it is too small or blur-
ry onscreen, the user is likely to just
ignore it and move on.

In some instances, however, legibility
may not be so important. Text can be
used in the background merely as a
design element. The purpose of this
background text is to set a mood.
Remember, you can’t use text like this
if you expect the user to read the text.

Using Text in
Your Interface

Chapter 8



Chapter 8   ■ Using Text in Your Interface88

Figure 8.1 shows a lot of text in the
background. None of this text was
intended to provide information; it is
just decorative.

Type Anatomy
It is important to understand the ele-
ments that make up text style. You
should know the terminology so that
you can talk about fonts intelligently.
It also makes using software to
manipulate your font design much
easier when you know what all of the
adjustments do.

It is well worth your
time to study typog-
raphy. Understanding
the structure of type
will help you to make
effective adjustments
to fonts. Figure 8.2
shows many of the
important pieces of a
font labeled.

In the following sec-
tions, I’ll discuss
some of the most
important compo-
nents of type and
how to use them in
your interface design.

Serif versus Sans-Serif
Serifs are the little “feet” on the ends of
letters, such as on the letter H. Printed
fonts that have serifs are easier to read
because the serifs guide the eye along
the line. Serifs are found on the classic
font, Times Roman. This book is
printed in a serif font. Figure 8.3
shows a letter that has serifs.

Fonts without serifs are called sans-
serif fonts. Arial and Helvetica are
examples of popular sans-serif fonts.
Sans-serif fonts are considered “mod-
ern,” and are becoming more popular
and widely used; people are getting
better at, and more accustomed to,
reading them.

The rules for using text in an interface
are different than they are for printed
text. The reason for the difference lies
in the way text is drawn on a comput-
er monitor or a TV. When choosing a
font that will be displayed at a small
size in your interface, it is best to
choose a sans-serif font. Because there
are so few pixels that can be used to
display these small fonts, serifs just
make it harder to read—the serifs can
be less than one pixel and will make
the text appear blurry and harder to
read than would a sans-serif font.

Arial and Helvetica may seem like
plain fonts with less personality than
many other fonts, but they are easy to
read in an interface. If you choose a
font with serifs, you must make sure it
is still very easy to read in the smallest
version you will use.

Figure 8.1  Text is used in the background of this image, but it
is there just for looks.



Ascenders and Descenders
Figure 8.4 diagrams several font
terms. Ascenders are letters that
extend above the cap line, the high
point on most uppercase letters.
Descenders are letters that extend
below the base line, the bottom of
most upper and lowercase letters.
These letters are important because
they affect the entire alphabet when
creating a font for a game. If you only

have 18 pixels for
your font, this
small space will
need to include
room for both
ascenders and
descenders. One
of the best ways
to get more out
of these 18 pixels
is to use a font

Type Anatomy 89

Figure 8.2  It will be very helpful to learn all of the terms used to describe text. Figure 8.3  The little strokes on the
end of letters are called serifs.

Figure 8.4  When working with fonts, you need to consider all of
the different vertical heights in a single font.



Chapter 8   ■ Using Text in Your Interface90

wherein the descenders do not extend
very far below the base line. This will
give you more room for the space
between the base line and the mean
line (the x height). This is where a
majority of the letters of the alphabet
will fall. If you can’t find a font that
fits this description, you can always
make your own. This is a very com-
mon solution for video game inter-
faces. There are some good fonts that
can become great solutions for inter-
faces with some minor changes.

Uppercase and Lowercase
Another way to avoid taking up valu-
able pixel space for descenders is to
use an all-uppercase font. Some fonts
only have uppercase letters. (This is
more common with free or inexpen-
sive fonts.) You can also, of course, use
only the uppercase letters in a font
that has both uppercase and lower-
case letters. The problem with all-
uppercase fonts is that they are natu-
rally harder to read than a font that
uses a mix of uppercase and lowercase
letters.

Many people think a bold font with
all uppercase letters will stand out
more, but the truth is that they may
not. The faster and easier it is to dis-
tinguish between letters, the easier it
is to read text. Capital letters are more
similar to one another than lowercase
letters are. It is easier for your eye 
to see the different shapes of
letters when reading a mix of upper-
case and lowercase letters. Uppercase
letters used in conjunction with low-
ercase letters help to visually signify
the beginning of sentences. An all-
uppercase font does not give this
same visual signal at the beginning of
each sentence. An all-uppercase-
letters font is particularly hard to read
in block text. Figure 8.5 demonstrates
the difference between a line of text
that uses all uppercase letters and one
that uses a mixture.

Points and Picas
The system for measuring fonts
allows for very precise measurement.
This system uses points and picas as
the basic units of measurement. Most
software packages use points to mea-
sure fonts, rarely picas. Picas are 12
points tall. A printer who is working
with large text may use a pica as a
measurement.

Points measure an actual physical dis-
tance, like centimeters or inches. This
can become confusing when working
with digital fonts. When working in a
raster format (images that use pixels),
there are two numbers that are often
used to adjust the “size” of a file—
points and pixels. These two numbers
are very different, but they work
together. Understanding both of these
numbers can help you understand

Figure 8.5  It is harder to read a font that is all caps.



how point size of text works in your
image.

Points are really only used in the soft-
ware used to create the art for an
interface, such as Photoshop. Game
engines are only concerned with the
number of pixels. If a font is 16 pixels
tall, the physical size of the text
onscreen will vary. The size of the
television or the size and resolution of
the monitor will dictate how large the
text will appear. The size of a pixel will
vary in every situation.

File Size and DPI
When trying to manage file sizes, the
first thing you should look at is the
pixel dimension of your image. This
defines the number of pixels used in
your images. A standard TV can dis-
play 640×480. Computer monitor res-
olutions vary. The more pixels in your
file, the more space it will take up on
your hard drive. More pixels result in
a more detailed image but it also
means that there is more information
in the file and therefore bigger files.

A second number is commonly used
in conjunction with file sizes. The sec-
ond number is the DPI (Dots Per
Inch). This term comes from the
printing industry. During the printing
process, small dots of ink are laid
down on the paper. The more dots
used in an inch, the smaller the dots
must be and the crisper the image will
appear to the eye. When adjusting this
number, you are really adjusting the
physical size of an image and not the
amount of pixels used in the entire
image. In many cases, you can just
ignore the DPI when working with
interfaces. However, if you are using
physical sizes—like points and inch-
es—in your software, you will need to
understand how these sizes relate to
DPI. If you ignore the DPI, you also
have to ignore any measurements that
refer to physical size.

If you have an image that is 640×480
at 64 DPI, and you printed it on a
piece of paper, the image would be 10
inches wide. Only 10 pixels would be
used for every inch, so the image will
appear very pixilated—it would
appear as if the image were created

out of large blocks of color. If you
took this image and changed only the
DPI to 320 and left the image at 640 ×
480, then the image would only be
two inches wide, but it would look
really good because every inch would
have 320 dots.

The relation of resolution, DPI, and
size becomes even more confusing
when printing. Each printer prints
images at a particular DPI. This is
actually referring to the quality of the
printer and doesn’t have anything to
do with the DPI of the image. A print-
er who prints at 600 DPI is actually
putting down 600 dots of ink in every
inch. This does not mean a printer
can improve on an image that only
has 100 DPI. The printer can’t add
more color information than exists in
the file. In this case, the printer will
use six dots of ink to print each of the
larger pixels of color in the 100 DPI
image. The image will still only look
like a 100 DPI image when it is print-
ed. This concept can be hard to
understand, but it will be important
only if you must print your interface
images. When using the image for a

Type Anatomy 91



Chapter 8   ■ Using Text in Your Interface92

game interface, the only thing that is
important is the image resolution.
When these files are used in a game,
the DPI of the file does not matter.

What does all of this have to do with
type size? Understanding these rela-
tionships will help you understand
how a 16-point font in Photoshop
will turn out in your interface. Points
(or other type measurements, such as
inches) are a physical size, so the
number of pixels a font uses changes
when the DPI of an image changes.
This means that point size does not
always correlate with pixel size. If you
have an image that is 640×480 at 72
DPI and you have a font that is 72
points tall (one inch) the font will be
72 pixels tall. If you change the DPI to
144, then a 72-point (one inch) font
will be 144 pixels tall.

One of the best solutions to all of this
confusion when working with
Photoshop is to change the units for
fonts in Photoshop’s Preferences. If
you never need to print, you will only
need to worry about the number of
pixels you are using and you won’t
have to deal with the DPI of an image.

Kerning
The space between individ-
ual letters is called kerning.
If the amount of space
between letters is exactly
the same for every letter in
a font, then the font is
referred to as a monospaced
font. Monospaced fonts are
hard to read, and therefore
they are seldom used. They
are, however, much easier to imple-
ment in a game engine. If you notice
that the engine is spacing using a
monospaced font, you may want to
recommend an improvement to the
font system that adjusts the kerning.
Most game engines actually adjust
kerning so the fonts are more legible.

If you take a close look at text that is
typed on a computer, you will notice
that there are small differences in the
spacing between each letter. If you
measure between letters, the spaces
are not actually equal. Even though
the distance between the letters is not
consistent, the letters do appear to be
spaced correctly.

Figure 8.6 shows how the spacing
between letters varies, but the text still
looks as if it is evenly spaced. Text
generated by most software packages
is typically spaced correctly; however,
if you plan on using large text, you
may need to do a little hand-adjusting
to the kerning.

Thicks and Thins
Most fonts have variations in the
thickness of the strokes that make up
the letters. Times Roman is a great
example of a popular font that has
thick and thin parts in the letters. If
you look closely, you can see that the
font in this book has variations of
thickness in each letter.

Figure 8.6  Letters should be spaced for maximum
readability, even if that means the letters are not equally
spaced.



These thicks and thins are remnants 
of hand-written fonts. In the pre-
computer, pre-typewriter “old days,”
text was often written with pens (and
before that, with quills) with wide
metal tips dipped in ink. The angle at
which these metal tips were held as
they touched the paper determined
where the lines varied in thickness.
The important thing is to keep this
angle consistent even when creating
your own digital fonts or making
adjustments to existing fonts. If the
way the thick and thin parts of the
lines are drawn changes from letter to
letter, the font won’t be pleasing to the
eye, and it will be harder to read.
Figure 8.7 shows a script font that has
very dramatic thicks and thins.

Scaling Fonts
Avoid scaling fonts in one direction
and not the other. Many art pro-
grams, such as Photoshop, give you
the ability to non-uniformly scale
fonts. This usually makes a font hard-
er to read. If you want a tall, skinny
font, you should find a font that is
designed tall and skinny rather than
stretch another font. Dispropor-
tionate scaling changes the carefully

designed ratio of thick to thin. Fonts
that have been scaled this way look
like they have been stretched. Figure
8.8 demonstrates how bad a stretched
font can look.

Font Choice
Choosing a font can be a big decision,
and it can take a long time to find just
the right font for your game. Great
software, such as Macromedia
Fontographer, has made it very easy

Font Choice 93

Figure 8.7  Keep the variations in thickness of the strokes consistent.

Figure 8.8  A font stretched in only one direction often doesn’t look quite right. It’s usually
better to choose a font that has the look you’re going for right from the beginning.



Chapter 8   ■ Using Text in Your Interface94

for anyone to create a font, and as a
result, there are thousands of bad
fonts floating around on the Internet.
There are several Web sites out there
offering a huge number of free, or
almost free, fonts. The problem with
many of these sites is that there may
only be a couple of good fonts on the
entire site. You will probably need to
sort through a thousand bad fonts
before you find a good one. Looking
at so many bad fonts can make an
average-quality font look much better
than it really is.

If you are willing to purchase a font
package, you can get hold of some
great fonts. For example, Adobe has a
variety of great fonts that can be used
to achieve many different effects. If
you don’t want to buy an entire font
package, you can often just purchase a
single font.

Theme Fonts
An inexperienced designer is easily
enticed into choosing a bad, “theme”
font. These fonts use letters that
appear to be constructed from a
material that fits a theme—for exam-
ple, a font designed to look as if it

were made out of bamboo or water
puddles. Just because you are making
a Wild West game and you find a font
that looks like it was made out of
wood does not mean it is a good
choice. In fact, a theme font is much
more likely to be a bad font.

There are so many bad theme fonts
out there for the simple reason that
good theme fonts are hard to create. It
is much harder to create an easily
readable font made out of paper clips
than it would be to just make an ordi-
nary readable font. You can find good
theme fonts but you need to be aware
that a high percentage of these fonts
are hard to read and very cheesy.

Figure 8.9 shows several fonts that are
hard to read and would not look good
in a game interface.

You must choose the font used to dis-
play body text in a game carefully. It is
more important to use a legible font
for text than it is for headlines
because body text will be smaller, and
there will usually be more of it. Fonts
used in a logo or as a heading can be
larger than body text and will there-
fore offer a little more freedom. For
example, you might be able to get
away with using a theme-style font in
the game logo, but probably not in
body text.

Figure 8.9  These fonts are hard to read.



When making a logo, I often adjust
the letters from the standard font. I
like to fine-tune the letters. Such
adjustments can improve a logo, but
can be dangerous—if you are not
experienced with fonts, adjusting
thickness, kerning and so on can actu-
ally make a font worse. If you adjust
curves of a letter, they may no longer
match and look out of place. Even
subtle differences will be noticed.

Multiple Fonts
Using multiple fonts in one interface
can make it more difficult to get the
right look—not only do you need to
choose good fonts, but you must also
consider whether the fonts work
together. If you need to use two fonts,
it is usually best to use a standard font
like Helvetica or Arial with a more
stylistic font. Finding two distinctive
fonts that work well together can be
very difficult, and if you don’t make a
good choice, the results can be disas-
trous—the two fonts end up fighting
each other. They just don’t work well
together, either because they are too
different from one another or because
they are so similar that they look as if

they should match, and so their slight
differences appear to be a mistake.

The mark of a bad designer is an
interface filled with a ton of different
fonts. I’m sure you have had a friend
who gets a bunch of new fonts, and
suddenly every document he pro-
duces has a different font on every
line. Such documents are difficult and
annoying to read. I use a pretty basic
and standard font for body text in
most of the menus I create. I like
Helvetica or Arial and use them often.
I often choose another font to use for
larger captions and buttons, and I
make sure to choose a font that won’t
be mistaken for Helvetica or Arial. If
this second font is substantially differ-
ent, then there is less chance of a con-
flict with my body text. This second
font is often the font that shows the
“personality” of the game.

Know Your Fonts
You don’t need to know the name of
every font in existence, but you
should get to know a handful of fonts
really well. Collect a small set of versa-
tile fonts. When a publisher or art
director asks for a “retro style” font,

you should be able to quickly find
one. It is also helpful to recall the font
name from memory. You can save a
lot of time if you are familiar with a
handful of good fonts that can work
for a variety of needs.

It will be helpful to have a favorite
font for a variety of styles like a script
font or serif font. This knowledge can
save hours of time searching for fonts.
You will find that a small set of quali-
ty fonts will work for 90 percent of the
things you do.

Creating a Game Font
Most game engines require that an
artist create all of the fonts. Some
advanced engines have tools that can
take a standard font and convert it to
the game format. Even in these cases,
it is good to understand how a font
works because often it is helpful to
edit the font directly. You might be
able to make some adjustments that
are better than those the tool can
make automatically.

The most common format for a game
font is white text placed in a grid. The
files are usually square, and the

Creating a Game Font 95



Chapter 8   ■ Using Text in Your Interface96

dimensions of the entire file are a
power of two (128, 256, or 512). The
important thing to determine is how
many pixels each letter will use. Will
you create a 10-pixel tall font or an
18-pixel tall font? Find out how much
space has been allotted for fonts and
how big your files can be. When you
choose the font size, make sure that
there is enough room in the file for all
of the letters and images that you will
need. You will also need to think
about how tall each letter will be on
the screen. How much text will need
to be displayed, and how much screen
space will this text take up?

The first thing to do is set a grid to the
proper size. You can then type the let-
ters of the alphabet in all uppercase
and then in lowercase. Make sure that
every letter fits in the box—they can’t
extend past the edges of the grid even
slightly. The game engine will most
likely look at your file and find the
first pixel, moving left to right, that is
not 100 percent transparent. It will
consider this the start of the letter. It
will then move right until it reaches a
vertical row of pixels in the grid
square that is completely transparent.
It will consider this the end of the let-

ter. The font system will then place
space between this letter and the next
letter. If the letter extends the entire
width of the grid square, the font sys-
tem will stop at the last pixel in the
grid.

Transparency information must be
saved with your font file. Only certain
file formats contain transparency
information. This transparency infor-
mation will make the file slightly larg-
er. If an option appears allowing you
to choose the bit depth when you save
your file, save your image at 32 bits, as
24-bit images usually don’t contain
transparency information. Work with
your programmers to determine what
type of files the game engine will sup-
port.

You will also need to make sure your
letters line up vertically. If you have
descenders in your font, you will need
to leave space at the bottom of all of
the letters. The space between letters
will change, but the letters will be
placed in the same vertical location
that they are in within the grid.

Using a standard font in a program
like Adobe Photoshop can really
speed up the font-creation process.

You can hand-create each letter in
Photoshop, but it would take much
longer to do.

Even when starting with a good font,
you may need to touch up many let-
ters. Very small changes to individual
pixels can make letters crisper and
easier to read. Look at your final font
and see if there is any adjustments you
can make to improve readability. Get
up close and make adjustments at the
pixel level. The right touch-ups can
really improve your font.

Figure 8.10 shows a close up on the
letter S. Making slight changes to this

Figure 8.10  Adjust the font down to the
pixel level.



letter can affect its appearance. If let-
ter looks a little flat on top at regular
size, you can make it appear slightly
more round by adding a dark gray
pixel or two above the letter. Notice
how these gray pixels appear at the
bottom of the S.

Icons in Fonts
Fonts can be a great place to put all
kinds of images. Numbers, dashes,
symbols, and icons can all be put into
a font file. These icons and images can
be used in the game just like a font. A
common example of using icons in a
font is when you’re creating a console
game and you place small images of
the controller buttons in the font. You
can use these images just like a font.
Directions on how to play the game
can be given by simply using the font.
If you have ever see a line of text like
“Press [image of a button] to select,”
there is a good chance the image was
in the font.

Typically, a text file is used to tell the
game engine where each letter is
located in the font file. Numbers can
be used in this file to identify a grid
square. When this number is used in
the game, the icon will appear in this
spot. As always, the font system will
vary from game engine to game
engine. Talk with the programmers
and figure out how it works in your
game.

Figure 8.11 shows a font that includes
several icons.

Font Effects
Typically, it is best to leave the font in
your font file plain and white.
Remember that the goal is legibility.
The programmers can color this font
in the game and use the same font to
create a variety of colors. If you have
enough pixels in your file, then you
can add small effects, such as a drop
shadow or an outline. Just make sure
that these effects don’t detract from
the legibility of the font.

Font Effects 97

Figure 8.11  This font has both an outline and a drop shadow.



Chapter 8   ■ Using Text in Your Interface98

Summary
Creating good fonts is an art. Give the
fonts in your interface the attention
they deserve. Paying attention to the
details can really help your font to be
legible. Learn all you can about fonts,
as you will use the information you
learn often when working on video
games.



99

Creating art for video games
requires a lot of technical
expertise. This may not be

the fun part of making games, but it is
very important. Just because you can
create great art does not mean it will
work in the game. If your art won’t
work, it doesn’t matter how good it is.

You need to have both artistic skills
and technical skills to create effective
art for games. The ideal game artist
has both artistic and technical skills.
This may not come naturally to all
artists. I have learned hundreds of
tricks over the years—there is a lot to

learn about making video games, and
practical experience is the best way to
go about it. Many new artist and
designers think that they know a lot
because they have played a lot of
games or even made one or two. All of
these artists seem to look back after
they have made a handful of games
and realize how little they really knew.

Though creating interface art is a little
less technical than modeling and cre-
ating animation, there is still a lot to
learn and understand. I will cover a
few important technical issues in this
chapter.

File Sizes
Keeping file sizes small is key when
you’re creating video games. Small
files are advantageous for many rea-
sons. In some cases, file size may not
be a critical issue, but it is always good
to think about conserving space. If
you can do anything to reduce the file
size, you should. Large files can cause
unexpected problems later, and small
files can help you avoid these prob-
lems. This section will describe some
of these problems and suggest ways to
avoid them.

Technical Requirements
and Tricks

Chapter 9



Chapter 9   ■ Technical Requirements and Tricks100

Limited RAM
A limited amount of memory is avail-
able for use in loading all of the ele-
ments in a game. The amount of
memory available depends on the
hardware. The RAM in your PC and
in your video card limits the size of
the files that can be loaded at one
time. It is the same for a console or
handheld system. No matter how
much memory the hardware has,
there is always a limit.

There are many ways for the game
engine to use this memory. You will
need to talk to a programmer who
understands how your game engine
works and how big your files can be in
your game engine. Typically, a plan is
made early on, and a particular size
chunk of memory is allocated to each
of the items that will need to be
loaded. You will want to know how
many files you can use in an interface
and how big they can be.

Memory limitation on a PC is also an
issue of minimum requirements. Your
interface must fit into the allotted

amount of memory for the minimum
requirements for your game. Even if
your game is really best played on
powerful PCs, you may need to make
your game run on older computers as
well. Communicate with your pro-
grammers and see how big your inter-
face files can be on the minimum
specs.

In a console game, typically smaller
amounts of memory are available for
textures. Some systems have a block of
memory that can be divided up how-
ever the programmer needs to divide
it. You may need to share space in this
memory with sound, animations, and
other files. In other cases, the console
has a set amount of texture memory
that can only be used for textures, and
files such as sounds, 3D models, and
animations can’t be stored in this
memory. Find out how much texture
memory is available for your game
and keep your interface within these
limits. Remember that other 2D files
may need to be loaded in this same
memory.

T i p

Just because you are allocated a cer-
tain size does not mean you must use it
all.When you get toward the end of the
project, it seems there is always one
more thing to add that you didn’t think
of before. If you have used all the space
available to you, you’ll have to cut or
reduce another element before you can
add something new.

Being efficient with file sizes is not
always easy. It can take a lot more
time for both the artist and the pro-
grammer to make files smaller than it
would to just be lazy and leave large
files. Breaking files into smaller pieces
and getting palettes just right can
take weeks—or even longer—if you
have a lot of files. Programmers can
write programs to help speed up
many of these processes, but these
tools don’t come free, as they require
a lot of time for a programmer to cre-
ate and modify.

It can also take the programmer a
long time to write the code that will
put together interfaces that have been
dissected into small pieces. It is always



faster for the programmer to take one
big image and put it in the back-
ground, but it can really waste space.

When making decisions about how to
create your interface and deal with file
sizes, don’t base your decision on lazi-
ness. Make sure that your approach
will not limit you later or cause prob-
lems. Some game-development
schedules may call for shortcuts, but
be aware that using these shortcuts
may mean that your demo level may
result in a huge download size or not
enough room on the CD for the cool
Making Of video. If the game looks
good, no one will complain because a
file is too small.

A game interface can quickly become
a big space hog. If you use a new, full-
size background on every screen in
your interface, your files can become
big very quickly. Animations are
another place where file sizes can
shoot up and quickly become out-of-
control. It takes some skill to produce
an interface that looks great and is
small. Such an interface is something
to be extra proud of.

When I give a new artist a file size
limit, he often responds as if I were

asking too much of him, but I know it
is possible to make a good game with
a small file size—I have created full
3D games on consoles like the N64
and the PS1. These consoles had very
tight limits, and yet some amazingly
big games ran on them. Artists always
want bigger files to create better art.
The really skilled artists can create
amazing art and still keep the file sizes
down.

Disk Space
Disk space can become an issue with
large-size games because, of course,
the entire game must fit onto a CD or
DVD. With a PC game, many files also
need to be copied to the user’s hard
drive. While many users have large
hard drives, you should still try to
limit the amount of space that is used.
I personally hate when games take up
a large amount of space. Even with a
big hard drive, I am often limited in
the number of games I can have
installed on my computer at once. If
your game is taking up space on my
hard drive, it better be for good rea-
son—not just because it was faster to
create big files.

Early in the project, you need to figure
out how much room you have for the
interface. How big can your files be?
Find out if the game will be on a CD
or on a DVD or how big the cartridge
will be, if it is a handheld game.
Discuss whether files other than the
game files will be on the disk.

PC games are usually distributed on
standard-sized disks, but they can also
be put on a DVD. Console games are
often distributed on special disks that
are made specifically for that console.
These disks may be different sizes
than a standard CD or DVD. On a
console, there is also often both a CD
and a DVD. The user might not see
the difference.

You might think that the best choice
would be to use the larger disk, but
more space can cost the publisher
more money. Even a small amount of
extra space can add up when a lot of
copies of the game are produced. Your
publisher will always be happy to hear
that your game fits on a smaller disk.

It is always funny to me when new
artists, upon learning their size restric-
tions, groan and complain. They seem
to think that it is impossible to create

File Sizes 101



Chapter 9   ■ Technical Requirements and Tricks102

anything good that is so small. I like to
point out the history of video games
to such artists: Old gaming systems
had very little disk or cartridge space
for large files, and yet some of these
games were quite complicated. I have
worked on several projects wherein
the entire game had to fit on a 12M
cartridge. Yes, the entire game!

Load Time
Even if you have room on a disk to use
huge files in your interface, it may
take a long time to load all of these
images, and that’s not good. Have you
ever had to sit and watch a loading bar
for a seemingly endless amount of
time before a game began? This can
be very annoying and frustrating.
Keeping your load times fast can real-
ly improve the user’s game experi-
ence. No matter how cool the game is,
no one likes to wait a long time for it
to load.

Loading time is not all about file size.
There are some tricks that the pro-
grammers can use to load files faster,
but the basic rule for you as an artist
is to keep files as small as you can. It is
also good to use fewer files, if possible.

It can take a long time for the game
engine to look in a bunch of different
locations on the disk for a file or files.
The time the game engine spends
looking for files is referred to as seek
time, and it contributes to the overall
load time of the game.

Online Content
If your game will be downloaded on
the Internet, you need to consider
download time and file size—this can
be a huge issue. This is true for small
shareware games and for big PC
games that have a free, downloadable
demo. Too many developers think
their game is so cool that the user will
be willing to wait forever for it to
download. While it might be true that
some games are worth the wait, think
how much happier the player would
be if he only had to wait half as long.
Everyone will be happier with smaller
download sizes.

File Compression
One way to reduce size is to use com-
pression. There are many ways to do
so. Some file types have built-in com-
pression. For instance, using a JPG file

can result in really small files because
of the compression used in this for-
mat. The problem is that the com-
pression used in a JPG file can be
lossy. This means that some informa-
tion is lost, and the files may not look
as good. When you save a JPG file, you
can control the amount of compres-
sion and the quality of the image.
After being compressed, the image is
not exactly the same. Depending on
the way the file is compressed, it can
affect the image differently. Colors
may slightly change or files may
become blurry.

Be careful when using a compression
format that loses data. Once it has
been lost, you can’t get it back. Figure
9.1 shows the difference in a file
before and after compression.

Not all files use compression, and not
all compression techniques lose data.
A .PNG file uses compression that
results in a much smaller file, but no
data is ever lost. Because of this fact,
.PNG is a popular format for games.
In the future, new and improved file
formats will no doubt be introduced
that will be even more efficient.



Figure 9.1  You can see that the quality has been lowered in the compressed file.

When making a game, compression is
not only used on individual files. The
programmers can also use compres-
sion to make files smaller before they
are put on the disk. The game engine
can often open files directly from this
compressed format. Good compres-
sion may allow you to have bigger
files, which is always good. It will have
the biggest impact on disk space.

These files may need to be uncom-
pressed when they are loaded and still
take up the same amount of memory.

Even if you use a format that does not
lose information, when game files are
later compressed it can result in a loss
of quality in your interface. If your
interface looks good while you are
designing, it but then, at the end of the

project, the colors are off slightly,
banding appears, and you see other
problems in your image, you might
want to check and see if the files have
been compressed. If they have, you
might want to talk it over with the
programmers and see how much com-
pression is really needed and if there is
a way to preserve more quality. While
programmers are often efficient, they
may not always care about the look of
the game as much as you do.

Compression can allow you to use
more and bigger files in your inter-
face, but it also can be a trade-off. If
the programmers plan on using com-
pression, don’t wait until the day
before you ship the game to look at
your interface after it has gone
through the compression process. You
don’t want the interface to look bad,
but you may have to sacrifice a tiny bit
of quality to get more out of your art.

Using Palettes
In the past, game artists were required
to use a palette, or small set of specif-
ic colors, for every piece of art in a
game. It had to be done this way so
that the whole game could fit on the
cartridge or in memory. Cartridge

File Sizes 103



Chapter 9   ■ Technical Requirements and Tricks104

sizes were small and the amount of
memory was also very limited, so
there wasn’t much room for big files.
The need for paletted images has been
reduced greatly as hardware becomes
better. Some video cards don’t even
support paletted images. There are
still many cases where palettes can be
used, and they can be very useful.
Even if you don’t use them often, it is
good to understand how they work.

