

EMERGENCE IN GAMES

PENNY SWEETSER

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Charles River Media

A part of Course Technology, Cengage Learning

© 2008 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

Publisher and General Manager,

Course Technology PTR: Stacy L. Hiquet

Associate Director of Marketing:

Sarah Panella

Manager of Editorial Services: Heather
Talbot

Marketing Manager: Jordan Casey

Senior Acquisitions Editor: Emi Smith

Project/Copy Editor: Kezia Endsley

Technical Reviewer: Iain McManus

CRM Editorial Services Coordinator:

Jen Blaney

Interior Layout Tech: Judith Littlefield

Cover Designer: Tyler Creative Services

CD-ROM Producer: Brandon Penticuff

Indexer: Valerie Haynes Perry

Proofreader: Michael Beady

Printed in the United States of America
1 2 3 4 5 6 7 11 10 09 08

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number: 2007939355
ISBN-13: 978-1-58450-551-8
ISBN-10: 1-58450-551-6

Course Technology

25 Thomson Place
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

eISBN-10: 1-58450-605-9

I would like to dedicate this book to my partner,
Peter Philip Tadeusz Surawski,

as well as my family, Bill, Gay, Terry, Sean, and Jane Sweetser

This page intentionally left blank

Acknowledgments ix
About the Author xi

1 Introduction 1

Emergence 2
Emergent Gameplay 3
Emergence in Games 5
Who This Book Is For 15
How This Book Is Organized 15

2 Emergence 19

Complex Systems 20
Complexity 28
Scientific Approaches 29
Chaos Theory 32
Artificial Life 35
Emergence 39
Summary 41
Additional Reading 41
Class Exercises 42

3 Playing Games 43

Player Interaction 43
The Evolution of Gameplay 54
What Players Want 64
Future of Gameplay 74
Summary 77
Class Exercises 77

Contents

v

4 Emergence in Games 79

Board Games 80
Game Worlds 83
Characters and Agents 88
Emergent Narrative 94
Social Emergence 102
Developing for Emergence 108
Emergent Games 112
Summary 113
Class Exercises 114

5 Techniques for Emergence 117

Linear Techniques 118
Approximate Reasoning 126
Machine Learning 132
Complex Systems 144
Artificial Life 149
Choosing a Technique 163
Summary 165
Class Exercises 167

6 Game Worlds 169

Active Game Environment 170
Property-Based Objects 201
Emergent Game Worlds 227
Summary 231
Class Exercises 232

7 Characters and Agents 233

Sensing 234
Acting 242
Summary 304
Class Exercises 306

vi Contents

8 Emergent Narrative 307

Narrative Structure 308
Narrative Elements 312
Summary 354
Class Exercises 355

9 Social Emergence 357

Economies 358
Social Structures 384
Communities 396
Artificial Social Networks 400
Summary 407
Class Exercises 408

10 Conclusion 411

Emergent Game Worlds 412
Emergent Characters and Agents 413
Emergent Narrative 414
Social Emergence 416
Developers 417
Players 417
The Future of Gameplay Is Emerging 419

Appendix A Bibliography 421

Appendix B Glossary 431

Index 439

Contents vii

This page intentionally left blank

I
would first and foremost like to thank my partner, Peter Surawski, for the help
and support he has given me in writing this book. Not only has he put up with
me during the process (and the several years of research that proceeded), but he

has also contributed substantially to the book by helping me to create images, as
well as acting as a sounding board for ideas and passages. I would also like to thank
my mother, the English teacher, for reading most of the book and providing much-
needed feedback and corrections.

I would also like to acknowledge the support, feedback, and encouragement of
many of my friends and colleagues. In particular, I would like to thank Michelle
McPartland, Adam Bryant, Jeff van Dyck, Kim Sellentin, Anne Ozdowska, George
Fidler, Daniel Lehtonen, and Richard Lagarto. Their feedback and wisdom greatly
helped to improve the quality of the book.

I would like to sincerely thank the game development experts who kindly con-
tributed interviews for the book—Richard Evans, Craig Reynolds, Jeff van Dyck,
and Brendan Rogers. Their insights, wisdom, and expertise provided depth and
richness to the book from their varied perspectives. I am also grateful to Maryse
Alvis who helped me in setting up interviews with developers at Electronic Arts.

I must also thank everyone who contributed to my research and Ph.D. work,
which formed the basis for this book. I thank my supervisors, Prof. Janet Wiles and
Dr. Peta Wyeth, for their feedback and direction. I also thank Penny Drennan, Dr.
Daniel Johnson, and Jane Sweetser for their feedback, support, and contributions
to my research work.

I’d also like to thank Charles River Media and Thomson Learning for giving me
the opportunity to write this book. I’d particularly like to acknowledge all the edi-
tors who contributed to the process and the final product, including Jennifer
Blaney, Emi Smith, Jenifer Niles, Kezia Endsley, and Iain McManus.

Acknowledgments

ix

Finally, I would like to thank the many game developers who have inspired
me by their creative genius and outstanding advances in video game technology.
Particularly, I would like to thank Doug Church, who first inspired me to pursue
emergence in games. I would also like to thank the masters of game design, who
continually push the boundaries of what is possible to create what is extraordinary
in games, including Will Wright, Warren Spector, and Peter Molyneux.

x Acknowledgments

D
r. Penny Sweetser completed her Ph.D. on “An Emergent Approach to
Game Design—Development and Play” in 2006. Her research focused
on player enjoyment in games and ways to enhance enjoyment through

new technologies. During her research, she developed a model for player enjoyment
in games, GameFlow, which has been explored and extended in subsequent research
and applied in the development of computer games. She is a strong advocate of the
player’s experience and creating more player freedom and control in games.

In 2005, she started working for The Creative Assembly, Australia, where she
worked as a designer on Medieval II: Total War and Medieval II: Total War King-
doms. Prior to working at The Creative Assembly, Penny lectured on games design
and tutored software engineering, artificial intelligence, and human-computer
interaction at The University of Queensland. Penny has also worked as a research
assistant for the Australasian CRC for Interaction Design and the University of
Queensland Usability Laboratory.

Penny is an enthusiastic game player and enjoys playing games of all genres.
She particularly enjoys strategy games, role-playing games, and first-person shoot-
ers. She also likes all things sci-fi and horror. Some of her favorite games of all time
include StarCraft, Vampire: The Masquerade—Bloodlines, The Elder Scrolls III: Mor-
rowind, Might & Magic 7, F.E.A.R., Bioshock, and Age of Mythology.

About the Author

xi

This page intentionally left blank

1

Introduction1

E
mergence in games is a topic that has garnered much debate in recent years.
Developers and players speculate that it would be fantastic if we could achieve
gameplay that is open and natural, where players can choose their own strate-

gies and the gameplay is limited only by the player’s imagination and creativity. In
recent years, games have taken steps toward this fantasy with emergent interactions
made possible by Valve’s Source engine and the availability of advanced physics
middleware, as well as emergent gameplay achieved in games such as The Sims and
SimCity. However, developers quickly realize the trade-off between emergence and
design. Giving the players control has meant letting go of their own.

Despite all the recent attention, the concept of emergence is still quite ambigu-
ous and undefined in games. Many people think it would be great to have emergent
gameplay, but what does this mean and how do game developers achieve it?
Throughout this book, I define emergence and examine the concept from various
perspectives. I also provide many ideas and examples of how to incorporate emer-
gence into current games. This book aims to serve as food for thought and a start-
ing place for growing a wealth of knowledge, understanding, research, and
applications for emergence in games. The future of game development lies in more
open, interactive, and emergent gameplay. The future starts now.

In This Chapter

Emergence
Emergent Gameplay
Emergence in Games
Who This Book Is For
How This Book Is Organized

2 Emergence in Games

EMERGENCE

The concept of emergence describes the properties, behaviors, and structure that
occur at higher levels of a system, which are not present or predictable at lower
levels. In biological, physical, and social systems, there is the potential for some-
thing new to be created from simple entities interacting with their local environ-
ment and with each other. When these entities come together to form the whole,
the whole is not merely a collection of these entities, it is something else entirely.

A brain is not a collection of neurons; it is a thinking machine. A human is not
several connected systems; it is a sentient being. A society is not a group of co-
located people; it is a powerful network capable of phenomenal behavior. The
whole that is created from the collection is something new, with new properties,
behavior, structure, and potential.

LOCAL AND GLOBAL EMERGENCE

Emergence can occur at different levels and to varying degrees. An important dis-
tinction to make is the difference between local emergence and global emergence.
Local emergence is the collective behavior that appears in small, localized parts of a
system. Global emergence occurs when the collective behavior of the entities relates
to the system as a whole. A system must be sufficiently rich, with highly interde-
pendent entities, for global emergent behavior to exist, such as in brains, humans,
and societies.

ELEMENTS AND RULES OF EMERGENCE

Systems that exhibit emergence have a common set of elements and adhere to a
common set of rules:

Global phenomena emerge from local interactions of many simple entities
There is no evidence of the global phenomena at the local level
Global phenomena follow a different set of dynamics

Complex systems are distinguished from systems that are merely “compli-
cated” by the possibility of emergence. Entities in complex systems do not merely
coexist; they are interconnected and interdependent. In the case of global emer-
gence, the whole is not only more than the sum of its parts; it is something new and
different.

In Chapter 2, you’ll explore the concepts of complex systems, chaos theory,
artificial life, and emergence, to gain an appreciation for the fundamentals of emer-
gence and the space of possibilities for emergence in games.

EMERGENT GAMEPLAY

Emergent gameplay is made possible by defining simple, global rules; behavior;
and properties for game objects and their interaction in the game world and with
the player. Emergent gameplay occurs when interactions between objects in the
game world or the player’s actions result in a second order of consequence that
was not planned, or perhaps even predicted, by the game developers, yet the game
behaves in a rational and acceptable way.

Emergent gameplay allows the game world to be more interactive and reactive,
creating a wider range of possibilities for actions, strategies, and gameplay. Local
emergent gameplay occurs when a section of a game allows for new behavior that
does not have knock-on effects (or greater consequences) for the rest of the game.
Global emergent gameplay occurs when the simple low-level rules and properties of
game objects interact to create new, high-level gameplay that alters how the game
as a whole plays out.

Emergent game systems empower players by putting them center stage, giving
them the freedom to experiment, greater control over the game, a sense of agency,
and less of a feeling of uncovering a path set for them by the designers. Conse-
quently, the game can be more satisfying and interesting for the players. Emergent
games also have high replayability, because each time the players play the game,
they make different decisions, which change the game as a whole and result in dif-
ferent possibilities. In Chapter 3, I discuss the key elements of player interaction
in games, review the history of gameplay from a player interaction perspective,
examine the elements of player enjoyment, and look to the future of game
development.

LEVELS OF EMERGENCE

The emergence that has been possible in previous games has been quite limited.
Games could potentially allow the players to play the game in a way that was not
designed or implemented by the game developer, but that works nonetheless. There
are three potential orders (or levels) of emergence in games. These levels can be re-
ferred to as first-order, second-order, and third-order emergence.

First Order

First-order emergence in games occurs when local interactions have knock-on or
chain reaction effects. The player’s actions spread throughout the game world,
affecting not only the immediate target, but also the nearby elements of the game
world. First-order emergence is becoming commonplace in games, especially since
the advent of Valve’s Source engine and other advanced physics middleware. The
Source engine is a 3D games engine developed by Valve Corporation. Valve’s

Chapter 1 Introduction 3

4 Emergence in Games

Source engine features an advanced physics system, which allows flexible and real-
istic physical and environmental modeling in games. Valve’s game Half-Life 2 (see
Figure 1.1) uses the Source engine to create realistic environments that allow com-
plex interactions with game world objects. Games that use property-based objects,
such as Half-Life 2, allow for a wide range of interactions and local knock-on effects.

FIGURE 1.1 The Source engine used in Half-Life 2 allows realistic
physics and complex interactions. © Valve Corporation. Used with permission.

Second Order

Second-order emergence occurs when players use the basic elements of a game
environment to form their own strategies and solve problems in new ways. Game
characters might also be able to use or combine their basic actions to exhibit new
behaviors or strategies. These types of emergence are still local effects, as they have
a limited range of effect and do not impact the game as a whole. However, they
allow considerably more player freedom and creativity and change how individual
parts of the game play out.

Third Order

Third-order emergence pertains to the game as a whole, where the emergence
occurs on a global scale. The boundaries of the game are suitably flexible to allow
the players to carve new and unique paths through the game. New gameplay occurs

that changes the game as a whole. The game allows for divergence in narrative,
game flow, character interactions, or social systems.

Third-order emergence is the holy grail of emergence in games, but by no means
the only type of value. Rather, the key is to develop emergence that will improve the
player’s experience of the game in some way, and never for its own sake. The use of
the simplest method that will achieve the desired results is always the best.

EMERGENCE IN GAMES

Emergence can play a part in games in various ways. In Chapter 4, I outline the
major components, including game worlds, characters and agents, emergent nar-
rative, and social emergence. I also identify and discuss some of the major concerns
of game developers in developing for emergence. Each of the major components is
explored in-depth in Chapters 6 to 9. Before I enter into the specifics of each area,
I first take a look at some algorithms and techniques that you can use to create
emergent behavior in your games in Chapter 5.

TECHNIQUES FOR EMERGENCE

In Chapter 5, I discuss various programming techniques and algorithms from fuzzy
logic, complex systems, artificial life, and machine learning that can be used to cre-
ate emergence in games. I also outline some traditional techniques that are preva-
lent in current games. The design, application, and considerations of using these
techniques in games are discussed. The basic techniques outlined in Chapter 5 are
used as the foundation for the models and frameworks presented in later chapters.
I also discuss the considerations of choosing the right technique for the right ap-
plication.

GAME WORLDS

Game worlds are the possibility spaces of games. The space, terrain, objects,
physics, and environmental effects dictate the possibilities for actions and interac-
tions that compose and constrain the gameplay. The elements of the game world
(for example, the weapons, chairs, walls, and enemies) are the basic elements of
gameplay, similar to the board and pieces in chess. The laws of physics and rules of
interaction are the game rules, which constrain the possibility space. Within this
space are the allowable actions and interactions of the players. Creating emergent
game worlds involves designing types of objects, interactions, and rules, rather than
specific, localized gameplay.

Interactions in the game world are the foundation of the gameplay and the
types of interactions depend on the game genre. In role-playing games, interactions

Chapter 1 Introduction 5

include talking to characters, using spells or abilities, collecting items, gaining ex-
perience, and upgrading abilities. In real-time strategy games, interactions include
training units, constructing buildings, collecting resources, upgrading, attacking,
and defending. In first-person shooter games, the players can run, jump, duck,
hide, kick, and shoot. The gameplay is made up of how the players use these basic
interactions to solve problems, achieve goals, and advance through the game.

The key to creating emergent gameplay is to define a simple, general set of
elements and rules that can give rise to a wide variety of interesting, challenging
behaviors and interactions in varying situations. The simpler and more generaliz-
able the rules, the easier they will be to test, tune, and perfect for emergent game-
play. The simplest solution that gives the desired results is always the best. As with
any emergent system, the fundamental set of rules and elements stay constant, but
their situation and configuration change over time. The sensitivity of the elements
to changing situations and the interaction of the elements with each other and the
players are what create emergent gameplay.

Game worlds can be divided into two fundamental components—environ-
ment and objects. The environment is the space, including boundaries such as ter-
rain, sky, and walls, as well as the physical space (for example, air in an earth-based
game or water in an underwater game). The game environment in most games is
inert and unresponsive to players, objects, and events. Game objects are the entities
that populate the game world. There are a wide variety of objects in game worlds,
which vary by game genre. Characters and agents are even types of objects, which I
will discuss later. Together, the environment and objects make up the game world
and their properties and behavior determine the interactions that are possible.

Environment

The environment is the central component of an emergent game system; it defines
the game world and the interactions that are possible within the world. The rules
that are defined for the interactions within the environment itself dictate the rules
that will apply to entities that exist in the environment, such as objects and agents.
Therefore, defining the rules of behavior of the environment itself is a crucial step
in developing a game world that facilitates emergent behavior.