The color of every pixel must be
stored in a saved image file. When you
save a file and open it up again, the
color of every pixel in the image must
be displayed. An image that uses a
wide variety of colors has a lot of
information to store when the file is
saved. When an image is changed
from a full-color image to a paletted
image, a specific number of colors is
used in the image. Every pixel in the
image must be one of the colors in the
palette. Typically, there are 16, 32, 64,
128, or 256 colors in a palette. The
fewer colors there are, the smaller the
file.

One palette can also be used for many
images. When files share a palette, the
only information the image file needs
to keep for each pixel is the palette

entry (the color position in the
palette) for every pixel. The palette
can be attached to this file or even a
separate file. The palette contains all
of the color information. It might be
hard to imagine creating an image
with only 16 colors. 256 colors may
even seem like a pretty big limitation.

The images that use palettes are typi-
cally created using many more colors,
and then they are converted to an
image that uses a palette. There are
some tools that do this conversion.
Adobe Photoshop does a great job
and has several
c o n v e r s i o n
method options.
Photoshop also
has the ability to
batch-conver t
files (convert as
many as you
want in one
action) for when
you need to con-
vert a bunch of
files to images
that use palettes
so that file sizes
can be reduced.

Although Photoshop does a good job
of choosing colors for your palette, it
is best, when you are creating an
image that will later be converted to a
palletized image, to not use a wide
variety of colors. If most of the colors
in the image are similar, it will look
much better when it is converted.
Figure 9.2 shows an image that uses a
palette. You can see all of the colors
that are used in the image.

Currently, a more common approach
than using an image with a small
palette is to choose a bit depth. The

Figure 9.2  When you look at the palette, you can see all of the
colors in the image.



number of colors used in your image
can be affected by the choice of bit
depth. The smaller the number, the
fewer colors will be used in your
image. However, when choosing a 16-,
24-, or 32-bit depth image, you do not
need to worry about which colors to
use, as this will be calculated for you.
A 16-bit image uses a limited amount
of colors. A 24-bit image gives you a
full range of colors. A 32-bit image
gives you the same range of colors as a
24-bit image, but it contains other
information, such as alpha (trans-
parency). Of course, the bigger bit
depth images are also bigger files.

Using Programmer Art
You can save space if you use pro-
grammer art. Typically, when I use the
phrase programmer art, I am referring
to an image or set of images that looks
as if it was created by someone with-
out much artistic talent, but in this
case I am referring to useful art gener-
ated by the game engine and not by
artists.

Programmers are not known for cre-
ating great art. However, there are
actually some good uses for program-
mer art. Simple pieces of art, such as

solid-color lines or solid-color boxes,
can be created by a programmer. Art
like this can be created in code and it
may not actually require the artist to
save a file. If you need a big, blue
background with a small image in the
center, you can have the programmer
set the background color and you can
provide just the small piece of art for
the center of the screen. There is no
reason to waste space in an image file
on a solid color when it can be drawn
by the game engine.

Working with the programmer to
have the game engine generate images
requires some effort. It is usually easi-
er for the programmer to just use a
piece of art from a file that was gener-
ated by an artist. It will take more
time for the programmer to set a
background color or draw a thin line
across the screen than it would for
him to use an image you have created.
This may not sound like it would take
much effort for the programmer, but
imagine if you wanted to change the
background from blue to green—you
no longer have control of the back-
ground color and you have to wait for
the programmer to take time to
change it.

The space savings of using program-
mer art is often worth the effort. If
you are creating art that could easily
be replaced by art that is generated by
the game engine, you might want to
consider having the game engine do
the work for you. Code used to create
the visual on-screen is much smaller
than is a file created by an artist.

Good tools can help avoid the prob-
lem of a programmer needing to
make artistic changes. The rule I like
to use is that if an artist must change
something more than once, then the
programmer should give the artist the
ability to go ahead and make the
change himself, without even telling a
programmer. The programmer can
create a tool that will allow the artist
to make the change without writing
any code.

In our background color example, the
programmer could create a menu that
shows up in the game when a button
is pressed. (This only works in devel-
opment, not in the final game.)
Sliders appear that allow the artist to
change the color and see the changes
right in the game. Creating this tool
can take the programmer even longer
than changing the color once, but it

File Sizes 105



Chapter 9   ■ Technical Requirements and Tricks106

will result in a better game because
the artist can tweak things until they
are perfect rather than stopping when
he believes that all the changes are
annoying the programmer. This is
just a simple example. Tools written
by the programmers can be very elab-
orate.

Texture Size
Texture sizes typically need to follow
certain rules. One of the most com-
mon restrictions is the texture size.
Some PC video cards and many con-
soles require that every texture
dimension is a power of two. This
means textures can be 2, 4, 8, 16, 32,
64, 128, 256, 512, or 1024 pixels large.
Often there is a size limit, and a single
texture can’t be bigger than 512 pixels.
You will also find that there are some
consoles that require square textures.
Many times, the engine and the hard-
ware will support a texture that is 128
pixels wide and only 32 tall. Your tex-
tures do not always need to be square.
Just remember that this could cause
problems if you ever convert the game
to a platform (or support a video
card) that requires square textures.

If you are using only square textures
and you have an image this is not
square, you may need to leave extra
space in a texture so that it fits these
size requirements. You can avoid
some of the problems that arise when
you are meeting the texture require-
ments by planning ahead. If you
design a button that is 33 pixels tall, it
will require a 64-pixel tall texture. If
you can design that same button one
pixel smaller, you can save a lot of
wasted space. This problem is com-
pounded at larger sizes. A 129-pixel
tall image adds another 128 pixels in
height over a 128-pixel tall image.

Figure 9.3 shows how you can fit a
non-square piece of art into a square
file.

One trick you can use to avoid this
wasted space is to divide one texture
into several smaller pieces. If you have
an image that must be 70 pixels wide,
then you can cut it into a 64-pixel
wide image and then create an 8-pixel
wide image that contains the extra six
pixels (two pixels of extra space). The
programmer will then need to put
these two images in the right place in
the game so that they seem like one
full-size image. Again, this can take a
little more programmer effort, but it
can save a lot of wasted space.

Scalable Objects
An even more advanced approach to
meeting texture requirements than
simply cutting up an image and
putting it back together is to re-use a
section of art many times. A simple
example of this technique would be to
create a button with a right and left
end piece and a very small middle that
is repeated. If you design your button
in a way that there is no variation in
the middle section of the button, this
can be a very effective method to
reduce file sizes. If you have a lot of
variation in the middle of your but-
ton, this approach may not be useful.

Figure 9.3  Notice the extra space that is
needed for this piece of art.



Figure 9.4 shows a simple example of
pieces of art that can be put back
together.

ple of a scalable but-
ton, when the length
of the button is spec-
ified, the engine puts
the pieces together in
a way so that it end
up with a button that
is the correct size. You
can pick any length and the button
will be created out of the single piece
of art. Your artwork becomes scalable.

In the ideal situation, the program-
mer will have time to write a custom
tool and the interface designer can
open this tool and adjust the size of
these buttons by dragging a handle.
This can all be done right in the game
engine using a small piece of art.

There are two basic types of scalable
objects. The first is bar- or rectangle-
shaped, with a right, middle, and left
piece. The file that is created by the
artist is divided into four equal pieces
and only the first three are used. The
quarter on the far left is the left side,
the next quarter is the middle of the
button, and the third section is the
right end of the image. The far right

quarter is left blank. The game then
grabs all of these pieces and can make
an image any width using this art.
Figure 9.5 shows a scalable button.

The second type of scalable object is
more like a box. It can be scaled both
in width and height. It is very useful
for pop-up menus. It is composed of
nine pieces, and. like the button, it can
restrict the type of box that you can
design. The sides, top, bottom, left,
and right function like the bar object
described above. They can’t have any
variation within the sides. The middle
also needs to be pretty plain. This type
of art also requires good planning. It
works best if the corners and sides fit
into a convenient size, like 32×32.
Figure 9.6 show all the pieces that can
be used to create a dialog box of any
size.

Scalable Objects 107

Figure 9.4  Look at
the small pieces that
are used to create this
button.

I call this type of image scalable
because they offer another advantage
besides than small file size. The engine
can use these scalable files to create
images of varying sizes. The middle
section can be repeated many times to
make the button longer or fewer times
to make it shorter. In essence, the
objects become saleable in the engine.

The programmer can manually place
these images where they belong, but
there is an even more effective
method. The programmer can give
the artist a set of parameters for sev-
eral types of objects that will be
placed using method described above.
You then can create artwork that fits
these guidelines. The programmer
can write code that supports several
of these types of images. In the exam-

Figure 9.5  This button is made up of three pieces. These
pieces can be put together to make any size button.



Chapter 9   ■ Technical Requirements and Tricks108

You can add more variations to both
of these types of scalable art if you are
willing to limit the scaling size to
increments of your grid. In a scalable
button scenario, the programmer
could scale the image just a couple of
pixels larger by using only a couple of
pixels from the middle piece. This
requires all of the horizontal pixels in
this middle section to be the same. In
this same scenario, if the middle sec-
tion was 32 pixels wide and the but-
ton scale was restricted to 64, 96, 128,

or 160 pixels wide, using this restric-
tion would allow a little more free-
dom to make variations in the middle
section. The same principle can be
applied to the box type of scalable art
to allow the middle section to have
more variation. The center piece
would have to be a perfectly tiling tex-
ture that tiled on all four sides.

Tiling Textures
The edges of a tiling texture match up
in a way such that if you place multi-
ple copies of this same texture side by
side, they will appear to be one con-
tinuous image. No visual seams will
appear.

There are many techniques for creat-
ing tiling textures. I prefer the
approach used by Painter. This pro-
gram makes it incredibly easy to cre-
ate tiling textures. If you turn on the
Define Pattern option under the
Pattern roll out, everything you paint
will tile perfectly. As you paint off the
side of the image, the brush will wrap
around and begin painting on the
other side of the image. You can’t
mess up now.

If you already have an image and you
want to make it tile, turn on this same
option. If you then hold down Shift
and the Spacebar and click and drag
with the left mouse button, you can
move the image. It will wrap around
to create a tiling image. If you move
the edges to the middle of the image
you will see the seam. Simply paint
over this seam and you will have a
seamless, tiling image. Figure 9.7
shows you where to find the Define
Pattern option in Painter.

Creating good tiling textures requires
a lot of skill and practice. If you make
a distinctive pattern and repeat it
many times, the texture will look
tiled, even if you can’t see the seams.
Good textures will not appear to tile.
Figure 9.8 shows a texture that will
not tile well. Figure 9.9 will look
much better when tiled.

Alpha Channels
Images that include transparent pixels
use an alpha channel. This is the part
of the file that contains the informa-
tion on which pixels are transparent
and which are opaque.

Figure 9.6  This button is made up of
nine sections that can be put together to
make many different-sized boxes.



Different software handles alpha
channel information in different
ways. Some actually show you the
transparency in the image; the advan-
tage of this approach is that you can
see what the transparency will look
like—you can see through the image.
The problem with this approach is
that the part of the image that is
transparent is usually missing from
the file. You can’t go back and make a
transparent section opaque. The

image is lost in the transparent area,
and you can’t get it back.

Another way to work with alphas is to
display another black and white
image. Black represents the transpar-
ent sections and white represents the
opaque. There are some file formats
that only store completely black and
white images. The pixel is either 100
percent transparent or 100 percent
white. Other formats store a range of

transparency, so a mid-range gray
color can be 50 percent transparent.
The advantage to such a format is that
you can retain the entire image, even
the stuff in the transparent area, but
you can’t see what it looks like with
the transparency added.

Alpha Channels 109

Figure 9.7  Once you turn on the Define Pattern option,
everything you paint will create a tiling texture.

Figure 9.8  This texture does not tile well. You can easily see
the repeating pattern.

Figure 9.9  This
texture will tile much
better.



Chapter 9   ■ Technical Requirements and Tricks110

If you need transparency in your
image, you will need to save your file
in a format that has the transparency
information. Check with the pro-
grammers to see which file formats
the game supports that contain this
information. If you save into a file
that doesn’t have this information, the
transparency will be lost and the
entire image will become opaque. If
you convert a file without transparen-
cy to a file that saves this information,
the transparency will not magically
reappear.

Some engines save space by using a
color key instead of saving the trans-
parency information. Instead of sav-
ing this extra information—which
makes the file bigger—the engine rec-
ognizes a certain color as transparent.
Solid black is sometimes used, but it
can cause problems because you can
never use solid black in your image, as
it will become transparent. Another
solution is to use a color you will
never find in your game, such as hot
pink, and use this color as a color key.
A limitation with this format is that
the transparency has a harsh edge.
Every pixel is either 100 percent trans-
parent or 100 percent opaque.

Localization
Localization is a term used when a
game is changed to adapt to a differ-
ent area of the world. The biggest part
of this change is usually a change in
language. When a game is localized, it
usually must be translated into sever-
al different languages. This can be a
simple or a very complex process. It is
best to plan from the very beginning
to make translation easy by setting up
the game correctly. If it takes a lot of
effort to change a language, it will be
much more expensive to create the
new version. This may discourage the
publisher from putting money into
creating multiple versions of the
game, resulting in fewer sales. If there
is even a remote chance that your
game will need to be translated, it is
best to work in a way that will make
translation easy.

The best way for an interface designer
to prepare for localization is to never
put any text in the art. Make sure all
text is in the font and the text is gen-
erated by the game engine. This may
limit some of your text effects, but it is
well worth it. If you put anything that
needs to be translated in the art, a new

piece of art will need to be created for
every new language. If the program-
mer has set things up correctly, and all
text uses the font system, all of the
current text can easily be replaced.

Often, when a word or phrase is
translated, the results are longer than
the English version. This can cause a
lot of problems if there is no extra
room in your interface design. The
best way to avoid running out of
space is to leave a lot of extra room
wherever text appears in our interface
even in the English version. If the text
is tight, be aware that this might be
problematic in other languages.

Source Files
Source files are art files used to create
the final assets that go into the game.
Final assets are the files actually used
by the game engine. You may typical-
ly work in Photoshop using many lay-
ers and effects; then, when you are
finished with your design, you will
need to save it to a file that will be
used in the game. For example, the
game may actually use a PNG file.
This final file does not contain all of



the layer and other information that
may be contained in the Photoshop
file. This source Photoshop file should
never be placed with the final assets
that get shipped with the final game
because it would take up unnecessary
space, but it should always be saved in
another location. You will probably
need to make changes, and it will be
much easier to go back to the original
file to make changes than it will be to
adjust the final asset.

It may not be necessary to have a
source file for every final asset in the
game. In fact, it can be very efficient
to have multiple final assets come
from one source file. If you create a
button that will be re-used through-
out the game but different images,
icons, and effects will be used on this
same button, you can put them all in
one file. By turning on and off layers,
you create all of the final assets.

Summary
Technical issues abound when creat-
ing an interface for a game. File size
has a big effect on your game, and
there are a lot of ways to reduce file
size. Reducing file size has an effect on
what can be loaded in the game, load-
ing speed, how much disk space is
used, and download times. You will
need to make sure that all of your 2D
art works under the restrictions of the
game engine.

Summary 111



This page intentionally left blank



113

As an interface designer, the
only way to get your job done
right is to have good tools at

your disposal. I am not talking about
a hammer or a wrench—I am talking
about powerful software that can help
you prepare artwork for a video game.
Software alone won’t create a great
interface—solid design skills are a
must—but without good software
applications, you won’t get far in this
business.

Good software can be very expensive.
Commercial software can come with
a big price tag, and internally written
software can cost a lot to create, but if

they help speed up the process and
produce a better final game, they will
pay for themselves very quickly. This
does not justify buying extra software
for fun, but you should get the tools
you need.

This chapter will cover information
about software tools that can help you
when you’re designing interfaces.
There are several commercial tools
that can be quite useful, but they may
not do everything you need to do.
Custom-written tools can do amazing
things. You may be able to have better
tools created for you if you know
what to ask for.

Tools for Creating
Mock-Ups
The term mock-up refers to a piece of
art that is created to look like an inter-
face. The reason for creating a mock-
up is not to have art that is ready to be
used in the game, but to establish
what the interface will look like. You
can create a mock-up without even
knowing what options will appear in
the final game.

Creating mock-ups early in the design
process can save time and ensure that
everyone has the same vision of the
final product. Mock-ups are invalu-

Tools of the Trade

Chapter
10



Chapter 10   ■ Tools of the Trade114

able—not only do they allow you to
solidify your design, but they also give
you something visual to present to
anyone who needs to approve the art.
You can get approval before the art is
actually in the game engine. A mock-
up can also help to pacify those who
may be concerned about the quality
of temporary art. If a producer or art
director happens to see incomplete
art in the game, you can assure him
that it will look like the mock-up
when the game is complete. Anyone
can look at a mock-up and know what
the final art will look like before it is
ever implemented in the game engine.

Many commercial tools can be used
to create a great mock-up. Use the
software that you know best and that
allows for quick and easy adjust-
ments. Adobe Photoshop is one of my
favorites. It is easy to keep everything
is separate layers and easily make
adjustments.

When most people think of a mock-
up, they picture a still, 2D image.
Mock-ups can go beyond the still
image. Tools such as Macromedia
Flash will allow you to mock up
movement and interactivity. Creating

a mock-up with movement that looks
and even functions just the way you
want it to can be particularly useful
when you are in a situation where the
programmer will have control over
motion. In a situation wherein you do
not have the software and tools to
control the movement in the game
interface, and you have to rely on a
programmer to make the motion look
good, an interactive mock-up can
help. If the only thing you will give the
programmer is motionless 2D art, he
will have to make his best guess at
what the motion should look like.

When creating an interactive mock-
up, the interface designer can work
out animation and button behavior.
You can get everything just the way
you want it. The programmer can
refer to this mock-up, and there will
be no question how the interface
should be done. It is always a better
situation when the interface designer
has direct control and can change
things in the game, but if this is not
possible, an interactive mock-up can
solve a lot of problems. Chapter 15
will describe how to use Flash to cre-
ate an interactive mock-up.

Asset Management
Asset management is a large, complex
topic, and the methods and theories
behind asset management for video
game development could easily fill an
entire book. I will simply give you a
brief introduction and describe some
of the tools that might be used by an
interface designer.

By the time a game is completed, a
truckload of assets have been created
along the way—including all of the
files used in the final game and all of
the other files used during the devel-
opment process. All of these files need
to be backed up and distributed to the
entire team working on the game. If
you’re working on a team of 15, and I
change 30 files in the interface, then
all 14 other people on your team need
to get these 30 files working in the
game. Hand-adding all of the changes
for each of the 14 team members
could take forever. At the same time,
you need to collect and keep track of
all of the changes the 14 other people
might make to the game every day. All
of this falls under the category of asset
management.



There are commercial tools, such as
Alienbrain, that are made for art asset
management. These tools are great
and are much more stable than cus-
tom tools. The problem is that they
can’t do anything specific for your
game engine. Custom tools not only
manage your files, but they can do
specific tasks that relate to your game.
A custom tool could distribute your
changes to everyone on the team and
could rename files when they are
copied to a final directory, so that they
will work properly in the game
engine.

The company I currently work for has
a comprehensive file-management
system. It is a great example of how a
custom tool can be used by an inter-
face designer. I create new files and
make changes to the interface on my
computer. I can then press one button
and see the changes in the game.
These changes only affect the game on
my computer; this is good because I
don’t want to change something and
mess up the game for everyone else.
Once I have made all the changes that
I want and I am satisfied with the
results, I hit another button that

transfers all of my changes to a central
location where everyone else on the
team has access to them. When I am
ready, I can get all of the changes from
the other team members by pressing
yet another button in the tool.

This is a simple description of a com-
plex tool. It is just important to
understand the basic concept because
when you make a game, it is likely that
you will need to use a similar tool.

Adjusting Game
Properties
Another common type of tool in
game development is one that edits
and changes things in the game. A
level editor is a great example of this
kind of tool for level designers. An
example of this kind of tool for an
interface designer would be a tool
with which the interface designer
could place buttons, create interface
animations, control the flow of the
menu, and adjust many other game
properties. This data could then be
put directly into the game and any
changes would be in the game.

This is the area wherein custom tools
for interfaces seem to be the weakest
in the game industry. There aren’t
many tools that I have seen that do
this very well. There may be some
great tools that work directly with the
game engine, but for the most part,
everything is a modification or use of
a commercial tool.

Using Custom Tools
Some of the best tools for working
with interfaces are created specifically
for the game engine. An internally
developed tool can be a simple
exporter that helps get information
from commercial software into the
game format. Many game developers
hire programmers specifically to cre-
ate tools for making games. These can
be art tools, tools for level design, or
even audio tools. Custom tools can be
developed for just about anything. A
tool can be a very complex piece of
software that is used for creation, ani-
mation, or adding functionality, or it
can be a simple script that moves files
from one directory to another. This
software is owned by the development
company or the publisher that pays

Using Custom Tools 115



Chapter 10   ■ Tools of the Trade116

for its development. Typically, these
tools are developed for internal use
only, but occasionally a developer
decides to sell a tool to another devel-
opment company.

Unfortunately, tools for interfaces
seem to be less common and a lower
priority than tools for other parts of a
game. Many game engines have a level
editor and exporters in which a lot of
game-specific properties can be set,
but very few seem to have robust
interface creation tools.

Many different tools could be custom-
written for use when working specifi-
cally with interfaces. It is important to
think about the possibilities and
determine how useful a custom tool
would be. You can waste time doing
things by hand that could be more
quickly done with a tool, but on the
other hand, you also could use valu-
able programmer time to create a tool
that does not save much time.

Using tools to do repetitive tasks can
also improve your accuracy. For
example, when you have to save a
hundred files and name them all cor-
rectly, it is easy to make a mistake.
With an exporter that saves and

names these files for you, there is
much less chance of a mistake.
Another good use for custom tools is
to perform tasks that can’t be done
with a commercial tool. If you want
something different than is offered by
a commercial software application, it
may be a good idea to consider devel-
oping your own internal tools.

It is impossible to describe all of the
possibilities for custom tools, and it is
also impossible to tell you how to use
them. Every custom tool is different,
and they vary from company to com-
pany. The important thing to under-
stand is that you can get what you
want. If you need a custom tool or are
already working with one that doesn’t
quite suit your needs, make sure you
let your wishes be known. The pro-
grammer may not know what would
help you the most.

Plug-Ins
One approach to creating custom
tools is to create a plug-in for a com-
mercial software program. The obvi-
ous use of a plug-in is to save the file
into the proper format. This is a great
place to put a lot of control. For

example, a custom menu could
appear that would allow you to select
a property of a piece of art for the
game. You could set a button to blink,
and it would automatically blink in
the game.

The disadvantage to adding anything
more than properties that need to be
exported in a plug-in is that if some-
thing changes later in the develop-
ment process, you may need to re-
export every file in order to change a
property. If you use a separate tool to
set these properties, then it is much
easier to make changes later. You
won’t even need to open up the com-
mercial tool to make the changes.

Stand-Alone Software
A stand-alone software tool is a soft-
ware application that is not a plug-in
or a part of a commercial tool and is
not directly a part of the game engine.
The best example of this kind of tool
is, again, a level editor. A tool that
could load up 2D files created in a
program like Photoshop and allow
the interface designer to place these
files in the correct locations, add
movement, and set the behavior of



each button would be a great example
of a stand-alone tool for interface
design. The resulting file would then
be saved or exported for use in the
game. This tool could be very limited
or very comprehensive depending on
how well it was developed.

In-Game Tools
There are many tools that would be
most effective if they were accessed
from within the game engine. This
type of tool is most effective for
changes that can take immediate
effect in the game. If, while playing
the game, you could bring up a menu
to make a change in the game it could
save time. The tool described in the
“Stand-Alone Software” section could
be actually integrated into the game
engine.

Advantages of Using
Custom Tools
One of the advantages of working
with highly developed, custom tools is
that they usually have the exact fea-
ture set that is supported by the game.
If you can do it with the tool, you

know it will work in the game. For
example, you usually won’t find a
Drop Shadow feature that won’t work
in the game. The interface and pro-
gram are created specifically to help
you create game interfaces and the
same software is not used to create
Web pages. You won’t run across extra
features that you would find in com-
mercial software.

If you work with the programmer
who is making the tool, you can ask
him to make the tool work the way
you want it to and to add the features
you need. Most internal tools are
always changing, and features can be
easily added. If you take advantage of
the opportunities custom software
presents, you can really speed up your
workflow.

Disadvantages of
Using Custom Tools
One disadvantage of custom tools is
that they can be expensive to develop.
It may cost less to purchase a com-
mercial tool than it would to pay a
programmer to develop a custom
tool. They often have many more

bugs and problems than do commer-
cially tested tools. Custom tools are
often under constant development
and features are added frequently.
New features may have just been
added yesterday, and so they haven’t
existed long enough to be fully tested.
A new version of the interface tool
may have a lot of cool new features,
but if it crashes every time you export
something, your progress in finishing
a game interface will be severely
impeded.

Custom tools can also be much hard-
er to learn for a new designer, and
they may come with little or no docu-
mentation. If you’ve been working
with a custom tool from the begin-
ning of game development, you may
find it easy to use, but if you are hand-
ed a tool late in development you may
have to scramble to learn how to use it
effectively. With some tools, there are
often important steps that must be
followed in order to accomplish cer-
tain tasks, but no way to know what
those steps are unless someone who
knows them shows them to you.

Sometimes, experienced designers
have gone through the process so

Disadvantages of Using Custom Tools 117



Chapter 10   ■ Tools of the Trade118

many times that they forget to tell the
new guy about a critical step. The
game may crash because new inter-
face art has been added and a rule has
been broken. It can be as simple as not
putting a colon in front of the name
of every button or checking the
wrong check box in an exporter.

Commercial Tools
A commercial tool is software that is
available for purchase by anyone. It is
not created specifically for your game
engine, and when it comes to inter-
faces, the tools may not have been
made specifically for game interface
creation. There are many commercial
tools that can be used for creating an
interface, such as Photoshop, Flash,
or Painter. Rarely does an interface
designer create an interface from
start to finish without using at least
one commercial tool. In many cases,
a commercial tool may be the only
tool used by the artist to create an
interface.

It may not be smart to use a custom
tool to do something that a commer-
cial tool already does well. You will

find very few custom tools that are
used for painting 2D images.
Commercial tools are a great solution
for painting pixels.

Advantages of Using
Commercial Tools
Commercial tools are usually very sta-
ble. They are usually heavily tested
before release, and most bugs and
crashes are found and corrected.

Commercial software can be expen-
sive, but if you compare the cost of
commercial software to the cost of
paying a programmer to create a tool
in-house, buying commercial soft-
ware actually seems quite inexpensive.
Buying and using a commercial tool
can often save money in the long run,
even if custom exporters need to be
written so the tool can be used.

Many of the big commercial tools
have additional support from other
companies. Other companies provide
extra features that you can add on to
the base software. These features usu-
ally come in the form of a plug-in that
is simple to add. Plug-ins can do all
kinds of cool effects that can really

help you create a great interface. A
product like Photoshop is a great
example of a tool that is used by many
game developers. You can take advan-
tage of any publicly released plug-ins
that have been created by other game
developers.

In addition to the plug-ins available
for purchase, there are many free
plug-ins. When working with custom
software, the only extras you can get
will need to be created in-house.

Disadvantages of Using
Commercial Tools
Commercial tools don’t always
include the exact functionality that
you need for your game. When using
commercial software, you may need
to work around the existing features.
You may need to find ways to get
functionality from the software that it
was not created to do.

I have used Photoshop to perform
tasks not intended by the original
software developers. I named layers in
such a way that the exporter could
recognize what they should be used
for. A button in the normal state may



be on one layer and the highlighted
state on the other. An exporter was
written that recognized each layer that
was named correctly and saved it in
the correct format. Solutions like this
can be a good workaround, but a cus-
tom tool could make this process
much easier. The artist wouldn’t need
to remember exactly how to name
every layer, and a typo wouldn’t cause
problems. Instead, the custom tool
could have a check box for each layer.

You can use many features in com-
mercial software that may not be sup-
ported in the game engine. For exam-
ple, the Renderware engine can use
Flash files to create interfaces, but it
does not support any of the features
in the latest version, and only a very
limited set of the old features will
work in the game. Because the soft-
ware was not written specifically for
the engine, it can become confusing.
You will need to be aware of the game
engine limitations and make sure that
all of the art created in the software
will work in the game.

Middleware
Software options exist that are sort of
in-between custom software and
commercial software. Game engines
can be purchased and used to create
games. Most of these game engines
come with exporters and other tools
that are used during development.
These products are technically com-
mercial tools because they are sold
and used by many game developers.
They are similar to custom tools in
that they are written specifically for
making games. Often, you can also get
the source code that will allow a pro-
grammer to make any changes that
are needed. These game engines and
tools are often called middleware.

The tools that come with the middle-
ware engines can be simple exporters
or very refined tools. There is a wide
variety in the quality and flexibility of
these tools. Some are much more like
commercial software and others are
exactly like something made in-
house. Most of the big-name engines
have really great tools. They come
with exporters from most major soft-
ware applications. They have tools for
viewing art with the game engine but

not in the actual game. This can be
helpful when, for instance, you need
to figure out whether something not
working correctly is a problem with
the art or with the game engine.

Commonly Used
Commercial Software
There are many options for commer-
cial software you can use to create
interfaces. Each has a different way of
doing things and has advantages and
disadvantages. There is no one best
solution. The best tool is usually the
one that the artist knows best. It is
much easier to be efficient if you
already know how to use the software.