The environment in most games is inert and unresponsive to player actions.
Chapter 6 covers a framework for what I call an “active” game world, which can be
used to model environmental systems, such as heat, pressure, and fluid flow in
games. The Active Game World model uses simplified equations from thermody-
namics, implemented with a cellular automaton (see Figure 1.2). The Active Game
World model, based on simple interactions between cells of the environment, pro-
vides a foundation for emergent behavior to occur in game objects and agents, as
well as in the environment itself.

6 Emergence in Games

Objects

Game objects are an integral part of any game world; they compose the major
source of player interactions. Objects in games are numerous and varied, including
weapons (for example, guns and swords) in first-person shooter games, quest items
(for example, the holy grail or a diary) in role-playing games, and buildings (for ex-
ample, barracks and factories) in strategy games. Each type of game object interacts
with the game environment and with the players in different ways, which gives rise
to interesting possibilities for actions for the players, but complicates the job of the
game developer.

Some games have allowed more freedom and variation through property-based
objects and rules for how the objects interact. Using a global design, the game ob-
jects behave more realistically and are more interactive, because they are encoded
with types of behavior and rules for interacting, rather than specific interactions in
specific situations. These objects afford emergent behavior and player interactions
that were not necessarily foreseen by the developers.

Chapter 6 presents a framework for creating property-based game objects that
can be integrated into the Active Game World model (see Figure 1.3). Objects are
also imbued with high-level properties, based on their structure, to constrain the
possible physical interactions of the objects. The high-level property tags that are
attached to objects can be used to create affordances for interactions with the player
and other objects. The resulting model is flexible and extensible, allowing the game
world to respond consistently and realistically to a wide range of events and player
actions in any situation in the game.

Chapter 1 Introduction 7

FIGURE 1.2 The Active Game World models physical systems with cellular automata.

CHARACTERS AND AGENTS

Characters and agents are important types of objects in game worlds, as they give
the game life, story, and atmosphere. Characters and agents serve many purposes
and hold varied positions in games, which contributes to making the game world
rich, interesting, and complex. For example, strategy games include units (for ex-
ample, marines) that the players control and role-playing games include characters
that fill a wide range of different roles in society, from kings to goblins. More than
anything else in the game world, players identify with and expect lifelike behavior
from game characters.

Agents are a vital ingredient in creating an emergent game world. Introducing
entities that have a choice of how to react to the changing environment amplifies
the variation and unpredictability of a system. Reactive agents can extend emergent
behavior and gameplay by adding a new level of complexity to the game world. As
agents can choose how to react to the environment, they can actively change the
state of the world in ways that might not have occurred without their intervention.
Also, differences between individual agents and types of agents, such as composi-
tion, structure, goals, personality, and so on, can add variation and complexity. Not
only can agents choose how to react to a given situation, different agents will choose
to react in varying ways in the same situation.

Characters and agents can create emergence in games by being given an aware-
ness of their environment and an ability to react to the changing state of the envi-
ronment. The agents then become part of the living system of the game, which they
sense, react to, and alter. Agents can be given the ability to respond to the player

8 Emergence in Games

FIGURE 1.3 The Active Game World uses property-based game objects.

and other agents, events, and conditions in their environment, as well as their own
goals and motivations, by having a model of their environment and a set of rules for
reacting. Characters and agents that follow simple rules for behavior, taking into
account the complex environment around them, will become emergent entities in
the game world.

Sensing

The agents in most games rely heavily on the prior knowledge of their designers and
little on their current situation. Many agents in games, such as units in strategy
games and villagers in role-playing games, do not react to the environment in any
way. Giving an agent an awareness of its environment and a way to sense and model
the situation is the most crucial step in creating reactive, dynamic, and emergent
behavior. The more information and intelligence embedded into the environment,
the simpler the agents themselves can become.

The ideal framework for facilitating emergent agent behavior is to have simple
agents in a complex environment. The emergence comes from the interactions be-
tween agents, between the agents and the player, and the collective interactions of
the agents with the game world. In order to achieve this, the agents must be given
a way to sense and model their environment. Some common approaches to sensing
game environments are probing, broadcasting, and influence mapping. A frame-
work for using each of these approaches in an emergent game system is presented
in Chapter 7.

Acting

After the agent has sensed its environment and has an understanding of its situa-
tion, it must choose an action. Even if the agent has a sophisticated world model, if
it fails to act or react appropriately, it will appear lifeless and unintelligent. There
are a wide range of specific actions that agents are required to take in game worlds,
which vary depending on game genre. There are two major types of actions that
agents are required to take—individual actions and group actions. Individual
actions require the agent to behave autonomously and make decisions based on its
own situation and needs. Group actions require the agent to play a role in a group
of agents, which involves cooperation and coordination.

Individual

Agents that act individually are usually game characters or enemies. In first-person
shooter games, a large proportion of the agents are there to fight the player. The
primary actions of these agents are to run, jump, dodge, hide, and shoot enemies. In
role-playing games, agents include friendly and enemy characters, as well as mon-
sters and animals. The actions of these agents include talking, fighting, walking, and

Chapter 1 Introduction 9

appearing to follow normal lives and routines. In strategy games, individual agents (or
units) must move, attack, guard, and hold positions. Agents in sports games must
move around the field or court, score goals, pass, tackle, and so on. The cars in racing
games drive around the track, dodge or ram other cars, and sometimes perform stunts.
The most common actions for agents in all of these types of games are movement and
decision-making. Chapter 7 discusses how characters can use their environmental
model to guide their movement and presents a simple, flexible, general-purpose
framework that you can use for agent decision-making (see Figure 1.4).

10 Emergence in Games

FIGURE 1.4 Reactive agents in the Active Game World.

Group

Many games have groups of agents that must interact, coordinate, and cooperate.
This is particularly important in team-based games, such as strategy games and
sports games. When there are two or more sides fighting or competing, the agents
must cooperate in an organized way to have any chance of success. Emergence has
a lot of potential to improve group behavior, with a focus on self-organization,
rather than top-down orchestration. The two most important group actions in
games are group movement and tactics. Chapter 7 discusses methods for achieving
emergent group movement in games using agent-based steering behaviors and pre-
sents a framework for creating emergent group tactics using an agent-based ap-
proach (see Figure 1.5).

EMERGENT NARRATIVE

A game’s narrative is the story that is being told, uncovered, or created as the play-
ers make their way through the game. This story might take the form of a single, lin-

ear plot that is divulged to the players at selected points in time. Alternatively, it
could be the deep, underlying truth of the game world that requires the players to
solve puzzles and investigate the world. It could also be the product of the players’
interactions in the game world—the internal story that the players create about
their character or challenges as they play the game. No matter the format of the nar-
rative, it is central to the enjoyment and understanding of all games, even games
that do not have a story. In creating emergent narrative, the developer is tailoring
the narrative to the players’ experience and putting them center stage.

Narrative Structure

If you examine forms of narrative in games from the player’s perspective, there are
three main categories that can be identified. The first is the traditional “player as re-
ceiver” model that is drawn from other forms of storytelling, such as movies and

Chapter 1 Introduction 11

FIGURE 1.5 Emergent group tactics in Halloween Wars.

books. In this form, the story is entirely prewritten and is simply transmitted to the
players. The players receive the story and have no potential to affect the outcome or
progression. A similar type of narrative is “player as discoverer,” in which the story
is embedded in the game world and the players must uncover the pre-existing plot.
The third, and considerably different form, is “player as creator,” which involves
the players actively creating and affecting the story as a product of their actions and
interactions. Player as creator narrative is emergent. Some, or all, of the story is a
product of the players’ interactions in the game world, interactions between objects
or characters in the game world, and knock-on effects. The narrative is not prede-
termined and scripted; it emerges from interactions between entities in the game
world. Chapter 8 explains a few simple ways to achieve emergent narrative in
games, using the narrative elements of storyline and conversation.

Narrative Elements

There are two key elements that can be used to create narrative in games—storyline
and conversation. Narrative is formed by telling stories about events, people, and
places. A player’s actions in a game can form a kind of internal narrative, but it is
not until the retelling that it becomes a story. The storyline is the overarching plot,
as well as subplots, that play out in the game. As discussed in the previous section,
the storyline can be received, discovered, or created by the player. Conversations
are a more informal, continuous form of narrative. The player can engage in con-
versations with various characters throughout the game, or observe conversations
between other characters, to gain small pieces of information about events, people,
and places in the game. By allowing emergence in storylines and conversations in
games, you can create emergent narrative.

Storyline

There are several components of storylines in games that can be used to create a com-
pelling narrative. These components are backstory, storytelling, story creation, and
post-game narrative. A backstory presents events that occurred prior to the start of
the game and can be used to establish setting, character, and motivation. Storytelling
is used throughout a game to impart further information about the plot or game
world to the players, usually via cutscenes. Story creation is the more interactive form
of storytelling in which the players perform certain actions, such as completing mis-
sions or quests, to create subplots or advance the overall plot. Finally, post-game
narrative is storytelling that occurs after the game is completed, which can be used to
create a story out of a player’s journey through the game. Each of these components
can be used to create narrative in an emergent game. Chapter 8 provides a framework
for developing an emergent storyline using these components.

12 Emergence in Games

Conversation

Chapter 8 describes a conversation system for enabling emergent narrative through
conversation. The system involves the use of a core set of variables that affect a
character’s conversation and a set of rules for how the conversation is affected. The
rules and variables of the system are simple, but allow emergent conversations in
the context of a complex game world. A simple conversation system that is sensi-
tive to the state of the game world, characters, and player can create emergent con-
versations between the player and characters, or between game characters.

SOCIAL EMERGENCE

Of all the forms of emergence in games, social emergence is by far the most complex
and unpredictable in current games. When millions of people come together to play
popular massively multiplayer online role-playing games, such as World of Warcraft
(see Figure 1.6) or Lineage, the result is comparable to the divergence and complex-
ity of a large city. Rather than trying to find ways of creating emergent social systems
in games, it is more a matter of trying to understand, model, constrain, and support
the complexities that arise naturally from human interactions. In order to do this,
game developers must draw on psychology, sociology, economics, and even law.

Chapter 1 Introduction 13

FIGURE 1.6 The massively multiplayer online role-playing game World
of Warcraft. World of WarCraft® images provided courtesy of Blizzard Entertainment, Inc.

The most prevalent forms of social emergence in games include emergent
economies, social structures, and communities. Chapter 9 draws on the lessons
learned from developers of major online games, as well as research into the com-
plexities of these worlds from the perspectives of psychology, sociology, economics,
and law. The result is an exploration of the major highlights and issues, as well as

guidelines and suggestions for supporting and harnessing these forms of social
emergence in games. Finally, you’ll look at how artificial social networks can be cre-
ated in single-player games and the emergence of artificial social communities.

Economies

The virtual economies in many massively multiplayer online games (games with
thousands or millions of players playing simultaneously in persistent online
worlds) have become as complex, intricate, and difficult to manage as real-world
economies. Virtual economies are emergent systems that change dynamically with
supply and demand, based on the trading patterns of the world’s inhabitants. They
share many characteristics with real-world economies, such as trading and banking,
but are also subject to many of the same problems, such as inflation and gambling.
Chapter 9 examines the emergence of economies and trading in massively multi-
player games, as well as the considerations and potential for developers.

Social Structures

The individual interactions, motivations, and behavior of players in massively mul-
tiplayer online games give rise to complex social structures that share many com-
mon elements with real societies. Emergent social structures in online games
include governments and political parties that form around common beliefs, de-
sires, or goals. Virtual governments even institute laws and punish law-breakers.
Virtual crimes are becoming more commonplace and varied, with thefts, assaults,
prostitution, and bullying. Even online mafia has emerged in some games, where
powerful players threaten new players into giving them protection money, as well
as carrying out organized crime. Chapter 9 discusses the emergence of social struc-
tures in games and the considerations for game developers.

Communities

Players invest large amounts of their time into games and form strong social bonds
with other players over time. Communities of like-minded players come together
inside and outside of game worlds, forming guilds, forums, competition ladders,
and mod communities. Supporting the development and continuance of these
communities is important for developers in sustaining interest in their games. So-
cial bonds between players can keep them playing the game far longer than almost
any gameplay mechanism. Chapter 9 discusses the various forms of game commu-
nities and what developers can do to encourage and support these communities.

Artificial Social Networks

The emergence of social structures and communities in massively multiplayer
games provides insight into the power of social dynamics in games, as well as in-

14 Emergence in Games

spiration for translating these dynamics into artificial social networks for single-
player and multiplayer games. Giving game characters the ability to form social
relationships with the player, as well as other game characters, has the potential to
add more life and interaction to game worlds. Using social networks to determine
the flow of information in game worlds and character behavior in social situations
can allow for emergent social interactions and character behavior. Chapter 9 pre-
sents a model for social networks in games.

WHO THIS BOOK IS FOR

This book is primarily written for game developers and future game developers
who hope to extend their games to enhance the player experience by allowing emer-
gent behavior and gameplay. It broaches questions from game design and game
programming and a practical understanding of both these areas will allow the great-
est benefit from this book. The book should be interesting and accessible for any-
one in game development, but some concepts and examples are more advanced. If
you are a game developer, researcher, or student of any level, you should be able to
gain a greater understanding and appreciation for the importance, potential, and
pitfalls of emergence in games from this book.

HOW THIS BOOK IS ORGANIZED

The aim of this book is to provide a grounded understanding of emergence in
games for game developers, researchers, and students, as well as practical skills to
create games with emergent gameplay. The knowledge and lessons in this book are
founded in complex systems theory and research, and grounded in the past, pre-
sent, and future of practical game development. Chapters 2 through 9 provide the
necessary background knowledge, theory, game development applications, and
practical skills to commence designing, implementing, or researching emergence in
games. Chapter 10 provides a summary of the book, concluding remarks, and a dis-
cussion of the future of game design. A bibliography of relevant resources, includ-
ing books, journals, conferences, Web sites, and games, is also included, along with
a glossary of the key terms used throughout the book.

THEORY

Chapters 2 to 5 provide the fundamental theory of complex systems, game devel-
opment, and computer science that later chapters will build upon.

Chapter 1 Introduction 15

Chapter 2 provides a broad, interdisciplinary introduction to complex systems
and emergence.
Chapter 3 explores the past, present, and future of game development from a
player-centered perspective.
Chapter 4 overviews emergence in games and identifies key areas for more in-
depth exploration in later chapters.
Chapter 5 explains several key techniques for creating emergence in games,
which will be built upon in subsequent chapters.

PRACTICE

Chapters 6 to 9 take a practical approach to creating emergent gameplay in com-
mercial games. Four key areas are identified and explored in detail: game worlds,
characters and agents, emergent narrative, and social emergence.

Chapter 6 explains methods to create emergent gameplay via interactions in
game worlds.
Chapter 7 explores emergence through game artificial intelligence, including
characters and agents.
Chapter 8 delves into creating emergent narrative through storytelling and con-
versations in games.
Chapter 9 discusses emergent social communities, including communities
inside game worlds and external game communities.

WHAT’S ON THE CD

The accompanying CD-ROM includes demonstrations, color images, and source
code that illustrate the examples and solutions presented in this book. Please refer
to the Web site www.emergenceingames.com for updates. The contents of the CD-
ROM are divided into:

Demonstrations—Include code, data, and executables for examples presented
in the book. Source code and listings from the book are included in subfolders
by chapter number. Demos were compiled using MS Visual C++ 2003. Exe-
cutables for each demo are also included.
Games—A selection of related freeware games is included on the CD-ROM.
Images—Color versions of the screenshots included in the book are provided
on the CD-ROM in JPG format.
Papers—A selection of related research papers is included on the CD-ROM.

16 Emergence in Games

www.emergenceingames.com

CHAPTER STRUCTURE

Each chapter includes suggested readings that will provide further information, de-
tails, or examples of topics that are discussed. The keywords that are used in each
section are also defined in the keyword summaries. Each chapter concludes with a
set of class exercises that you can do on your own or that teachers can administer to
their classes. These exercises are best used for group work in tutorials or labs.

Chapters 6 through 9 include interviews with industry experts in the areas of
design, programming, research, and audio. These interviews provide specific ex-
amples of applications of emergence in games from varying industry perspectives,
as well as tips for game developers and researchers. Examples and case studies are
also illustrated with code or demonstrations where appropriate, which are included
on the accompanying CD-ROM. The next chapter commences your journey into
emergence in games with an exploration of the history and foundations of emer-
gence and complex systems in the world at large.

Chapter 1 Introduction 17

This page intentionally left blank

19

Emergence2

C
omplex systems have been studied in computer science for at least 50 years.
Before computers, they were studied in physics, biology, and even philoso-
phy. In fact, it was Aristotle, over 2,000 years ago, who first recognized the

profound concept that a whole can be more than the sum of its parts. The ideas are
not new, but the implications are still as profound as ever, and the promise of
emergence is still as enticing, especially when one contemplates the possibilities
in the world of computer games. But before I get to games, let’s first explore the
concepts of complex systems, chaos theory, artificial life, and, of course, emergence,
to truly understand the space of possibilities which we, as game developers of the
future, are facing.

This chapter explores complex systems and their incarnation in physics, biology,
and society. It also defines complexity and examines various scientific approaches
to understanding complexity and complex systems. You will investigate chaos,
order, complexity, and emergence at the edge of chaos. The chapter will then go on
to discuss artificial life and agent-based systems. The chapter finally ends up at

In This Chapter

Complex Systems
Complexity
Scientific Approaches
Chaos Theory
Artificial Life
Emergence

20 Emergence in Games

emergence, which is the end of the journey, but by this stage you will have a thor-
ough appreciation of what it means and where it has come from. Emergence is the
key to every system, theory, and methodology you will visit along the way.

COMPLEX SYSTEMS

If something is complex, it is so complicated or intricate that it is hard to understand
or deal with. Complex also refers to something that is composed of many intercon-
nected parts, or has a complicated arrangement of parts. Both of these definitions
are true of complex systems.

A complex system is a system that consists of many interconnected and inter-
dependent parts. The parts themselves may be simple or complex, but the real
complexity comes from their interaction. From the outside, the system appears
convoluted and impossible to understand. But a closer look reveals that it is made
up of many simpler components, each following a set of behaviors and interacting
with its local environment.

The result of these behaviors and interactions is far more than what would be
expected by examining a component in isolation. The collective behavior of the
system is not equal to the simple sum of its parts—it is something that is dynamic,
organic, and alive.

A common and familiar example of an extremely complex system is the human
brain. Our brains consist of approximately 100 billion neurons and each of these
neurons is connected to about one to ten thousand other neurons via synapses. A
synapse is the channel for the transfer of chemical signals between neurons. When
a neuron fires, it releases chemicals, called neurotransmitters, that diffuse across the
synaptic cleft and interact with the receptors of connected neurons. These reactions
can either have an excitatory or inhibitory effect on the receptor neuron, increas-
ing or decreasing the chance that it will, in turn, fire and propagate the signal.

The role that the individual neuron has played is quite simple, depending on
the chemicals that pass across the synapse to its receptors, it either exceeds the
potential to fire and propagate the signal or it does not. But as an entire network of
neurons that are continually firing or inhibiting signals, with such an enormous
connectivity between neurons, the result is something that could not be imagined
from the workings of a single component.

The human brain, capable of a plethora of thoughts, emotions, language, motor
control, consciousness, and self-awareness, emerges, unexpectedly and inexplicably,
from these simple components interacting with neighboring neurons in a seemingly
disorganized manner (see Figure 2.1).

A complex system is more than the sum of its parts, because it is as much about
how the parts interact, interconnect, and affect each other as it is about the com-
position and behavior of the parts themselves. Simply looking at the parts in isola-
tion and inferring the overall behavior of the system as an aggregate of these parts
does not give an accurate description of the system.

The interaction of the parts is so fundamental to the system as a whole that the
system cannot be described without describing its parts and the parts cannot be de-
scribed without describing how they relate to each other. The complex behavior of
the system is said to be emergent, it cannot be simply inferred by the behavior of its
components.

The components of complex systems do not just interact, they are interdepen-
dent. Without the role that each component or entity plays in the system being
fulfilled, the other parts either lose their emergent complexity or they may not be
able to continue to function and exist. You can attempt to understand the degree
of interdependence of these complex systems and their substructure by removing
or modifying a part of the system and observing the effects on the rest of the system.
This process is called subdivision.

Chapter 2 Emergence 21

FIGURE 2.1 Neuron, synapses, brain, and consciousness.

22 Emergence in Games

PROPERTIES OF COMPLEX SYSTEMS

Most complex systems have a common set of properties. These properties include
elements, interactions, formation, diversity, environment, and activities. Consider
these properties in relation to the human brain (see Table 2.1):

Elements are the basic components of the complex system. In the human brain,
the elements are the neurons.
Interactions occur between these elements to give rise to the overall complex
behavior of the system. In the brain, the interactions are the synapses, or con-
nections between neurons.
The system and its components are formed by some process of formation. The
pathways through the brain are formed by learning how to respond to the out-
side world.
Complex systems have a diverse range of behaviors and states. Diversity in the
brain comes from the connectivity of the neurons and the great many potential
pathways that exist through the brain.
Complex systems also exist within environments that they must respond to and
interact with. The brain’s environment is the body and its many systems (for
example, organs, limbs, and eyes) that the brain must interact with in order to
control functions and the behavior of the body. The brain must also perceive
and synthesize stimuli from the outside world and learn how to respond and
interact with the world.
Finally, complex systems carry out activities in order to achieve certain objec-
tives or for some purpose. The activities carried out by the brain are the afore-
mentioned plethora of thoughts, feelings, movements, and interactions that
people face every day.

Property Description Brain

Elements Basic components of the system Neurons

Interactions Interactions that take place between elements Synapses

Formation How the interactions and elements are formed Learning

Diversity A diverse range of behaviors and states Potential
pathways

Environment The environment where the interactions occur Body, world

Activities The activities that are carried out by the system Thought,
behavior, motor
control

TABLE 2.1 Properties of Complex Systems and Their Manifestation in the Brain

EXAMPLES OF COMPLEX SYSTEMS

There are many examples of complex systems that surround us every day. Life,
itself, is a complex system, as are people, animals, families, governments, planets,
and galaxies. Most complex systems are, themselves, composed of other complex
systems, which are also composed of complex systems, and so on. For the purpose
of understanding them, you can roughly divide complex systems into three main
categories—physical systems, biological systems, and social systems (see Table 2.2).

It is important to note, however, that these categories are very much over-
lapping and interwoven themselves. Social systems are made up of many biological
organisms (humans), which are made up of smaller biological organisms (for ex-
ample, organs, tissue, and cells), that are in turn made up of physical substances
(for example, atoms and molecules) and governed by the laws of physics. There-
fore, these categories, and their boundaries, are fuzzy at best.

Chapter 2 Emergence 23

Physical Biological Social

Gases DNA Governments

Crystals Cells Culture

Lasers Organisms Military

Weather Brain Economies

Fluids Humans Families

Glasses Proteins Corporations

Earthquakes Ecosystems Flocks

Fractals Embryos Traffic

Solids Ant colony Internet

Galactic structures Life Online games

TABLE 2.2 Complex Systems in Physics, Biology, and Society

Physical Systems

Physical systems are made up of the simplest elements—atoms, protons, electrons—
obeying the universal laws of physics. Yet, from the interactions of these base ele-
ments following the fundamental laws of the universe, come the most complex,
emergent, and dynamic systems and behaviors (see Table 2.2). Some of the more
fascinating examples include global weather patterns, crystallization (for example,
snowflakes), fluid dynamics, and the formation of galactic structures (galaxies).

Snowflakes are formed via crystallization, which is the process of solid crystal
formation. Crystallization is a liquid-solid phase transition, in which a solid grows
by adding material from an adjacent liquid environment (Gaylord & Nishidate,
1996). Crystallization includes two major events: nucleation and crystal growth. In
nucleation, the solute molecules dispersed in the liquid gather into clusters and the
atoms arrange themselves in a defined and periodic manner that determines the
crystal structure.

Crystal growth is the subsequent growth of the nuclei. Nucleation and growth
continue while supersaturation exists. Supersaturation determines the rate of nucle-
ation and growth and depending on which is predominant, crystals with different
sizes and shapes are formed. A simple cellular automaton (see Chapter 5) can be
implemented to simulate the formation of snowflakes (see Figure 2.2).

24 Emergence in Games

FIGURE 2.2 Simulated snowflakes.

Biological Systems

Life has the most profound, surprising, and diverse set of complex systems. From
the DNA that encodes the proteins in every living organism, to the neurons that
make up the brain and nervous system, to entire ecosystems comprised of thou-
sands of different species living in equilibrium, life is the ultimate complex system.

Life is made up of nested complex systems, where it is possible to continuously
drill down into one complex system and find many more. The world is a complex
ecosystem, composed of many sub-ecosystems, such as forests, swamps, and oceans.
Each sub-ecosystem is composed of a diverse set of organisms, from human beings
to bacteria. Many organisms are composed of a variety of other systems and or-
ganisms, such as organs, nervous systems, circulatory systems, and so on, that must
all function in harmony for life to continue. These systems are made up of tissues,
cells, and molecules, and at the root of it all, the DNA that encodes the building
blocks of life, proteins.

It is important to note that DNA does not encode the instructions for creating
the organism, as you would assemble IKEA furniture. It has a much simpler func-
tion, which is only to encode proteins. The development of the organism is a reac-
tion to the environment, such as the creation of a cell wall for protection or a
cytoskeleton for structure. Over millions of years of reaction, reproduction, compe-
tition, and selection, life has evolved into the complex structures all around us. Life
is composed of complex systems as it is made up of very simple elements reacting to
their local environments in ways that create self-organized, complex structures with
amazingly diverse properties and behaviors.

An interesting example of complex behavior in biological systems is via chemical
signaling. Chemical signaling is an important process in communications between
organisms in many communities, including animals, birds, insects, and bacteria.
Chemical signals govern various types of social behaviors, such as mating, aggression,
and movement. For example, in slime mold amoeba, the production and emission of
cyclic adenosine monophosphate (cAMP) causes amoebas to cluster when food is
scarce. Perhaps more interestingly, the behavior of ants in colonies can be attributed
to chemical signals.

Ant colonies have no hierarchical structure or chain of command. Contrary to
animated movies on the subject, the queen ant does not give direct orders to the
workers. Instead, each ant reacts to stimuli in the form of chemical scent from
larvae, other ants, intruders, food, waste, and leaves behind a chemical trail that
provides stimulus to other ants.

Each ant is an autonomous unit that reacts depending on its local environment
and its genetically encoded rules. Despite the lack of direct organization, ants
demonstrate complex behavior (for example, building complex colonies, collective
foraging for food, and piling bodies of their dead) and can solve geometric problems
(for example, navigating around obstacles). The local interactions between ants give
rise to the observed organizational behavior of an ant colony (see Figure 2.3).

Social Systems

Humans naturally organize themselves into families, groups, communities, societies,
governments, and cultures. Humans have been social animals for thousands of
years, but now their social groups span the entire world, not just their local habitat.

Due to technological advances, such as the Internet and jet propulsion, we have
worldwide corporations, a global economy, and the United Nations. However, at
the basic level, these social groups are still made up of individuals going about their
daily lives, trying to fulfill basic needs through small-scale interactions. People have

Chapter 2 Emergence 25

simple rules, functions, actions, and interactions, even though they are, themselves,
complex organisms. The complexity of an individual, however, is irrelevant at the
global scale.

Economies emerge from a multitude of people trying to satisfy their material
needs by individual acts of buying and selling, without any one entity controlling or
planning the resulting economy. Families consist of individual members interacting
with each other, to give rise to something that is more than just a group of people. Gov-
ernments, though seemingly organized institutions, are themselves complex systems,
made up of various branches (for example, taxation, transportation, and military) and
levels trying to achieve a set of goals by performing a set of functions.

At a simpler scale, flocks of birds are groups of individuals adapting to the move-
ment of their neighbors, which is very similar to the flow of traffic along streets or
highways (see Figure 2.4). In an urban area, the flow of traffic is constrained by a set
of rules (for example, legal places to drive, speed limits, intersections), but the over-
all dynamics are a result of individuals taking low-level actions (for example, speed
up, slow down, turn right) in order to achieve their goals (for example, get to work
on time).

26 Emergence in Games

FIGURE 2.3 Ants responding to chemical signals appear
organized.

Chapter 2 Emergence 27

FIGURE 2.4 Traffic flow at a busy intersection.

KEY TERMS

Complex means complicated or intricate, hard to understand or deal with,
composed of many interconnected parts, or having a complicated arrange-
ment of parts.
Complex systems are systems composed of many interdependent parts,
where the whole system is more than the sum of its parts and its overall
behavior is emergent.
Subdivision is the removal of a section of a system to determine the effect
on the whole.
Physical systems are composed of atomic and sub-atomic components that
obey the laws of physics.
Biological systems range from ecosystems to organisms, where the elements
can be as complex as animals or as simple as bacteria.
Social systems are the result of interactions between individual humans or
animals that create complex social networks and dynamics.

COMPLEXITY

Complexity, a concept from information and computation theory, is the amount of
information that is required to describe a system. In other words, the complexity of
a system depends on the level of detail that is required to describe the system.

There are many methods that are used to measure complexity in various fields,
including algorithmic complexity, computational complexity, graph complexity,
hierarchical complexity, Shannon’s information, logical depth, simplicial com-
plexity, and thermodynamic depth.

There are two types of complexity that are relevant to complex systems: static
complexity and dynamic complexity. Static complexity relates to how an object or
system is constructed, including the structure of the system and the interactions be-
tween components of the system. Static complexity is independent of the processes
involved in encoding and decoding information in the system. For example, the
static complexity of a network is determined by the number and type of nodes in
the network. A network with few nodes (for example, a single perceptron) will have
low static complexity, whereas a network with many layers of nodes will have high
static complexity.

Dynamic complexity relates to the computational effort required to describe
the state of a system. Static complexity affects dynamic complexity, but they are not
equivalent. A system can have a simple structure and yet have complex dynamical
behavior. For example, a network with a given number of nodes can have low
connectivity (a few connections between nodes) or high connectivity (connections
between many nodes). Each network will display different behavior and have vary-
ing levels of dynamic complexity. Each connection will necessitate additional
information in describing the state of the system.

The number of bits required to specify the state of a given system depends on
the number of possible states of that system. If the number of states is equal to X,
the number of bits of information required is:

I = log2(X)

To specify the state of the system, the possible states must be enumerated, so
that each state is uniquely identified. The number of states of the representation
must equal the number of states of the system. For a string of N bits, there are 2N

possible states. Therefore, X = 2N, and:

I = log2(2
N) = N

Complexity is a measure of the difficulty involved in understanding a system.
For dynamic systems, the description includes how the system changes over time.

28 Emergence in Games

The dynamic complexity of a system is related to the dependence of the system’s be-
havior on its components’ behavior.

The more components that must be described in order to describe the whole
system’s behavior, the more information required and the greater the complexity of
the system. The amount of information that is required to describe the behavior of
a complex system is a measure of its complexity.

Chapter 2 Emergence 29

KEY TERMS

Complexity is a measure of the amount of information that is required to
describe a system.
Static complexity relates to how an object or system is constructed, includ-
ing the structure of the system and the interactions between components of
the system.
Dynamic complexity relates to the computational effort required to describe
the state of a system.

SCIENTIFIC APPROACHES

There are various ways of understanding and explaining complex systems. Some
common scientific and philosophical approaches include reductionism, holism,
and collectivism (see Figure 2.5). Reductionism is the idea that systems can be re-
duced to their basic components and reconstructed to gain an understanding of
how the system works.

Holism holds that the behavior of a system cannot be understood by reducing it
to its components, because the whole is more than the sum of its parts. Collectivism
further adds that the dynamics between the parts and the whole is not static, instead
there is continuous nonlinear feedback between a system and its components.

REDUCTIONISM

The reductionist approach seeks to decompose a system to its primitive compo-
nents. The idea of reductionism is that the nature of complex entities can be re-
duced to the nature of sums of simpler or more fundamental entities. For example,
it is theorized that biology can be reduced to chemistry and that chemistry can be
reduced to physics. Ultimately, everything in the universe can be reduced to the
laws of physics and all phenomena are constrained to the laws of physics. Reduc-
tionism is the approach favored by most physicists.

Analysis of a system via the reductionist approach follows the assumption that
in order to understand a system, it must first be broken into its constituent parts.
The understanding of the system is then gained by reconstructing the system from
these parts. However, in systems where the overall behavior depends on the inter-
action between the components of the system, such as complex systems, the reduc-
tionist approach often misses the most crucial contributor to the system’s behavior,
the interconnections and interdependencies between elements. “The ability to re-
duce everything to simple fundamental laws does not imply the ability to start from
those laws and reconstruct the universe” (Anderson, 1972).