There is one important benefit to
using the most common software in
the game industry, though: Files can
easily be transferred to anyone else
with the same software. Often a pub-
lisher will have art created by other
artists from a previous version of a
game or even a similar game, and it is
more likely that you will be able to use
these files if you have the standard
software. It is also easier to find a job
when you have experience in the soft-
ware that is used by most studios.

Commonly Used Commercial Software 119



Chapter 10   ■ Tools of the Trade120

The most common commercial tool
used to create interfaces is Adobe
Photoshop. It has been around for a
long time, and it has a lot of useful
features. It is overwhelmingly popular
in the video game industry, and is also
used heavily in many other industries
like Graphic Design, Photography,
and Illustration. If you make video
game interfaces, you will use
Photoshop at some point.

N o t e

I do use other tools for specific tasks,
and I don’t mean to rule out any other
options, but I will describe techniques
used in Photoshop later in this book
because I know it well and I believe it
will be the most useful tool for you as
an interface designer. Figure 10.1
shows Adobe Photoshop.

Another very popular tool for creat-
ing interface interactivity and anima-
tions is Macromedia Flash. Like
Photoshop, Flash is a commonly used
software and I know it well. There are
some middleware tools, like

Renderware, that have tools to con-
vert Flash files into game format and
get the animation and interactive
information from the Flash file into
the game. Figure 10.2 shows
Macromedia Flash.

Figure 10.1  Photoshop is a great tool for creating interface art.



Features of Good Tools 121

Features of Good Tools
The mark of a good tool is that a new
artist can use it to get art working in
the game engine without help from
anyone else. A good tool should have
a user-friendly interface—the easier
the tool is to learn, the greater the
chance it will be fully utilized. A fea-
ture that is hard to use may simply be
avoided. It should be simple to make
changes and get things just right in
the game. You should be able to make
all the changes you want and instant-
ly see how it works in the game. This
will speed up production and encour-
age fine-tuning that will improve the
game.

The shorter the time from art creation
until the art is actually in the game the
better. In the ultimate situation, the
artist could hit one button and
instantly see the art in the game. Once
it has been set up properly, the artist
would not even have to choose a des-
tination or name of a file—it would
all happen automatically. It should
also be easy to get art into the final
game. No other team member should
have to stop what he is doing to put
new art in the game.

Figure 10.2  Flash is a great tool for creating animation and interactivity for interfaces.



Chapter 10   ■ Tools of the Trade122

Good tools do save you time.
Efficiency is the purpose of tools. The
extra speed that tools provide should
not only apply to the first time a piece
of art is created and put into the
game, but the tool should allow for
easy adjustment. A tool that is capable
of this type of efficiency often
includes features such as easy to use
batch file processing. If the same
adjustment needs to be made to hun-
dreds of individual pieces of art, batch
processing can be a lifesaver.

The Ideal Situation versus
Reality
As it is with many other parts of game
development, few interface artists
have access to the perfect tools and
ideal processes for creating game
interface art. The ideal situation
would be to have bug-free, easy-to-
use custom software that has a com-
plete set of relevant features—all the
advantages of commercial software.
Such an ideal situation only occurs at
companies that have enough
resources and money to create this
ideal tool. Even though the tools you
will use often have shortcomings, they
can be very useful.

As an interface designer, you’ll rarely
get to use perfect tools—there may be
no such thing. This shouldn’t discour-
age you, though. Even if you can’t
work under perfect circumstances, it
helps to know what could be possible
and try to improve the tools and
process anytime you can.

Software or the Artist?
I have heard so many artists say that
they could create perfect art if they
just had one more piece of expensive
software. They are convinced that one
specific plug-in will solve all of their
problems and improve their art. I
have also seen many of these artists
get the new piece of software and still
have all of the old problems—expen-
sive and cool software can’t turn a bad
artist into a good one. On the other
hand, I have seen good artists create
some amazing art with really bad soft-
ware. Software does not create art,
artists do.

I don’t mean to imply that software
can’t help in the development process.
Software is essential and very impor-
tant, and if there is some software that

would really speed up the process or
help produce a better final result, you
should not hesitate to buy it. It is sim-
ply important to understand that
great software does not create art by
itself any more than a great paint-
brush paints a picture by itself. In the
end, the skill of the artist is what mat-
ters most.

You could spend all of your time try-
ing out every new plug-in and all the
newly released software. It is good to
know what is available and to keep
current, but it is important to spend
your time on the relevant software
and, most importantly, to develop
good design skills. Many artists waste
their time learning new software and
trying out new techniques and never
really produce any great art. I am
much more impressed with a portfo-
lio full of art than I am with a list of
programs that you have used. Anyone
can learn to use software in a short
period of time. It is much more diffi-
cult to learn good art and design
skills.

It is also important to keep software
from driving the creative process. A
new plug-in that creates a cool neon



glow effect may be perfect for the
interface of a game that takes place in
Las Vegas. This same effect may not be
great for an underwater submarine
game. Even if it looks cool, make sure
it also works well with your game. Too
often, an artist gets a new plug-in and
uses it on everything.

Some people seem to think that a
good piece of software does all the
work for the artist. When I tell such
people that I have painted a picture
digitally, they act as if it is much less of
an accomplishment than if I’d used
paint and a paintbrush. I have to
admit that there are some serious
advantages to producing art digitally.
For example, contrast, color and
brightness can be easily adjusted after
the image has been created. Mistakes
are much less permanent. Even with
these digital art advantages, good art
requires good art skills. I am just as
impressed with an artist who has
learned how to use a pressure-sensi-
tive tablet to paint a picture as I am
with an artist who can use a paint-
brush.

If you want to improve your inter-
faces, the best place to start is with
your design skills. Study some of the
basics of design. It also helps to look
at a lot of great art and design. Games
are not the only resource. I subscribe
to magazines like Communication Art
and buy design and illustration annu-
als. Take the time to understand why
the art and design you discover is so
effective—if you can define why it is
so much better than mediocre art and
design, you can apply these principles
to your own art. Develop the ability to
critique your own art. It can be very
easy to find problems with the work
of others, but much harder to see the
faults in our own work. Remember
that art and design skills are more
important than software.

3D Tools
When you create a 3D interface, most
likely you will use the same tools used
to get the 3D models and animation
into the rest of the game. Using 3D art
is inherently much more complicated
than creating 2D art, and you will
encounter all of the obstacles that
exist for the modelers and animators

that are creating art for the rest of
your game. In fact, it may be even
harder for you to use 3D art in an
interface than it is to use this art in the
game. You may need a couple of fea-
tures that are specific to the interface.
For example, you might need to con-
trol the camera paths for the interface,
and camera paths may not be used
anywhere else in the game. If the pro-
grammers are going to grant you this
control, they may need to upgrade the
exporter to get this information out
of your 3D software and into the
game.

The struggle to determine the best 3D
software can be brutal. Many 3D soft-
ware users are very loyal to their
favorite software package and they
take offense at anyone else who
expresses a different opinion. But the
argument is pointless, as there is real-
ly no one piece of 3D software that is
better than another. The current top
two most popular packages are
3Dstudio Max and Maya. Each has its
pros and cons. It is impossible to real-
ly know which is best for your game
unless you are an expert in both.

Software or the Artist? 123



Chapter 10   ■ Tools of the Trade124

Many artists are enticed into learning
and using just one of these tools
because it was used for a particular
movie or because it was used on a
particular game. I would suggest that
you avoid professing your ignorance
by claiming that the software you use
is better unless you really know both
well. If you want to learn 3D but you
can’t decide which software to learn, I
would suggest learning the product
used by the game development studio
at which you want to work.

In order to make a fair comparison of
software, you need to be an expert in
the current versions of the programs
you want to compare. Of course, it is
hard to be an expert in both software
packages because there is so much to
learn. I have heard convincing argu-
ment for both 3DStudio Max and
Maya. You can’t compare the latest
version of Maya with a version of Max
that you used several years ago or vise
versa. They both have undoubtedly
added new features in the latest ver-
sions.

The bottom line is that there is a lot of
great 3D software. As I’ve said, the
best tool is the one you can use the
best. If you know it better, it is better
for you. There may be an instance
when you need to do something very
specific and a particular piece of soft-
ware actually is more efficient in this
area than the one you usually use. If
so (and often it is more about not
knowing how to do it in the other
software), you also need to consider
the learning curve—will you really
save time by changing? Go with what
you know.

Summary
You should always do your best to
work with the most efficient tools
possible. You will still need art and
design skills but good tools can save
you time. In most cases, you will use a
combination of commercial software
applications and custom software
written specifically for your game.
Both have advantages and disadvan-
tages. You should make the most out
of the tools at your disposal.



125

In this chapter, I will describe
some basic animation principles.
Artists creating traditional hand-

drawn animations first conceived
these principles, but they can be
applied any time you use an anima-
tion in an interface. Understanding
animation can really help you to cre-
ate movement in your interface. The
animation in your interface could be
as complicated as a full 3D-animated
character or as simple as a button that
slides on and off the screen.

Movement
Movement carries great visual power.
If something moves, it will catch the
viewer’s eye. Movement will usually
draw more attention than any other
technique. Remember this when you
are animating an interface—think
about what you want the user to see,
and don’t create extra animations that
draw the user away from actually
using the interface.

When designing a game interface, you
should do your best to never have a
static screen. Always have some move-

ment on the screen. Animating inter-
faces can take a lot of time, so includ-
ing animation on small-budget games
is not always possible. But if you have
time, make it move. Animations can
bring your interface to life. Still
screens are boring, and a game, of
course, should be entertaining.

How Animation Works
Animation, as you probably know, is
an illusion. Nothing is really moving.
During animation, a bunch of still
images are flashing in front of your

Using Animation

Chapter
11



Chapter 11   ■ Using Animation126

eyes so fast that it looks as if the image
is moving. This is the same way that
film works: Movie cameras take a
bunch of still photographs every sec-
ond, and when they are played back, it
looks like the objects or people in the
film are moving. These images are
played back so fast that the human eye
can’t tell that they are actually still
images.

Frame Rate
Some of the terms that we use in dig-
ital animation come from the begin-
nings of animation and live-action
film. Each of the still images in a
movie is called a frame. During a
game, images are drawn on the
screen. Each one of these images is a
motionless image is also called a
frame. The speed at which these
images are played back is called t
he frame rate. The frame rate actually
represents the number of these 
still images that are displayed every
second.

Standard video is shot at 30 frames a
second. A television is capable of
updating up to 60 times a second

(NTSC). When playing video games,
it is very important that the game
reacts quickly and all of the anima-
tions look very smooth. Because the
user is watching every movement
intensely, even slight differences in the
frame rate can be seen. A game that
runs at 60 frames per second appears
even smoother than one running at
30 fps. Frame rates faster than 60 fps
are not really detectable by the human
eye.

So why doesn’t every game run at 60
fps? Well, it takes computing power to
draw each screen. The more calcula-
tions that must be made for each
frame, the longer it takes to draw the
screen. Every polygon, animation,
texture, and effect in a game requires
a calculation to be made by the hard-
ware processor. The more of these ele-
ments that are used in a game, the
slower the game runs. If every game
ran at 60 fps, the game would have
fewer polygons, textures, and anima-
tions. Many games run at 30 fps and
still look great. If a game drops below
30 fps, though, the movement
becomes choppy.

Interface Frame Rates
A game interface is not the most
important place to have a high frame
rate. Because the user does not need
to react to the animations in the inter-
face, the animations can usually run
at a slower frame rate. It is still impor-
tant to know at what speed the inter-
face will run. If you are creating indi-
vidual frames for an animation, then
you will need to know how fast they
will be played back. One thing to
remember is that an animation can be
played back more slowly than the
game engine is actually running. For
example, if one image is displayed for
two frames, the animation can run at
15 fps, even though the interface is
actually running at 30 fps.

The reason for playing back an anima-
tion at a slower frame rate is to save
space. This is effective when you have
pre-rendered frames that play back in
your interface. A one-second anima-
tion at 15 frames per second can be
half the size of a 30-frame animation
that also only lasts one second.



Key Frames and
Tweening
Back when animations were all drawn
by hand, animators would choose the
important frames and they would
draw the character poses at these
important frames. These important
frames are what defined the object’s
movement, and so they became
known as key frames. Creating good
key frames was one of the most
important aspects in creating a good
animation. The experienced artists on
an animation project were given the
responsibility of drawing these key
frames.

Less experienced artists would then
draw all of the frames that appeared
in between the key frames. This

became known as tweening and the
frames became know as tweens.
Tweens made smooth transitions
between the key frames. Creating
tweens was time-consuming, but
actually required less skill than defin-
ing the key frames. If the key frames
were done well, the animation looked
good.

Modern animation software works in
very much the same way. The impor-
tant task for the animator is to set key
frames. The object’s position, rota-
tion, and scale (along with any other
animated properties) are defined at
each key frame. The computer does
all of the tweening. The animator will
also have some control of how the
computer does the tweening between
the key frames.

Interpolation
The term used to describe what the
computer does when it calculates the
frames in between the key frames
(tweens) is interpolation. Most anima-
tion software packages’ default
method for calculating the tween
frames is referred to as ease in and ease
out. In real life, most motion does not
start and stop abruptly. It starts slow-
ly and then speeds up. It reaches full
speed in the middle of the motion,
and then there is usually a slowdown
at the end, before the object in motion
comes to a complete stop.

Figure 11.1 shows all of the frames
that might appear in a simple anima-
tion that is easing in and out of the
key frames. The frames that are closer
together will appear to move slower.

Key Frames and Tweening 127

Figure 11.1  The motion changes speed during the animation.



Chapter 11   ■ Using Animation128

The frames in the middle are further
apart and will appear to move faster.

Most animation software applications
allow the user to adjust the amount of
ease in and ease out that is used to cal-
culate the tween frames. Usually the
default ease in and ease out works
well, but this is not always what you
want. For example, if you want an
object to spin smoothly around in a
circle, and you set key frames at each

of the four quarters of the circle, the
default settings will not be smooth.
The motion will start slow and end
slow at each of these key frames. In
this case, you wouldn’t want any ease
in and ease out. You would want the
software to use what is called linear
interpolation. In the left half of Figure
11.2, you can see what would happen
if you set a key frame at the point of
each of the red circles. The motion
would speed up and slow down. The

right half of Figure 11.2 shows you
what would happen in this same situ-
ation without ease in and ease out.

T i p

Most animation software allows you to
create a path (a circle) and move an
object along this path when you want
an object to travel in a circular motion.
This would be a much better solution
than creating key frames.

Figure 11.2  The motion on the left would seem jerky, not smooth.



Animation Principles
Back in the 1930s, Disney animators
came up with a list of animation prin-
ciples. These principles were meant
for character animation, but many of
them can be applied to game interface
animation as well. In the next sec-
tions, I will cover the principles that
are the most useful for interface ani-
mation.

Squash and Stretch
When some objects move, they
change shape. This change in shape
can be caused by the motion or
because the object has come in con-
tact with another object. This change
in shape is called squash and stretch.

Many objects are not rigid and solid.
The softer the object, the more change
there is in the shape of the object. This
change in shape can really add life to
an animation. An object that doesn’t
change shape can seem as if it is made
of metal or stone. If an object really
changes shape a lot, it can seem as if it
were filled with water.

The classic example of the squash and
stretch is a bouncing ball. If the ball

remains perfectly round during the
entire animation, it will not look con-
vincing—it would not seem very
bouncy. In real life, when a rubber ball
comes in contact with the ground, it
squashes down and becomes wider
and shorter. As the ball bounces off
the ground and begins to move
upward, it returns to the round shape.
On the way back to the peak of the
bounce, the ball actually stretches and

becomes thinner and taller. Once it
reaches the peak, it returns to the
round shape.

When you’re creating an interface,
using squash and stretch can help give
your animations a lot of personality.
If your interface includes a character
bouncing a ball, the application of
this principle may be obvious (see
Figure 11.3). But squash and stretch
can be used in many other ways. Any

Animation Principles 129

Figure 11.3  The ball changes shape during the animation.



Chapter 11   ■ Using Animation130

of the animated shapes or objects
could change shape as they collide or
come to a stop. You could even give
your buttons a different feel as they
slide onto the screen. Once they reach
their final destination, they could
stretch a little and then return to the
regular shape to give them a squishy
feel. The bigger the shape change and
the more times an object bounces
back and forth before it returns the
original shape, the squishier it feels.

This type of animation can also create
a very fun and cartoon-like feeling.
What kind of material do you want
the user to believe the animated
object is made of? Your answer will
determine how much squash and
stretch you will use. If your buttons
are made of metal, they may not
change shape at all. If they are made
of a rubber filled with thick goo, they
may deform a lot, but may move
slower than a water balloon would.

Anticipation
Anticipation is movement in the
opposite direction of the main move-
ment, just before the main moment is

made—a sort of “wind up” before
making a big move. The bigger the
motion, the more exaggerated the
anticipation should be. Anticipation
is a great way to emphasise move-
ment.

The classic example of anticipation is
the wind up before a cartoon charac-
ter takes off running. The character
rears back and poses briefly before
shifting all his weight forward and
beginning to run. This anticipation
pose can almost be more important
than the run.

Anticipation is typically found in
human or animal animation.
Applying this principle properly can
really add life to an animation. Even
an inanimate object can come to life
with a little anticipation. Anticipation
implies that the object that is moving
is thinking about the next movement.
It is “anticipating” this next move.

A simple application of anticipation
in an interface would be to add a little
bit of anticipation to the movement
of a button. Once a button has been
selected, you can move it backward
before sliding it forward offscreen.

Just by adding a couple of frames of
anticipation, you make the animation
more interesting to watch. Figure 11.4
shows motion with anticipation
applied to an interface button.

Ease In and Ease Out
Most motion in real life does not
move at the same rate during the
entire movement. It is a matter of
physics. It eases in to the movement
and eases out. When a movement
starts, it takes a while to get up to full
speed. Movements also can’t stop
instantly. They must slow down as the
motion comes to a stop. This is the
reason why many software packages
have this type of movement as a
default. (See the beginning of this
chapter.)

If your software does not have an ease
in and ease out setting, you may need
to control this by hand. Even a button
that flies onto the screen and stops
suddenly will look strange. You can’t
have a button moving full speed in
one frame and completely motionless
in the other without the stop looking
abrupt to the viewer.



Follow Through
There is another basic law of physics:
When objects or people are set in
motion, they are hard to stop. Anyone
who has ever been in a car when it
stopped suddenly understands how
this principle works in real life. When
you are riding in a car, both you and
the car are moving. When the car

stops suddenly, your head wants to
continue moving until you can stop it
with your neck muscles or it is
stopped by the dashboard. Heavy
objects are harder to stop than light
objects, and the faster an object is
moving, the harder it is to stop.

This principle is seen also when a per-
son stops short and his or her arms

and hair keep moving for a moment
before swinging back into a resting
position. Not only do the appendages
keep moving for a while, but even the
object itself moves beyond the mark
and then returns back to the final
position. The distance the objects
move beyond the mark and the
amount of time it takes to return to
the final target position are based on
the speed and size of the object.

Animating objects a little beyond the
final mark and then having them set-
tle into position can make motion
look very realistic. When deciding
how exaggerated to make the follow-
through animation, you will need to
consider how heavy the object should
appear and how fast it will be moving.

T i p

In real life, if a heavy object stops sud-
denly, there is usually strong impact. If
two large metal blocks collide, there
would be a lot of power behind the col-
lision even if they do stop abruptly. If
you want to give the impression of a
large collision, a loud sound effect and
a screen shake can help. If everything
on the screen bounces, it will feel like
there was a big impact.

Animation Principles 131

Figure 11.4  Moving the button back and then forward gives the movement more life.



Chapter 11   ■ Using Animation132

Arcs
When people move, they do not do so
mechanically. Human movement
does not occur in straight lines.
Instead, natural motion occurs in
arcs. If you were to trace the motion
of parts of the human body, such as
hands, hips, or even the head, you
would notice that the motion creates
smooth arcs and not sharp turns and
angles.

Using arcs when animating an inter-
face provides the illusion of natural
motion. This may not always be the
desired effect, of course. If you want
an interface to appear mechanical,
then it is much better to keep the ani-
mation linear and avoid arcs. If you
understand the effect of both
approaches, then you can better con-
trol the look of your interface.

Figure 11.5 shows three positions of a
circle. If the motion between these
three positions were linear, as in the
top part of Figure 11.5, it would seem
very stiff and mechanical. If the
motion were more of a smooth arch,
like at the bottom of Figure 11.5, it
would seem much more smooth and
lifelike.

This arcing movement is often the
default method for interpolation
between key frames in most anima-
tion software. If it is not the default
motion, you may need to add this arc
by hand. Many animation software

applications also have a feature to
draw a path and move another object
along this path. Using this method,
you could ensure that your object
moves in smooth arcs.

Exaggeration
When animating, it is almost always
better to make the motion a little big-
ger and more exaggerated than one
would expect. You will always be sur-
prised at how normal an exaggerated
motion will look in the game. Choose
the most important aspects of your
animation and exaggerate them. In
traditional animation, the extreme
poses were often exaggerated. When a
fist was moved back for a punch, it
went way back. If you stick with
motion that appears to be closer to
realism, you may run the risk of creat-
ing drab and boring motion. You
almost can’t exaggerate too much.

Designing Transitions
Many interfaces pop from one screen
to the next. This is the simplest way to
change screens, and it can save a lot of
time and money. If you really want to
add the quality touch to your anima-

Figure 1.5  Different types of motion.



tions, a great transition between these
screens can do the trick. Adding a
transition will take more time and
effort, but the results will be well
worth the work.

Transitions should be quick so that
the user is not left waiting. There are
few things more annoying in a game
than a slow-moving transition. A
cool-looking but long transition may
be impressive the first few times it is
seen, but after that is just becomes
frustrating. I would recommend
keeping all transitions to less than a
second.

Transitions can vary in complexity. A
simple transition solution is a fade.
The fade is often done by the pro-
grammers and does not take much
time or effort for the artist. A fade in
and fade out often looks much better
and more smooth than a pop between
screens. Using fades is a way to have a
transition without spending too
much time and money.

Some very complex solutions—that
really look good—are possible. For
example, all of the objects on the
screen can animate in different direc-
tions or at varying speeds. You can

create a custom animation for the
transition between every screen. This
type of animation can take a lot of
time, but it can look quite impressive.
The motion must be organized,
though. This is not always a case of
the more animation the better, but
small variations can add a lot. If you
decide to slide all of the buttons off-
screen, it’ll look really cool if they
don’t all start sliding at the same time.
You can add a frame or two delay

from button to button or stagger the
start from top to bottom.

There are many cool possibilities for
transitions. You could make all of the
objects at the top of the screen begin
to fall, and as they collide with the
objects below them, the second set of
objects begins to fall. In the end,
everything falls off the screen.
Animating all of the falling and col-
liding in a way that everything
appeared to have weight and impact

Designing Transitions 133

Don’t Make Them Wait

One of the big mistakes that new interface animators make is to create animations that
take too long. The user should never feel as if he is waiting around for an animation.
Slow animations can be particularly painful to endure with transitions, as I’ve said. Get
them there fast. It doesn’t matter how cool an animation looks—if it takes too long,
don’t use it.

If you are new at animation, it is important to learn and understand just how fast fast is.
One second is a really long time to wait for an animation during a game. Count “one, one
thousand” and think about how much could happen in that second. If your transition
takes longer than one second, it is probably taking too long. You can make it much
shorter and still have a very interesting animation.

It is amazing how much the human eye can perceive in a single second. If you watch a
commercial or video clip that rapidly flashes images, you will notice that your eye can
pick up dozens of images every second. Gamers have been exposed to this type of rapid
stimulation and have even come to expect it. Give them this fast-paced action. Don’t be
afraid to make things happen quickly.



Chapter 11   ■ Using Animation134

would be very complicated, but it
could be really fun to watch.

Be creative when creating transitions.
The best thing to do is to look at the
still screen that you are starting from
and the screen where you want to end
up and think about how to get from
one to the other. There is no limit to
the things you can come up with.

Consider Experienced Users
You want a user to play your game
over and over, right? After a user has
played a game a lot, he knows what he
wants to do right away. He knows
which options he wants, and he wants
to get into the game quickly. Such
experienced users should not be
slowed down because you wanted to
show a really cool animation that
takes forever to play out. Experienced
players often memorize the pattern of
button presses that will get them into
the game. They can press the buttons
as fast as your interface design will let
them. Consider these experienced
gamers when designing the interface.

Short transitions and quick reactions
to button presses are a must. If you

feel you must include that cool, long
transition, you could maybe skip the
animation when the user presses a
button during the transition. Just
jump to the next screen. No matter
what you do, you want to make the
interface quick to navigate. As you are
designing, time yourself and see how
fast you can get the settings you want
and start a game when you are very
familiar with the interface.

Properties That Can
Be Animated
Many properties of an object can be
animated or changed over time in an
interface. Some of the most common
properties are translation, rotation,
scale, and color. Learn which of these
properties your game engine will sup-
port and take advantage of these fea-
tures.

Translation, Rotation, and
Scale
There are three basic properties that
can be animated: translation, rota-
tion, and scale. It will help you
become a better animator if you

understand these three types of
motion. The animation data that is
typically stored in the files used in the
game falls into these three categories.
These animation types can be used
separately or animated at the same
time. Space-efficient file formats leave
out unnecessary information. If you
never animate the scale of an object,
the scale animations data is not put
into the final file. The absence of data
means that the scale does not change.

Translation is what most people think
of when they think of animation. It is
one of the very basic animation prop-
erties. Translation refers to the posi-
tion of an object. Translation is even
called position in some software.
When you move things around on the
screen, you are animating translation.

Rotation is just what it sounds like. If
you spin an object or turn it upside
down, you are animating the rotation.
When animating rotation, it is impor-
tant to establish the pivot point. This
will be the center of the rotation. It
does not have to be in the center of
the object. In fact, it can be far away
from the object. The location of the
pivot point can greatly affect how the



Figure 11.6  The location of the pivot point can really change the effect of a rotating
animation.

object behaves as it is rotated. Figure
11.6 illustrates how different an ani-
mation can be if the pivot point is
moved to a different location.

When you animate the scale of an
object, you are changing the size of
the object. Most software and game
engines will let you distort an object
by scaling more in one direction than
the other. The important thing to
remember when changing the scale of

a 2D graphic is that if you scale it too
large, it will become blurry. If you
want a big image at one point in your
animation, make the image big and
scale it down during the rest of the
animation.

Transparency and Color
Transparency and color are two other
common properties that can be ani-
mated in addition to translation, rota-

tion, and scale. Transparency refers to
how see-through an object is. An
object can be totally opaque or it can
be just barely visible and mostly see-
through. This property can usually be
animated and changed over time. A
simple way to create a fadeout is to
place a solid black box over an object
and animate the transparency from
100 percent transparent to 100 per-
cent opaque. Another common use of
animated transparency is to place a
highlighted version of an object
directly on top of an un-highlighted
version. The transparency of the high-
lighted version could be animated to
make the button appear to pulsate.

Many game engines offer the ability to
animate the color of a 2D image. This
can be a little trickier than animating
other properties of an object.
Typically, you will need to save an
image in the right format for a game
engine in order to change the color. As
you can imagine, if you change the
color of an already colored image, it
could look really strange. The best
way to use color animation is to 
produce a grayscale image, with no
color, and let the game engine do the

Properties That Can Be Animated 135



Chapter 11   ■ Using Animation136

coloring. This technique will not
allow you to use multiple colors in an
image at once because the entire
grayscale image will be colored using
only one color, but it will be easy to
animate a color change.

Transparency and color are both
aspects of an interface that a pro-
grammer can often control. If the
programmer animates these proper-
ties using the game engine—instead
of giving him multiple 2D frames that
he plays back—it can save file space.

As I mentioned in the chapter on
tools, good software can allow the
artist to control the animation of
transparency and color in the same
way the programmer would change it
in the code. The tool would simply
provide a user interface to make these
changes and provide a way to save
them in a format the game could read.

Using Effects
In addition to the basic animation,
there are countless animated effects
that you can use when creating an
interface. These effects can be either

simple or elaborate, and they can be
impressive to behold. There are many
different techniques and methods to
create these effects; I will cover some
of these techniques in the sections to
follow. It is best to decide what kind of
effect you want and then decide on
the best way to pull it off.

Overlaid Animations
A common and simple effect tech-
nique is to play a sequence of semi-
transparent frames over the interface.
For example, when a button becomes
highlighted, a little sparkle could
appear. These frames can be a pre-
rendered animation created in a 3D
program, or they could be hand-
animated in 2D software. In either
case, there are a number of files that
will be played back by the game
engine. The concept is simple, but the
possibilities are endless. There are so
many ways to create this type of ani-
mation that I can’t begin to list them
here. Any software or method that
will generate a series of numbered
files (in the right format for your
game engine) for each frame of your
animation will work.

N o t e

As I mentioned previously, in order to
save space, these animation may need
to be kept small, and they might even
be played back at a low frame rate.
Animations that require playback of
pre-rendered frames can take up a lot
of space.

A huge variety of animated effects can
be created by playing one of these
sequences. Objects onscreen could
melt, shatter, squirt water, or do any-
thing else you can think of. Use your
imagination and come up with ani-
mations that look cool and fit well
with your interface. Some of the best
effects are those that fit well with the
theme of the game. If you are making
a game that takes place underwater,
bubbles could come out of your but-
tons when they are selected. If you are
making a gangster game, machine
gun bullet holes could cover the
screen when a user leaves it. You will
only be limited by time and file-size
constraints.



Particle Systems
Many game engines support particle
systems. Particle systems use 2D
images created by the artist and the
game engine then animates these tex-
tures based on the settings for that
particular effect. Many small versions
of these 2D images move around,
scale, change transparency, change
color, and blend with other particles
in a way that produces the overall
effect. There are a number of parame-
ters that are supported by the particle

system. These vary greatly from parti-
cle system to particle system.
Changing these parameters changes
the way that the particles (2D textures
created by the artist) behave. There is
really no limit to the number of
effects that can be created with a par-
ticle system, but some of the common
effects you’ll see are smoke, fireflies,
explosions, and moving water. Figure
11.7 shows a spaceship with a trail of
smoke and flame. This trail was creat-
ed with a particle system.

These particle
systems have a
variety of proper-
ties that affect 
the animation.
Some of the com-
mon parameters
not already dis-
cussed in this
chapter are life
(how long they
last onscreen),
decay (how long
they take to dis-
appear), and the
way they blend
with the other

particles onscreen. These parameters
can often be randomized to produce a
natural effect. Particle systems can be
very complicated, but they can pro-
duce great effects.

Because every game engine has a dif-
ferent particle system, I can’t tell you
how the system works in your game
engine. If this technology exists in
your game, you might be able to use it
in the interface. The technology and
features will vary greatly from game
engine to game engine. If you want to
take advantage of these effects in your
interface, then you will need to learn
how the particle system in your game
works. If you take the time to learn
how to use this feature, it can become
a powerful tool.

Other In-Game Effects
Many other in-game effects can be
used in your interface—you are not
limited to particle effects. If you know
all of the effects that are planned for
the game, you should also ask the pro-
grammers if these same effects could
be easily used in the interface. If the
work is already done to support these

Using Effects 137

Figure 11.7  These flames are created with an in-game particle
system.



Chapter 11   ■ Using Animation138

effects, you might as well take advan-
tage of them. A great example of this
would be a screen shake. If the screen
shakes in the game when there is a
large explosion, this effect can also be
used in the interface. Again, these fea-
tures are very game-dependent. You
will need to see what your game
engine can do. If you see something
you would like to use, don’t hesitate to
ask if you can use it. Most likely, it
won’t be hard to do it in the interface
if it can be done in the game.

Summary
The best interfaces use great anima-
tion. Learn the basic principles of
animation and apply them to your
interface. Think big and create inter-
faces with amazing movement. Use
the power of movement to attract the
user and help guide him through 
the interface.



139

Icons are an important method of
communication in an interface.
Displaying information graphi-

cally is always more interesting than
displaying a lot of text. If you must
show an amount of money, consider
using gold coins instead of a number
amount. If you must display the
amount of energy your character has
left, consider using a fill bar. You can
use icons for almost everything in
your interface. They usually take a lot
more time to create than would a
paragraph of straight text, but they
make your game a whole lot more
fun.

Use Text Sparingly
Text should always be used sparingly
in a game interface. (I jokingly say
that I promote illiteracy in my
games.) If you can leave text out of an
interface, then by all means leave it
out. I believe an interface is only fin-
ished when there is nothing else that
can be taken out. If you must use text
in your interface, do everything you
can to reduce its length. Short sen-
tences and phrases are much more
likely to be read than a large para-
graph of text.

Gamers don’t like to read too much
while playing a game. I have seen
countless gamers glance at a page of
text and immediately hit the button to
skip the screen. It doesn’t matter how
important the information is, they
will skip it—or try to, anyway.

It does not matter how cool your
story is—if there are too many words,
your interface will suffer. It is always
better to impart important story ele-
ments using music, voiceover, and
images. If you went to see a movie and
found you had to read the story while
only a few images drifted by onscreen,

Icons, Icons, Icons

Chapter
12



Chapter 12   ■ Icons, Icons, Icons140

you’d probably feel cheated—if you’d
wanted to read a book you would
have stayed at home! You expect a
movie to be a visual experience, and
players expect the same from a video
game. Many great video games have
gorgeous cinematic sequences—sort
of mini-movies—that use sound
effects, music, voiceover, and anima-
tion to tell a compelling story.

There is nothing wrong with includ-
ing text in your interface to support
the visuals. Doing so can help gamers
who prefer to play without sound.
Just make sure that players aren’t
required to read text in order under-
stand what is going on in the game.

Budget Constraints
Once again, budget and time con-
straints will affect your ability to
deliver the perfect product. An inter-
face with a lot of text is often a sign of
a small budget because, of course, it is
easier and cheaper to use text instead
of creating custom art and icons.
There will be times when you must
take shortcuts in order to meet a bud-
get or hit a deadline, but resist giving
up and filling the screen with text.

I recently designed an interface for a
game with a small budget. The devel-
opment team did not have time to
make movies or even enough money
to record voice actors, but we had a
great story that was important to
communicate to the user. In this case,
I had no choice but to use text to tell
the story, but we went to great lengths
to leave out extraneous detail and
only use text to tell the most impor-
tant pieces of the story. We broke the
story up into little online pieces and
presented these lines throughout the
level, and we spent a lot of time re-
writing to make sentences and phras-
es shorter—sometimes by just a cou-
ple of words. In this way, we spared
the player from as much unnecessary
reading as possible.

N o t e

A truly great interface can be navi-
gated by a user who doesn’t speak the
language in which the text is written.
Imagining that your players don’t read
English is a great way to make sure
you’re communicating the necessary
information without relying on text.
What would the user assume each but-
ton does?

Using Icons Instead
of Text
You may be wondering, “How can I
create an interface that doesn’t require
the user to read?” The user needs to
understand how to navigate and con-
trol the interface and the game, and
he must understand what every but-
ton does. Using icons that indicate the
functionality of a button or control is
often a good solution.

Great icons can accommodate the
game to the user without text. Text
can be used to reinforce an icon, but
the better the icons are, the less this
text will be needed. It is not easy to
create great icons, but it can be done.

Image Choice
The key to creating great icons is
choosing the right image to represent
the functionality. What image will
communicate the concept to the play-
er without any reading? Choosing the
right image is not as easy as it may
seem—it can be quite difficult to find
an image for an abstract concept. For
instance, for a button that allows the
player to build things, a hammer icon



may be a great solution, but what
about a button that is used to display
a character attribute, such as bravery?

Standard Icons
Many standard icons, or icons that
always mean the same thing, are used
in video games. Players already know
what these icons mean and can get up
to speed more quickly if these stan-
dard icons appear in your game. For
example, many game have a Save fea-
ture, and a common icon for the Save
feature is a floppy disk. (This is sort of
funny, as no one really saves games on
a floppy disk anymore.) A charac-
ter/player’s health in the game is
sometimes represented by a box with
a red cross, which symbolizes a first-
aid kit. Hearts also often represent
health of a character. A shield often
can be used as an icon for a defensive
action and a sword for attack.

Take advantage of players’ past experi-
ence by using images that they are
probably already familiar with. Even if
you use an object that is commonly
used in other games, you can cus-
tomize it to fit the look of your game.

You will also need to consider your
target audience when you design
icons. You should consider what
games your players have probably
played before. You can expect a com-
pletely different type of user with dif-
ferent experiences depending on the
type of game you are making. You
may not be able to assume previous
game experience if you are making an
educational game that is aimed at
young gamers. If you are working on
a space combat game, it is likely that
the user will have played many video
games.

Non-Game Standard Icons
A red octagon means stop. Green
means go. It is not hard to figure out
which bathroom to use, even if there
is no text on the door. Symbols are all
around us, and we learn early in life
what these symbols mean. Many icons
and images that have nothing to do
with software and games are great ref-
erences for creating icons for games.
Think of all the buttons in your car,
on your DVD player, and on your
kitchen appliances—most people can
figure out what these buttons are for
even if they aren’t labeled.

When creating icons for games, you
can draw on these same universally
understood symbols. Why reinvent
something that already works well?
Use red for a button that stops an
action and green for a button that
starts an action. Use a plus sign to add
a knight to your army or a minus sign
to drop a flask from your inventory.

Software—other than games—is a
great source from which to draw stan-
dard icons. It is safe to assume that
anyone playing video games has used
a computer for other tasks, and there
are many standard icons used by
operating systems and software that
can be used in your game. For exam-
ple, a magnifying glass with a plus or
a minus is often used to zoom in and
out. A lowercase “i” often means infor-
mation. Figures 12.1 and 12.2 both
show a number of buttons from com-
monly used software.

Many of these icons would be a little
bland for a game if they looked exact-
ly like the icons in a common software
application, but the concept might
still be good—you can take the idea
and improve on it. Figure 12.3 shows
how a standard icon of a magnifying

Using Icons Instead of Text 141



Chapter 12   ■ Icons, Icons, Icons142

glass with a plus sign can be improved
to look more like it belongs in a game.

Be consistent. If you use a red octagon
for a Stop button in one location,
make sure you don’t change to a black
square (the audio symbol for Stop) in
another location. The user will learn
what the symbols mean in your game.
If the player can perform the same
action from two different places in
your menu, make sure the icon is the
same in both locations.

Use color wisely. Defining groups of
similar icons and keeping color con-
sistent within the groups to help the
user learn and use your interface. For
instance, make all of the icons that
result in player action green and all of
the preference icons (like sound,
effects, and game resolution) blue. Be
careful not to make it confusing by
changing icons and icon colors ran-
domly.

Figure 12.1  These are icons and symbols found in Microsoft Windows 2000,
Windows Media Player, Adobe Photoshop, Adobe Acrobat Reader, and Nero Express.
Just by looking at these icons you might be able to guess what each button does.

Figure 12.2  The symbols for playing audio and video are
well known. These are the buttons found in the Apple Quick
Time Player. These symbols have been used on radios and
VCRs for many years.

Figure 12.3  This is an
icon you have seen many
times, but this version
looks more like it belongs
in a game.



N o t e

Never actually use copyrighted artwork
that is used in other games for your
icons—it is illegal. Besides, using
someone else’s art is never as reward-
ing as creating your own. This does not
mean you should not look at other
games and use their solutions to help
yours, though. Build on the strengths of
the art done for other games. Many
artists have spent a lot of time deter-
mining what symbols to use for each
icon.

If you aren’t sure if an icon you creat-
ed works well, show someone the icon
and ask what he or she thinks it repre-
sents. This person doesn’t need to be
another artist—after all, you aren’t
looking for information on how pret-
ty it is. You’re just trying to determine
whether the symbol communicates
what you want it to.

Every Pixel Counts
Their small size is one of the things
that make icons such great tools in a
game—they don’t take up a lot of
screen space. When you’re working at
TV resolution, you must keep icons
small. It can be quite difficult to make
a recognizable image when you only
have a 24×24 pixel (or smaller) area to
work with. The smaller the icon, the
less space it takes up. Keeping your
icons small is particularly important
for in-game icons. The more screen
space left open—not covered by inter-
face buttons and controls—the better.
The player needs to be able to see the
action in the game.

After you have decided what symbol
to use for your button or control, the
next big challenge is to create an
image that fits into a limited number
of pixels. Many novice icon designers
simply take a large image and reduce
it down to make a button icon. This
might work in some cases, but often
most of the image detail will be lost
and images will become blurry. If the
small details are important, these
details may need to be exaggerated so
that they can still be seen when the
image is reduced.

Figure 12.4 shows how a large image
can become blurry when it is reduced.
It also demonstrates how a little hand
editing of the reduced image can
sharpen up the lines.

Your pixel limitation may affect the
subject matter of your icon. The
image will need to be small enough to
be an icon, but still be recognizable. I
have had a publisher sit and describe
to me an icon that was to depict a
complex scene that needed to be rec-
ognizable in 32 pixels. It is impossible
to show a Ferrari driven by a smiling
man with one missing tooth all in a

Every Pixel Counts 143

Figure 12.4  When it is reduced, the
image in the upper-right corner becomes
blurry. This can be easily cleaned up once
the image is reduced, as has been done to
the image in the lower right.



Chapter 12   ■ Icons, Icons, Icons144

small icon. The driver’s head may
only be a couple of pixels big, even if
you do crop out most of the Ferrari.
Think big, simple shapes when
designing icons. If the driver’s missing
tooth is the key concept, then you
might just use a smile with a missing
tooth, not even the driver’s whole
face.

When editing icons, you will need to
make adjustments at the pixel level.
Zoom way in on the icon and make
changes. It can be hard to see what
these changes look like at actual size
when you are zoomed in, so it is a
good idea to constantly zoom in and
out while working on your icons.
Slight changes to a pixel can make a
big difference.

Photo Reference
Very rarely will you be able to use a
photo for an icon without changing it
drastically, but photos can give you
ideas for good silhouettes. Finding a
good silhouette is the key when using
photos. You will almost always need

to repaint all of the details before it
will make a good icon. Photos can still
help you know what the object really
looks like.

Summary
Great icons can make for a great inter-
face. Keep away from text by using
symbols and icons to let the user
know how to use your interface. Hone
your icon-creating skills. The ability
to create a great icon is a very valuable
skill when creating game interfaces.
You might be surprised how much
more fun the interface seems to be
when you use icons in place of text.



145

The acronym HUD stands for
Heads-Up Display. HUD
refers to the interface and dis-

play information that is onscreen
while the game is in progress. This in-
game interface is very important
because it affects game-play. If the
HUD is hard to understand and use,
then the game will also be hard to
understand and play.

HUD design is a very complex sub-
ject—an entire book could be written
on it. This chapter will give you only
an introduction to designing HUD.

Many of the same principles that
apply to the front-end menu also
work for HUD. In this chapter, I will
cover the aspects that are specific to
the in-game interface.

Screen Space
One of the basic rules to follow when
creating HUD is to take up as little
screen space as possible. With PC
games, screen space is always limited;
space is even more limited in a con-
sole game that is played on a televi-
sion.

Players want to see what is going on in
the game. If you cover the screen with
a distracting interface, it can be like
looking out of a car windshield that is
covered with stickers. Designing
HUD for multiplayer games that use
split screens is even more difficult
than designing for console games
because, of course, the screen space is
cut in half.

When it comes to HUD, less is more.
The trick is to display a lot of infor-
mation in a very little space. Try not
to fill up the screen with unnecessary
information—it is all too easy to end

Designing the HUD

Chapter
13



Chapter 13   ■ Designing the HUD146

up filling up a lot of space with HUD
and getting in the way of game-play
with cool-looking but unimportant
details. If the player does not need the
information to play the game, you
should consider taking it out of the
HUD.

There are many ways to organize the
HUD on the screen. Think about the
shape of the screen that is not covered
by the HUD. If you want a wide
screen, you may want to place the
HUD at the top or bottom of the
screen. If you prefer a screen that is
closer to a square shape, you can put
the HUD on the left or right of the
screen. You can also spread the HUD
into every corner. Figure 13.1 shows
several different types of layouts that
you can use. The black areas represent
possible locations for the HUD.

When you’re working with HUD, it is
good to keep the extra stuff small.
Part of your HUD will be decora-
tive—the beveled edges on buttons
and rivets in the rusty metal are there
just for looks—you want your HUD
to look cool, but you don’t want this
extraneous detail to be too large.

There is no need to use a lot of pixels;
it is amazing what you can do with a
two- or three-pixel border. (See
Figure 13.2.)

Again, if it is not absolutely necessary
to display the information onscreen
during play, then put it in another
location. For instance, one small but-
ton in the HUD could open a page of
information or options that are rarely
needed while playing the game. This

Figure 13.1  Here are several different basic layouts that you could use when designing
the HUD.

Figure 13.2  A lot of detail
can be added with only a few
pixels.



approach still provides the player
access to this information when he
does want it.

In-Game Information
A great way to reduce the amount of
information that is displayed in the
interface is to put more information
into the actual game and take it out of
the interface. For example, if a charac-
ter in a game is becoming fatigued,
you might indicate this to the player
by changing the character’s anima-
tions rather than by displaying a
fatigue bar in the interface. This tech-
nique works best when the player
does not need the specific details. If
the player needs to know only that he
is not at full strength and not his exact
numerical fatigue amount, then hav-
ing three sets of animations—one
each for energetic, tired, and super
tired—may be enough information.

Many games use icons in the actual
game environment. Rather than put a
2D piece of art in the HUD to display
the mood of a character, you could
place a 3D icon that floats over the
character’s head when he is mad, and

another icon (or the same one in a
different color) when he is sad.
Instead of displaying in the HUD the
number of bullets that your character
has left, you could change the 3D
model in the game so that the player
can see the ammunition on the char-
acter’s belt.

It is much easier to display informa-
tion in the HUD than it is to develop
more game content to display infor-
mation; that is why you see so many
games with cluttered or boring
HUDs. Putting an icon in the HUD to
show that the player is carrying a
jewel is much easier than actually
putting a jewel in the character’s
hand, but it doesn’t look as good. If it
is a big jewel, you might have to
change the run animation so that the
character uses two hands to carry the
jewel. Several animations would need
to be created, and it may be expensive
and time-consuming to do so—but it
would be much more fun for the play-
er to see the character carrying a huge
jewel than it would be to stare at a 2D
image of a jewel in the corner of the
screen. It is always easier to throw up
another icon when the player is using

his super strength, but an in-game
effect such as the muscles on the char-
acter beginning to bulge or shrink
would be much more impressive. You
will need to work within the budget of
your game, of course, and find ways to
put as much information into actual
game-play as you can.

You can also allow the player to select
in-game objects instead of automati-
cally putting an interface element
onscreen. Once the player selects the
objects he wants, the important infor-
mation can be displayed. The in-game
objects basically become the buttons
that might normally appear in the
HUD. If the player needs information
about the prices of objects in a magic
shop, for example, you could allow
the player to select the objects by
walking around in the game world.
Once the object is selected, you could
display the price and item descrip-
tion.

An even better but more difficult way
to reduce the amount of information
displayed in the HUD would be to
allow the player to get all of the infor-
mation he needs just by looking at the

Screen Space 147



Chapter 13   ■ Designing the HUD148

character. A character’s facial expres-
sion can reveal his mood, the anima-
tions can give information about his
energy level, and when the character
is selected, a voice can tell the player
what the character wants.

All of these options take much more
time to create, and so they cost the
publisher more money, but they are
more interesting than a set of boring
bars on the screen.

Pop-Up Menus
Pop-up menus are just what the name
implies. When the player presses a
button in the HUD, an in-game object
is selected, and a menu can pop up
with new information. The game can
pause or continue in the background.
Using pop-up menus is a great way to
keep the screen clear—if the player
needs to know about the status of a
character, he can press the small char-
acter status button and up pops a
whole page of information.

A great place to use a pop-up menu is
in a tutorial. When a player is first
learning how to play a game, you can

have information pop
up to help him. It can
be really effective
when the game can
tell when to pop the
menus up. For exam-
ple, if the player
seems to be confused
and is not progress-
ing through the game
at a certain rate, the
game could pop up a
menu offering hints.
Figure 13.3 shows a
pop-up menu that
appears early in the
game to teach the
new player how to play.

Dynamic Content
The basic idea behind dynamic con-
tent is that the HUD changes depend-
ing on the game situation. Only the
information that is important at the
moment is displayed. When the situa-
tion changes, the HUD changes to
match. For example, the player’s
shield strength may only appear
onscreen when meteors are hitting
him. Once the meteor shower has

subsided and the player’s shields have
returned to full power, the shield-
strength information could disappear.

Obviously, the amount of oxygen a
player has left should only be dis-
played when the character is under-
water, and the amount of ammuni-
tion a player has left should only be
displayed onscreen when the player
has his weapon out. The player may
not know how much oxygen is left in
his tank when he is on dry ground,
and he may not know how many 

Figure 13.3  A pop-up menu provides extra information.



bullets he has when his gun is put
away, but this information is not
important at these times.

You might think that it is important
for the player to know how much
health he has at all times. I have
played several games that brilliantly
take another approach: The health
meter only appears when the charac-
ter loses some health. This meter

remains on the screen for a short time
and then fades away. This saves screen
space and really improves the game
experience.

A very simple example of dynamic
HUD can be seen in Figure 13.4. The
HUD in the bottom-right corner of
the screen only shows up when a ship
is selected. It contains information
about the currently selected ship.

When no ships are
selected, nothing
appears in this spot.

Evaluate your inter-
face and decide
whether you really
need all of the infor-
mation onscreen all
the time. If you think
that there may be
times when some
information is need-
ed and other times
when it is not needed,
change your interface
to fit the situation.

Combining Information
You can combine information in
order to have fewer objects on the
screen. When playing your game, the
player may need information, but he
may not need all of the details. In a
game where the player controls a
theme park and tries to make visitors
happy, it is important to know how a
visitor is feeling, but it may not be
important to know all of the details
that make up the happiness. The
game may keep track of a lot of infor-
mation in the background, but not all
of it needs to be displayed. If the play-
er just ate a hamburger and it made
him happy, but then he couldn’t find
a drink, rather than displaying all of
this information, you could just dis-
play the a bar that says his hunger is
half filled.

The choices you make of what to dis-
play not only affect the HUD, but they
also have a lot to do with basic game-
play. In the theme park example, for
instance, do you want to spell every-
thing out for the player or let him 

Screen Space 149

Figure 13.4  An interface with a dynamic HUD that only
appears when the player needs it.



Chapter 13   ■ Designing the HUD150

discover how to please this visitor on
his own? If possible, reduce the
amount of information on the screen
by making logical combinations.

Legibility
All HUD elements should be as small
as possible, but it is also very impor-
tant that they are clear and legible. If a
player can’t tell what it is, then there is
no use putting it on the screen. In
order to achieve the right balance of
smallness and legibility, you must
often test and re-test your design, and
you may have to adjust the art after
you see it in the game.

I have already discussed the fact that
gamers don’t like to read text. If the
HUD is fuzzy and hard to read, they
will be even less likely to read it. While
this same concept applies to a front-
end interface, it is even more impor-
tant in the game. Usually, the game
does not pause so that the player can
read the information and the player
can only pay half attention to the
HUD because he is busy playing the
game. Don’t make the player break his

concentration because it is hard to see
something in the HUD.

You can get a pretty good idea of the
clarity of your image during the cre-
ation process, but the best place to test
it is in the game on the target plat-
form. See how your art looks in the
game engine. It can often look very
different in the game engine than it
does in Photoshop.

If you are working on a console game,
you must also check your art on a
television. There is often a huge dif-
ference between what you see on a
computer monitor and what you see
on a television. Some colors are hard-
er to see on a television. Because there
are a limited number of pixels on a
television screen, even small images
may appear much larger than you
expect. This can reveal flaws that may
not have been seen on a computer
monitor. Just because everything is
clear and legible on your computer
does not mean it will be clear and leg-
ible in the game.

Eye Movement
As I’ve said, the information displayed
in the HUD should be vital to the
player; if it’s not, it should be dis-
played elsewhere. Important informa-
tion should be clearly visible, and the
player should be able to read it quick-
ly. The player does not have time, in
the heat of battle, to search the screen
for information on how much health
he has left—he needs to know this
immediately. The HUD design should
communicate such information
quickly and clearly.

When designing the HUD, consider
the player’s eye movement. Where will
he be looking and how easy or hard
will it be for him to see the informa-
tion? Placing information into groups
with similar information can help the
player find the information he needs
quickly, as he will only have to look in
one place. Looking back and forth
across the entire screen over and over
can take valuable seconds and be
quite frustrating.

In an RTS game, the player might
need to build units and buildings. It is
helpful for the player to find all of the



building actions in one location.
Other interface buttons, such as but-
tons used to control the action of a
selected unit or units, could be placed
near each other in another location.
Attack, Patrol, and Guard are actions
that might go well together. It would
be awkward for a player to have to
push a button in the upper-left corner
to attack and another button in the
bottom-right to guard an area.

Ease of Use
A well-designed HUD should be easy
to understand and use. The player
should know how to navigate the
interface without thinking. When
designing for a PC game, think about
how far the player will need to move
the mouse. How many clicks will it
take to perform a common action? Is
it obvious to a new player what to do?

Use as many visual clues as you can to
help the player understand the inter-
face. Small interface animations can
help the player understand the effect
of pressing the buttons. If the player is
spending money, it can be helpful to
see animated dollar signs pop up after
every purchase. If the player is chang-

ing a weapon, it is helpful to show an
image of the current weapon after the
change.

Use all of the same techniques that are
used in the front-end menu to get the
player’s attention. Color, size, and
movement can all help the player see
what is important. (These concepts
are discussed in Chapter 7.) Your goal
is to help the player understand how
the HUD works and understand all of
the information. You are communi-
cating with the player through the
interface. Don’t distract the player
from game-play, but if you are going
to display something important on
screen, make sure the player notices.

Organize the interface. For example,
placing all of the information about
the player’s character in the right-
hand corner and all of the informa-
tion about the enemy in the left cor-
ner of the screen will lessen any con-
fusion about whose health meter the
player is looking at. It is also helpful if
all the information onscreen is orga-
nized according to color—the player’s
character data can appear in blue and
the enemy’s can appear in red, for
instance.

Making HUD Look Cool
With all this talk of functionality,
don’t forget to make your HUD look
cool. A good-looking interface can
really add to the game. Make sure the
HUD fits the look and feel of the
entire game.

If the front-end interface has success-
fully captured the feel of the game,
then this is a great place to start when
designing the HUD. If you can pull off
a good theme, it can really add to the
feel of the game. If the game is in
space, for example, make sure that
your HUD feels like space—dark,
star-filled backgrounds with lots of
glowing lights may be appropriate for
such a game. If you are working on a
fishing game, you might go with a
backwoods, rustic look, with a lot of
wood grain and “hand-painted” text.

Game-Play
Adjustments
The design of your HUD will be
greatly affected by any changes made
to the game-play during the develop-
ment process. Unfortunately, it is hard

Game-Play Adjustments 151



Chapter 13   ■ Designing the HUD152

to make all of the decisions about
game-play before a game is made and
not make changes during develop-
ment.

As the game gets to a point where it is
playable for the first time, testing
begins and so do the changes. The
game designers may decide that the
player may need a lasso in addition to
a gun, and you may need to fit in an
interface that is used to throw a lasso
into the HUD you have already
designed. If the game designer finds
that the game needs to display the
number of enemies in the game, new
interface elements may be required. If
the decision is made to allow the char-
acter to pick up and carry game items,
you will need to add this functionali-
ty to your HUD. These items in the
player’s possession may need to be
displayed in the HUD.

When the game is finally playable, you
will have a chance to test out your
interface. You will often find that new
players are confused by elements that
you thought were going to be painful-
ly obvious. If no one who plays your
game can figure out how to turn the

ship’s shields in a space combat game,
for example, you may need to make
some adjustments to the HUD so that
it is easy to understand how to turn
on the shields. A good icon might
really help.

While you should do your best to
avoid having to make changes to the
HUD, knowing before testing that
changes are probably inevitable will
help you resign yourself to making
improvements when the time comes.
Willingness to make a change is par-
ticularly important when there is con-
sensus on your team or among test
players that a problem exists. No mat-
ter how much you love your HUD, if
the testers are all having trouble with
it, it’s got to go.

Graphic Information
Display
Display as much information as you
can graphically. It is much more inter-
esting to see information displayed in
a fill bar than as a number amount.
There are many ways to take informa-
tion and turn it into an icon, chart, or
graph.

Use visuals that will help the player
better understand the information in
the HUD. Instead of labeling a health
meter with text that says High and
Low, for example, you can change the
color of the bar from green when the
player’s health is high to red when it is
low.

In Figure 13.5 you can see how a lot of
information can be displayed in a
graph. The icons on the left side of
this piece of the HUD represent each
of the desires that visiting spaceships
have. The green section of the fill bar
represents how much of that desire
your space station is capable of meet-
ing; the red section of the fill bar rep-
resents the amount of the desire that
you cannot fill. Using this graph, it is
simple for the player to see how well
he is doing. Even when the scene is
filled with ships, a glance at this menu
will give him a lot of information. The
more green sections displayed, the
better he is doing—this is much easi-
er to understand than it would be if
numbers were used to show the same
information.



Standard Elements
versus Non-Standard
Elements
There are many standards for in-game
interfaces. Familiarize yourself with
your competition, as players may be
familiar with and like the way inter-
faces in other similar games work.
Play the other games in the same
genre and pay attention to how their
designers have designed their HUD.
Using this information can help you

create an interface
that is easy to use.
Learn about all of the
standards for your
game genre and stick
with them in most
instances.

When you vary from
a standard interface,
it can result in much
more work. It can be
risky, as well. When
making a golf game
one time, I and the
other game designers
decided that it would
be cool to change

how the basic swing mechanic
worked. Most golf games at that time
used a gauge at the bottom of the
screen, and the player would simply
click as the meter reached the correct
point in the animation. This worked
well, but we decided that a new way to
swing could make our game even
more fun.