30 Emergence in Games

FIGURE 2.5 Reductionism, holism, and collectivism.

HOLISM

At first glance, holism seems to characterize the nature of complex systems. Holism
is the idea that the properties of a system cannot be determined or explained by
the sum of its parts alone. The system as a whole must be considered to explain the
behavior of the parts. It was Aristotle, in his Metaphysics, who first coined the
phrase “the whole is more than the sum of its parts,” which is now the catchphrase
of complex systems. The term holism was first defined as “the tendency in nature to
form wholes that are greater than the sum of the parts through creative evolution”
(Smuts, 1926).

Holism, like complex systems, identifies that simple systems can produce un-
expected, complex behavior. Holism also holds that these systems are irreducible
and that it is not possible to model or approximate such a system unless the entire
system, including its components and their interactions, is simulated. Furthermore,
it is believed that higher-level properties of these systems can be emergent, and not
predictable from the low-level components of the system. Holism is the philosophy
that underpins connectionism, the foundation of neural network theory (see
Chapter 5).

COLLECTIVISM

Collectivism identifies that the nonlinear feedback between the micro and macro
levels of a system (the components and the whole) is essential to the dynamics of
complex systems. A system is more than just a larger entity synthesized from
smaller entities. In order to fully understand a complex system, the system must be
viewed as a coherent whole, whose evolution is continuously refined by nonlinear
feedback between its macroscopic state and it microscopic components.

For example, in an ecosystem composed of a diverse range of species, each
species evolves with the other members of the ecosystem by following an evolution
process that is itself a function of the evolving ecosystem. The individuals collectively
define the co-evolving ecosystem and the ecosystem determines the evolutionary
process. The nonlinear feedback between the individual species (microscopic level)
and the global ecology (macroscopic level) that is the collective of the individual
species drives the evolution of the entire system.

Another example of nonlinear feedback within a system is the ability of the
human species to alter human DNA. This modified DNA then feeds back into the
evolution of the species, creating a nonlinear feedback mechanism between the
whole and the constituents. The co-evolutionary, self-organized, micro-macro
feedback dynamics defined in collectivism are necessary to allow higher-level,
emergent behavior. The nonlinear feedback between levels is what makes tradi-
tional linear analysis of complex systems difficult.

Chapter 2 Emergence 31

CHAOS THEORY

Chaos theory describes the ability of nonlinear, dynamical systems to, under certain
conditions, exhibit a phenomenon known as chaos. Chaos is irregular, determinis-
tic behavior that is highly sensitive to initial conditions. In chaos theory, very sim-
ple, dynamical rules can give rise to extremely intricate behavior, such as weather,
turbulence, and fractals (see Figure 2.6).

In chaos theory, small changes in local conditions can cause major, global,
long-term effects. The most frequently cited example is the butterfly effect. The idea
is that a butterfly flapping its wings in one part of the world can cause worldwide
changes in weather, due to small, local changes in atmosphere. The butterfly effect
illustrates the propensity of a system to be susceptible to initial conditions, an im-
portant characteristic of chaotic systems.

Chaos is often cited as an explanation for the difficulty in predicting weather.
However, meteorologists do not work at a level of detail at which chaos is relevant.
Their predictions involve large masses of atmosphere over short time spans, usually
starting with a new set of data each day. Therefore, the flapping of a butterfly’s
wings and its potential long-term, global effects, have no bearing on weather
predictions. Chaos theory is also at a loss to explain the structure, coherence, and
self-organization of complex systems.

32 Emergence in Games

KEY TERMS

Reductionism is the idea that complex things can be reduced to and under-
stood from their basic components.
Holism holds that the whole is more than the sum of its parts and that
something cannot be understood by reducing it to its components.
Collectivism asserts that the nonlinear feedback between the whole and its
components make up its dynamics, not just the interactions between the
components.

ADDITIONAL READING

The following references provide additional information on scientific approaches:

Anderson, P. W. (1972) More is Different. Science 177 (4047), pp. 393–396.
Smuts, J. (1926) Holism and Evolution. London: Macmillan.

EDGE OF CHAOS

More important to the study of complex systems is the concept of the edge of chaos.
The edge of chaos is the region in complexity space toward which complex systems
appear to naturally evolve. Systems that are poised at the edge of chaos are opti-
mized to evolve, adapt, and develop emergent behaviors.

If you visualize a continuum from order to chaos, the area in which complex-
ity is the greatest is toward the center (see Figure 2.7). In a completely ordered
system, the outcome is deterministic, predictable, and a simple function of the
input. An ordered system stagnates and its components behave more or less
independently of one another, with no hope of evolving or adapting.

At the other end of the continuum, the behavior of the system is random and
chaotic. Components of the system become too interdependent, mimicking each
other’s behavior or being overwhelmed by random noise.

Somewhere between the two extremes of complexity space is an optimal balance
between order and chaos, where a system follows ordered rules, but where there is
still a chance that something will change, and that something new will emerge. This
balance is the edge of chaos, where the behavior of a system is best described as com-
plex, neither locking into an ordered pattern, nor dissolving into chaos. At the edge

Chapter 2 Emergence 33

FIGURE 2.6 Fractals in chaos theory.

of chaos, a system has enough stability to sustain itself, but enough randomness to
evolve and adapt. Figure 2.8 illustrates order, edge of chaos, and chaos generated by
a cellular automaton. Order is demonstrated by repeating straight lines, the edge of
chaos is shown by repeating patterns with interesting variations, and chaos creates
unpredictable and non-repeating random configurations.

34 Emergence in Games

FIGURE 2.7 Complexity is at its peak between order and chaos.

FIGURE 2.8 Order (left), edge of chaos (center), and chaos (right).

ARTIFICIAL LIFE

Artificial life is the attempt to understand life as it is by examining life as it could be.
It asserts that the way information is organized is as important to life as the physi-
cal substance that embodies the information. In artificial life, life is studied by using
artificial components to capture the behavior of living systems. The premise is that
if the artificial components are organized in a way that captures the organization of
the living system, the artificial system will also exhibit the same higher-level behav-
ior as the living system. Artificial life follows a bottom-up, holist or connectionist,
approach. As with complex systems, the fundamental concept of artificial life is
emergence.

Systems in artificial life have five general properties:

A set of simple instructions about how individuals interact
No master or director who directs the actions of the individuals
Each instruction defines how individuals respond to their local environment
No rules that direct the global behavior of the system
Behaviors on higher levels than the individuals are emergent

Systems in artificial life include a large number of individuals, or agents, that are
independently interacting with their local environment and each other. Through the
multitude of simple, local interactions that occur, the collective manages to acquire
properties, dynamics, and global behaviors that are not present or predictable on the
scale of an individual.

Chapter 2 Emergence 35

KEY TERMS

Chaos theory describes the ability of nonlinear, dynamical systems to,
under certain conditions, exhibit a phenomenon known as chaos.
Chaos is irregular deterministic behavior that is highly sensitive to initial
conditions.
Butterfly effect is an example that illustrates the propensity of chaotic
systems to be susceptible to initial conditions, in which it is proposed that
a butterfly flapping its wings in one part of the world can cause worldwide
changes in weather.
Edge of chaos is the region in complexity space where the behavior of a
system is best described as complex, neither locking into an ordered
pattern, nor dissolving into chaos.

The behavior that occurs often seems organized and directed, as though there
were some higher power directing the movement of the individuals. The result is
complex, self-organizing, and adaptive systems that carry out surprisingly complex
and intricate tasks and behaviors. One of the primary modeling methods of artifi-
cial life is agent-based systems.

AGENT-BASED SYSTEMS

Agent-based systems are based on the idea that the complex, global behavior of a
system is derived from the collective, simple, low-level interactions of the agents
that make up the system. Agent-based models of real-world systems are used to
simulate the interactions and processes that take place in those systems, in order to
gain insight into the emergent structures and high-level properties of the systems.
Any system whose top-level behavior is the result of the collective behavior of
lower-level entities, such as biological systems, neural systems, social systems, and
economic systems, can be modeled with an agent-based system.

Traditional models seek to characterize a system’s top-level behavior by di-
rectly modeling the top-level variables. This top-down approach might be able to
model the desired behavior, but it cannot provide an explanation for the behavior.
In contrast, the approach used by agent-based systems is to determine a set of
agents and rules that will result in the desired high-level behavior.

Once the desired high-level behavior has been achieved, the modeler has
immediate and simultaneous access to both the top-level behavior and low-level
dynamics of the system. Agent-based systems, therefore, provide an understanding
of how the top-level behaviors are produced, as well as a framework for investi-
gating how changes to the interactions or environment will propagate to the global
behavior of the system.

There are four key points of agent-based systems that differentiate them from
traditional top-down modeling approaches: low-level behaviors, open systems,
multi-objective goals, and bounded rationality (see Table 2.3).

Autonomous Agents

Agent-based systems consist of a set of autonomous agents, each with their own set
of properties and rules for behavior. Autonomous agents follow their rules in an
attempt to satisfy a set of goals, which may be static or dynamic, in their changing
environment.

An agent’s goals can include desired local states, end goals, rewards to maxi-
mize, and internal needs that should be kept within desired bounds. Autonomous
agents operate completely autonomously and do not follow instructions from other
agents or by any directing program.

36 Emergence in Games

The form of the agents depends on the system that is being modeled and the
agents’ environment. One of the major components of an autonomous agent’s en-
vironment is other agents, which means they spend a lot of time reacting and
adapting to these agents. There are four behaviors that autonomous agent usually
exhibit, namely interaction with environment, goal-driven behavior, intelligence,
and adaptation (see Table 2.4).

Chapter 2 Emergence 37

Property Description

Low-level behaviors Low-level behaviors are modeled so that high-level
properties and behaviors emerge.

Open systems Agents are open to interact directly and freely with
their environment.

Multi-objective goals Agents must deal with many conflicting goals
simultaneously.

Bounded rationality More important for agents to adapt to their changing
environments than to address a specific question
within the environment (behavior-focused not
knowledge-focused).

TABLE 2.3 Key Properties of Agent-Based Systems

Behavior Description

Interaction Senses the environment and reacts accordingly.

Goal-driven Tries to fulfill a set of short and/or long-term goals.

Intelligence Uses internal information processing and decision-
making to select actions based on local information.

Adaptation Anticipates future states and possibilities based on
internal models.

TABLE 2.4 Properties of Autonomous Agents

FLOCKING

Flocking is the term given to the synchronous, fluid-like movement of a flock of birds.
As they move, flocks give the impression of centralized control, as though some entity

is directing the movement of the flock (see Figure 2.9). However, flocking is a decen-
tralized process, with each bird in the flock moving according to its perception of its
immediate environment and other nearby birds.

The smooth, coordinated, and dynamic flocking behavior emerges from the
collective movements of the individual birds. Similar behavior is also exhibited by
other animals that move in large groups, such as a school of fish or a swarm of bees.

38 Emergence in Games

FIGURE 2.9 A flock of birds moving synchronously without global coordination.

Natural flocks consist of two, balanced, opposing behaviors, namely a desire to
stay close to the flock and a desire to avoid collision within the flock. The urge to flock
is the result of evolutionary pressure from several factors, which include protection
from predators, improving survival of the shared gene pool, benefits of a larger search
pattern when looking for food, and advantages for social and mating activities.

EMERGENCE

Emergence is the phenomenon that has been alluded to throughout this chapter. It
is the core concept in both complex systems and artificial life. Emergence pertains
to properties, behaviors, and structure that occur at higher levels of a system, which
are not present or predictable at lower levels.

Both complex systems and artificial life have the common thread that there is
the potential for something new to be created from simple entities interacting with
their local environment. When these entities come together to form the whole, the
whole is not merely a collection of these entities—it is something else entirely.

A brain is not a collection of neurons; it is a thinking machine. A human is not
several connected systems; it is a sentient being. A society is not a group of co-
located people; it is a powerful network capable of phenomenal things. The whole
that is created from the collection is something new, with new properties, behavior,
structure, and potential. This is emergence.

Emergence can occur at different levels and to varying degrees. An important
distinction to make is the difference between local emergence and global emer-
gence. Local emergence is the collective behavior that appears in small, localized
parts of a system. Emergent properties of a gas, such as pressure and temperature,
are examples of local emergence. They are emergent as they do not exist at the level
of a single gas molecule and they are local phenomena as they are only persistent in
their immediate environment. Removing a small sample of the gas does not change
the pressure or temperature of the rest.

Chapter 2 Emergence 39

KEY TERMS

Artificial life is the attempt to understand life as it is by examining life as it
could be, by using artificial components to capture the behavior of living
systems.
Agent-based systems are based on the idea that the complex, global behav-
ior of a system is derived from the collective, simple, low-level interactions
of the agents that make up the system.
Autonomous agents are simple entities with a set of properties that follow
specific rules in order to achieve certain goals.
Flocking is the term given to the synchronous, fluid-like movement of a
flock of birds.

Global emergence occurs when the collective behavior of the entities relates to
the system as a whole. A system must be sufficiently rich, with highly interdepen-
dent entities, for global emergent behavior to exist, such as in brains, humans, and
societies. In brains, the large number of neurons with enormous interconnectivity
gives rise to thought, emotions, and memory. In societies, the buying and selling
habits of individuals creates global economies and marketplaces. Local emergent
properties can be deduced from the lower-level entities, but global emergent prop-
erties cannot.

Systems that exhibit emergence have a common set of elements (see Table 2.5)
and adhere to a common set of rules:

Global phenomena emerge from local interactions of many simple entities
There is no evidence of the global phenomena at the local level
Global phenomena follow a different set of dynamics

40 Emergence in Games

Element Description

Entities Low-level entities or agents that make up the system.

Rules A set of allowable interactions for the entities.

Dynamic Configuration of the entities changes over time.

Large state space A large set of possible configurations.

Regularities Persistent, recurring structures or patterns.

Self-organizing Structure emerges from low-level interactions.

TABLE 2.5 Common Elements of Emergent Systems

Complex systems are distinguished from systems that are merely “compli-
cated” by the possibility of emergence. Entities in complex systems do not merely
coexist, they are interconnected and interdependent. In the case of global emer-
gence, the whole is not only more than the sum of its parts, it is something new and
different.

The potential for emergence is compounded when the elements of a system
have some capacity for adaptation and learning. The emergent behavior of a system
can be compared to an organism’s phenotype (or physical characteristics), whereas
the individual entities are like the genotype (or genetic characteristics). The only
way to affect or alter an organism’s phenotype, or a complex system’s high-level
behavior, is by changing its genotype. These changes will then propagate back to the
high-level, visible behavior of the system.

SUMMARY

In this chapter, you explored complex systems and emergence in the world at large,
including examples in physics, biology, and society. You examined various scien-
tific approaches to understanding complex systems, as well as key concepts such as
chaos, order, complexity, and the edge of chaos. You also learned about artificial
life and agent-based systems, including the phenomenon of flocking. Most impor-
tantly, you explored the meaning of emergence in complex systems, artificial life,
chaos, and the world around you. With this grounding in complex systems and
emergence in everyday life, you can now move on to explore the possibilities, pres-
ence, and application of emergence in games.

Chapter 2 Emergence 41

KEY TERMS

Emergence pertains to properties, behaviors, and structure that occur at
higher levels of a system, which are not present or predictable at lower levels.
Local emergence is the collective behavior that appears in small, localized
parts of a system and can be deduced from the lower-level entities.
Global emergence occurs when the collective behavior of the entities relates
to the system as a whole and it cannot be deduced from the lower-level
entities.

ADDITIONAL READING

The following papers provide a more in-depth discussion on emergence and
complex systems:

Bar-Yam, Y. (1997) Dynamics of Complex Systems. Reading, MA: Perseus
Books.
Holland, J. (1998) Emergence: from Chaos to Order. Oxford: Oxford Uni-
versity Press.
Ilachinski, A. (2001) Cellular Automata: A Discrete Universe. Singapore:
World Scientific.
Johnson, S. (2001) Emergence: the Connected Lives of Ants, Brains, Cities,
and Software. New York: Scribner.

CLASS EXERCISES

1. Think of three complex systems: one physical, one biological, one social.
a. What are the elements, interactions, formation process, environment,

and activities of these systems, and what makes these systems diverse?