We wanted the player to pull back and
push forward on the joystick so that it
felt more like swinging a club. It ulti-

mately worked, but it was not easy to
design. We tried many different inter-
face elements to tell the player how to
swing. Before we settled on the final
mechanic and HUD, we tried all kinds
of three-dimensional meters that sat
in the club’s path. In the end, these
meters did not work well for game-
play.

We ultimately took away a great deal
of the interface and created a particle
blur behind the club. The color of the
motion blur changed as the player
neared the sweet spot; we even added
a little ding sound so the player would
know when he should swing forward.
A small club head also displayed a
number that represented the percent-
age of the full-power swing. This
number animated as the player took
his back swing so he would know
when to swing forward. It would have
been a lot easier to use the same type
of meter that had been used in other
golf games.

You can make cool innovations to
your HUD, but you must understand
how much longer it takes to come up
with a new solution compared with

Standard Elements versus Non-Standard Elements 153

Figure 13.5  You can display a lot of information in a simple
way if your HUD is designed well.



Chapter 13   ■ Designing the HUD154

something you know will work
because you have seen it done in a
thousand other games. When you
decide to innovate, don’t throw out
the baby with the bath water—only
change the one item, don’t change the
whole menu’s functionality. If you
present the player with too many new
tasks and unfamiliar functionality, he
may get confused.

Summary
Many of the basic design principles
and techniques used for the rest of the
interface can also be applied to the
HUD. The HUD is the part of the
interface that is tied closely to game-
play. Make the HUD easy to use and
understand and don’t forget to make
it look cool.



155

Up to this point, I have been
discussing interface design
principles. This chapter will

provide a real-life example of how
these principles can be applied, by
taking you through the steps of
designing an interface. This “tutorial”
will, I hope, help you understand how
complex and difficult it can be to cre-
ate a good interface. Good design is
not easy to create—it is just easy to
use. The best interfaces require plan-
ning and careful thought. You can’t
just whip them out in a couple of
hours.

As I go through the design process, I
will explain how I created an interface
using Adobe Photoshop. I will not try
to teach you how to use Photoshop.
Instead, I will demonstrate basic tech-
niques that I use and show you the
design process.

In this chapter, I assume that you have
a basic understanding of Photoshop.
But even if you don’t know the soft-
ware, you’ll still be able to understand
the design concepts—and I will focus
more on the concepts than on the
specifics of Photoshop. I can’t cover
all of the details of Photoshop in this

book. If you need a Photoshop tutor-
ial, pick up another book on the pro-
gram.

Nomad Design Goals
In this chapter will show you the
process I recently went through as I
designed an interface. Because the
game is not complete at the time of
this writing, I’ll refer to the game with
a code name—Nomad. This game is a
space trading game at the core.
The player can fly from space station
to space station, trading goods for

Designing an Interface

Chapter
14



Chapter 14   ■ Designing an Interface156

profit, accepting secret missions, pur-
chasing weapons, and upgrading his
ship.

This game may sound familiar to
you—many space trading games out
there fit a similar description. Nomad
does have several new and innovative
features that aren’t found in compet-
ing games, but what really sets this
game apart is that it is accessible and
easy to learn. It is deep enough for
hard-core gamers, but it will not scare
off a casual gamer. Most of the exist-
ing trading games are aimed specifi-
cally at hard-core gamers. They can be
very technical and often require a lot
of time to learn. Nomad is much more
simple to understand. This was a pri-
mary design goal for Nomad—make
the game easy to play. This is always a
difficult goal to meet, but if you can
meet it, you will have a successful
game.

Nomad is based on an existing intel-
lectual property (IP) that was used in
a previous game. The characters and
ships were originally created for
another game, Outpost Kaloki.
Because it is based on this IP, the basic

art style for Nomad is already set. The
game must not break completely from
the previously created Kaloki uni-
verse, but this does not mean we can’t
improve on what was done for that
game. Nomad shouldn’t have the
exact same look as Outpost Kaloki but
will retain the feel.

Play Outpost Kaloki if you want to
familiarize yourself with its look and
feel. A demo version can be found on
the CD that is included with this
book. You will be able to see how the
interface design for Nomad fits into
the Kaloki universe.

The Rough Sketches
I started my work on Nomad by sit-
ting down with the game designer,
and together we began to work out
the HUD design. We determined that
we should first design the most
important part of the interface. We
could then use this to guide us in the
design of the rest of the interface.

We needed to identify the piece of the
interface that would be seen the most
and could potentially cause the most
confusion. One of the core game-play

elements of our game was trading
goods. The player would spend a great
deal of time using the Trading menu.
It was very important that this inter-
face be easy to understand for an
inexperienced player; simplicity was
the major goal here. This interface
also needed to be flexible enough that
it could handle the most difficult sce-
nario the game would present. If we
did not get this part of the interface
right, the whole game could suffer.

We first looked at many similar games
to see how their trading interfaces
were implemented. We found that this
part of the interface was one of the
biggest problems in many competing
games; the trading interface was often
a screen full of text and data that was
difficult to understand. Consequently,
these games often had a high learning
curve—they were very difficult to
understand at first, and a new player
had to be willing to spend a signifi-
cant amount of time learning how to
play. Many players would probably
look at these screens and decide,
based only on the visual complexity,
that the game itself is too hard to
bother with.



Nevertheless, the game designer and I
began by sketching some very rough
layouts that were similar to the inter-
faces in other trading games. We then
asked ourselves the question, “How
can we make this interface easy to
understand and use?” What was really
important and what could be left out?
How could we remove as much text as
possible?

We started with the basic layout that
seemed to be the most common in
competing games. We were not com-
pletely satisfied with this approach,
but we needed to use it as a starting

point. Figure 14.1 shows some of the
sketches we came up with.

These sketches are probably illegible
to anyone who was not present when
they were jotted down on paper. The
purpose was to quickly see potential
layouts. We explained to one another
what each scribble represented, but
we did not waste time trying to make
a pretty sketch.

We then began the stage I call the
“what if” stage. We would continue to
scribble on paper and ask each other
things like, “What if we left this out
and moved this over here? Would it be

easier to understand?” We moved ele-
ments around on the paper. We scrib-
bled on a whiteboard.

All of this moving and scribbling
helped us determine that there was
some basic information that was
important for the player to under-
stand:

■ Amount of money he has

■ Number of holds he has in
which to store items

■ Quantity and type of items he
is carrying

■ Items that he can buy

■ Cost to purchase items

■ Price at which to sell items

■ How these current prices com-
pare to a standard

This last item is interesting. Many of
the games we looked at required the
player to remember if a price was high
or low before deciding whether it was
a good idea to sell or buy. Tracking
this price information in your head
did not seem fun—it seemed like too
much work. We decided that it would
be much more fun to get this infor-
mation quickly and spend the extra
time determining trading strategies.

The Rough Sketches 157

Figure 14.1  These are very rough sketches.



Chapter 14   ■ Designing an Interface158

We also decided that the game would
be much easier to play if the player
could easily understand whether each
purchase was a good deal or if he
could make money by selling off
items. Competing games displayed
enough information that the player
could calculate how good of a deal
each price was—if he could remem-
ber the details—but this information
was not always displayed in the cur-
rent trade dialog box and often
required a lot of calculation. There
wasn’t a good reason why we should-
n’t make this information simple to
find.

We also decided that it was important
to display this information graphical-
ly rather than using text. We needed
an icon or another way of indicating
whether the price was high or low.

After the player processed all of the
information displayed in the HUD, he
needed to do one of three things: buy,
sell, or leave. The player should clear-
ly understand how to buy, sell, or
close the dialog box and move on. The
buttons for these actions needed to be
big enough to see easily and needed to

be colored in a way that the player
would instinctively know what to do.

We then moved on to sketches of a
different approach. We were still not
at a point where we needed to have
pretty sketches. If we could look at a
sketch and understand the layout,
then it was good enough. Figure 14.2
shows a rough sketch of a vertical lay-
out.

The buttons for purchasing items did
not need to be displayed all of the
time. We decided that it would be a
good idea to have these buttons pop
up on the side of the menu when an
item was selected that could be
bought or sold. This would also help
the player better understand what the
Purchase and Sell buttons did. The
highlight would move down to the
row where the item was located. The
Purchase button would not just visu-
ally signify purchase, but purchase this.

Figure 14.3 is a very rough sketch of
the buttons appearing to the side of
the highlighted object.

Figure 14.2  This vertical menu
approach seemed to take up less
screen space and it could naturally
grow out of the ship information
that would already be on the screen.

Figure 14.3  These sketches are still very loose.
The purpose was to quickly see potential layouts.



Temporary Art
Before spending much time on final
art, the game designer and I began
creating some temporary art. The
interface programmer was then able
to take this temporary art and put it
in the game. He could start displaying
information and making buttons
work. The game began to be playable
at this point—the player could buy
and sell things and make money.

Of course, this was a long way from a
fun, finished game, but it afforded us
the opportunity to do some early eval-
uation. We handed the game to new
players and tested whether they could
quickly understand the interface. We
also could begin to see whether this
approach made it fun to trade items. If
trading was tedious, we had to change
how it was done because trading was
what the player would be engaged in
throughout the game. The only way to
know if a game is fun is to try it. An
experienced game designer can make
some good assumptions about the rel-
ative enjoyableness of a game, but
there is no substitution for an actual
trial involving new players. Because it
was so early in the process, we knew
we’d have to make many changes.

Spending time on polished artwork is
a big temptation—it is really reward-
ing to look at pretty art in the game. I
have worked with many producers
and publishers who want something
cool to show off—they want to show a
version of the game to the press or to
their boss, so they ask for polished art
early. While creating finished art early
on is sometimes a necessity, you
should realize that doing so will create
extra work when things need to be
redone. It also can take the focus off
the game’s functionality and put it on
the quality of the art. In these early
stages, it is better to get
the functionality cor-
rect. You can then fol-
low up with pretty art.

On Nomad, we used
some pieces of art
from a previous game
and created some new
art. Luckily, we were
working with experi-
enced game develop-
ers who understood
what they were look-
ing at. Some of the art
we used was purposely
bad—the program-

mer even made some of the art him-
self. Making bad temporary art is
sometimes a good idea—if you make
temporary art really ugly, then there is
no doubt that it is temporary. If we
were dealing with less experienced
directors, we might not have taken this
approach—they may have believed
that the art was final if it looked too
good. The goal here was just to test out
the game’s functionality.

Figure 14.4 shows some temporary
art used to test the functionality of the
interface.

The Rough Sketches 159

Figure 14.4  You can see the poorly drawn Purchase buttons
and the general poor quality of the art here.



Chapter 14   ■ Designing an Interface160

Re-Do’s
There is one area in which we did
waste a little time—re-do’s. We tried
hard to avoid spend time on re-do’s,
but it is almost impossible to avoid
completely.

The programmer set up the tempo-
rary art and made it work in the
game. As we reviewed it, we came up
with a better solution than we had
implemented at first. This new solu-
tion meant that the artwork must be
done differently, and the programmer
would have to make the changes. If we
had guessed correctly the first time,
the temporary art would have only
needed to be replaced with final art,
and it would have taken little or no
programmer time. The programmer
spent time setting the art up the way
that seemed best at the moment—he
just had to take his best guess. This is
one of the reasons for using tempo-
rary art; at least I did not waste time
creating final art and then have to
change it.

I try hard to get an interface com-
pletely right the first time, but I don’t
think I have ever actually done so.
This is because I am always open to
improvement. Once I see an interface

in action and see how other players
play the game, it seems I always find
ways to improve it. If there is time and
budget to make it better, then I want
to do so. I have seen too many game
and interface designers get an idea
and cling to it tightly. This can be
damaging to the final game.

The early stages of a game are the best
places to make changes. When I am
told that the direction of a design is
set and it cannot change—simply
because it is the way the designer
wants it and not because of time or
budget constraints—I assume the
game will not end up as good as it
could be. If you fear change, you
might miss out on opportunities to
make a better game.

Don’t come away from this book
thinking you should demand radical
interface changes late in the game
process or when there is not enough
time or budget to make the changes.
Be open to new ideas but wise about
your schedule. In real life, an unfin-
ished game is worse than an imperfect
game. An unfinished game can’t be
sold. (Although I have seen a couple
of games that have made me question
that statement!)

Nomad Colors
The game designer and I tried several
color combinations for the trade
interface in Nomad. This color deci-
sion would also affect the entire game,
as all of the HUD and front-end inter-
face would follow this same color
scheme. These colors might also have
been used on the box cover. What we
were really deciding was what the
color of the game should be.

The colors used in Outpost Kaloki
were fairly saturated colors. We need-
ed the color scheme for Nomad to
match the already-established look of
the in-game art. The spaceships in the
game were bright and had sort of a
cartoonish look. This bright, cheerful
look was not an accident; it was care-
fully chosen. We believed that this
look would help Nomad appeal to a
broad market.

Neither of the two common styles for
space games—rusted metal with dirt
and grime or clean, glowing, and
high-tech—was perfect for our target
audience. These two art styles might
appeal to the serious gamer, but they
might also scare off the casual gamer.
Our goal for Nomad was, you’ll recall,



to reach this casual gamer while still
appealing to the hard-core gamer. The
interface colors played an important
part in reaching this goal.

Two possible color schemes for
Nomad are shown in Figure 14.5.

In Nomad, we added combat elements
that did not exist in Outpost Kaloki.
Nomad was going to be slightly edgier
than Outpost Kaloki, and the look
could therefore be a little more geared
for the serious gamer. We came up
with a predominantly gray and purple
interface with bright orange accents.
This was a very non-traditional color
choice for an interface. It would really

stand out, but it also fit well in the
Kaloki universe. We hoped that these
colors would become recognizable as
the colors of Nomad. The final color
choice can be seen in Figure 14.6.

Using Color as a Tool
The game designer and I made a deci-
sion to use color as a tool to help the
player. Our simple sketches didn’t
have color, but we began discussing
ways we could use color to make the
interface easy to understand while
making these crude sketches. Talking

about color in this early stage also
helped us to visualize the final prod-
uct.

We decided that it was important for
the player to understand what items
he had in his ship and what items
were in the store. As items were pur-
chased and sold, they would change
from one side of the Trading menu to
the other. As always, we did not want
to rely on text to solve this problem.
The standard solution is simply to
label the top of the columns of items
Ship or Store, but we wanted to leave
such labels off the screen. If our label-
less approach turned out to be
unclear, we could always add text
later. We wanted the player to know
what was in his ship without having
to read a single label, so we used color
to provide visual clues.

Some information, such as the
amount of money the player had and
how much space was left to carry
items, needed to be displayed all of
the time. We decided it would be a
good idea to have a small portrait of
the ship next to this information. This
would make it clear that this was
information about the player’s ship.

Nomad Colors 161

Figure 14.5  These are some color schemes that we
looked at for the game.

Figure 14.6  The final colors
are a little more edgy than in
Kaloki, but they still fit well
within the look and feel of the
Kaloki world.



Chapter 14   ■ Designing an Interface162

This small piece of HUD with the
portrait of the ship was mostly pur-
ple. We therefore decided that all of
the icons and information about the
ship should appear on a purple back-
ground. Any of the items in the virtu-
al store would appear on a gray back-
ground. We also decided to make a
visual connection between the pieces
of HUD that were displayed all of the
time and the store interface that
appeared only when the player parked
at a space station. We wanted this art
to appear to be one big piece—the
player may never have consciously
noticed that the ship information
always appeared on purple, but we
hoped that it would give him intuitive
clues.

Figure 14.7 shows how all of the
information about the ship had a pur-
ple background.

We listed all of the important items
that we thought would appear in the
game. We then assigned each item a
color. If we kept these colors consis-
tent, the player would eventually learn
what the colors meant. If warp gates
were always blue, then the player

would learn to instantly recognize
that a blue gate was a place to exit the
area and warp to another. Figure 14.8
shows the chart we made for the use
of color in the game.

A great place to use this color-coding
was in the mini-map. The mini-map
displayed a bunch of moving dots that
represented a number of objects in
the world. The player would need to
look at the mini-map and instantly
understand what all of the dots on the
map represented. Labels could have

been a solution here too, but they
would have made the mini-map
much harder to understand than it
would be if we colored-coded the
dots.

Figure 14.7  You can see how the basic
ship information seems to connect to the
list of items carried in the ship.

Figure 14.8  This chart was made not
only for the interface, but also as a guide
for the entire game.



A good use of color in the mini-map
went a long way. If all of the enemies
appeared as red dots in the mini-map
but the space station was also red,
then the player would have a hard
time telling the space station from the
enemies in the mini-map. But if the
enemies appeared as red dots and
nothing else onscreen was red, then
the player would have no trouble
spotting them.

Creating the Art
Once the initial pencil sketches were
done and the temporary art had been
tested, it was time to create some
good-looking art. This was our first
shot at art that might be final. While
we understood that the art would
probably change again later, we
attempted to create art that could be
final if it worked well. You never
know—you might get certain parts
perfect. That was the goal, anyway.

Breaking Up the Art
It may have been faster to simply cre-
ate the entire piece of art needed for
the trade interface and give this to the
programmer. While this technique

might appear to save time at first, it is
usually a poor solution, and in the
long run it will take longer. Although
breaking up the files into smaller
pieces will require more effort for the
artist and more programmer time at
first, it will actually save time.

Once this initial work has been done,
this one piece of art can be used in
many different locations at various
sizes. If a solid piece were used instead
of a file that could be scaled, file sizes
would end up being much larger than
needed because a new file would be
needed for each different-size menu.
A piece of HUD that can be scaled
also allows a lot more flexibility.

We examined the Nomad design and
decided how to break the art up into
the smallest and most flexible pieces
possible. It wasn’t easy to arrive at the
best solution. Finding the most effi-
cient way to break up the menu also
required some very slight changes to
the design. These changes were small,
and making them allowed us to use
fewer pieces of art.

At the time, it seemed like we were
doing more talking than creating art,
but all that discussion was necessary

in order to avoid having to re-do the
art several times. Taking out a little
variation in the middle of the menu
and squaring off a rounded corner
reduced the number of pieces that
was needed to create a dynamically
scaling menu.

The art needed to be flexible. The
Trade dialog box needed to be
dynamic and change for each situa-
tion. Each store where this dialog box
would appear included different items
to sell, and every store could sell a dif-
ferent number of items. The player
also had a varying number of items
aboard his ship. The size and shape of
the dialog box needed to change for
each of these situations. The two sides
of the dialog box, the ship inventory
side and the store inventory side,
needed to change independently. The
side on the left, which included the
store items, needed to change to
accommodate the number of items in
the store. The side on the right need-
ed to change to accommodate the
number of items carried in the ship.

The same art we created for the Trade
dialog box would also be used in the
dialog box for accepting missions.

Creating the Art 163



Chapter 14   ■ Designing an Interface164

This Mission dialog box would have
the same basic layout and be based on
the same concepts as the Trade dialog
box, but the amount of information
would be different. More information
needed to be displayed in the right
side of the dialog box, as this was
where the information about the mis-
sions the player had already accepted
would be displayed.

Figure 14.9 shows two different sizes
of the Trade dialog box that can be
created with the same art.

It is always best to design an interface
with breaking up the art in mind.
Even when doing the rough pencil
sketches, I was thinking about how it
would be best to break up the art, and
so I designed it accordingly. This
meant that I needed to think about
pixel sizes of each element in the
design in powers of two, as most game
engines require that pixel dimensions
of each piece of art be a power of two
(see Figure 14.10). There are ways to
work around this by leaving extra
space in the file, but it is much more
efficient to have art that works well
with this limitation.

If I designed it correctly, the
interface would be easy to
break up into powers of two.
For example, the horizontal
rows in my mock-up are all
32 pixels tall. As I sketched
them, I made the assumption
that I would have 32 pixels of
space. If I needed more, I
knew I would need to jump
to a 64-pixel tall row. If I’d
had a 34-pixel tall row, those
extra two pixels would have
actually added another 32
pixels to the height.

After a lot of thought, the game
designer and I came up with
what we felt was the most effi-
cient way to create the art for this
interface. This plan required six
pieces of art. If you look at Figure
14.11, you can see our crude
sketch that we scribbled on the
whiteboard—I added the green
stuff digitally to help identify the
different pieces. All of the pieces
of art are labeled with an R to
indicate that they need to be

Figure 14.9  Different situations required different
sizes for the Trade interface. It was designed to be
flexible.

Figure 14.10  Each section had to be created in
a size that was a power of two.



dynamically re-scaled. (The size of the
dialog can change based on how many
pieces of art are tiled together.) The
pieces marked with an H need to have
a highlighted state.

The piece of art labeled 1 will be
mostly purple but will also include
the transition to the gray store sec-

tion; this is the section where the title
will appear. The piece of art labeled 2
will be at the top of the list of items in
the ship. It will be all purple except for
a small corner piece that will round
off the transition from the purple to
gray.

Both pieces 1 and 2 were made to look
as though they connected to the pur-
ple ship information box that
appeared at the top of the dialog box.
Both of these pieces of art were 32
pixels tall and 128 pixels wide. The left
32×32 pixel square served as the end
piece. The second 32×32 block was
the tiling center. The third 32×32 sec-
tion was the right end piece and the
last 32×32 section was blank. You can
see more about how this scaleable art
works in Chapter 9. You can see what
this art looks like in Figure 14.12.

Creating the Art 165

Figure 14.11  This is the final sketch on our whiteboard; it shows how the interface would
be pieced together.

Figure 14.12  These two pieces of art are
the final ones used for the top row on the
Trade dialog box.

The pieces labeled 3 and 4 in Figure
14.11 are also 32 pixels tall and they
are scaleable because they can be tiled
and made any size, just like the two
pieces of art above them. This is
where the store items and the ship
items will be located. If there are five
items in the ship, piece number 4 will
be duplicated five times.



Chapter 14   ■ Designing an Interface166

In order to make the interface clear, I
put a line to separate each row. These
lines were placed at the top of each
section, and they appeared as though
they connected across both pieces of
art. You can see what the final art
looks like in Figure 14.13.

I have worked with several program-
mers who always want the art in one
big piece. Often, this is a sign of inex-
perience. There may be a rare case
when submitting the art in one piece
is actually the best solution, but most
of the time it is worth the effort to
break files up into pieces, as it saves
space. In our game, we were very con-

cerned about file size because we
planned on creating a downloadable
demo. The entire download needed to
be as small as possible. In the end, we
didn’t have many files and they were
all small. The file size of the total
game was also small.

As you can probably tell by this
description, creating the initial art for
the Trade interface was not a quick
process, but doing it this way actually
saved time in the end. I created six
pieces of art and with these six pieces
of art we were able to create a dialog
box that scaled to every situation.
Breaking the art up into small pieces
not only saved space, it also allowed
for a lot more flexibility.

Many different dialog box boxes were
needed for the game. We could not
have anticipated all the different sizes
that would be needed in the game,
and even if we could have, creating all
the various size dialog boxes would
have required a lot more art. Scaleable
art allowed the programmer to adjust
the size of the dialog box to fit the
amount of information that needed
to be displayed.

Figure 14.13  These two pieces of art are
the final pieces used for the middle rows on
the Trade dialog box.

Figure 14.14  These two pieces of art
work like the others, but they are much
smaller. They form the cap on the end of
the vertical columns.

The pieces labeled 5 and 6 in Figure
14.11 are only eight pixels tall and 32
pixels wide. They are scaleable bars,
just like pieces 3 and 4, but they are
broken up into 8×8 sections. These
pieces of art are purely decorative.
They create the bottom caps on the
Trade dialog box. Pieces number 5
and 6 also included a bar at the top.
The line on this bottom piece of art
separated this piece of art from the
horizontal row above it. You can see
the final art for the bottom piece in
Figure 14.14 and everything put
together in Figure 14.15.

Figure 14.15  This is what it looks like
when all of the pieces are put together.



Selected Rows
The pieces of art that are labeled 3
and 4 in Figure 14.11 are items the
player can select in the game. These
two pieces of art were placed next to
each other to form horizontal rows.
The entire horizontal row could be
selected by the player at once. Because
this entire row could be selected, a
highlighted state was needed for both
of these pieces of art, just as is needed
for a button.

More art was created for this dialog
box. When each row was selected
more information was displayed to
the left of the row. The Purchase but-
tons appeared and information about
the item that could be purchased was
displayed. All of this art had to work
well together.

It was important that the player
understand what the Purchase but-
tons could be used for and that it be
easy for the player to connect the
information to the item that was
available for purchase. He needed to

know what he was buying when he
pressed the Purchase button. In order
to make this clear to the player, we
needed to make the buttons look as
though they could be pressed; the
buttons also needed to communicate
what would happen when they were
pressed.

As I mentioned previously, the back-
ground of these additional pieces of
art was gray so it was similar to all of
the art used for the items in the store.
The information was about the items
for purchase, and the gray color was
used to make this fact clear. We used
buttons with an arrowhead shape to
indicate which way the selected item
would move if the button were
pressed. It would either move from
the store into the ship or from the
ship into the store.

Figure 14.6 shows the highlighted bar,
the Purchase buttons, and an area
where information could be dis-
played.

Photoshop Techniques
I created all of the art for this section
of the HUD using Adobe Photoshop.
This is my favorite program for creat-
ing interface art with this look. Other
software has a lot of the same features,
but Photoshop is by far the most
commonly used software in the
industry, and I know it best.
Photoshop includes many features
that I am familiar with that make
tasks easy and fast. I will show you
how I used Photoshop.

Photoshop Techniques 167

Figure 14.16  When each row is
selected, it highlights and more
information is displayed in the additional
dialog box.



Chapter 14   ■ Designing an Interface168

When it comes to creating interface
art, my favorite features in Photoshop
are the layer effects that can be creat-
ed using the Add Layer Style button.
These features should not limit your
vision, though—that is, you should
not rely on the layer effects so much
that you don’t create anything that
doesn’t use one of them. If a layer
effect gives you the look you want,
then go for it.

The green circle in Figure 14.17 indi-
cates the button in Photoshop used to
access the layer effects.

A big advantage to using the layer
effects is that it is easy to maintain a
consistent look throughout your
entire interface. Once you have creat-
ed a layer effect and adjusted it just
the way you want it, you can easily use
this same effect through your entire
interface. After you save the layer

style, it will appear in the Styles menu.
It can be applied by simply clicking on
it when the correct layer is selected.

You can see where to add a new style
in Figure 14.18.

I used the Bevel and Emboss effect on
the Nomad interface. You can see this
effect on the purple areas of the inter-
face. I first created this effect on the
Ship Information panel. Once it was

Figure 14.17  This little button gives you access to a lot of
different effects that can be very helpful when creating art for an
interface.

Figure 14.18  Once you have an effect adjusted just the way you
want it, you can save it and use it in other places in your interface.



created, I saved it and used it on all of
the purple pieces in the Ship section
of the Trade interface. I also used the
same effect, saved in the Styles menu,
for a great deal of the HUD and even
in the front-end interface. This
allowed me to be very accurate—I
could add the same two-pixel bevel
with the lighting coming from a con-
sistent angle to any piece of art with a
single click. This would have been

much more difficult if I had created
the bevel effect by hand.

Using the effects in Photoshop not
only allows me to keep the same look
across the entire interface, but it also
offers precision and consistency
across a single piece of art. This is very
important when you’re creating art
that is tiled and pieced together in the
game. If there is any variation in a

drop shadow, for exam-
ple, it can look bad when
tiled, so you will still need
to be careful.

For example, a curve that
gets too close to a middle
section can cause prob-
lems—a slight difference
in the color of a pixel
becomes much more
noticeable when it is
repeated. Figure 14.19
shows how this can hap-
pen. You can see how a
curved area comes very
close to the right edge of
the first 32×32 section of
the art. Because the drop
shadow is affected by this

curve, the first pixel in the next 32×32
is slightly lighter than the rest of the
drop shadow. You can see in the lower
part of Figure 14.19 how this shows
up when it is tiled.

Step-by-Step Art
Creation
In this next section, I will take you
thorough the step-by-step process I
used to create the art for the Trade
interface. I hope that reading about
this process will reveal more informa-
tion that you can use in your interface
design.

The Ship Information Panel
As I previously mentioned, I began by
creating the art for the Ship
Information panel. I created the shape
of the top orange bar. As I made this
top bar, I knew that this entire section
would be created out of a scaleable
box (see Chapter 9 for more informa-
tion). Because it was a scalable box, all
four corners had to fit within a 32×32
box, and the top edge had to be
repeatable. I filled it with the orange

Step-by-Step Art Creation 169

Figure 14.19  A very slight difference, even in only one
pixel, can be visible when this section is repeated several
times in a game.



Chapter 14   ■ Designing an Interface170

color and applied a layer effect to give
it the beveled edge. You can see this
decorative bar in Figure 14.2

like with a raster level. (You can
always right-click on the layer in the
Layer window and convert it using the
Rasterise option.) I applied a bevel
that made it appear like a little bump
or rivet. I made copies of this layer
and positioned one in each of the bot-
tom corners. You can see these rivets
in Figure 14.22.

N o t e

Photoshop is a raster-based program.
This means that most features and the
final file are based on the use of pixels.
There are a few vector features. This
means that the shapes created using
these features are not pixel-dependent.
They can be scaled and moved easily.
Only when the file is saved in a format
other than a PSD or when the layer is
“rasterized” by right-clicking on the
layer and choosing this option are
these shapes converted to pixels.