Physical Biological Social

System

Material/Organism

Elements

Interactions

Formation

Environment

Activities

2. Choose one of these systems. What is the complexity of this system?
a. How many possible states are there?
b. How much information would it take to specify the state of the system?

3. Consider how you would explain your system using a reductionist, holist,
and collectivist approach.
a. Which provides the most accurate description?

4. Choose one of your systems and consider how you would represent it as an
agent-based system.
a. What would be your autonomous agents?
b. What properties, goals, and rules would these agents have for interact-

ing with their environment and other agents?
c. What kind of local and global behaviors would emerge from these

agents?
5. How well suited was an agent-based approach to modeling this system?

a. What were the benefits and drawbacks of using these approaches in
comparison to a traditional top-down approach?

42 Emergence in Games

43

G
ames are a form of entertainment—developers make them for people to
play and enjoy. To ignore the role of players in your games, and the impor-
tance of their feelings and contribution, is an oversight that I cannot over-

state. Whatever the goal of your game—whether it is to make the best game ever,
to make millions of dollars in sales, or to make the game you have always wanted
to play—the players are the key component.

This chapter discusses the key elements of player interaction in games and
lessons learnt from player feedback. The history of games is reviewed from a player
interaction perspective (that is, how the player’s role in games has changed over
time). Player interaction and gameplay is then placed in the broader context of
player enjoyment. Finally, you’ll look to the future of game development and catch
a glimpse of where emergent gameplay can take you as a developer.

PLAYER INTERACTION

The primary element that separates games from other types of entertainment is
interaction. Television and movies are watched, books are read, music is listened to,

Playing Games3

In This Chapter

Player Interaction
The Evolution of Gameplay
What Players Want
Future of Gameplay

44 Emergence in Games

but games are played. The act of interacting with the game must provide a seamless
transition into the game world. A scratch on a CD or DVD can destroy the experi-
ence of enjoying music or a movie. Missing pages or typing errors in a book can
interrupt the reader’s internal visualization of the story. In the same way, the in-
teraction with a game must be flawless in order for the players to forget they are
staring at a screen and moving a controller, to allow them to effortlessly step into
the world of the game.

GATHERING FEEDBACK

In order to gain an understanding of players interacting in games and how a flaw-
less transition into the game world can be achieved, it is necessary to consult the
experts—the players. Acquiring player perspectives is central to enhancing the
gaming experience, by understanding, and ultimately meeting, their desires and
expectations.

There are several methods that can be used to gather information from players.
The predominant methods used in game development and research are focus
groups, playtesting, usability testing, and surveys. Each method has certain advan-
tages and drawbacks, and each is suited to particular tasks (see Table 3.1).

Method Advantages Disadvantages Uses

Focus group Fast, flexible “Group think” Idea generation

Playtesting Test large group Shallow feedback General evaluation—
is it fun?

Usability In-depth, specific Time-consuming, Specific evaluation—
costly interface

Survey Quantitative, Shallow, can be Specific or general
large group misleading evaluation

TABLE 3.1 Key Player Feedback Methods

Focus Groups

Focus groups involve a group of players discussing their experiences in an open or
structured manner. Focus groups are good for generating ideas, but are generally
not suitable for evaluation due to phenomena such as “group think,” which occurs
when one vocal member of the group sways the opinions of the rest. Focus groups
are better used for marketing or idea generation in early stages of development.

Playtesting

Playtesting is frequently carried out by game developers and involves large samples
of subjects and structured questionnaires that follow a session of playing the game.
Playtesting makes it easy to gain feedback from a large group of players, but the
feedback is relatively shallow and general. For example, you might find out that
your game is mostly fun or a bit too hard, but not specific details about where or
why. Playtesting is good for identifying major bugs, issues, or trends, or for testing
technical components pre-release, such as online multiplayer features.

Usability Testing

Usability testing involves the participants exploring the game and then attempting
very specific tasks. It is commonly used to assess a game’s interface, menus, and
tutorial. Usability testing is very time-consuming (typically two or more hours per
person) and usually only a handful of participants are tested. However, it provides
very specific and in-depth feedback, including the opportunity to observe the play-
ers playing the game and the ability to question them on their experiences and
feedback.

Surveys

Surveys allow developers and researchers to gain a large amount of quantitative
data (numbers) rapidly. However, quantitative data can be misleading and open to
interpretation. The usefulness of the survey also strongly depends on how well the
survey and questions were designed. For example, when 60% of people rate your
game as being “not fun,” what should you do with this information? You know
there is probably something wrong, but you don’t know what or how to improve it.
Surveys are a good way to follow up playtesting and usability sessions, and should
be used in conjunction with qualitative methods (for example, interviews).

Chapter 3 Playing Games 45

KEY TERMS

Focus groups involve a group of players discussing their experiences in an
open or structured manner.
Playtesting involves large samples of subjects and structured questionnaires
that follow a session of playing the game.
Usability testing involves the participants exploring the game and then at-
tempting very specific tasks, followed up by an interview and survey.
Surveys are structured questionnaires that are usually administered to a large
group of subjects, and typically follow playtesting and usability sessions.

46 Emergence in Games

KEY ELEMENTS OF INTERACTION

The wisdom gained by game developers through designing games and gathering feed-
back from players, along with research conducted into player interaction in game
worlds, has brought to light five elements that are central to facilitating a player’s tran-
sition into the game world. The five key elements of player interaction in games are
consistency, immersion, intuitiveness, freedom, and physics (Sweetser & Johnson, 2004;
see Table 3.2).

Element Description

Consistency Relates to objects behaving in a consistent manner, enabling
players to learn the rules of the game and to know when and
how they can interact.

Immersion Immersive games draw the players into the game and affect
their senses and emotions through elements such as audio,
graphics, and narrative.

Intuitiveness Relates to meeting the players expectations, in terms of how
they would expect to be able to interact with game objects
and solve problems in the game world.

Freedom Players want to be free to express their creativity and
intentions by playing the game in the way that they want.

Physics The physical elements of the game world, such as gravity,
momentum, fire, and water, should behave in a way that the
players expect.

TABLE 3.2 Five Key Elements of Player Interaction in Games

Consistency

Consistency relates to objects behaving in a consistent manner, enabling players to
learn the rules of the game, to know when they can interact with game objects, and
to avoid frustration and confusion. Game worlds that behave consistently and in
ways that the players can understand enable the players to become immersed. Con-
versely, inconsistencies in games remind the players that it is just a game, breaking
their suspension of disbelief. There are two major elements of consistency:

Visually similar objects should have similar behavior.
Objects that have different behavior should be visually different.

It is important for objects that look the same to act the same. For example,
players have reported becoming frustrated with game objects, such as glass windows
or crates that break sometimes but don’t break other times. Inconsistencies can
make it difficult for players to learn the rules of the game, which can appear to be
constantly changing. If the players learn in one instance to kick a barrel to break it,
but the next time they kick a barrel it does not break, they can become confused and
even frustrated with the game.

On the other end of the scale, it is important for objects that have different
behaviors to look different, signaling to the players that a different kind of interac-
tion is possible. For example, in the games Bloodrayne (see Figure 3.1) and Dungeon
Siege, sections of the wall that can be destroyed are visibly different. This visual cue
communicates to the players the potential for interaction. However, these visual
cues should not be in the form of something unrealistic, such as a big red circle
around the section of wall. Rather, it should be a subtle, realistic difference that the
players can detect naturally, such as a worn-looking part of the wall that might be
more fragile.

Chapter 3 Playing Games 47

FIGURE 3.1 Sections of wall that can be destroyed in Bloodrayne are visibly different.
© Majesco Entertainment Company.

Game worlds that define rules and properties globally for types of objects,
rather than locally for each specific object, are inherently consistent. For example,
if players know that they can move objects and put objects on top of one another,
they can deduce that they can stack objects to create a ladder. Games that obey a
consistent set of rules for interaction allow the players to stay immersed in the
game, sparing them from unpleasant surprises (Hecker, 2000).

Immersion

Immersion relates to game aspects such as audio, graphics, and narrative that draw
the players into the game, enabling them to believe it is real and suspending their dis-
belief. Audio is very important for drawing players into a game. Effective game audio
includes a powerful and moving soundtrack, as well as believable sound effects.

One way to tell whether a game is immersive is if it can cause an emotional
response, such as fear or happiness. Sounds can be used to build up suspense, like
in a horror movie when you know that something is creeping up on you, to the
point that you’re afraid and shifting in your seat. In the game Medieval II: Total War
(see Figure 3.2), the music changes depending on the state of the game. For exam-
ple, in the midst of battle, the music is fast-paced and exciting, to accelerate the
players’ heart rates and keep them immersed in the action of the game. The games
F.E.A.R. and BioShock use sound and visual effects to create suspense, tension, and
horror, which keep players on the edge of their seats throughout the game.

48 Emergence in Games

FIGURE 3.2 The music in Medieval II: Total War changes depending
on the state of the game. © The Creative Assembly. Used with permission.

Research shows that sound has a greater effect on enjoyment for players who
prefer first-person shooter games than for players who prefer other types of games
(Sweetser & Johnson, 2004). Sound is central in first-person shooter games, be-
cause it provides immediate feedback and information to the players about what is
happening around them in these information-rich environments, which include
fast gameplay, different enemies, rapid movement, and numerous interactions with
objects and the environment. Sound aids in setting the mood of the game and pro-
vides an additional level of immersion, by making players feel frightened or excited.

Players have reported that game graphics do not need to be spectacular, but
inconsistent graphics can quickly shatter the suspension of disbelief that a game has
created. As a rule, graphics should be consistent and there should be nothing that
catches a player’s eye as being wrong or out of place. For example, if players become
stuck in a wall when adventuring in a dungeon or a monster attacks them through
the wall, inconsistencies occur with the fantasy that the game has created (Hecker,
2000). Similarly, if a boom microphone appears in an emotional scene in a movie,
the immersion the viewers feel—their suspension of disbelief—is instantly broken.
The viewer of the movie or the player of the game is transported back to the real
world, reminded and disappointed that the experience was fake.

A good introduction and a strong narrative, or storyline, are also highly im-
portant for immersion. A game’s introduction gives the players the storyline and
background, tells them who they are, why they’re here, and what they’re doing—
their motivation for playing. The players then feel like they are part of the story and
they want to find out more. As they play the game, more of the story is revealed,
similar to reading a book, except they must complete certain tasks to be rewarded
with the next installment. It has been found that narrative has a significant effect on
the enjoyment of strategy game players (Sweetser & Johnson, 2004). Providing a
motivating back-story and character development in strategy games can go a long
way to increasing player enjoyment.

Intuitiveness

Intuitive interactions are necessary to ensure a seamless transition into the game
world. Intuitiveness is about meeting players’ expectations, in terms of how they
would expect to be able to interact with game objects and solve problems in the
game world. Player expectations are primarily built up by two types of experi-
ences—the player’s interactions with the real world and the player’s previous
interactions in other games. Intuitiveness of basic interactions also has a profound
effect on gameplay, because players must combine basic interactions to form strate-
gies and solve problems. Games that are more intuitive are easier to learn and pro-
vide less resistance to players becoming immersed in the game world.

Chapter 3 Playing Games 49

The intuitiveness of interactions in game worlds can be partly attributed to how
the interactions correspond to interactions with the same objects in the real world.
Game worlds are populated with objects that are visually similar to objects that
people use every day, but that are functionally different. Not only can these inter-
actions be counter-intuitive for the players, but they can often confuse and frustrate
players. It is natural for players to expect that they can smash windows, stand on
desks, break chairs, and use computers, because these are interactions they have
learned are possible throughout their whole life. Game worlds that work in a way
that reflect lifelong experiences (in the real world) are more intuitive and easier to
understand for the average person, even in middle earth or galaxies far, far away.

An important benefit of making game worlds more intuitive is that they be-
come easier to learn. Players are more likely to develop an intuitive understanding
of the game elements if they are consistent with real-world elements. With the use
of intuitive game elements, players are more likely to understand the elements,
even when encountering them for the first time. As a result, the learning curve of
the players is substantially decreased, which means that players spend less time
learning and more time playing the game.

Inexperienced players only have experiences and concepts learned in real life to
draw upon when trying to understand how to act in the game world. On the other
hand, experienced players expect to be able to interact with game environments and
objects in a particular way, learned from their prior experience playing games. It can
be annoying when a game does not behave in the way that other games have trained
you to expect. For this reason, it is important to adhere to industry standards and
commonly used interaction mechanisms used in similar games. Trying to go against
trends set by games like Warcraft (see Figure 3.3) and Half-Life can be an unneces-
sary, uphill struggle. If you do, you must be prepared to educate your players and be
sure that your methods are an improvement on what players have learned to expect.

The intuitiveness of problem solving in games hinges heavily on the intuitive-
ness of basic interactions. The way a designer intends a problem to be solved might
not be intuitive for the players, which can result in players resorting to trial and
error. If players take an excessive amount of time to find out how to progress in a
level or if they need to go to the Internet to get a walkthrough, there is an issue with
the intuitiveness of the game. Therefore, it is important to conduct extensive test-
ing to ensure that the players’ expectations are met and that they will be able to
solve problems and complete objectives in a reasonable time frame, rather than as-
suming the designer’s intentions will be easily determined.

Intuitiveness has a greater effect on enjoyment for players who prefer first-
person shooter games than for players who prefer other types of games (Sweetser &
Johnson, 2004). Intuitive interactions with objects are important in first-person
shooter games, because they require far more direct interaction with the environ-
ment (for example, direct manipulation of objects and interaction with scenery)

50 Emergence in Games

than any other type of game. Also, first-person shooter games tend to follow a
linear progression, so that it is often necessary to solve a problem in one section to
move onto the next. Therefore, it is important that interactions in first-person
shooter games are intuitive, because players will be carrying out a greater number
of interactions with greater frequency and the completion of the game often de-
pends on the success of every interaction.

Freedom

Freedom refers to the freedom that players have in expressing their creativity and
intentions by playing a game in the way that they want, not the way that the de-
signer had intended it to be played. In many games, the players are given a choice
of a small number of static courses of action to take, which have been predefined
by the game designers. The result is a limited set of solutions to each particular
problem, which makes the game linear (there is only one path through the game).
Consequently, the game must be played in the exact way it was specified, which is
unlikely to accommodate player creativity.

Chapter 3 Playing Games 51

FIGURE 3.3 The Warcraft series of games sets trends for real-time strategy games.
WarCraft III® images provided courtesy of Blizzard Entertainment, Inc.

Linear games force players to solve problems and perform tasks the way the
designer had imagined. For example, many quests in role-playing games require the
players to follow a set of very specific tasks, such as going somewhere and collect-
ing an item. The path to complete the quest is entirely linear, with no room for free-
dom or expression by the players. Alternatively, what was intended can be so
unintuitive to the players that they must use trial and error to work out what to do,
which usually isn’t fun. Players should be given the freedom to use the objects and
resources they have before them to devise their own strategies and solutions to
problems.

Players consider it important for there to be a variety of interactions available
in each game world and that each game should have some kind of new and unique
interaction (Sweetser & Johnson, 2004). Games that define global possibilities for
actions the players can perform allow more open interactions in specific situations.
Players have more freedom to express their creativity and gameplay can occur that
was not anticipated by the designers (also known as emergent gameplay). Game
worlds that are not full of predetermined one-to-one interactions are empowering
to the players, because the gameplay becomes largely about exploring the possibil-
ity space and the game experiences become richer.

Physics

Modeling physics in games involves gravity, momentum, and the basic laws of
physics behaving consistently with player expectations. The physics of game worlds
can be quite puzzling to inexperienced game players. In the game world, only
“explosive” barrels catch on fire, some objects are simply scenery that cannot be
affected, some windows don’t smash when shot, and sometimes flamethrowers work
underwater. In order to be able to play computer games, it is necessary to “relearn
the physics of the world like a child” (Smith, 2001).

It is important for physics to be consistent in games, to ensure the game reacts
in the way that the players expect, to allow players to perform actions in an intuitive
manner, and to keep them immersed in the game world. For example, if fire in the
game behaves like fire in the real world, players will have an inherent understand-
ing of how the fire works, without needing to be taught the new rules of fire within
the game.

Gravity is important in games for actions such as jumping, falling, taking falling
damage, trajectory when launching rockets, and so on. Modeling gravity accurately
can give rise to realistic effects such as bouncing grenades around corners, falling
off a platform, or rolling down a hill when shot. Momentum is also an important
attribute of physics that needs to be modeled in games, especially in space simula-
tions and first-person shooters. For example, if a player shoots an enemy or is shot

52 Emergence in Games

Chapter 3 Playing Games 53

by an enemy, then being pushed backward is natural. More important than mod-
eling physics realistically, is modeling it believably and consistently. For example,
games like Unreal Tournament and Quake can be in “low-gravity mode,” which is
not realistic but should still be consistent and believable.

The physical behavior of fire, explosions, and water in games is also important
to players (Sweetser & Johnson, 2004). Flammable game objects should burn and
ignite when affected by a flamethrower or incendiary grenade. When a flash
grenade explodes next to a character it should adversely affect the character’s sight
and hearing, or when an explosion occurs, the players should be able to jump into
a pool of water to be protected from damage. In the game BioShock, players and
characters can jump into water to extinguish themselves if they are on fire. They can
also use electric shocks on water to hurt enemies standing in the water.

Water is also an important substance to model consistently in games. For ex-
ample, most weapons should not work under water, especially flamethrowers and
fire-based weapons. Other attributes of water that are important to players are the
effects of the flow and currents of the water, as well as visual effects such as ripples.

Physics in games has a greater effect on enjoyment for players who prefer first-
person shooter games than for players who prefer other types of games (Sweetser &
Johnson, 2004). Physics is vital in first-person shooter games, because typical
behaviors include jumping, shooting, and exploding, which need to be modeled with
a certain degree of realism. To play the game properly, the players need to be able to
predict where their grenade will land, or what will happen if they jump off a ledge.

KEY TERMS

Consistency relates to objects behaving in a consistent manner, enabling
players to learn the rules of the game and to know when and how they can
interact.
Immersion relates to drawing the players into the game and affecting
their senses and emotions through elements such as audio, graphics, and
narrative.
Intuitiveness is about meeting the players’ expectations, in terms of how
they would expect to be able to interact with game objects and solve prob-
lems in the game world.
Freedom relates to the players’ freedom to express their creativity and
intentions by playing the game in the way that they want.
Physics relates to the physical elements of the game world, such as gravity,
momentum, fire, and water, which should behave in a way that the players
expect.

54 Emergence in Games

ADDITIONAL READING

The following papers provide a more in-depth discussion on player interaction
in games:

Church, D. (2004) The State of Church: Doug Church on the Death of PC
Gaming and the Future of Defining Gameplay. Gamasutra, November 23,
2004. Online at: http://www.gamasutra.com/features/20041123/hall_01.
shtml.
Smith, H. (2001) The Future of Game Design: Moving Beyond Deus Ex
and Other Dated Paradigms. Online at: http://www.planetdeusex.com/
witchboy/articles/thefuture.shtml.
Sweetser, P. & Johnson, D. (2004) Player-Centred Game Environments:
Assessing Playing Opinions, Experiences and Issues. Entertainment Com-
puting—ICEC 2004: Third International Conference, Lecture Notes in
Computer Science, 3166, pp. 321–332.

THE EVOLUTION OF GAMEPLAY

The history of gameplay shows a trend toward more interaction and player-centric
gameplay. Games are becoming more realistic and immersive, coming closer to
modeling the real world and the possible interactions. Players are being given ever
more freedom, with game worlds becoming more intuitive, open, and emergent.

If we divide the history of gameplay into a timeline of interaction, there are four
major eras worth distinguishing—interactive fiction, linear gameplay, sandbox
games, and emergent gameplay. If we assign an approximate rating (low, medium,
or high) to the key elements of interaction as defined in the previous section for
each of these eras, there is a progression toward more interaction across the eras
(see Table 3.3).

INTERACTIVE FICTION

Interactive fiction was the first step away from passive media, such as movies and
books. In interactive fiction, the players are still very much the receivers of infor-
mation, rather than active agents in the game world. Player interaction is in the
form of limited choices between transmissions of a linear story.

http://www.gamasutra.com/features/20041123/hall_01.shtml
http://www.gamasutra.com/features/20041123/hall_01.shtml
http://www.planetdeusex.com/witchboy/articles/thefuture.shtml
http://www.planetdeusex.com/witchboy/articles/thefuture.shtml

The players have no real choices, impact, or control of the game world. They
simply act out a pre-scripted path, playing a slightly more active role than if they
were to simply observe the story from the outside. Their role in the game becomes
to “discover” the story through a limited set of actions, rather than being told the
story with no participation. In terms of interactivity, interactive fiction is compa-
rable to “choose your own adventure” books.

A popular form of interactive fiction in the 1980s was the text-based game, or
text adventure. Popular text-based games include Zork and The Hitchhiker’s Guide
to the Galaxy. Text-based games have two methods of interaction with the play-
ers—input and output. The players input commands to change the state of the
game and the game outputs a textual description of its state. Permissible input
ranges from simple verb-noun pairs (such as “go west”) to complex sentences that
join multiple commands (such as “open door with key then go west”).

Early text-based games often required a fair amount of guesswork on the play-
ers’ behalf, not just in determining the right actions to take to solve problems, but
also in figuring out possible valid commands to issue the game. Later text-based
games were illustrated with static images, but the majority of the information was
still conveyed via textual descriptions.

Interactive fiction was not just limited to text-based games. Graphic adventure
games also became popular in the early 1990s. Two very popular graphic adven-
tures were the Monkey Island series and the Myst series of games. The Myst series
held the title of the highest selling game of all time, selling in excess of 12 million
copies, before being overtaken by The Sims.

In Myst, gameplay consists of clicking on locations in the world to move there
or clicking on objects to interact with them. The majority of the gameplay in Myst

Chapter 3 Playing Games 55

Element Interactive Linear Sandbox Emergent
Fiction Gameplay Games Gameplay

Consistency Low Low High High

Immersion Low Medium Medium High

Intuitiveness Low Low High High

Freedom Low Medium High High

Physics Low Medium Medium High

TABLE 3.3 Key Elements of Interaction in Each Gameplay Era

is based on solving problems, with no real enemies or conflict. Other graphic ad-
venture games, such as the Monkey Island games and Indiana Jones and the Last
Crusade, allowed the players to pick from a list of options displayed on the screen
(such as Give, Pick up, Look at, Talk to, Push, and so on), removing the guesswork
of previous text-based games.

The major difference between graphic adventures and text adventures is that
the state of the game is conveyed to the players visually, rather than in textual de-
scriptions. However, the limited and linear nature of the interactions remained the
same. Graphic adventures were a precursor to the numerous adventure and puzzle
games of the 1990s.

The “gameplay” in interactive fiction can be characterized by the discrete
nature of its interactions. The players can only ever choose from a specific list of
interactions in any one scene, such as typing a keyword, clicking on an object, or
choosing an option from a list. Each interaction must be enumerated by the game
developers and nothing outside or between these discrete actions is possible.

The players are extremely limited in what they can do at any point in time, there
are no degrees of freedom, and their role in the game is simply to discover an em-
bedded plot by finding the right set of interactions. Due to the static, specific, and
linear nature of interactive fiction, along with the limited, discrete interactions avail-
able to the players, it rates low on each of the interaction elements (see Table 3.3).

LINEAR GAMEPLAY

The next major step in gameplay involved creating persistent, continuous game
worlds that players could walk around and explore. Players were given freedom to
move about these worlds and could freely explore places and objects in two or
three dimensions. However, despite the continuous nature of the game worlds and
the resulting freedom of movement and exploration, player interactions in these
worlds are still very limited. The players can only interact with each object and
agent in the game world in specific, predefined ways. In order to solve each puzzle
in the game, a specific, ordered set of actions must be taken. The resulting gameplay
and path through the game is linear, confined, and inflexible.

The key elements of linear games are an underlying story to be discovered,
puzzles to solve along the way, and a limited and predetermined set of ways to
interact in the game world. The linear era of gameplay includes side-scrolling games
(for example, Sonic the Hedgehog and Super Mario Bros), action-adventure games
(for example, Tomb Raider and The Legend of Zelda), as well as modern role-playing
(for example, Might and Magic series and Wizardry series) and first-person shooter
games (for example, Half-Life and Doom). Most current games that involve some
kind of storyline are essentially linear.

56 Emergence in Games

Action-adventure style games, such as Bloodrayne (see Figure 3.4), emphasize
solving puzzles and navigating the environment. The players must use the moves of
their characters (for example, jumping, hanging, and swimming) to solve puzzles
and move between parts of the game world. Action-adventure games have a linear
progression of levels, interspersed with pieces of the overarching story, and specific
puzzles to be solved in each level. Puzzles include things like timing a set of jumps
to reach an item on a platform and activating a set of levers in the right order to
open a trapdoor. They are linear because the players must move through levels in
a certain order, the storyline has a static progression, and puzzles usually have
specific solutions that the players must find.

Chapter 3 Playing Games 57

FIGURE 3.4 An action-adventure game, Bloodrayne. © Majesco Entertainment Company.

Another classic example of linear gameplay is in story-based first-person
shooter games, such as the original Half-Life (see Figure 3.5). Half-Life has a central,
linear storyline that the players must discover, by killing a series of enemies and
solving various puzzles. Half-Life also made heavy use of scripted sequences, in

which game characters would follow a set of scripted actions to challenge the play-
ers or advance the storyline. By nature, scripted sequences are linear and pre-
defined, so they play out the exact same way every time and they do not adapt to
differences in the environment. Another innovation made popular by Half-Life
was the continuity of the game world, instead of being divided into discrete levels,
which gave the players even more freedom to move about the environment. The
continuous game world in Half-Life is similar to the hub system in the earlier first-
person shooter Hexen.

58 Emergence in Games

FIGURE 3.5 A first-person shooter, Half-Life. © Valve Corporation. Used with permission.

As described in the key elements of interaction, first-person shooter games,
role-playing games, and action-adventure games are often criticized for the lack of
interactivity of many objects (scenery), inconsistencies in the game environments
(for example, similar objects behave differently), and the unintuitive nature of
some interactions and puzzles. Due to the specific, localized design and implemen-
tation of game objects, characters, and environments, games with linear gameplay
rate low in consistency and intuitiveness, but allow more freedom, immersion, and
have more realistic and consistent physics than their predecessors (see Table 3.3).

SANDBOX GAMES

Sandbox games are places for player experimentation. They have general goals and
conditions for winning, but are open and unstructured. There is no storyline, journey
of discovery, or path to be taken through the game. The players are not faced with
specific challenges, conflict, or characters. Instead, they are given basic elements and
a set of rules to create their own game.

Sandbox games can be classified as complex systems, and usually give rise to
emergent behavior. However, whether they provide emergent gameplay is ques-
tionable, because they are more simulations than games. They are distinguished as
their own category of game here due to their lack of narrative, clear goals, and chal-
lenges, and are often referred to as “electronic toys,” rather than games, for these
reasons. Sandbox games include city-building games (for example, SimCity series
and Zeus), life-simulator games (for example, The Sims and Creatures, as shown in
Figure 3.6), and other types of simulation games (for example, Flight Simulator X
and Trainz).

Chapter 3 Playing Games 59

FIGURE 3.6 Sandbox game Creatures is a life simulator. © Gameware Development. Used with

permission.

In the SimCity series of games, players are given basic elements for construct-
ing a city (for example, roads, housing, factories, schools, and so on), with the goal
of creating a functional city with content inhabitants. Each type of structure has
certain social, physical, and environmental effects (for example, health, education,
and happiness) that influence the world and people in a given radius. Gameplay
consists of placing buildings and structures in order to expand the city, attract new
habitants, and improve their quality of life. The game system is complex because
each structure has local effects that give rise to local and global behaviors and prop-
erties. For example, depending on the placement of buildings, the players can cre-
ate different types of neighborhoods (for example, industrial areas, upper class
residential areas, slums, and so on) that combine to define the structure, function-
ality, and effects of the entire city.

The Sims is a simulator of everyday life, and is commonly referred to as a
“digital dollhouse” by its creator, Will Wright. The players use basic elements (for
example, walls, doors, carpet, and so on) to construct a house, including trim-
mings, furnishings, and gardens. More interestingly, the players create a family of
“Sims” to live in the house. Gameplay consists of instructing, or encouraging (if
“free will” is enabled), the Sims to perform daily activities, such as brushing their
teeth, making dinner, talking to friends, and going to work. There are bills to be
paid (or the repo man comes to collect), relationships to maintain, and the needs
of the Sims to meet.

Depending on the personality of the Sims, they desire varying levels of activity,
social interaction, entertainment, and knowledge. If their needs aren’t being met then
they can become depressed (and a giant “social bunny” appears to cheer them up),
overweight, fired from their jobs, or even die. There are no real objectives or condi-
tions for winning, except to have fun and keep your Sims alive and happy. The play-
ers can have different levels of involvement in their Sims’ lives, ranging from sitting
back and watching them live their lives to controlling their every action.

Sandbox games have demonstrated that open gameplay and complete player
freedom is possible without the confines of storytelling. Sandbox games are almost
simulations, except for the somewhat loose definitions of tasks, challenges, and
completion. Players create their own conflict and challenges via experimentation
and extension of their sandbox, and play usually stops when they lose interest, rather
than when they reach a defined goal.

In terms of the key elements of interaction, sandbox games score high for free-
dom, consistency, and intuitiveness due to their globally defined rules and object
properties (see Table 3.3). However, their lack of clear goals, challenges, and nar-
rative limits the immersion of these games. They are also usually abstract represen-
tations, which reduces the realism of their physics systems.

60 Emergence in Games

EMERGENT GAMEPLAY

Emergent gameplay is made possible by defining simple, global rules, behavior,
and properties for game objects and their interaction in the game world and with
players. Emergent gameplay occurs when interactions between objects in the game
world or a player’s actions result in a second order of consequence that was not
planned, or perhaps even predicted, by the game developers, yet the game behaves
in a rational and acceptable way.

Emergent gameplay allows the game world to be more interactive and reactive,
creating a wider range of possibilities for actions, strategies, and gameplay. Local
emergent gameplay occurs when a section of a game allows for new behavior that
does not have knock-on effects for the rest of the game. Global emergent gameplay
occurs when the simple low-level rules and properties of game objects interact to
create new, high-level gameplay that alters how the game as a whole plays out.

Local emergent gameplay occurs in the games The Sims and Half-Life 2 (see
Figure 3.7). In The Sims, intelligence is embedded into objects in the environment,

Chapter 3 Playing Games 61

FIGURE 3.7 Emergent gameplay in Half-Life 2. © Valve Corporation. Used with permission.

called “Smart Terrain.” The objects broadcast properties to nearby agents to guide
their behavior. Each agent has various motivations and needs and each object in the
terrain broadcasts how it can satisfy those needs. For example, a refrigerator broad-
casts that it can satisfy hunger. When the agent takes the food from the refrigerator,
the food broadcasts that it needs cooking and the microwave broadcasts that it can
cook food. Consequently, the agent is guided from action to action by the environ-
ment. Similarly, the game objects in Half-Life 2 use named links, called “symbolic
links” (Walker, 2004), between pieces of content to define the properties of the
objects and determine how they can be affected by players and other objects.

Using this global design, the objects behave more realistically and are more
interactive as they are encoded with types of behavior and rules for interacting,
rather than specific interactions in specific situations. These objects afford emer-
gent behavior and player interactions that were not necessarily foreseen by the
developers.

Global emergent gameplay has been approached in games like The Elder Scrolls
IV: Oblivion and Vampire: The Masquerade—Bloodlines. In Oblivion, there are
many independent characters, organizations, and quests, each with different moti-
vations, roles, and possible interactions with the player. The world is also expansive
and filled with many enemies, animals, objects, and places players can visit. There
is an extensive range of possible interactions, quests, and minor storylines, and it is
unlikely that any two playing experiences will be identical. However, the game still
hinges on a very linear, central storyline that the players must follow to complete
the game. Although the world itself is open and varied, their choices and actions
have little impact on the final outcome.

In contrast, in Vampire, the players’ actions and decisions throughout the game
impact on how their story ends. Unlike previous games, it is not merely their final
dialogue choice that decides the ending, but many choices along the way. Players
have a far greater sense of agency (the capacity to make choices and act in the world)
and centrality to the game world, because their choices have consequences and
they are actively changing the world and co-creating the story.