I saved this file in a Photoshop for-
mat. This format retains all of the
layer and layer effect information so
that I could always open this file and
easily make edits. Another benefit is
that you can use the separate layers in
other areas. If I need a rivet in anoth-
er file, I can open the Photoshop file
and drag this layer onto the new file.
Whenever I need a bar similar to the
top bar in this file, I can drag this layer
and place it into a new file. The layer
effect will also be transferred.

Figure 14.20  This decorative bar at the
top of this piece of the HUD is created in
such a way that it can work with a
scaleable box.

I then created a new layer below the
orange bar. I created a square selec-
tion that was not quite as wide as the
top bar. I inset this box several pixels
from the edge of the top bar so that
the top bar would extend past the
edge of the box slightly. When I saved
the final file, I made sure that the file
format supported transparency so
that the player could see through
these pixels to the game. I placed the
same bevel effect on this layer that I
placed on the bar above. Figure 14.21
shows the box behind the top bar.

I then used the Ellipse tool to create a
small circle. The advantage to using a
vector shape is that it could be easily
scaled, yet you can apply effects just

Figure 14.21  The purple box is on a
separate layer and has the same bevel
effect applied to it as the bar above.

Figure 14.22  I added small circles that
appeared to be some sort of rivets.



I then merged all of the visible layers.
This makes it possible to select and
copy pieces from all of the layers.
After all of the layers have been
merged, when I select and copy the
only layer the layer effects are includ-
ed. Before the layer is flattened, the
Copy and Paste functions ignore the
layer effects. If you don’t merge layers,
you will only copy the base art.

I then coped 32×32 sections of this
merged art and pasted them into a
new 128×128 file. I copied the four
corners, the sides, the top, the bottom,
and the middle. I then placed these
nine sections into the correct spots in
the new file in order to create a
scaleable box. The tricky part about
this art was that the sides and bottom
corners had to be inset so they would

line up correctly. Figure
14.23 shows the final art.

Next, I needed to create the
box with the ship logo in it.
I created the background
box and gave it to the pro-
grammer so that he could
place it where it belonged.
The image of the ship was a
separate image—I created a
new ship image for every
ship possibility in the game.
These ship images were
small renders of the actual
3D model. We did it this
way so that the ship image
would change as the players
ship changed during the
game.

The ship needed to be larger than a
32×32 so that I would have plenty of
room. A 32×32 image was not enough
to see the ship clearly so I had to jump
to the next size, 64×64. I only needed
a few more pixels so the ship image
did not fill this entire file, so—I left
extra transparent space. The pro-
grammer placed this box based on the
upper-right corner of the file, so the
extra space ended up at the left and
bottom of the file.

First I created the render of the 3D
model and used it to determine the
right size for the ship image. The play-
er needed to recognize the ship. I tried
several sizes until I found the smallest
size where the details of the ship were
reasonably recognizable. There was
no need to take up space with a ship
image that was too large. I then knew
how big this file was and I used this
information to determine how big the
box in the background should have
been. I created a square selection that
was the size of this outer box. I used
the Smooth Selection option in the
Select/Modify menu to round off the
corners of my selection. Once I had

Step-by-Step Art Creation 171

Figure 14.23  This is the final art used for the Ship
Information panel.



Chapter 14   ■ Designing an Interface172

the proper selection shape, I filled it
with a dark purple color. I added a
Pillow Emboss effect to this layer.

Next, I duplicated this layer, locked
the transparency, and filled it with the
menu’s orange color. I left-clicked on
this layer in the Layer window while
holding down the Ctrl button; this
gave me a selection around the edge
of the layer.

I again used the Select/Modify menu,
but this time I chose the Contract
option. I entered 2 in the Contract

Selection dialog box and then hit the
Delete key. This created a two-pixel
border around the background. I
added a two-pixel bevel to this layer to
give the border a little depth.

You can see where to lock the trans-
parency of the selected layer in Figure
14.24. You can see the final result in
Figure 14.25; Figure 14.26 shows the
final piece of art for the background
of the ship icon. Notice the extra
space.

I placed the ship icons in a 64×64 file
to match the background. These icons
were transparent around the ship. The
ship was placed in the right location
in this file so that if it the ship icon file
were laid over the background file, it
would be positioned correctly. This
made it easy for the programmer to
position the image of the ship over
the background. He simply put these
two pieces of art in the same location
and the ship was in the right spot. You
can see this in Figure 14.27.

Figure 14.24  If you lock the transparency and then press the
Alt + Delete, the opaque portions of the layer will fill with your
foreground color.

Figure 14.25  The
background and border are
each on a separate layer
with different layer effects
applied to each layer.

Figure 14.27  The ship icon appears to be in
a weird spot in the file, but this will allow it to
be positioned correctly over the background.

Figure 14.26  This is
the final art for the ship
image background.



The Trade Dialog Box
The next step was to complete the
Trade dialog box that would be locat-
ed under the Ship Information bar I
just created. I began to create the
Trade dialog box by starting with the
Photoshop file that I had just com-
pleted. It contained the art used in the
Ship Information bar. I started with
this file so that I could see both the
completed Ship Information box and
at the same time see the Trade dialog
box I was working on. This way, I
could make sure that both pieces
worked well together.

I started by creating a new layer below
all of the existing layers. I made a rec-
tangular selection the same width as
the Ship Information bar that was
already in this file. I then rounded the
corners of this selection by using the
Select/Modify/Smooth option, with a
radius of 6. I filled this selection with
the gray color. I did not worry about
the three corners that did not need to
be rounded because they would all be
covered up. The only corner that real-
ly needed to be rounded was the
lower-left corner.

The next step was to create the title
bar area for my design. I created a new
empty layer on top of the gray layer I
had just created. I changed the grid in
the options to have two subdivisions
in every 32-pixels and used this grid
to see how tall each section would
need to be. I wanted to create a purple
section in this layer that did not com-
pletely fill the 32-pixel tall section. In
this new layer, I made a rectangular
selection just below the Ship
Information bar. This selection was
the same width as the entire gray sec-
tion of the background. The selection
was 24 pixels tall, so it was short
enough that a small portion of gray
would fit into the 32-pixel height. The
gray area needed to be big enough to
have the curved area circled in green
in Figure 14.28.

I needed enough gray at the bottom
of this 32-pixel tall section to create
this curve, but I also needed enough
room on the purple area for a title.
Once I had the right selection, I filled
it with the purple color. I then round-
ed the selection with the Smooth
option and then inverted the selec-
tion. I used the Eraser tool to round of
the bottom-left corner of this purple
selection (see Figure 14.29).

Step-by-Step Art Creation 173

Figure 14.28  The gray area needed to be
big enough to fit this curve.

Figure 14.29  This is the
first block of purple I added
to the lower section.



Chapter 14   ■ Designing an Interface174

This curve needed to fit within the 32-
pixel height, which is marked in
green, but I also needed room to place
a title in the area marked with yellow.

Next, I made a large rectangular selec-
tion that started at the left edge of the
gray area and then I selected beyond
the area where I wanted the lower half
to be (see Figure 14.30). I then made
another selection with the left side
right where I wanted the edge of the
lower section to be. I smoothed this
selection and deleted part of the pur-
ple area, leaving a rounded edge (see
Figure 14.31).

I added the same bevel effect as on the
Ship Information bar. I also added the
same rivet-looking circle as the Ship
Information bar. I was able to dupli-
cate the layers that contained the
other rivets and move them down
into position. (See Figure 14.32.)

The next step was to add lines to sep-
arate each row. I created a new layer
above the purple layer. I made a two-
pixel tall selection the entire width of
both the purple and gray area and
then filled it with the gray color. I
selected the part of the line that was
over purple background area, locked
the opacity, and filled this part of the
line with purple. At this point, the line

was not visible because it was the
same color as the image behind it. I
then added a one-pixel bevel to this
line and duplicated it several times. I
moved each copy down 32 pixels.
Each line would be placed at the top
of the 32-pixel row. Placing these lines
at the top of each row rather than the
bottom meant that a line would need
to be placed at the top of the bottom
caps.

I had already created the bottom cap
with the rounded corner when I cre-
ated the gray background area. The
bottom of the purple side of the menu
was still needed. I went back to the

Figure 14.30  This
addition is a little wider
than the final goal. I will
use the selection to delete
the rounded corner.

Figure 14.31  Smoothing
the selection and deleting
the extra purple leaves a
rounded inside corner.

Figure 14.32  I added
the bevel and rivets.

Figure 14.33  These lines
have a bevel effect and
have been spaced 32 pixels
apart.



purple layer and made a rectangular
selection that was the width of the
purple area and was eight pixels tall. I
rounded the selection using the
Smooth option.

The problem with this selection was
that I only wanted the bottom corners
rounded, so I added these corners
back to the selection by holding down
the Shift button while using the
Selection Marquee tool. Once I had
the selection shape I wanted, I filled
this selection with purple. I then used
the Select/Modify/Contract option
with a setting of 2 and deleted the area
in this selection.

Without changing the selection shape
I just used, I selected the gray layer
and filled the selection with gray. This
entire bottom piece was only created
to make the dialog box look better—it
is a way to add a smooth corner. This
is why it was only eight pixels tall. You
can see the final effect of the bottom-
right section of the dialog box in
Figure 14.34.

I saved this file so that I could make
changes to it later. The final art used
in the game would not have the layers
and layer effects that could be easily
changed. A Photoshop file stores this

information that is not in the
final format. Once I had saved
this file, I needed to break it up
into pieces. The easiest way to
do this was to merge all of the
visible layers, select each sec-
tion, and then paste them into
the correct size files. I also put
the art in the correct layout so
that it could be used as scale-
able bars. You can see all the
final pieces in Figure 14.35.

Step-by-Step Art Creation 175

Figure 14.34
Smoothing the
selection and deleting
the extra purple leaves
a rounded inside
corner.

Figure 14.35  This is what each of the final pieces of art looked like. This is the art
actually used by the game engine.



Chapter 14   ■ Designing an Interface176

Showing Selection

The next step was to create a highlight
for the entire row that actually
extended out past the row. I also
needed an area in which extra infor-
mation about the item for sale could
be placed. The horizontal row was
made up of two halves, a gray half and
a purple half. I needed to make a
highlight for each of these pieces of
art that fit together to look like one
long row.

I used the Inner Glow effect to make
the bar look as though it were high-
lighted. This effect also enabled me to
use the same-size art as on the un-
highlighted row because the glow did
not extend beyond the row. The Inner
Glow effect also did not cover any
information on the rows above and
below. If I wanted to use an Outer
Glow effect, it wouldn’t have fit into
the 32-pixel tall selection.

I needed to pull a couple of tricks to
make the inner glow work. If I had
just put the inner glow in the existing
art, it would cover up the lines used to

separate the rows. Just placing a glow
on each piece of art would also cause
the effect to separate the two halves
because the row was actually com-
posed of the purple half and the gray
half, each on separate levels. What I
wanted was for the glow effect to
appear to affect the entire row, not the
two halves. I got around the problem
by putting the glow effect on a new
layer that extended past the center
area, where the two halves met. I then
added a blank layer above this piece of
art, linked the two layers, and then
merged them. I merged the layers
because this merge embedded the
glow effect in the layer. The layer
effect looked the same, but it was no
longer really a layer effect. This
allowed me to select and delete the
extra glow effect that I had created
past the center where the two halves
met. If I left the inner glow effect and
the image in the layer would have
been the correct size, the glow effect
would have split the two halves.

When a row was selected in the Trade
interface, the bar extended further to
the left. I created the piece of art for
this extension of the row. I used the
same technique that I used for the
other two pieces, but I added a piece
of art that served as an end cap on the
left. Just like the other pieces I just
created, I had to create the glow effect
on a larger piece of art and then cut it
down to size. The entire piece of art
that was place to the left of the row
was also created as a scaleable bar so
that the size could easily be adjusted.

Figure 14.36  These two pieces of art
were used in the game.

I then pasted a copy of the line on top
of this art so that it was not covered by
the Inner Glow effect. If you look at
Figure 14.36, you will see that the two
highlighted halves look as though
they could be combined.



Figure 14.37 shows the highlighted
effect before the art was cropped. You
can see the final art in Figure 14.38.

Notice in Figure 14.39 that this piece
of art had a gray background because
it contained information about the
items in the store. You can see how it
is all put together in Figure 14.40.

The Big Change
After all of this work, the game
designer and I decided not to use this

art for the Trade dialog box. We ended
up using this art in other areas, like
for the Accept Mission dialog box.
Why didn’t we use the art for the
Trade dialog box? Well, we put the art
in the game and tested it out, and
despite all of our careful planning, it
was still difficult for new players to
figure out, and we still had to do a lot
of explaining. We realized that Nomad

The Big Change 177

Figure 14.37  This is the side piece
before it was cut down to size. It includes
the unwanted glow effect on the right
edge.

Figure 14.38  I removed the left edge in
the final art so that it would visually
connect to the rest of the row.

Figure 14.39  This is
the final art for the
scalable information
box.

Figure 14.40  This is what all of the art looked like when it
was put together.

The last piece of art I needed was a
background for more information
about the item for sale. Just as for the
area I created for the ship informa-
tion, I created a scalable box so the
size of this background also could be
adjusted. This way, it was easy for the
size of this box to dynamically change
depending on the amount of infor-
mation that was displayed for each
item.



Chapter 14   ■ Designing an Interface178

still would have required a complicat-
ed tutorial. This new interface was
better than any of the other trading
games we had played, but we had not
gone far enough. It was very impor-
tant to make this game easy to under-
stand and fun to play.

After watching a new player struggle
to understand Nomad, the game
designer came up with a great idea:
Get rid of the Trade dialog box alto-
gether. If it isn’t working, then why
use it? Skip the interface and put the
ability to pick up and sell stuff right
into the 3D game world. This new
idea limited the amount of informa-
tion we could easily display in the 3D
game world, but it also really simpli-
fied trading. It was more fun. There
was no longer a break from the game
world into a dialog box.

I chose to share this example because
I feel that this is an important part of
game design. Many of the big, block-
buster titles are done this way. Some
of these developers have an almost
finished game halfway through devel-

opment and basically redo the game
to make it better. If you have a huge
budget, you can get a great game with
this method. It is always difficult to
leave something behind after you’ve
spend a lot of time on it, but hanging
on to a flawed solution can limit your
game. We worked out the new
method for “trading.” This new solu-
tion made Nomad easier to under-
stand and more fun to play. The basic
trading action was simplified, and the
boring part, in which the player com-
pared numbers in the old style of
menu trading, was gone.

Willingness to make improvements is
the only way to develop better games.
You need to make changes to the
important areas. It is important to
make sure that the basic game-play is
fun—adding more stuff to a game
won’t fix a problem with basic game-
play. It is important to identify this
core game-play early so that the extras
don’t distract you. As in this case, the
menu and HUD had a big effect on
the game-play and getting this right
was very important.

Summary
I hope that reading about some of the
challenges I had in creating this small
piece of an entire interface helped you
to have a better understanding of how
complex the interface design process
can be. Don’t let technical limitation
dictate the final look of your interface.
Design it first and then find a way to
create it.



179

In this chapter, I will show you
how to create a simple yet effec-
tive interactive mock-up.

Creating something more than just a
still mock-up can be incredibly help-
ful—you can see your design in action
before it is put into the game.

Creating interactive mock-ups can
help you in many ways and is well
worth the effort to learn. Not only can
you work on the details of the inter-
face yourself, but also others can see
your interface in action and give you
input in the early stages of the design,

when you need it most. Once you
know how to create such a mock-up,
you will want to do so every time you
design an interface, I guarantee.

There is so much software out there
that can be incredibly useful to you
when you’re designing interfaces.
Many applications are so deep that it
is almost impossible to master every
aspect of them. In this chapter, I will
use Macromedia Flash. This chapter is
not meant to teach you how to use
Flash, though—Flash is a complex
application, and it would require an
entire book to teach even the basics.

Instead, I will do my best to give you a
brief introduction to ways in which
Flash can be used for game interfaces.

I will keep things simple in this chap-
ter, and will give you only a brief
explanation of how Flash works. The
purpose of this explanation is to help
you understand how Flash, or a simi-
lar program, can aid you in interface
design.

This chapter may not contain enough
information to begin using Flash if
you have never used similar software.
However, when you combine this

Creating an Interactive
Mock-Up

Chapter
15



Chapter 15   ■ Creating an Interactive Mock-Up180

information with other material—
such as a Flash primer book or maybe
your existing knowledge of a similar
application—you’ll be on your way to
using Flash to create super cool video
game interfaces in no time.

The Ideal Situation
In the ideal situation, you would be
able to control all of the movement
and interactivity of the interface in
the final game. You would be able to
create the art and get it completely
ready for the final game—you’d con-
trol animation, button behavior, and
everything else.

You could control all of the features of
your game using a software tool, and
then you’d simply press a button and
export a file, run the game, and see
the changes. The programmer would-
n’t even know how the buttons move
and highlight until he saw them
working in the game. Be grateful if
you are in such an ideal situation—
most of us will have to count on the
programmer to animate our inter-
faces and make the buttons function
correctly.

Realizing Your Vision
It is very satisfying to have control of
the animation in your game and be
able to make the buttons actually go
to the right screen yourself, without
the help of a programmer. If the pro-
grammer controls the animation and
interactivity of an interface, you will
rarely get exactly what you want. The
programmer may not understand
what you mean when you say some-
thing like, “Have the buttons scale up
and down and look bouncy.” He may
envision something totally different
than what you see in your head.

Sometimes the programmer just
doesn’t care about your vision—he
might do what you ask him to, but he
really doesn’t think how a button
bounces is really all that important.
To him, the simple animation you’re
asking for does not show off any new
and cool technology, and it isn’t near-
ly as fun and rewarding to create.

It would be great to have complete
control, but as I’ve said, you rarely
will. Handing the programmer an
interactive mock-up can help you
show him exactly what you want, and

give you the influence over the look of
screen items you might lack without
the mock-up. The programmer does-
n’t have to pick your brain—he can
just check the mock-up to see how
you want things to function and
move. There is little room for confu-
sion when he can see it.

Experimentation
If you can control motion and inter-
activity, you can experiment with
your design. You can easily try things
out and see how they look. It is much
harder to experiment when it takes a
long time to go from concept to the
point where you can click through a
menu in the game engine. Creating
the art in Photoshop and then going
through all of the steps—including
opening the file up in another pro-
gram, converting it to a different for-
mat, saving it with a different file
name, and so on—to prepare it for
the game can take a lot of valuable
time (and it’s tedious, to boot). This is
especially true when the process
involves another person; if you need
to wait for a programmer to put the



art in the game, you might have to
wait a long time before you can see it
in action.

When it is hard or takes too long to
try out new ideas, most designers will
be inclined to do what they already
know works. Creativity is discouraged
by complex processes. It might be dif-
ficult to explain to a programmer
that, after all the effort that you and
he put into a ripple effect, you think it
looks dumb and you want to try
something else.

The ability to create an interactive
mock-up can provide you the oppor-
tunity to be more creative because it
can be much easier to experiment.

Commercial Tools
Many game engines use commercial
tools. For example, the RenderWare
engine has the ability to export
Macromedia Flash files and use them
in the game. Many interface designers
who are using RenderWare don’t even
know that they can use Flash. When
you use Flash, you can animate and
design the menu flow. My guess is

that, in the future, more and more
engines will allow interface designers
to use commercial tools effectively.

It’s not easy to use a program like
Flash to create interfaces for a game. It
usually requires a lot of technical
understanding and a lot of time. This
may be why some designers choose
not to use programs like Flash to cre-
ate final assets. It can be tricky to learn
how to give information to the game
engine. If the player chooses Expert
mode, the game engine will need this
information. If there are three saved
games, the interface will need to dis-
play these saved games, and it will
need to know how many games are
saved and maybe even the name of the
saved game. In these cases, you will
need to give the programmer (or
game engine) the ability to affect the
interface. The interface will need to
change, based on direction the game
engine gives the interface. This can be
the toughest part of this approach,
but it can be done. It just requires
good planning and communication
with the programmer who is working
on the interface.

Using a program like Flash is great,
but rarely can you use all the features
in Flash in the game. There are often
many limitations in the engine that
are not in the software. This is the case
with RenderWare. Make sure you
understand what you can and can’t
do, as you will need to work within
these limitations.

Even with the possible difficulties of
communicating with the game engine
and determining which features will
work in the game, it is worth it to
spend the time to use some commer-
cial tools. Doing so can result in a
much better interface than if you left
it up to someone else.

Why Flash?
I will use Macromedia Flash to create
my mock-up. I chose Flash because of
the flexibility and control it gives me.
It is one of the most popular and fully
featured tools on the market today for
creating all kinds of interactivity.
Flash is powerful enough that you can
make an entire game start to finish
using it. You don’t need to know how

Commercial Tools 181



Chapter 15   ■ Creating an Interactive Mock-Up182

to use all of these features in Flash,
though, to create a simple interactive
mock-up.

When you use Flash, it is easy to let
others check out your results. Flash
has the ability to export an EXE file
that will run on just about any
Windows PC. You can export into
Mac format or even into HTML that
can be used in any Web browser (with
the appropriate plug-ins). The profes-
sional versions of Flash allow you to
export into PDA and cell phone for-
mats.

Compatibility is seldom an issue
when you’re using Flash. You can send
your interface to a computer-illiterate
producer, and he can review it with-
out installing anything.

Introduction to Flash
The most difficult part of learning
new software is simply figuring out
the basic logic of the program. Even if
you don’t know all the features or
understand what every button does, if
you understand the program’s
approach, then you can begin to use

it. If you don’t have this basic knowl-
edge, then learning a program’s new
features is pointless.

Using Frames
The terms used by Flash will be famil-
iar to anyone who has used animation
software, as it uses the same terminol-
ogy and logic found in the animation
industry. As you probably know, ani-
mation is really a bunch of still pic-
tures, called frames, that are played
back rapidly so that they appear to
move. Flash’s use of this approach
makes it logical. One thing that might
be a bit confusing is that the term
frame is used in Flash even if objects
in the scene do not move—for exam-
ple, if you jump from one screen or
page to another, you are changing
frames in Flash. A frame is a basic unit
of time if the file is moving forward.
You can stop on a single frame.
Images, text, and objects all exist
within a frame.

However, a frame in Flash is a little
different from those in an animation.
In an animated movie, frames are
played back at a constant rate.

Because Flash is interactive, you can
stop on a single frame, move back-
ward, and jump around. The concept
of time even gets a little more compli-
cated than that. You can have several
frames of a movie clip or a button
within a single frame of the basic
timeline. This allows you to have an
animated button that has a five-
frame animation appear in one frame
(or screen) of the overall timeline.
Understanding this concept is key to
understanding Flash.

N o t e

It may be helpful to follow along in
Flash as I walk you through the
process. It will be much easier to
understand how this mock-up was cre-
ated if you try it yourself in Flash. You
will find a trial version of Flash on the
CD that comes with this book.

When you first open Flash, you will
have one empty frame. If you look at
the timeline across the top of the
screen, you will see a red rectangle
with a thin, red line extending down.
This is how you move through the
frames in your scene. As you start, you



only have one frame, so you can’t drag
this slider. Once you add more frames
to your scene, you can use this slider
to move around. (See Figure 15.1.)

If you insert a single frame by select-
ing Insert/Timeline/Frame from the
menu across the very top of the screen
(or by pressing F5), you will see the
white block under the red indicator
get twice as big. You now can click and
drag on the red time slider and move
between these two frames, but noth-

ing changes because nothing is in
either frame.

You now can put something in both
of these frames. There are tools for
creating vector objects within Flash,
but when working on interfaces for
games, most often you will use images
created in other programs (like
Photoshop) and import them into
Flash. You can do this using the
File/Import/Import to Library option
from the top menu. This will place the

image into a
library associat-
ed with this file.

In order to save
space, Flash will
import one
image into the
library. You then
can use this
image as many
times and in as
many places as
you want
throughout your
file. Re-using
images in this

way saves file space because it does
not need to be saved multiple times.
After you have imported your images,
you can open a Library window and
see all of the objects in your library.
You can then drag these images and
drop them onto your page.

Once you have placed an image into
the scene, the two frames in the top of
your screen turn gray (see Figure
15.2). They were white when there
was nothing in the scene, but they
turn gray to indicate that there is
something in that frame.

There is still no difference between
the two frames in your scene because
the image is in both frames. If you
want to see a difference between
frames, you will need to place a sec-
ond image in the second frame but
not in the first frame. The best way to
do this is to create a new layer.

Using Layers

In Flash, layers function much like
they do in other programs, such as
Photoshop. Any object on a higher
layer will cover an object on a lower
layer. You can put many objects into

Introduction to Flash 183

Figure 15.1  This file contains only one blank frame. You will need
to add more frames before you can move from frame to frame.



Chapter 15   ■ Creating an Interactive Mock-Up184

Figure 15.2  Once you have imported an image into the library,
you can drag it into your scene. Once you have done this, the
frames turn gray in the timeline.

Figure 15.3  This button will create a new layer.

one layer, but it is easier to keep track
of all of the images and to animate
them if you keep them all on separate
layers.

You can create a new layer by pressing
the Add Layer button, the icon that
looks like a page with a corner turned
up. It has a plus sign next to it and is
located in the upper-left section of the
screen. Once your new layer appears,

you can add a new image to it. Figure
15.3 shows you where the button is to
add a new layer.

Now you will need to put an object in
the second layer. You can import
another image into your library and
drag it into the scene. This time, when
you drag the image into the scene,
make sure that the correct layer is
selected.

You can select the layer by either click-
ing on the bar with the layer’s name
(by default, Layer 2) or by clicking
onto the frame in the time line. This
will put the object into the proper
layer.

Figure 15.4 shows the correct layer
selected.



Introduction to Flash 185

Figure 15.4  Select the layer before you drag an object into your
scene. The object will be placed on the selected layer.

Figure 15.5  Layer 2 is empty in frame 1 and includes an image in
frame 2.

The frames in this layer will turn gray
once they contain an image. Like
before, the frames are still the same—
there is no difference between frames
1 and 2. Both placed images are in
both frames.

You can remove the image on the sec-
ond layer from the first frame by
clicking once on the black circle in the

first frame, on Layer 2. Once this
frame has been selected, you can click
again and drag this circle into the sec-
ond frame. You can use this click-and-
drag method to extend or shorten the
life of the images in a layer.

Layer 1 is empty in frame 1 and
includes the image in frame 2. You can
see which frame is empty in Figure
15.5.

Finally, the two frames are different.
You can drag the red bar back and
forth to see the differences between
the two frames.

Working with Flash can, of course,
become much more complicated, but
this is the basic idea—create a bunch
of frames (screens) and move from
frame to frame, based on input from
the user.



Chapter 15   ■ Creating an Interactive Mock-Up186

Animation in Flash
Working with animation in Flash can
be very complex. I will keep this dis-
cussion simple and describe only
some of the basics—the principles
that you will often use when working
with game interfaces. I covered some
of this material in Chapter 11, you
might recall, but I think it bears
repeating here.

A common term in animation is key
frame. This term has its roots in tradi-
tional hand-drawn animation. A key
frame was an important frame drawn
by the animator. Usually, the more
experienced animators would draw
these frames.

These experienced animators would
also specify the amount of frames in
between these key frames, and less
experienced artists would then draw
the frames that blended between the
key frames. This process became
known as tweening.

Flash uses these same terms. Like in
traditional animation, you can create
key frames in Flash. In these key
frames, you set an image’s position,

rotation, scale, and any other attribut-
es that can be animated (such as
transparency). After you set the next
key frame, you can tell Flash to create
the frames in between the key frames.
Flash refers to this as motion tweening.

Before you can create an animation in
Flash, you will need to extend the
layer so it lasts the entire length of the
animation. There are several ways to
do this. The simplest way is to select
the black dot in the timeline that rep-
resents the
image in your
scene. When you
select the image
in the timeline,
notice that the
image is also
selected in the
scene below. You
can add one
frame at a time
by pressing the
F5 button. Just
keep pressing F5
to make the layer
as long as you
need for your
interface. In my

example, I made the animation last 20
frames.

Figure 15.6 shows what the timeline
looks like when it is extended for 20
frames.

Once you have enough frames to
work with, you can tell Flash that you
want the object to animate by right-
clicking on the section in the timeline
and choosing Create Motion Tween.
You can select any of the area between
the black dot on the left and the

Figure 15.6  There are now 20 frames in the entire timeline.



Introduction to Flash 187

Figure 15.7  A dotted line appears when a motion tween has
been applied to an image.

empty box on the right. When a tween
has been added to an image, the back-
ground turns blue and a dotted line
appears.

You can see the change in the timeline
in Figure 15.7.

Even though a tween has been added,
nothing moves yet. A key frame must
be added at the end of the animation,

and changes must be made to the
image at the point of this key frame.
Simply select the frame where you
want to add a key frame. Select the
last frame in the blue area with a dot-
ted line. (The shortcut to add a key
frame is F6.) You can then make
adjustments to the image on this
frame.

If you simply move the image to a
new position in your scene, you will
create an animation. Once you have
done this, you can drag the red slider
back and forth and watch your image
move (see Figure 15.8).

Figure 15.8  Once a key frame has been added and the
positioned changed on this frame, you can see movement.