Emergent gameplay has the potential to enhance player enjoyment in terms of
intuitiveness, consistency, and freedom of expression. Additionally, the physics in
emergent game worlds is inherently consistent, because the laws of physics are
defined globally (see Table 3.3). Emergent game systems empower the players by
putting them center stage, giving them freedom to experiment, greater control, a
sense of agency, and less of a feeling of uncovering a path set for them by the
designers. Consequently, the game can be more satisfying and interesting for the
players (see Figure 3.8).

62 Emergence in Games

Emergent games have high replayability; each time the players play the game
they make different decisions, which change the game as a whole and result in dif-
ferent possibilities for action. The major difference between linear and emergent
games is that emergent games focus on what the player wants to do, whereas linear
games focus on what the designer wants the player to do (Smith, 2001).

Despite the few examples given, the emergence that has been possible in pre-
vious games has been quite limited. Games could potentially allow players to play
the game in a way that was not designed or implemented by the game developer,
but that works nonetheless. Emergent behavior occurs as the players use the basic
elements that are provided by the game developer to create new gameplay (for
example, stories or strategies). Emergence in narrative could potentially involve
generating a storyline based on the interactions between the game world, charac-
ters, and objects. Emergence in gameplay could be developed to the extent of a
fully emergent game world, in which there are no scripted paths, interactions, or
behaviors.

Chapter 3 Playing Games 63

FIGURE 3.8 Game objects in Half-Life 2 use symbolic links. © Valve Corporation.

Used with permission.

WHAT PLAYERS WANT

Player enjoyment is the single most important goal for computer games. If players
do not enjoy a game, they will not play the game. Enjoyment is a far deeper concept
than “fun,” which infers light and fleeting entertainment. Enjoyment pertains to a
more basal pleasure that can only be achieved by being completely absorbed by
something, with a sense of accomplishment and alteration at its completion.

Many different theories have been proposed to explain and analyze enjoyment
in media, including disposition theory, attitude, transportation theory, cognition,
and parasocial interaction. Each of these models and theories aims to analyze and
understand enjoyment in terms of one specific aspect or concept. However, indi-
vidually these theories are fairly narrow, and do not provide well-rounded models
of enjoyment. For example, enjoyment cannot be sufficiently explained by attitude
toward a particular genre (for example, science fiction), or by social context alone
(for example, who an experience is shared with).

Conversely, flow theory is based on the premise that the elements of enjoyment
are universal, providing a general model that summarizes the concepts common to
all when experiencing enjoyment (for example, ability to concentrate on a task).
The general, broad nature of flow theory makes it the ideal construct for a concise
model of player enjoyment in games.

64 Emergence in Games

KEY TERMS

Interactive fiction requires the players to discover a prescripted story via a
set of limited interactions, such as typing in key words, clicking on the
interface, or choosing an option from a list.
Linear gameplay involves an underlying story to be discovered, puzzles to
solve along the way, and a limited and predetermined set of ways to inter-
act in the game world.
Sandbox games are almost simulations, except for the somewhat loose
definitions of tasks, challenges, and completion. The players are given basic
elements and a set of rules to create their own game.
Emergent gameplay occurs when interactions between objects in the game
world or the player’s actions result in a second order of consequence
that was not planned by the game developers, yet the game behaves in a
rational and acceptable way.

ENJOYMENT AND FLOW

Flow is based on Csikszentmihalyi’s (1990) extensive research into what makes
experiences enjoyable. Csikszentmihalyi’s research consisted of long interviews,
questionnaires, and other data collection over a dozen years from several thousand
respondents. He began his research with people who spend large amounts of time
and effort on activities that are difficult, but provide no external rewards (for ex-
ample, money or status), such as composers, chess players, and rock climbers. Later
studies were conducted with ordinary people with ordinary lives, asking them to
describe how it felt when their lives were at their fullest and when what they did was
most enjoyable. His research was conducted in many countries (for example, USA,
Korea, Japan, Thailand, Australia, Europe, and on a Navajo reservation) and he
found that optimal experience, or flow, is the same the world over. He also found
that very different activities are described in similar ways when they are being
enjoyed and that enjoyment is the same irrespective of social class, age, or gender.

Flow is an experience “so gratifying that people are willing to do it for its own
sake, with little concern for what they will get out of it, even when it is difficult, or
dangerous” (Csikszentmihalyi, 1990).

Flow experiences consist of eight elements:

A task that can be completed
The ability to concentrate on the task
Concentration is possible because the task has clear goals
Concentration is possible because the task provides immediate feedback
The ability to exercise a sense of control over actions
A deep but effortless involvement that removes awareness of worries and frus-
trations of everyday life
Concern for self disappears but sense of self emerges stronger afterward
Sense of duration of time is altered

The combination of these elements causes a sense of deep enjoyment that is
so rewarding that people feel that expending a great deal of energy is worthwhile
simply to be able to feel it (Csikszentmihalyi, 1990). Additionally, an important
precursor to flow is a match between the person’s perceived skills and the chal-
lenges associated with the task, with both being over a certain level.

Most flow experiences occur with activities that are goal-directed, bounded
by rules, and that require mental energy and the appropriate skills. For example,
reading is one of the most frequently enjoyed activities throughout the world
(Csikszentmihalyi, 1990). Reading has a goal and requires concentration and knowl-
edge of the rules of the written language. Reading skills begin with literacy, but also

Chapter 3 Playing Games 65

involve the ability to turn words into images, empathies with fictional characters,
recognize historical and cultural contexts, anticipate plot twists, and critique and
evaluate.

Throughout history, activities such as games, sports, art, and literature have
been developed for the express purpose of enriching life with enjoyable experi-
ences (Csikszentmihalyi, 1990). The key element in flow is that the activity is an end
in itself—it must be intrinsically rewarding, or autotelic. This rings true in games
because people play games (computer or other) for the experience itself; there is no
external reward. Finally, every flow activity provides a sense of discovery, a creative
feeling of being transported into a new reality, which is a familiar concept for game
players.

GAMEFLOW

GameFlow is a model of enjoyment in games, based on the elements of flow and
research into user-experience and usability in games (Sweetser & Wyeth, 2005).
GameFlow consists of eight elements—concentration, challenge, skills, control,
clear goals, feedback, immersion, and social interaction. Each element consists of a
set of criteria for achieving enjoyment in games and relate to Cziksentmilalyi’s
(1990) elements of flow (see Table 3.4).

66 Emergence in Games

GameFlow Flow

The game A task that can be completed

Concentration Ability to concentrate on the task

Challenge, player skills Perceived skills should match challenges and both
must exceed a certain threshold

Control Allowed to exercise a sense of control over
actions

Clear goals The task has clear goals

Feedback The task provides immediate feedback

Immersion Deep but effortless involvement, reduced concern
for self and sense of time

Social interaction N/A

TABLE 3.4 The Mapping of the Elements of GameFlow to Flow

The first element of flow, a task that can be completed, is not represented
directly in the GameFlow elements, because it is the game itself. The remaining
GameFlow elements are all closely interrelated and interdependent. Games must
keep the player’s concentration through a high work load, but the tasks must be
sufficiently challenging to be enjoyable. The player must be skilled enough to
undertake the challenging tasks, the tasks must have clear goals so that the player
can complete the tasks, and the player must receive feedback on his or her progress
toward completing the tasks. If the player is sufficiently skilled and the tasks have
clear goals and feedback, then the player will feel a sense of control over the task.

The resulting feeling for the player is total immersion or absorption in the
game, which causes the player to lose awareness of everyday life, lose concern for
him or herself, and have an altered sense of time. The final element of player en-
joyment, social interaction, does not map to the elements of flow, but is featured
highly in user-experience literature on games. People play games for interaction
with other people, regardless of the task, and will even play games that they do not
like or if they do not like games at all.

For each element, the GameFlow model includes an overall goal and a set of
central criteria that can be used to design and evaluate games with respect to player
enjoyment (see Table 3.5).

Chapter 3 Playing Games 67

Element Criteria

Concentration Games should require concentration and the player should
be able to concentrate on the game.

Challenge Games should be sufficiently challenging and match the
player’s skill level.

Player skills Games must support player skill development and mastery.

Control Players should feel a sense of control over their actions in
the game.

Clear goals Games should provide the player with clear goals at
appropriate times.

Feedback Players must receive appropriate feedback at appropriate
times.

Immersion Players should experience deep but effortless involvement
in the game.

Social interaction Games should support and create opportunities for social
interaction.

TABLE 3.5 GameFlow Criteria for Player Enjoyment in Games

Concentration

For a game to be enjoyable, it needs to require concentration and the player must
be able to concentrate on the game. The more concentration a task requires, in
terms of attention and workload, the greater the absorption in the task. When all of
a person’s relevant skills are needed to cope with the challenges of a situation, that
person’s attention is completely absorbed by the activity and no excess energy is left
over to process anything other than the activity.

68 Emergence in Games

CONCENTRATION

Games should require concentration and the players should be able to concen-
trate on the game. Here are the criteria for concentration:

Games must provide stimuli that is worth attending to
Games should quickly grab the players’ attention and maintain their focus
throughout the game
Players shouldn’t be burdened with tasks that don’t feel important
Games should have a high workload, while still being appropriate for the
players’ perceptual, cognitive, and memory limits
Players should not be distracted from tasks that they want and need to
concentrate on

Challenge

Challenge is consistently identified as the most important aspect of good game de-
sign. Games should be sufficiently challenging, match the player’s skill level, vary
the difficulty level and keep an appropriate pace. An important precursor of flow is
a match between the person’s perceived skills and the challenges associated with an
activity, with both skills and challenges being over a certain level. If the challenges
are greater than the skills, the result is anxiety and if the challenges are less than the
skills, the result is apathy.

CHALLENGE

Games should be sufficiently challenging and match the player’s skill level. The
criteria for challenge are as follows:

Æ

Player Skills

For games to be enjoyable, they must support player skill development and mas-
tery. In order for players to experience flow, their perceived skills must match the
challenge provided by the game and both challenge and skills must exceed a certain
threshold. Therefore, it is necessary that players develop their skills at playing a
game to truly enjoy the game.

Chapter 3 Playing Games 69

Challenges in games must match the player’s skill level
Games should provide different levels of challenge for different players
Games should provide different levels of challenge for different players
The level of challenge should increase as the player progresses through the
game and increases his or her skill level
Games should provide new challenges at an appropriate pace

PLAYER SKILLS

Games must support player skill development and mastery. The criteria for
player skills are as follows:

Players should be able to start playing the game without reading the manual
Learning the game should not be boring; it should be part of the fun
Games should include online help so players don’t need to exit the game
Players should be taught to play the game through tutorials or initial levels
that feel like playing the game
Games should increase players’ skills at an appropriate pace as they
progress through the game
Players should be rewarded appropriately for their effort and skill development
Game interfaces and mechanics should be easy to learn and use

Control

In order to experience flow, players must be allowed to exercise a sense of control
over their actions. Players should be able to adequately translate their intentions
into in-game behavior and feel in control of the actual movements of their charac-
ter and the manner in which they explore their environment. Players should be
able to move their characters intricately, effectively, and easily through the world

and easily manipulate the world’s objects, which become tools for carrying out the
players’ goals.

It is important that players perceive a sense of impact onto the game world and
that their actions and decisions are co-creating the world they are in and the expe-
riences they are having. Players should feel a sense of control over their character
and be free to play the game and solve problems in the way that they want. In short,
the players should feel like they are playing the game, not being played by it.

70 Emergence in Games

CONTROL

Players should feel a sense of control over their actions in the game. The criteria
for control are as follows:

Players should feel a sense of control over their characters or units and their
movements and interactions in the game world
Players should feel a sense of control over the game interface and input
devices
Players should feel a sense of control over the game shell (starting, stopping,
saving, and so on)
Players should not be able to make errors that are detrimental to the game
and should be supported in recovering from errors
Players should feel a sense of control and impact onto the game world—
their actions matter and they are shaping the game world
Players should feel a sense of control over the actions that they take and the
strategies that they use and that they are free to play the game the way that
they want

Clear Goals

Games should provide the players with clear goals at appropriate times. Games
inherently have an object or goal, but in order to achieve flow these goals must
be clear. Games should present the players with a clear overriding goal early in the
game, which is often done through an introductory cinematic that establishes the
background story. The goal should be conveyed to the players in a clear and
straightforward way. Also, individual levels should have several sub-goals, to help
the players on the way to achieving the overall goal.

Feedback

Players must receive appropriate feedback at appropriate times. During flow, con-
centration is possible because the task provides immediate feedback. Games should
use scores to tell players where they stand and players should always be able to iden-
tify their score and status in the game. In-game interfaces and sound can be used to
deliver necessary status feedback. Games should also provide immediate feedback
for player actions.

Chapter 3 Playing Games 71

CLEAR GOALS

Games should provide the players with clear goals at appropriate times. The
criteria for clear goals are as follows:

Overriding goals should be clear and presented early
Intermediate goals should be clear and presented at appropriate times

FEEDBACK

Players must receive appropriate feedback at appropriate times The criteria for
feedback are as follows:

Players should receive feedback on their progress to goals
Players should receive immediate feedback on their actions
Players should always know their status or score

Immersion

Players should experience deep but effortless involvement in a game. Immersion,
engagement, and absorption are concepts that are frequently discussed and highly
important in game design and research. The element of flow that describes immer-
sion is deep but effortless involvement, which can often result in loss of concern for
self, everyday life, and an altered sense of time.

Deep but effortless involvement is commonly reported by game players and
people who observe them. Players become less aware of their surroundings and
less self-aware than previously. Many game players report devoting entire nights

or weekends to playing games without being concurrently aware of doing so or
consciously deciding to do so. Enjoyable games transport the players into a level of
personal involvement emotionally and viscerally, drawing the players into the game
and affecting their senses through elements such as audio and narrative.

72 Emergence in Games

IMMERSION

Players should experience deep but effortless involvement in the game
Criteria for Immersion
Players should become less aware of their surroundings
Players should become less self-aware and less worried about everyday life
or self
Players should experience an altered sense of time
Players should feel emotionally involved in the game
Players should feel viscerally involved in the game

Social Interaction

Games should support and create opportunities for social interaction. Social inter-
action is not an element of flow and can often even interrupt immersion in games.
Real people provide a link to the real world that can knock players out of their
fantasy game worlds. However, it is clearly a strong element of enjoyment in games.
People play games for social interaction, whether or not they like games or the
game they are playing. Therefore, social interaction is not a property of the task as
are the other elements of flow, but the task is a means to allow social interaction.

To support social interaction, games should create opportunities for player
competition, cooperation, and connection. Game experiences should be structured
to enhance player-to-player interaction and should create enjoyment of playing
with others inside and outside of the game.

SOCIAL INTERACTION

Games should support and create opportunities for social interaction. The
criteria for social interaction are as follows:

Games should support competition and cooperation between players
Games should support social interaction between players
Games should support social communities inside and outside of the game

ENJOYMENT IN EMERGENT GAMES

The GameFlow criteria can be divided into two categories—criteria related to game
design and criteria related to gameplay. Game design relates to the creation of game
elements that mostly relies on the game developer’s creativity, design ability, and
thorough testing. These elements are unlikely to emerge from the creation of an
emergent game system. Rather, they must be specifically designed and implemented,
such as the back story for a game, the goals of a level, or the game’s interface.

On the other hand, emergent games can facilitate elements of player enjoyment
that relate to gameplay (player interactions within the game world), such as player
skills, control, and feedback. Emergent games also have the potential to enhance
player enjoyment in terms of design elements that are dependent on interactions in
the game world, such as concentration and challenge.

Emergent games have the potential to enhance player enjoyment by supporting
the GameFlow elements of concentration, challenge, player skills, control, and feed-
back, by allowing more intuitive, consistent, and emergent interactions with the
game world. Emergent games can support:

Concentration, by allowing more and a greater variety of interactions with the
game world, creating more interactions and effects within the game world, and
simplifying content creation for game developers.
Challenge, because the players have many more possibilities for strategies, the
players’ strategy is more likely to match their skill level as they have formulated
it themselves, and the players can extend and refine their strategies as they
become more skilled.
Player skills, in terms of the game being easy to use and learn, because the game
rules reflect real-world rules and are consistent.
Control, because the players have more freedom in performing actions and
interactions that they want and expect to be able to perform, the players’ ac-
tions have an impact, and the players feel a sense of control over their actions
and strategies and can play the way that they want.
Feedback, because the game world immediately reacts to players’ actions, pro-
viding implicit feedback.