Chapter 15   ■ Creating an Interactive Mock-Up188

Playback Speed
The frame rate of an animation is just
what it sounds like. It is a number that
refers to the number of frames that
are played every second. Most game
interfaces run at 30 frames per second
(30fps). By default, Flash is set to
12fps. This is easy to adjust. The cur-
rent frame rate is displayed just below
the timeline. If you left-click the box
with the frame rate displayed, you will
find a variety of parameters that can
be adjusted. Frame rate is one of these

parameters. Figure 15.9 shows you
where this box is located.

Changing the frame rate will have a
big effect on the speed of your anima-
tions. You should adjust this frame
rate before creating any animations. If
you change it from 12fps to 30fps
after you have created animations,
then everything will move more than
twice as fast as the default 12fps.
Everything will look smoother at
30fps.

Using Scripting
You control the interactivity of any-
thing in Flash through scripting.
Scripting allows you to give directions
on what to do when buttons are
pressed or when the file arrives at a
particular frame. These directions, or
scripts, can be located on a frame or
on an object like a button. If the script
is on a frame, the file will do whatev-
er the script directs when the file
reaches that frame. If the script is on a
button, it will execute the orders when
the button is pressed. Again, scripting
can be very complex and powerful,
and I will present only the basics here.

With a few simple commands—such
as stop, Play, and Go to Frame—you
can create some basic interactivity for
the images in your scene. These com-
mands are pretty straightforward, and
do what you’d expect. Flash has many
other capabilities, but I would suggest
concentrating on the Stop, Play, and
Go to Frame actions first.

Figure 15.9  Left-click this box to adjust the frame rate.



If you want to add a script to a frame,
the best method is to create a new
layer that will contain all of the
actions placed on a frame. You can
put these actions in layers that also
contain other images, but it is much
easier if you keep things organized
and use a separate layer for all actions
placed on any frame in the file. Once
this layer has been added, you will
need to select the frame where you
want to put the action and add a key
frame. This is a case where the key

frame term and concept are still used,
even though this key frame will not
have anything to do with animation.

For this example, you can add a
keyframe on frame number 2, as
shown in Figure 15.10.

I wanted to add a Stop action to the
second frame. When you have the key
frame in the correct spot in your
action layer, you can add an action to
this frame. Select the key frame in the
second frame in the Actions-Frame

window, located at the bottom section
of the screen, then hit the plus icon
(+). Choose the Global
Functions/Timeline Control/Stop
option. This will add the Stop action
to this frame. When the scene arrives
at this frame, it will play until it comes
to a Stop action.

You can see how to get to the Stop
action in Figure 15.11.

Introduction to Flash 189

Figure 15.10  You will need to add a key frame before you can
add an action.

Figure 15.11  This selection will add a Stop action to the selected
frame.



Chapter 15   ■ Creating an Interactive Mock-Up190

When an action script is added to a
frame, a small letter A will appear in
the timeline. These small letters can
be hard to see; this is one of the rea-
sons to create a new layer for your
action scripts. It is even more difficult
when other images are on the same
layer. It is also a good technique to
space still frames a fair distance apart,
even if the frames in the middle are
not being used. If you have a little
more room between two frames, it is
much easier to see what is going on.
Keep your files organized.

Creating Buttons in Flash
Like everything in Flash, the basic
button concept is fairly straightfor-
ward, but because of the depth of the
program, working with buttons can
become complicated. The easiest way
to create a button is to select an image
that you want to use as a button,
right-click that image, and choose the
Convert to Symbol option that
appears in the menu that appears
when you right-click the image.
Several options appear in this menu;
choose the Button option. You can

also name your button in the same
dialog box where you choose the but-
ton option.

You can see where to select the
Convert to Symbol option in Figure
15.12.

Once you have converted an image to
a symbol, the image becomes a but-
ton. This means it has certain func-
tionality that it did not have before. If
you look in your library, you will see
both a new button and the old image.
The image can still be used in your
scene in its non-button form, but at
the same time, that same image is also
used inside your new button and the
button appears as a second object in
your library. This image is currently
contained within the button.

Now this is where it may get a little
confusing. If you double-click on the
button in your scene, you will open
up the button. In essence, you will be
inside the button. The confusing part
is that everything still looks very sim-
ilar to the scene you were just in. The
only visual difference is that the items
that are not contained within the but-

ton are slightly dimmed. This way,
you can tell what is actually part of
the button. If you look at the title bar
at the very top of the screen, just
above the timeline section, you will
notice a change—you will see the
name of the entire scene followed by
the name of your button. You are
always working inside the last item on
this list. In this case, you are inside the
button. You can return to the main
scene by selecting the text in this title
bar. In Figure 15.13 you can see the
extra name in the title bar.

When creating simple interfaces you
will not need to go deeper than what
I’ve presented here; but it can get even
more confusing—you can put a
movie or another button inside of a
button. Although the multiple levels
can be hard to navigate, the ability
Flash offers to put an animation or
button inside of a button can be a
powerful feature. For example, you
can place a looping animation in a
button in the mouseover state. This
movie will play when a button is high-
lighted.



Introduction to Flash 191

Figure 15.12  This option will convert an image into a button. Figure 15.13  These icons and text let you know that you are
working inside of a button.

Because this animation exists inside
the button, the whole button—
including the animation—can be
placed in one frame of the overall
timeline, even when there are many
frames in the animation. Just remem-
ber to look at the text at the top of the
screen if you get lost. Click on the text
to get back to the level where you
want to be. For now, you can stay
inside the button.

You might have noticed another
change when you opened the button:
the timeline changed. You can no
longer see the timeline of the entire
file; instead, you see the components
of the button. A button is a specific
type of object in Flash and it has some
unique properties. Each button has
three button states (Up, Over, and
Down) and a hit area that can be all
adjusted in the timeline. Just like with
the overall timeline, you can scrub

back and forth to see these different
states. Check out Figure 15.13
again—it shows a button open so that
you can see how the timeline
changed. Layers can also be added
within a button, just like in the time-
line for the entire file.

As I said, even though there may not
be any animation inside a button, the
concept of key frames is used when
working with buttons. If an image



Chapter 15   ■ Creating an Interactive Mock-Up192

changes from frame to frame, you
must add a key frame to make a
change. For example, if you want the
button to look different in the Over
state (when the mouse moves over the
button), you will need to set a key
frame in the frame below the word
over and then make your change to
the image in that frame. I usually just
replace the normal button image used
in the Up frame with another image,
created in Photoshop, in the Over
frame. It is always easiest to use
images that are the same size for every
state. This way, they all go in the same
place and they work together perfect-
ly. Make all of the images as large as
the largest image—you may need to
account for the size of the outer glow
or drop shadow in the highlighted
state.

A simple approach is to place the
image for the Up state in the spot
where you want it. Then select each of
the other frames and press F6 to cre-
ate a key frame for every state. Drag
the time slider around and make
changes to each of these frames. If you
have created the art in another pro-
gram, you can just replace the old

image with a highlighted version for
the Over frame and a pushed-in-
looking version for the Down frame.

The Hit Area

The hit area is the location that will
trigger the button. When the user
moves the mouse over a hit area, the
button will change to the Over frame.
If the user clicks on the hit area, the
button will be triggered. The simple
solution for a hit area is to use the
same art you used in the Up frame.
This is what you will do most of the
time. However, the ability that Flash
gives the user to designate a hit area
that is different from the image in the
Up frame allows you to do many dif-
ferent things.

There are times when using the same
image for both the Up and the Hit
frames can be problematic. For exam-
ple, using text in both the Up and the
hit area can create problems because
the spaces in between the letters do
not count a hit area and so the high-
lighted state can flicker on and off as
the user moves the mouse across the
button. The simple solution to this

problem is to create a box in the hit
frame that encompasses the entire
button.

You can also use the ability to have a
different image in the hit frame, even
more creatively. For example, you
could have an image that looks like a
button and use this same art in both
the Hit and Up frames. You could
then have an image in the Over frame
that was in a completely different
location and did not seem to be a part
of the button. When the player moved
his mouse over the button, it could
highlight a totally different location
on the screen.

Putting Scripts on Buttons
Once you have created a button, you
can place an action script on the but-
ton rather than on a frame. The
action will then be triggered when the
button is released. This is the default
action, but there are several other
options when placing an action on a
button. For example, you can trigger
an action when the mouse moves over
a button or even when it moves off of
a button. You may not use these other



events as often as the button release
event, but it is good to know that they
are available.

To put an action on a button, start by
single-clicking to select the button in
your scene. (Double-clicking on the
button will open it.) With the button
selected, open the Behaviors panel on
the right side of the Flash interface.
Click on the blue plus sign in the
upper-left corner of this panel.
Choose the Movieclip/Go to and Play

option. A dialog box will appear; leave
everything at the defaults in this dia-
log box and just enter the number of
the frame to which you want to go.

Once you have placed an action on a
button, you can see it in the Behaviors
window every time you select the but-
ton. It also can be modified here. You
can see where to do this in Figure
15.14.

The option right below the Go to and
Play option is Go to and Stop. Use the
Stop option if you don’t want the
scene to play when it jumps to the
frame number you entered. Use the
Go to and Play option if you want the
frames to advance after arriving at the
specified frame. This action will be
executed first, and then any action on
the frame will be executed. If there is
no Stop action at the end of the scene,
the file will start over at the begin-
ning. The file will loop continuously if
you do not stop it.

Seeing Your Button Work
When you’re working in Flash in the
Standard mode, you will not be able
to see how your button works. When
you move your mouse over the but-
ton, it does not highlight and you
can’t press it. The reason for this is
that you will probably need to select
and modify this button, and these
behaviors would get in the way. The
button will work just fine when it has
been published and saved in the final
format, but it won’t work when you’re
editing the Flash file. Flash has a way

Introduction to Flash 193

Figure 15.14  You can add a Go To action to your button.



Chapter 15   ■ Creating an Interactive Mock-Up194

around this: You can turn on the sim-
ple functions of a button to test them
out by choosing Control/Enable
Simple Buttons from the menu across
the top of the screen; the buttons will
then function like buttons should.
Once you are done testing the button,
you can switch back by de-selecting
the same option.

Publishing Files
Once you have completed your inter-
face, you will need to save it in a for-
mat that other people can use. When
you save your file using the File/Save
option in the main menu, you save a
FLA file that can be opened by anyone
who has Flash. Saving a file in anoth-
er, final, format is called publishing.
These files can’t be opened and edited
in Flash the way a FLA file can, but
they don’t require Flash to be opened.

The Publish option is found under
File/Publish in the main menu. You
can adjust the setting that will take
effect every time you publish your file.
These settings can be found in the
File/Publish Settings option in the
main menu; there you will see a num-
ber of file formats that you can
choose. Every time you check one of
these boxes, a new tab that contains all
of the settings specific to that file for-

mat appears. You can specify the
name of the files that will be saved
when you publish, and if you click on
the folder icon, you can choose the
location of these files.

Once you have made all of these
adjustments, all you need to do is
choose the Publish option and all the
files you specified will be saved. You
can see the Publish Settings dialog
box in Figure 15.15.

Figure 15.15  There are a variety of options for a final file format.



Flash Summary
You can create simple interactive
interfaces by creating all of your
screens on different frames. You can
move back and forth in these frames
using the Go to and Stop action
placed on a button. When you are
ready to see the file in the final for-
mat, you can publish it and get results
in many different file formats.

I left out a lot of the details of Flash
and have described concepts and
actions that I wish someone would
have described to me when I was
starting out with Flash. As I began
learning how to use Flash, it took a lot
of reading for me to figure out these
basic concepts. I hope that, with this
brief introduction and the help of
other information and tutorials avail-
able about Flash, you will be able to
learn the program much faster than I
did. Consider this chapter a jump-
start to learning Flash.

The Sample Flash File
Now that you have a glimpse of how
Flash works, it may be helpful to take
a look at a file created in Flash. I used
this file for some early tests on the
Trade interface for Nomad, described
in Chapter 14. I will give you a quick
explanation of how this file works,
and will assume that you have read
the “Introduction to Flash” section of
this chapter and have a little under-
standing of how Flash works.

This file is created in a very simple
way. There are more efficient ways to
use Flash to create this exact interface
than those I’ll explain in this book,
but they would require quite a bit of
knowledge about Flash. The method
used for this file is good for an intro-
duction to Flash—it was intentionally
created using only the principles dis-
cussed earlier in this chapter. This
example will give you a hint of how
much you can do with only a few sim-
ple techniques.

The mock-up I created is not a com-
plete interface mock-up. The way the
menu functions in the mock-up is not
exactly the way the menu worked in

the final Nomad game. There are sev-
eral features that do not even work in
the mock-up I created.

The menu in this mock-up was creat-
ed to test the validity of the approach
that the game designer and I came up
with. We did not want to painstaking-
ly create a perfectly functioning menu
only to have to reproduce it in the
game. We just wanted to know if
pressing the Buy and Sell buttons
seemed like the logical way to buy and
sell things in the game. On this partic-
ular project, there were a couple of
key aspects that we wanted to test and
perfect; these aspects were important
enough that we spent a little time to
make this mock-up.

Mock-ups are great for testing. It is
always a good idea to test with a func-
tional menu; a user can get a lot more
information when he can see move-
ment and buttons that highlight. It is
much harder to show someone a
menu in a flat, concept image and
know if he is really going to under-
stand how to use the menu. No mat-
ter how well you can envision some-
thing in your head, it is always a little
different when you actually see it
working.

The Sample Flash File 195



Chapter 15   ■ Creating an Interactive Mock-Up196

The CD that comes with this book
includes several files named Trade
Mock-Up. You can open any of these
files. There is a self-contained file for
both Windows (EXE) and Macintosh
(HQX). You can also open the HTML
file with any browser that has the cor-
rect files. (This HTML file refers to
the SWF file, and it must be in the
same directory.) I have also included
the original Flash file. If you have
Flash installed, you can open this file
up and see how it was made.

Actions on Frames
Most of the actions in Figure 15.16
have been placed on the actions layer.
The lowercase “a” designates a loca-
tion that contains a script. If you
select these lowercase a’s, you can
examine the script. When you’ve
selected one of these frames, open the
Actions-Frame window. As the name
implies, this is where the actions are
created and edited for a frame. You
can see how the file should behave
when it reaches this frame. This file is
located on the CD if you want to open
it up and look at it. You can see the
actions in Figure 15.16.

Frames 1, 15, and 23 all have a Stop
action. These three different frames
are the three different possible looks
for the interface. All of the frames in
between these frames are part of the
transitions.

Frames 31 and 46 have an action that
moves the file to another frame and
then stops. These Stop actions are
located at the end of transitions.

Actions on Buttons
There are four buttons that control
the interface in this file (located on
the CD). The main Ship tab that
appears on frame 1 is a button. There
is a Purchase and Sell button and a
Close Dialog button. It is pretty sim-
ple, yet there is still a lot of stuff going
on. If you have too many buttons and
animations, as I’ve said before, your
interface can become very confusing.
Organization is the key.

If you scrub the timeline to frame 1
and select the Ship Information box,
you will see that it has been converted
into a button. You can see the script
applied to this button in the
Behaviors window on the right. There
is a stop on frame 1. The file will stay

on this frame until the button is
pressed. Then the Go to and Play
action on this button will send the file
to the next frame and begin playing.
The file will play until it reaches the
Stop action located on frame 15. The
frames between frame 1 and frame 15
contain the transition of the trade
interface opening up.

In the game, this menu and anima-
tion will be triggered when your ship
docks at a trading post. This button
was created just as a way to trigger this
transition. You can see the action on
the button, created out of the ship
information bar, in Figure 15.17.

There is a key frame on the layer that
contains the ship box, at frame 15.
Key frames are added, as I’ve said, so
changes can be made. Visually, there is
no change in this layer from frame 1
to frame 15; the difference is in the
button. The same button is in frames
1 and 15, but the action has been
removed from the button on frame
15. In the first frame, the script on the
button goes to frame 2 and opens the
dialog box. Once it is open, you don’t
want this button to do anything, so I
removed the script at this point.



Once the dialog is open and the file
has stopped on frame 15, the two but-
tons become available. A Close Dialog
button appears in the upper-right
corner of the Trade dialog. If this but-
ton is pressed, the file goes to frame 32
and plays to frame 46. This is the close
animation where the menu slides up.
You can see this script by selecting the
Close button on any frame where the
button appears and looking in the

Behaviors window. This button
should do the same thing on every
frame where it appears.

At the end of this transition, on frame
46, there is an action. This action
directs the file back to frame 1. This
happens as soon as the animation
arrives at frame 46. Because this frame
looks exactly like frame 1, the user
will never notice anything amiss.

The Purchase button looks like an
orange arrow. On frame 15, it con-
tains an action that directs the file to
go to the next frame and plays the ani-
mation. The file will stop on frame 23.
On frame 23, the Purchase button is
very transparent and does not contain
any actions. Once the item has been
purchased, it can’t be purchased
again.

The Sample Flash File 197

Figure 15.16  If you select a frame that contains an action, you
can see the script in the Actions-Frame window.

Figure 15.17  Select the button in the scene and you can see the
action on the button in the Behaviors window.



Chapter 15   ■ Creating an Interactive Mock-Up198

Just as with the Purchase button, the
Sell button is not always available.
Because you don’t have any of the
selected items in your ship on frame
15, you can’t sell anything. Once the
Purchase button has been pressed and
the item has been purchased, the file
moves to frame 23. On this frame in
the layer with the Purchase button,
there is a key frame. The button con-
tains a script that sends the file to the
next frame and plays. On frame 31,
the file reaches the end of this anima-
tion and is redirected to frame 15.

You will notice that if a purchase is
made, the dialog is closed and then re-
opened, then the item does not show
up in the ship. There are ways in Flash
to retain this information even when
the dialog has been closed, but these
methods all require more complicated
scripting. Making this work like it
should have worked in the final game
was not important for the test that we
needed to do.

Poke around in this file and see how
everything was done. You can see the
movement by scrubbing the red box
in the timeline. You can also see the
final result by opening any of the files
that have been published.

This file may be simple, but it is easy
to see how useful it is. You can try and
test all kinds of things using Flash.
Creating iterative files is a great way to
build a strong portfolio with func-
tional art. You can also make an
incredibly strong presentation of a
new concept—no programmers
needed!

Summary
You now have the basic skills that will
allow you to design a game interface.
Review the principles in this book
often and continue to learn more.
There is always more to learn. Get as
much real-life experience by design-
ing interfaces for games as you can—
the best teacher is experience.

I hope that you have been inspired to
improve your skills and in turn
improve your interface designs. I have
seen some amazing interfaces, but
that does not mean that you can’t cre-
ate an interface that is even better.
Aim high!



Numbers
2D

interfaces, 38–39
state (buttons), 78–79

3D
interfaces, 38–40
programs, 122–123
state (buttons), 78–79

3D Studio Max, 123

A
active-selected state (buttons), 76–77
active state (buttons), 75–76
Adobe. See Photoshop
advantages/disadvantages

commercial programs, 118–119
custom programs, 117–118

afterimages, 47
alignment. See also balance

composition, 53–54
controllers, 66–68

alpha channels, 108–110
alternatives (state), 77–78
animation. See also motion; navigation

bouncing, 129–130
frames

calculating, 127–128, 130
ease in/ease out, 127–128, 130

frame rates, 126, 188
interpolation, 127–128, 130
key frames, 127–128, 130, 186–187
mock-ups, 182–190
number, 127–128, 130
speed, 126, 188
tweening, 127–128, 130, 186–187

graphics
color, 135–136
effects, 136–138
explosions, 138
overlays, 136
particle systems, 137
pivot points, 134–135
position, 134
properties, 134–136
rotation, 134–135
screen shakes, 138
size, 134–135
translation, 134
transparency, 135–136
trembling, 138

impact, 131
interfaces

fades, 133
transitions, 132–134

overview, 125–126
principles, 129–132

anticipation, 130
arcs, 132

exaggeration, 132
follow through, 131
squash, 129–130
stretch, 129–130

screens
speed, 133
transitions, 132–134

state (buttons), 78–79
stopping, 131
winding up, 130–131

anticipation (animation principles), 130
applications. See programs
approval

console games, 62–63
producers, 9–10

arcs (animation principles), 132
arrows

menu screen flow charts, 14–16
state (buttons), 76

art. See graphics; mock-ups
ascenders (fonts), 89–90
Asian monitor resolution, 71
asset management, 114–115
assets

asset management, 114–115
final assets, 110–111

attention span (focal points), 82–83
audio (buttons state), 75, 80

INDEX



Index200

B
Back buttons (menu screen flow charts),

14–16
background (fonts), 87–88
balance. See also alignment

color, 49
composition, 57–60
elements, 57–60
symmetry, 58

bars (HUDs), 152–153
base line (fonts), 89–90
benefits

commercial programs, 118–119
custom programs, 117–118

blurriness. See resolution
borrowing. See copyrights
bouncing animation, 129–130
boxes (flow charts), 13–16
brainstorming, 32–33
brightness

color, 53
focal points, 85
state (buttons), 74–76

budgets
careers, 2–3
development (console games), 64
icons, 140
projects, 2–3

buttons
Back buttons, 14–16
clicking, 192
controllers, 66–68, 74–77
graphics, reusing, 106–108
hit area, 192
input, 17
mock-ups, 190–194
overview, 73

PC games
mouse, 68–70
state, 77

pressing, 192
radio button input, 19–20
state

2D, 78–79
3D, 78–79
active-selected state, 76–77
active state, 75–76
alternatives, 77–78
animation, 78–79
arrows, 76
brightness, 74–76
color, 77, 79
controllers, 74–77
creativity, 77–78
disabled state, 77
flashing, 74–75, 78–79
flickering, 74–75, 78–79
gray, 77
highlighted, 74–75
light, 74–79
markers, 76
motion, 78–79
mouseover state, 77
number, 79
overview, 73
PC games, 77
pressed state, 75
programmers, 78–80
schedules, 79–80
selected state, 74–75
sound, 75, 80
standard state, 74
tips, 79–80
transparency, 77

buying fonts, 93–94

C
calculating frames, 127–128, 130
cameras. See photos
cancelling projects, 3
cap line (fonts), 89–90
careers

budgets, 2–3
communication, 2–4
creative freedom, 2
focus, 5
fonts, 95
Marketing Department, 2
paths, 4–5
portfolios, 4–5
publishers, 5–6
realities, 2–3
schedules, 2–6
skills, 5
success, 3
teamwork, 4, 10

charting. See flow charts
choosing

fonts, 93–94
icons, 140–141

clicking buttons, 192
CMYK (cyan, magenta, yellow, black), 52–53
cold colors, 49–50
color

color charts, 29–30
designing

afterimages, 47
balance, 49
brightness, 53
CMYK, 52–53
cold colors, 49–50
color harmony, 45
color wheel, 45–48



complementary colors, 45–48
HSB, 53
HUDs, 161–162
hues, 53
interfaces, 29–30, 160–163
Itten, Johannes, 45
light, 50, 53
monitors, 50, 70–72
overview, 44–45
paint, 50
preferences, 48
printable range, 51–52
RGB, 51–52
saturation, 49, 53
strength, 49
subjectivity, 48
systems, 51–53
theory, 45
warm colors, 49–50

flow charts (menu screens), 14–16
focal points, 84
fonts, 97
graphics, 135–136
HUDs, 70, 152–153, 161–162
icons, 142–143
palettes, 103–105
resolution

HUDs, 70
icons, 142–143
menu screens, 70
monitors, 70–72

state (buttons), 77, 79
color charts, 29–30
color harmony, 45
color wheel, 45–48
commercial programs

advantages/disadvantages, 118–119
overview, 118–120

communication
approval

console games, 62–63
producers, 9–10

careers, 2–4
planning, 10
projects, 2–4
teamwork, 4, 10

competition, 33
complementary colors, 45–48
composition

boxes (flow charts), 13–16
color. See color
designing

alignment, 53–54
balance, 57–60
dividing elements, 59
elements. See elements
evaluating, 44
eye movement, 56–57
intersecting elements, 60
motion, 55–57
negative space, 55
number of elements, 59
overlapping elements, 60
overview, 43–44
space, 53–54
tension, 58
unity, 54–55
variation, 54–55
weight, 57–60

focal points
attention span, 82–83
brightness, 85
color, 84
hierarchy, 81–83
motion, 85

overview, 81
size, 83–84

fonts, 87–88
sketches

HUDs, 156–158
interfaces, 37–38, 156–160
thumbnails, 33–35

text, 139–140
comprehension

HUDs, 150–151
interfaces, 110, 139–140

compression, 102–103
computers

minimum requirements, 65–66
monitors, 50, 70–72
mouse

buttons, 68–70, 77
games, 68–70
menu screens, 68–70

PC games
buttons, 68–70, 77
converting, 61–62, 69–72, 110
development process, 65–66
localization, 110
menu screens, 68–70
minimum requirements, 65–66
monitor resolution, 70–71
mouse, 68–70
overview, 61

concept approval, 63
consistency (icons), 142
console games

alignment, 66–68
buttons, 66–68
concept approval, 63
controllers, 66–68
converting, 61–62, 69–72
creative control, 64–65

Index 201



Index202

developer approval, 62–63
development cost, 64
development process, 62–65
documentation, 63
guidelines, 63
hardware, 62–65
HUDs, 150
manufacturers, 62–65
Marketing Department, 65
menu screens, 66–68
motion, 66–68
navigation, 68
overview, 61
publishers, 62–65
schedules, 62–65
technical approval, 63
television monitors, 50, 70–72
timing, 67–68

Console Logo screen, 23, 29
controllers

button state, 74–77
console games, 66–68

controls. See buttons; controllers
converting PC games

console games, 61–62, 69–72
localization, 110

copyrights
icons, 142
interfaces, 33

cost. See budgets
creating

fonts, 95–97
HUDs, 169–177
interfaces, 169–177

creativity
careers, 2
console games, 64–65

HUDs, 153–154
interfaces, 25–26, 32–33, 35, 40–41
planning, 8–9
programs, 121–123
state (buttons), 77–78

Credits screen, 23
criticism

HUDs, 151–152, 177–178
icons, 142
interfaces, 40–41, 159, 177–178

custom programs
advantages/disadvantages, 117–118
in-game, 117
overview, 115–116
plug-ins, 116
stand-alone, 116–117

cyan, magenta, yellow, black (CMYK), 52–53

D
decision-making, 12–13
defining goals, 12
descenders (fonts), 89–90
designing. See also planning

color
afterimages, 47
balance, 49
brightness, 53
CMYK, 52–53
cold colors, 49–50
color harmony, 45
color wheel, 45–48
complementary colors, 45–48
HSB, 53
HUDs, 161–162
hues, 53
interfaces, 29–30, 160–163
Itten, Johannes, 45

light, 50, 53
monitors, 50, 70–72
overview, 44–45
paint, 50
preferences, 48
printable range, 51–52
RGB, 51–52
saturation, 49, 53
strength, 49
subjectivity, 48
systems, 51–53
theory, 45
warm colors, 49–50

composition. See composition
elements. See elements
flow charts (menu screens), 13–17
fonts, 95–97
game design, 10
HUDs

color, 161–162
creating, 169–177
development process, 163–167
feedback, 177–178
Photoshop, 167–169
sketches, 156–158

interfaces
2D, 38–39
3D, 38–40
brainstorming, 32–33
color, 29–30, 160–163
color charts, 29–30
competition, 33
copyrights, 33
creating, 169–177
creativity, 25–26, 32–33, 35, 40–41
development process, 163–167
evaluating, 23–24



feedback, 40–41, 159, 177–178
flexibility, 40–41
importance, 1–2
lists, 32
logos, 29
menu screens, 39
mini-map, 162–163
mock-ups, 27–29, 113–114
motion, 40
overview, 27, 155–156
photos, 35–37
Photoshop, 167–169
programmers, 39
programs, 121–123
research, 32–33
revisions, 160
sketches, 37–38, 156–160
standards, 35
themes, 31
thumbnails, 33–35

menu screens (flow charts), 13–17
mock-ups

buttons, 190–194
frame rates, 188
frames, 182–190
interfaces, 27–29, 113–114
key frames, 186–187
layers, 183–185
overview, 179–182, 195–198
programs, 181
publishing, 194
scripts, 188–193
tweening, 186–187

principles, 43–44
developer approval (console games), 62–63
Developer Logo screen, 23
development cost (console games), 64

development process
console games, 62–65

developer approval (console games),
62–63
development cost (console games), 64

handheld games, 65
HUDs, 151–152, 163–167
interfaces, 163–167
PC games, 65–66

devices (input), 17
digital photos. See photos
disabled state (buttons), 77
disk space (file size), 101–102
dividing elements, 59
documentation, 63
dots per inch (DPI), 91–92
downloading, 102
down-sides

commercial programs, 118–119
custom programs, 117–118

DPI (dots per inch), 91–92
drafts. See mock-ups; sketches
drop-down menu screens, 22
dynamic content (HUDs), 148–149

E
ease in/ease out (frames), 127–128, 130
editors, 2, 115
effects

fonts, 97
graphics, 136–138

elements. See also graphics
designing

alignment, 53–54
balance, 57–60
dividing, 59
eye movement, 56–57
intersecting, 60

motion, 55–57
negative space, 55
number of, 59
overlapping, 60
space, 53–54
tension, 58
unity, 54–55
variation, 54–55
weight, 57–60

focal points
attention span, 82–83
brightness, 85
color, 84
hierarchy, 81–83
motion, 85
overview, 81
size, 83–84

employment. See careers
Environment Select screen, 23
European monitor resolution, 71
evaluating

composition, 44
interfaces, 23–24
menu screens, 23–24
planning, 9–10, 23–24

exaggeration (animation principles), 132
explosions (animation), 138
eye movement

composition, 56–57
HUDs, 150–151

F
fades (interface animation), 133
feedback

HUDs, 151–152, 177–178
icons, 142
interfaces, 40–41, 159, 177–178

Index 203



Index204

files
asset management, 114–115
final assets, 110–111
publishing, 194
size

compression, 102–103
disk space, 101–102
downloading, 102
fonts, 90–93
graphics, reusing, 106–108
Internet, 102
loading time, 102
overview, 99–100
palettes, 103–105
programmers, 105–106
quality, 102–103
RAM, 100–101
seeking time, 102
textures, 106

source files, 110–111
final assets, 110–111
Flash, 120

buttons, 190–194
frame rates, 188
frames, 182–190
key frames, 186–187
layers, 183–185
overview, 181–182, 195–198
publishing, 194
scripts, 188–193
tweening, 186–187

flashing state (buttons), 74–75, 78–79
flexibility, 40–41
flickering

state (buttons), 74–75, 78–79
television monitors, 72

flow charts (menu screens). See also naviga-
tion

arrows, 14–16
Back buttons, 14–16
boxes, 13–16
color, 14–16
designing, 13–17
locked items, 14–16
planning, 13
pop-up menu screens, 17–18
programs, 13, 23–24
size, 13–14
space, 13–14
Title screen, 13–14

focal points
attention span, 82–83
brightness, 85
color, 84
hierarchy, 81–83
motion, 85
overview, 81
size, 83–84

follow through (animation principles), 131
fonts

ascenders, 89–90
background, 87–88
base line, 89–90
buying, 93–94
cap line, 89–90
careers, 95
color, 97
composition, 87–88
creating, 95–97
descenders, 89–90
designing, 95–97
DPI, 91–92
effects, 97
file size, 90–93

graphics, 97
icons, 97
kerning, 92
knowledge, 95
lowercase, 90
mean line, 89–90
mixing, 95
monospace, 92
multiple, 95
picas, 90–91
points, 90–91
research, 93–94
sans-serif, 88–89
schedules, 95
selecting, 93–94
serif, 88–89
size, 90–93
space, 92
stretching, 93
symbols, 97
themes, 94–95
thickness, 92–93
types, 93–94
uppercase, 90

fps. See frame rates
frame rates

animation, 126, 188
mock-ups, 188
speed, 126, 188

frames
calculating, 127–128, 130
ease in/ease out, 127–128, 130
frame rates

animation, 126, 188
mock-ups, 188
speed, 126, 188

interpolation, 127–128, 130



key frames, 127–128, 130, 186–187
mock-ups, 182–190

frame rates, 188
key frames, 186–187
tweening, 186–187

number, 127–128, 130
tweening, 127–128, 130, 186–187

frames per second. See frame rates
functionality, interfaces, 2

G
gameplay, 1
games

asset management, 114–115
console games

alignment, 66–68
buttons, 66–68
concept approval, 63
controllers, 66–68
converting, 61–62, 69–72
creative control, 64–65
developer approval, 62–63
development cost, 64
development process, 62–65
documentation, 63
guidelines, 63
hardware, 62–65
HUDs, 150
manufacturers, 62–65
Marketing Department, 65
menu screens, 66–68
motion, 66–68
navigation, 68
overview, 61
publishers, 62–65
schedules, 62–65
technical approval, 63

television monitors, 50, 70–72
timing, 67–68

copyrights
icons, 142
interfaces, 33

design, planning, 10
editors, 115
files. See files
gameplay, 1
handheld games, 65
PC games

buttons, 68–70, 77
converting, 61–62, 69–72, 110
development process, 65–66
localization, 110
menu screens, 68–70
minimum requirements, 65–66
monitor resolution, 70–71
mouse, 68–70
overview, 61

speed, 102
goals

decision-making, 12–13
defining, 12
overview, 10–12
priorities, 12–13

graphics. See also elements
animation

color, 135–136
effects, 136–138
explosions, 138
overlays, 136
particle systems, 137
pivot points, 134–135
position, 134
properties, 134–136
rotation, 134–135
screen shakes, 138

size, 134–135
translation, 134
transparency, 135–136
trembling, 138

buttons. See buttons
color. See color
copyrights

icons, 142
interfaces, 33

fonts, 97
HUDs, 152–153
icons

budgets, 140
color, 142
consistency, 142
copyrights, 142
feedback, 142
fonts, 97
graphics, 140–141
overview, 139
photos, 143
pixels, 142–143
resolution, 142–143
selecting, 140–141
silhouettes, 143
size, 142–143
standard, 141–142
symbols, 141–142
text, 139–140

layers (Photoshop), 167–169
menu screens. See menu screens
pop-up menu screens, 106–108
quality (compression), 102–103
reusing, 106–108
textures, 106–108
tiling, 108
transparency (alpha channels), 108–110

Index 205



Index206

graphs (HUDs), 152–153
gray state (buttons), 77
guidelines, console games, 63

H
handheld game development process, 65
hardware, console games, 62–65
harmonious colors, 45
HDTV monitor resolution, 71
Heads Up Displays. See HUDs
hierarchy, composition focal points, 81–83
highlighted state (buttons), 74–75
hit area (buttons), 192
HSB (hue, saturation, brightness), 53
HUDs (Heads Up Displays), 24

bars, 152–153
color, 152–153, 161–162
comprehension, 150–151
console games, 150
creativity, 153–154
designing

color, 161–162
creating, 169–177
development process, 151–152,
163–167
feedback, 151–152, 177–178
Photoshop, 167–169
sketches, 156–158

development process, 151–152, 163–167
dynamic content, 148–149
eye movement, 150–151
feedback, 151–152, 177–178
graphics, 152–153
graphs, 152–153
interfaces, 145–148
navigation, 151
overview, 145

planning, 24–25, 145–150
pop-up menu screens, 148
resolution, 70
size, 145–150
space, 145–148
standard, 153–154
text, 150, 152–153

hue, saturation, brightness (HSB), 53
hues, 53

I
icons

budgets, 140
color, 142
consistency, 142
copyrights, 142
feedback, 142
fonts, 97
graphics, 140–141
overview, 139
photos, 143
pixels, 142–143
resolution, 142–143
selecting, 140–141
silhouettes, 143
size, 142–143
standard, 141–142
symbols, 141–142
text, 139–140

ideas, 32–33
illustrations. See sketches
images. See graphics
impact (animation), 131
information gathering

fonts, 93–94
interfaces, 32–33
planning, 9

Information screen, 23
in-game custom programs, 117
input

buttons, 17
devices, 17
drop-down menu screens, 22
lists, 20–21
radio buttons, 19–20
sliders, 19
text, 20–22
toggle switches, 19–20
types, 17–23

inspiration, 32–33
interfaces

asset management, 114–115
color. See color
composition. See composition
comprehension, 110, 139–140
designing

2D, 38–39
3D, 38–40
brainstorming, 32–33
color, 29–30, 160–163
color charts, 29–30
competition, 33
copyrights, 33
creating, 169–177
creativity, 25–26, 32–33, 35, 40–41
development process, 163–167
evaluating, 23–24
feedback, 40–41, 159, 177–178
flexibility, 40–41
importance, 1–2
lists, 32
logos, 29
menu screens, 39
mini-map, 162–163



mock-ups, 27–29, 113–114
motion, 40
overview, 27, 155–156
photos, 35–37
Photoshop, 167–169
programmers, 39
programs, 121–123
research, 32–33
revisions, 160
sketches, 37–38, 156–160
standards, 35
themes, 31
thumbnails, 33–35

editors, 115
fades, 133
functionality importance, 2
gameplay, 1
graphics importance, 1–2
HUDs. See HUDs
languages, 110, 140
menu screens. See menu screens
mock-ups. See mock-ups
navigation, 140
overview, 1
player editors, 2
programs. See programs
publishing, 194
quality, 1–2
screen shakes, 138
text. See text
transitions, 132–134

interlacing, television monitors, 72
Internet, file size, 102
interpolation, frames, 127–128, 130
intersecting elements, 60
Itten, Johannes, 45

J–K
Japan, monitor resolution, 71
jobs. See careers
kerning, 92
key frames

animation, 127–128, 130, 186–187
mock-ups, 186–187

L
languages, 110, 140
layers

graphics (Photoshop), 167–169
mock-ups (Flash), 183–185

legal issues
icons, 142
interfaces, 33

Legal screen, 23
level editors, 115
Level Select screen, 23
light

brightness
color, 53
focal points, 85
state (buttons), 74–76

color, 50, 53
flashing state (buttons), 74–75, 78–79
flickering

state (buttons), 74–75, 78–79
television monitors, 72

state (buttons), 74–79
lists

designing, 32
input, 20–21

loading time, 102
localization (converting games), 110
locked items (menu screen flow charts),

14–16

logos, 29
lowercase fonts, 90

M
Macromedia. See Flash
manufacturers (console games), 62–65
markers (button state), 76
Marketing Department

careers, 2
console games, 65

Maya, 123
mean line (fonts), 89–90
memory (file size)

disk space, 101–102
RAM, 100–101

menu screens
Console Logo screen, 23, 29
controllers, 66–68
Credits screen, 23
Developer Logo screen, 23
drop-down menu screens, 22
Environment Select screen, 23
evaluating, 23–24
flow charts

arrows, 14–16
Back buttons, 14–16
boxes, 13–16
color, 14–16
designing, 13–17
locked items, 14–16
planning, 13
pop-up menu screens, 17–18
programs, 13, 23–24
size, 13–14
space, 13–14
Title screen, 13–14

Index 207



Index208

HUDs. See HUDs
Information screen, 23
input

buttons, 17
devices, 17
drop-down menu screens, 22
lists, 20–21
radio buttons, 19–20
sliders, 19
text, 20–22
toggle switches, 19–20
types, 17–23

interfaces, 39
Legal screen, 23
Level Select screen, 23
mock-ups, 28–29
mouse, 68–70
Navigation screen, 68
Options screen, 23
Player Editor screen, 23
pop-up menu screens

flow charts, 17–18
graphics, reusing, 107–108
HUDs, 148

Publisher Logo screen, 23
resolution, 70
Save/Load Game screen, 23
Title screen

flow charts, 13–14
mock-ups, 28–29
planning, 23

types, 23
menus. See menu screens
middleware programs, 119
mini-maps, 162–163
minimum requirements (PC games), 65–66
mixing fonts, 95

mock-ups. See also sketches
designing

buttons, 190–194
frame rates, 188
frames, 182–190
interfaces, 27–29, 113–114
key frames, 186–187
layers, 183–185
overview, 179–182, 195–198
programs, 181
publishing, 194
scripts, 188–193
tweening, 186–187

Flash
buttons, 190–194
frame rates, 188
frames, 182–190
key frames, 186–187
layers, 183–185
overview, 181–182, 195–198
publishing, 194
scripts, 188–193
tweening, 186–187

menu screens (Title screen), 28–29
monitors, 50, 70–72
monospace fonts, 92
motion. See also animation; navigation

composition
designing, 55–57
focal points, 85

controllers, 66–68
eye movement

composition, 56–57
HUDs, 150–151

interfaces, 40
state (buttons), 78–79

mouse
mouseover state, 77
PC games, 68–70

mouseover state, 77
multiple fonts, 95

N
navigation. See also flow charts; motion

controllers, 68
HUDs, 151
interfaces, 140

Navigation screen, 68
negative space (composition), 55
norms. See standard
North America monitor resolution, 71–72
NTSC monitor resolution, 71–72
number

elements, 59
frames, 127–128, 130
pixels. See resolution
state (buttons), 79

O
objects. See elements; graphics
opacity. See transparency
opinions

HUDs, 151–152, 177–178
icons, 142
interfaces, 40–41, 159, 177–178

Options screen, 23
overlapping elements, 60
overlays (animation), 136



P
paint, 50
PAL monitor resolution, 71
palettes, 103–105
particle systems, 137
PC games

buttons
mouse, 68–70
state, 77

converting, 61–62, 69–72, 110
development process, 65–66
localization, 110
menu screens, 68–70
minimum requirements, 65–66
monitor resolution, 70–71
mouse, 68–70
overview, 61

photos
icons, 143
interfaces, 35–37

Photoshop, 120
color, printable range, 51–52
HUDs, 167–169
layers, 167–169

physics. See animation, principles
picas (fonts), 90–91
pictures. See graphics; photos
pivot points, 134–135
pixels. See resolution
planning. See also designing

communication, 10
creativity, 8–9
evaluating, 9–10
game design, 10

goals
decision-making, 12–13
defining, 12
overview, 10–12
priorities, 12–13

HUDs, 24–25, 145–150
importance, 7
information gathering, 9
input types, 17–23
menu screens

Console Logo screen, 23, 29
Credits screen, 23
Developer Logo screen, 23
Environment Select screen, 23
evaluating, 23–24
flow charts, 13
Information screen, 23
Legal screen, 23
Level Select screen, 23
Navigation screen, 68
Options screen, 23
Player Editor screen, 23
Publisher Logo screen, 23
Save/Load Game screen, 23
Title screen, 23
types, 23

producers approval, 9–10
programmers, 10
research, 9
schedules, 7–9
teamwork, 4, 10

Player Editor screen
interfaces, 2
menu screens, 23

plug-ins, 116
pluses/minuses

commercial programs, 118–119
custom programs, 117–118

points (fonts), 90–91
pop-up menu screens

flow charts, 17–18
graphics, reusing, 107–108
HUDs, 148

portfolios, 4–5
position (graphics), 134
preferences (color), 48
pressed state (buttons), 75
pressing buttons, 192
principles

animation, 129–132
anticipation, 130
arcs, 132
exaggeration, 132
follow through, 131
squash, 129–130
stretch, 129–130

designing, 43–44
printing, 51–52
priorities, 12–13
producers approval, 9–10
professionalism. See careers
programmers

file size, 105–106
interfaces, 39
planning, 10
state (buttons), 78–80

programs
3D, 122–123
3D Studio Max, 123
asset management, 114–115
commercial

advantages/disadvantages, 118–119
overview, 118–120

creativity, 121–123

Index 209



Index210

custom
advantages/disadvantages, 117–118
in-game, 117
overview, 115–116
plug-ins, 116
stand-alone, 116–117

editors, 115
Flash, 120

buttons, 190–194
frame rates, 188
frames, 182–190
key frames, 186–187
layers, 183–185
overview, 181–182, 195–198
publishing, 194
scripts, 188–193
tweening, 186–187

interfaces, 121–123
Maya, 123
menu screen flow charts, 13, 23–24
middleware, 119
mock-ups, 113–114, 181
particle systems, 137
Photoshop, 120

color, printable range, 51–52
HUDs, 167–169
layers, 167–169

using, 121–123
properties (graphics), 134–136
pros/cons

commercial programs, 118–119
custom programs, 117–118

Publisher Logo screen, 23
publishers

careers, 5–6
console games, 62–65
schedules, 5–6

publishing files, 194
pulsating state (buttons), 74–75, 78–79
purchasing fonts, 93–94

Q–R
quality

compression, 102–103
interfaces, 1–2

radio buttons, 19–20
RAM, 100–101
red, green, blue (RGB), 51–52
research

fonts, 93–94
interfaces, 32–33
planning, 9

resolution
HUDs, 70
icons, 142–143
menu screens, 70
monitors, 70–72

returning (menu screen flow charts), 14–16
reusing graphics, 106–108
revisions, 160
RGB (red, green, blue), 51–52
rotation, 134–135
rough drafts. See mock-ups; sketches

S
sample art. See mock-ups
sans-serif fonts, 88–89
saturation, 49, 53
Save/Load Game screen, 23
scaling. See size
schedules

careers, 2–6
console games, 62–65
fonts, 95

planning, 7–9
projects, 2–3
publishers, 5–6
state (buttons), 79–80

screen shakes, 138
screens

menu screens. See menu screens
monitors, 50, 70–72
screen shakes, 138
transitions

animation, 132–134
speed, 133

scripts (mock-ups), 188–193
seeking time, 102
selected state (buttons), 74–75
selecting

fonts, 93–94
icons, 140–141

serif fonts, 88–89
shapes. See composition; elements
silhouettes (icons), 143
size

composition, 83–84
elements, 83–84
files

compression, 102–103
disk space, 101–102
downloading, 102
fonts, 90–93
graphics, reusing, 106–108
Internet, 102
loading time, 102
overview, 99–100
palettes, 103–105
programmers, 105–106
quality, 102–103
RAM, 100–101



seeking time, 102
textures, 106

focal points, 83–84
fonts, 90–93
graphics properties, 134–135
HUDs, 145–150
icons, 142–143
menu screen flow charts, 13–14

sketches. See also mock-ups
HUDs, 156–158
interfaces, 37–38, 156–160
thumbnails, 33–35

sliders (input), 19
software. See programs
sound (button state), 75, 80
source files, 110–111
space

composition
designing, 53–54
negative space, 55

disk space (file size), 101–102
elements, 53–54
fonts, 92
HUDs, 145–148
menu screen flow charts, 13–14

special effects
fonts, 97
graphics, 136–138

speed
animation

frame rates, 126, 188
interfaces, 133

downloading, 102
Internet, 102
loading time, 102
screens

transitions, 133
seeking time, 102

spinning, 134–135
squares (flow charts), 13–16
squash (animation principles), 129–130
stand-alone custom programs, 116–117
standard

button state, 74
HUDs, 153–154
icons, 141–142
interfaces, 35

state (buttons)
2D, 78–79
3D, 78–79
active-selected state, 76–77
active state, 75–76
alternatives, 77–78
animation, 78–79
arrows, 76
brightness, 74–76
color, 77, 79
controllers, 74–77
creativity, 77–78
disabled state, 77
flashing, 74–75, 78–79
flickering, 74–75, 78–79
gray, 77
highlighted, 74–75
light, 74–79
markers, 76
motion, 78–79
mouseover state, 77
number, 79
overview, 73
PC games, 77
pressed state, 75
programmers, 78–80
schedules, 79–80
selected state, 74–75

sound, 75, 80
standard state, 74
tips, 79–80
transparency, 77

stealing
icons, 142
interfaces, 33

stopping animation, 131
strength (color), 49
stretching

animation principles, 129–130
fonts, 93

subjectivity (color), 48
symbols

fonts, 97
icons, 141–142

symmetry. See alignment; balance
system requirements (PC games), 65–66
systems (color), 51–53

T
teamwork, 4, 10
technical approval (console games), 63
television monitors, 50, 70–72
temperature (colors), 49–50
tension (composition), 58
testing

HUDs, 151–152, 177–178
icons, 142
interfaces, 40–41, 159, 177–178

text
composition, 87–88, 139–140
fonts

ascenders, 89–90
background, 87–88
base line, 89–90
buying, 93–94

Index 211



Index212

cap line, 89–90
careers, 95
color, 97
composition, 87–88
creating, 95–97
descenders, 89–90
designing, 95–97
DPI, 91–92
effects, 97
file size, 90–93
graphics, 97
icons, 97
kerning, 92
knowledge, 95
lowercase, 90
mean line, 89–90
mixing, 95
monospace, 92
multiple, 95
picas, 90–91
points, 90–91
research, 93–94
sans-serif, 88–89
schedules, 95
selecting, 93–94
serif, 88–89
size, 90–93
space, 92
stretching, 93
symbols, 97
themes, 94–95
thickness, 92–93
types, 93–94
uppercase, 90

HUDs, 150, 152–153
icons, 97, 139–140
input, 20–22
interfaces, 139–140
languages, 110, 140

textures
file size, 106
tiling, 108

themes
fonts, 94–95
interfaces, 31

theory, color, 45
thickness (fonts), 92–93
thumbnails, 33–35
tiling textures, 108
time. See schedules
timing (controllers), 67–68
tips (button state), 79–80
Title screen

flow charts, 13–14
mock-ups, 28–29
planning, 23

toggle switches (input), 19–20
tools. See programs
tradition. See standard
transitions, 132–134
translation (properties), 134
transparency

graphics
alpha channels, 108–110
properties, 135–136

state (buttons), 77
trembling animation, 138

tweening
frames, 127–128, 130, 186–187
mock-ups, 186–187

typeface. See fonts
types

fonts, 93–94
input, 17–23
menu screens, 23

U
unity, composition, 54–55
uppercase fonts, 90
usability. See functionality
using programs, 121–123

V–Z
variation, composition, 54–55
warm colors, 49–50
weight, composition, 57–60
wheel. See color wheel
winding up, 130–131
workload. See schedules



CREATE AMAZING GRAPHICS AND
COMPELLING STORYLINES FOR YOUR GAMES!

Professional ■ Trade ■ Reference

Call 1.800.354.9706 to order
Order online at www.courseptr.com

The Dark Side of Game Texturing
ISBN: 1-59200-350-8 ■ $39.99

Charred ruins, bullet holes, rusted metal—if you ’re a fan of 3D
first-person-shooter games, then you ’re familiar with those
amazing, ominous textures that draw you into your character’s
surroundings. Get ready to analyze—and re-create—the textures
and graphics used in these games. All you need is a decent PC,
Photoshop, and a digital camera. Once you learn how to create
the textures within this book, you can create any texture for any
game. Not a born artist? That’s okay. You’ll learn how to let
Photoshop do most of the work. Begin with texturing basics,
including pixel sizes, color modes, and alpha channels. Then jump
right into hearty texture tutorials as you create everything from
sci-fi backgrounds and molten lava to medieval castle walls and
dragon skin. If you’re ready to travel to the grim back alleys
of your imagination, then you’re ready for The Dark Side of
Game Texturing.

Shaders for Game Programmers 
and Artists

ISBN: 1-59200-092-4 ■ $39.99
Shaders for Game Programmers and Artists—the title says it
all. This book does something that other shader books don’t.
It focuses solely on shaders and their creation. You’ll use ATI’s
RenderMonkey platform, giving you an easy-to-use framework
for shader development and allowing you to focus your energy
on shader development rather than the development of frame-
work applications. Cover simple techniques, from the basics of
color filters to more advanced topics, such as depth of field,
heat shimmer, and high-dynamic range rendering. Extensive
excercises at the end of each chapter allow you to test your
skills by expanding upon the shader you’ve just developed.
Whether you are an engineer or a technically minded artist,
you’ve finally found the ideal guide for mastering shaders!

Character Development and Storytelling
for Games

ISBN: 1-59200-353-2 ■ $39.99
Character Development and Storytelling for Games begins
with a history of dramatic writing and entertainment in media
outside the realm of games. It then segues  into writing for
games, revealing that while proven techniques in linear media
can be translated to games, games offer many new challenges
on their own such as interactivity, non-linearity, player input, and
more. It introduces elements of the craft of writing that are
particularly unique to interactive media, taking you from the
relatively secure confines of single-player games to the vast
open spaces of virtual worlds and examining player-created
stories. 



License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and conditions. If, upon reading the fol-
lowing license agreement and notice of limited warranty, you cannot agree to the terms and conditions set forth, return the
unused book with unopened disc to the place where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc. You are licensed to copy the
software onto a single computer for use by a single user and to a backup disc. You may not reproduce, make copies, or dis-
tribute copies or rent or lease the software in whole or in part, except with written permission of the copyright holder(s). You
may transfer the enclosed disc only together with this license, and only if you destroy all other copies of the software and the
transferee agrees to the terms of the license. You may not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Thomson Course Technology PTR to be free of physical defects in materials and work-
manship for a period of sixty (60) days from end user’s purchase of the book/disc combination. During the sixty-day term of
the limited warranty, Thomson Course Technology PTR will provide a replacement disc upon the return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST ENTIRELY OF REPLACEMENT OF
THE DEFECTIVE DISC. IN NO EVENT SHALL THOMSON COURSE TECHNOLOGY PTR OR THE AUTHOR BE LIABLE
FOR ANY OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNCTIONAL CHAR-
ACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFT-
WARE, OR ANY OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF THOM-
SON COURSE TECHNOLOGY PTR AND/OR THE AUTHOR HAS PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILI-
TY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
THOMSON COURSE TECHNOLOGY PTR AND THE AUTHOR SPECIFICALLY DISCLAIM ANY AND ALL OTHER WAR-
RANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, SUITABILITY TO A PAR-
TICULAR TASK OR PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION OF
IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS
MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to choice of law principles. The United
Convention of Contracts for the International Sale of Goods is specifically disclaimed. This Agreement constitutes the entire
agreement between you and Thomson Course Technology PTR regarding use of the software.


	000001.pdf
	000002.pdf
	000003.pdf
	000004.pdf
	000005.pdf
	000006.pdf
	000007.pdf
	000008.pdf
	000009.pdf
	000010.pdf
	000011.pdf
	000012.pdf
	000013.pdf
	000014.pdf
	000015.pdf
	000016.pdf
	000017.pdf
	000018.pdf
	000019.pdf
	000020.pdf
	000021.pdf
	000022.pdf
	000023.pdf
	000024.pdf
	000025.pdf
	000026.pdf
	000027.pdf
	000028.pdf
	000029.pdf
	000030.pdf
	000031.pdf
	000032.pdf
	000033.pdf
	000034.pdf
	000035.pdf
	000036.pdf
	000037.pdf
	000038.pdf
	000039.pdf
	000040.pdf
	000041.pdf
	000042.pdf
	000043.pdf
	000044.pdf
	000045.pdf
	000046.pdf
	000047.pdf
	000048.pdf
	000049.pdf
	000050.pdf
	000051.pdf
	000052.pdf
	000053.pdf
	000054.pdf
	000055.pdf
	000056.pdf
	000057.pdf
	000058.pdf
	000059.pdf
	000060.pdf
	000061.pdf
	000062.pdf
	000063.pdf
	000064.pdf
	000065.pdf
	000066.pdf
	000067.pdf
	000068.pdf
	000069.pdf
	000070.pdf
	000071.pdf
	000072.pdf
	000073.pdf
	000074.pdf
	000075.pdf
	000076.pdf
	000077.pdf
	000078.pdf
	000079.pdf
	000080.pdf
	000081.pdf
	000082.pdf
	000083.pdf
	000084.pdf
	000085.pdf
	000086.pdf
	000087.pdf
	000088.pdf
	000089.pdf
	000090.pdf
	000091.pdf
	000092.pdf
	000093.pdf
	000094.pdf
	000095.pdf
	000096.pdf
	000097.pdf
	000098.pdf
	000099.pdf
	000100.pdf
	000101.pdf
	000102.pdf
	000103.pdf
	000104.pdf
	000105.pdf
	000106.pdf
	000107.pdf
	000108.pdf
	000109.pdf
	000110.pdf
	000111.pdf
	000112.pdf
	000113.pdf
	000114.pdf
	000115.pdf
	000116.pdf
	000117.pdf
	000118.pdf
	000119.pdf
	000120.pdf
	000121.pdf
	000122.pdf
	000123.pdf
	000124.pdf
	000125.pdf
	000126.pdf
	000127.pdf
	000128.pdf
	000129.pdf
	000130.pdf
	000131.pdf
	000132.pdf
	000133.pdf
	000134.pdf
	000135.pdf
	000136.pdf
	000137.pdf
	000138.pdf
	000139.pdf
	000140.pdf
	000141.pdf
	000142.pdf
	000143.pdf
	000144.pdf
	000145.pdf
	000146.pdf
	000147.pdf
	000148.pdf
	000149.pdf
	000150.pdf
	000151.pdf
	000152.pdf
	000153.pdf
	000154.pdf
	000155.pdf
	000156.pdf
	000157.pdf
	000158.pdf
	000159.pdf
	000160.pdf
	000161.pdf
	000162.pdf
	000163.pdf
	000164.pdf
	000165.pdf
	000166.pdf
	000167.pdf
	000168.pdf
	000169.pdf
	000170.pdf
	000171.pdf
	000172.pdf
	000173.pdf
	000174.pdf
	000175.pdf
	000176.pdf
	000177.pdf
	000178.pdf
	000179.pdf
	000180.pdf
	000181.pdf
	000182.pdf
	000183.pdf
	000184.pdf
	000185.pdf
	000186.pdf
	000187.pdf
	000188.pdf
	000189.pdf
	000190.pdf
	000191.pdf
	000192.pdf
	000193.pdf
	000194.pdf
	000195.pdf
	000196.pdf
	000197.pdf
	000198.pdf
	000199.pdf
	000200.pdf
	000201.pdf
	000202.pdf
	000203.pdf
	000204.pdf
	000205.pdf
	000206.pdf
	000207.pdf
	000208.pdf
	000209.pdf
	000210.pdf
	000211.pdf
	000212.pdf
	000213.pdf
	000214.pdf
	000215.pdf
	000216.pdf
	000217.pdf
	000218.pdf
	000219.pdf
	000220.pdf
	000221.pdf
	000222.pdf
	000223.pdf
	000224.pdf
	000225.pdf
	000226.pdf
	000227.pdf
	000228.pdf
	000229.pdf
	000230.pdf
	000231.pdf
	000232.pdf
	000233.pdf

		2005-04-07T11:01:18+0800
	TeAM YYePG
	I attest to the accuracy and integrity of this document