Chapter 3 Playing Games 73

KEY TERMS

Flow is an experience so gratifying that people are willing to do it for its
own sake, with little concern for what they will get out of it, even when it is
difficult or dangerous.

Æ

74 Emergence in Games

GameFlow is a model of enjoyment in games, based on the elements of flow.
Concentration states that games should require concentration and the play-
ers should be able to concentrate on the game.
Challenge states that games should be sufficiently challenging and match
the player’s skill level.
Player skills states that games must support player skill development and
mastery.
Control states that players should feel a sense of control over their actions
in the game.
Clear goals states that games should provide the players with clear goals at
appropriate times.
Feedback states that players must receive appropriate feedback at appropriate
times.
Immersion states that players should experience deep but effortless involve-
ment in the game.
Social interaction states that games should support and create opportunities
for social interaction.

ADDITIONAL READING

For a detailed discussion of flow and GameFlow:

Csikszentmihalyi, M. (1990) Flow: The Psychology of Optimal Experience.
New York, NY: Harper Perennial.
Sweetser, P., and Wyeth, P. (2005) GameFlow: A Model for Evaluating
Player Enjoyment in Games. ACM Computers in Entertainment 3 (3). New
York, NY: ACM Press.

FUTURE OF GAMEPLAY

In the previous section, I made the distinction between aspects of player enjoyment
that are related to game design (elements crafted by game developers) and elements
related to gameplay (player interactions with and in the game world). To take this
distinction to the next level—game design provides the boundaries or structure of
the system, whereas gameplay is the space of possibilities within those boundaries.

Games that have well-defined boundaries and structure (or game design) re-
duce the space of possibilities for gameplay, giving rise to more linear gameplay.

Conversely, games that have loosely defined boundaries and structure allow more
freedom and possibilities for player actions, providing more open and emergent
gameplay (see Figure 3.9).

Chapter 3 Playing Games 75

FIGURE 3.9 Increasing the boundaries and structure of a game
reduces the gameplay possibility space.

The distinction between linear and emergent gameplay is not binary, and
neither are the two styles mutually exclusive. Rather, there is a continuum between
linear and emergent gameplay. Game systems do not need to be entirely linear
or completely emergent. There are many possible levels between these extremes.
The balance between emergence and linearity, or gameplay and game design, will
determine the degree of the creative control the game developer possesses and the
level of freedom and variation for the player.

A truly emergent system will have little to no creative control and complete
freedom for the player. Conversely, linear systems provide complete creative con-
trol for the developer, but no freedom for the player. However, between these two
extremes there are scripted systems with emergent elements (for example, Half-Life
2), which allow far more creative control for the developers than in entirely emer-
gent systems and greater freedom and variation for the player in interacting in the
game world. This middle ground provides a more balanced game in which the
developer can tell a story, design challenges and tasks, and maintain a reliable and
enjoyable game, whereas the player still has freedom, control, and variation.

The future of game development lies in finding the means to integrate and
balance game design and gameplay and different combinations thereof to produce
more enjoyable game playing experiences in a variety of game genres. There are
different ways to introduce emergent gameplay into games and varying levels of
freedom and emergence that can be created.

76 Emergence in Games

ADDITIONAL READING

The following papers provide a more in-depth discussion of user-experience
and usability in games:

Brown, E., and Cairns, P. (2004) A Grounded Investigation of Game Im-
mersion. Extended Abstracts of the 2004 Conference on Human Factors in
Computing Systems. New York, NY: ACM Press, pp. 1297–1300.
Desurvire, H., Caplan, M., and Toth, J.A. (2004) Using Heuristics to Eval-
uate the Playability of Games. Extended Abstracts of the 2004 Conference on
Human Factors in Computing Systems. New York, NY: ACM Press, pp.
1509–1512.
Federoff, M. (2002) Heuristics and Usability Guidelines for the Creation and
Evaluation of Fun in Video Games. Unpublished thesis, Indiana University,
Bloomington.
Fullerton, T., Swain, C., and Hoffman, S. (2004) Improving Player Choices.
Gamasutra, March 10, 2004.
Gee, J.P. (2004) Learning by Design: Games as Learning Machines. Gama-
sutra, March 24, 2004.
Lazzaro, N., and Keeker, K. (2004) What’s My Method? A Game Show on
Games. Extended Abstracts of the 2004 Conference on Human Factors in
Computing Systems. New York, NY: ACM Press, pp. 1093–1094.
Pagulayan, R., Keeker, K., Wixon, D., Romero, R., and Fuller, T. (2003)
User-Centered Design in Games. In J.A. Jacko and A. Sears (Eds.), The
Human-Computer Interaction Handbook: Fundamentals, Evolving Tech-
niques and Emerging Applications. Mahwah, NJ: Lawrence Erlbaum Asso-
ciates, pp. 883–905.

The right balance between game design and gameplay (or linearity and emer-
gence) depends on the game that you are creating. What is right for one game will
almost certainly not be right for another. Emergence definitely has a place within
current games, because it can enhance player enjoyment in areas where traditional
approaches have been weak (for example, giving the player more control).

The rest of this book explores different ways to incorporate emergence into
games (for example, through agents, environments, narrative), investigates different
levels of linearity and emergence in games and the effects on developers and players,
and identifies the limitations of emergence in games. The ultimate goal is to discover
how emergence can be best used in games to maximize player enjoyment.

Chapter 3 Playing Games 77

SUMMARY

This chapter began your journey into emergence in games with a player-centered
focus. You learned the basics of gathering feedback from players, using focus
groups, playtesting, usability testing, and surveys. You also explored the key
elements of player interaction in games: consistency, immersion, intuitiveness,
freedom, and physics. You examined the history of games from a player interaction
perspective, stepping through the eras of interactive fiction, linear gameplay, sand-
box games, and emergent gameplay. You then learned about player enjoyment in
games using the GameFlow model and the role of emergence in enhancing player
enjoyment in games. You should now have an appreciation of the role of players in
games, their importance and contribution, and the elements that lead to improved
interaction and enjoyment. With your players in mind and their enjoyment as your
focus, you will now move on to creating emergence in games.

CLASS EXERCISES

1. Think of games you have played that you would class as interactive fiction,
linear, sandbox, and emergent.
a. How does the player interact with each of these games? What constitutes

the input and output?
b. How would you rate each of these games for consistency, immersion,

intuitiveness, freedom, and physics? Why?
c. Which of these is the best and worst game that you have played? How

does this correlate with your interaction ratings?

Interactive Linear Sandbox Emergent
Fiction Gameplay Games Gameplay

Example

Interaction

Consistency

Immersion

Intuitiveness

Freedom

Physics

2. Rate the importance of each of the elements of GameFlow on a scale of 1 to
10, for each of first-person shooter (FPS), role-playing (RPG), strategy,
and sports games.
a. How would you personally rate the importance of each element?
b. What is your favorite type of game? How does your personal rating cor-

respond to your rating for your favorite type of game?
c. How are different types of games rated differently? Why?

FPS RPG Strategy Sports You

Concentration

Challenge

Player Skills

Feedback

Clear Goals

Immersion

Social Interaction

3. Consider your favorite type of game and the games of this type that you have
played.
a. How is each of the elements of GameFlow achieved in these games?
b. What could be added to these games to enhance each element?
c. Where do these games fall on the game design/gameplay continuum?
d. What could be done to make these games more open or emergent? How

would this improve the gameplay and player enjoyment?

78 Emergence in Games

79

I
n Chapter 3, I made the distinction between local emergence and global emer-
gence in games. However, I’d like to take this one step further and identify
three potential orders (or levels) of emergence in games. These levels can be re-

ferred to as first-order, second-order, and third-order emergence.
First-order emergence in games occurs when local interactions have knock-on

or chain-reaction effects. The players’ actions spread throughout the game world,
affecting not only the immediate target but nearby elements of the game world as
well. First-order emergence is becoming commonplace in games, especially since
the advent of Valve’s Source engine. Games that use property-based objects allow
for a wide range of interactions and local knock-on effects.

Second-order emergence is where the players use the basic elements of the en-
vironment to form their own strategies and solve problems in new ways. Game
characters might also be able to use or combine their basic actions to exhibit new
behavior or strategies. These types of emergence are still local effects, because they

Emergence in Games4

In This Chapter

Board Games
Game Worlds
Characters and Agents
Emergent Narrative
Social Emergence
Developing for Emergence
Emergent Games

80 Emergence in Games

have a limited range of effect and do not impact the game as a whole. However, they
allow considerably more player freedom and creativity and change how individual
parts of the game play out.

Third-order emergence pertains to the game as a whole, where the emergence
occurs on a global scale. The boundaries of the game are suitably flexible to allow
the players to carve new and unique paths through the game. New gameplay occurs
that changes the game as a whole. The game allows for divergence in narrative,
game progression, character interactions, or social systems.

Third-order emergence is the holy grail of emergence in games, but by no
means the only type of value. Rather, the key is to develop emergence that will im-
prove the player’s experience of the game in some way, and never for its own sake.
I whole-heartedly advocate the use of the simplest method possible to achieve the
desired results. Game development is challenging enough without unnecessarily
complicating matters. I do believe that, in time, games will become more realistic
and emergence will eventually become the norm. However, this will be a gradual
process, lead by those who have the resources and time to experiment.

This chapter samples the various ways that emergence can play a part in games.
The major components discussed are game worlds, characters and agents, emergent
narrative, and social emergence. Each of these sections is explored in-depth in later
chapters. I also identify and discuss some of the major concerns of game develop-
ers in developing for emergence. I start with a look at board games, to see where we
have come from and to gain an insight into the enormous complexity that can be
achieved by systems that are simple in design.

BOARD GAMES

Although board games will not be explored in detail in this book, they are the long-
standing ancestors of current computer games and much can be learned from their
centuries of design, refinement, and play. Many traditional board games, such as
chess, checkers, and go, contain perfect examples of emergent gameplay.

In board games, there is a finite space (that is, the board), a set of objects (that
is, the pieces), and a set of simple rules that govern the gameplay. Although the
structure and rules for playing these games are quite simple, the games themselves
are complex. Within the confines of the game world (board, pieces, and rules), the
space of possibilities is very large—the possible configurations of the board and the
various ways to achieve these configurations are almost unlimited. The simple ele-
ments of these games can be combined to make complex gameplay with emergent
strategies.

Chess is played on a board with eight columns and eight rows of tiles (see Fig-
ure 4.1). The game is played by two players, each with 16 pieces at the start of the
game—one king, one queen, two rooks, two bishops, two knights, and eight pawns.
The pieces begin the game in a prescribed arrangement and each piece has a set of
allowable moves. To win the game, it is not enough to simply follow the rules, the
players must anticipate their opponent, set up arrangements of pieces for future
moves, and create strategies to lure, trick, and defeat their competitor.

Chapter 4 Emergence in Games 81

FIGURE 4.1 The game of chess.

Understanding the state of a chess game is not a simple matter of adding the
values of the pieces on the board. As with all complex systems, the whole is more
than the sum of its parts. The pieces on the board interact to support one another,
control parts of the board, and form defensive and offensive formations. A well-
structured formation of low-value pieces can easily overwhelm an opponent with
higher value pieces that are poorly configured.

Chess is a game of emergence as the simple, low-level pieces and rules give rise
to complex, high-level behavior and properties that are not present or predictable

82 Emergence in Games

from the low-level components individually. Understanding the state of a chess
game involves describing not only the pieces and their positions, but the emergent
patterns and formations of the pieces. The patterns that are formed are not ran-
dom. Rather, recognizable and recurring features exist in the high-level state of the
game. For example, controlling certain formations of pawns is a commonly used
pattern of play in chess. Once these formations are recognized, a player’s chance of
success is greatly increased.

Many common patterns of play in chess have names, such as pins, forks, skew-
ers, undermining, overloading, and sacrificing (see Figure 4.2). Chess strategies have
evolved and become more sophisticated over time, so that a chess master of the last
century would be unlikely to beat a chess master of this century. Chess can even be
said to have a kind of emergent narrative. In a sense, it is the classic story of good
versus evil (or us versus them), with elements of battle, honor, chivalry, love, and
regicide. The story of chess has been compared to that of Shakespeare’s Macbeth.

FIGURE 4.2 Patterns of play in chess—a pin (left), a fork (middle), and a skewer (right).

Similar to board games, many card games have a very simple set of elements
(the cards) and a simple set of rules of play, but give rise to complex and emergent
gameplay. For this reason, many board games and card games have remained pop-
ular for centuries, with endless replayability and opportunities for extending the
player’s repertoire of strategies. A recent popular example of a highly emergent
and complex card game is Magic: The Gathering (see Figure 4.3).

In Magic, each card represents a spell with certain effects (for example, sum-
mon a creature) and rules for casting (for example, when you can play the card).
The cards themselves are quite simple (for example, inflict three points of damage
on a target), but when used in conjunction with other cards with varying effects, the
gameplay is complex and the strategies are emergent. A large part of the game is
choosing the combinations of cards that will make up your deck. Considering the
effects of the cards individually makes for a poor strategy, but setting up a chain of
cards that will interact, combine, and amplify each other’s effects makes for very
powerful gameplay.

GAME WORLDS

Game worlds are the possibility spaces of games. The space, terrain, objects, physics,
and environmental effects dictate the possibilities for actions and interactions that
compose and constrain the gameplay. The elements of the game world (such as
weapons, chairs, walls, and enemies) are the basic elements of gameplay, similar to
the board and pieces in chess. The laws of physics and rules for interaction are the
game rules, which constrain the possibility space. Within this space are the allowable
actions and interactions of the player.

Interactions in the game world are the foundation of the gameplay and the
types of interactions depend on the game genre. In role-playing games, interactions
include talking to characters, using spells or abilities, collecting items, gaining ex-
perience, and upgrading abilities. In real-time strategy games, interactions include
training units, constructing buildings, collecting resources, upgrading, attacking,
and defending. In first-person shooter games, the player can run, jump, duck, hide,

Chapter 4 Emergence in Games 83

FIGURE 4.3 The card game Magic: The Gathering. © Wizards of the Coast, Inc. Images used with

permission.

kick, and shoot. The gameplay is made up of how the player uses these basic inter-
actions to solve problems, achieve goals, and advance through the game.

Creating emergent game worlds involves designing types of objects and inter-
actions, rather than specific, localized gameplay. The properties and parameters
reside at a higher level. Rather than having a specific gun able to break a specific
window, there is an additional layer of abstraction that allows a gun to break any-
thing made of glass. For example, the gun would project a bullet entity that has
certain properties (for example, ballistic damage, heat, or electricity) and the glass
is a stimulus-receiving entity. The system would have a set of rules about the rela-
tionship between the entities’ general-case properties and when the bullet meets the
glass, the game’s object-property system looks up the effect of the bullet’s proper-
ties on the glass entity. Therefore, the gun will work on any window (or any other
stimulus-receiving object), rather than only the specified windows.

The key to creating emergent gameplay is to define a simple, general set of
elements and rules that can give rise to a wide variety of interesting, challenging
behaviors and interactions in varying situations. The simpler and more generaliz-
able the rules, the easier they will be to understand (for the player and the devel-
oper), test, tune, and perfect for emergent gameplay. The simplest solution that
gives the desired results is always the best. As with any emergent system, the fun-
damental set of rules and elements stay constant, but their situation and configu-
ration change over time. The sensitivity of the elements to changing situations and
the interaction of the elements with each other and the player are what create emer-
gent gameplay.

Game worlds can be divided into two fundamental components—environ-
ment and objects. The environment is the space, including boundaries such as ter-
rain, sky, and walls, as well as the physical space (for example, air in an earth-based
game or water in an underwater game). The game environment in most games is
inert and unresponsive to players, objects, and events. Game objects are the entities
that populate the game world. There are a wide variety of objects in game worlds,
which vary by game genre. Characters and agents are even types of objects, which
you will read about later. Together, the environment and objects make up the game
world and their properties and behavior determine the interactions that are possi-
ble and the resulting gameplay.

ENVIRONMENT

The environment is the central component of an emergent game system as it de-
fines the game world and the interactions that are possible within the world. The
rules that are defined for the interactions within the environment itself dictate the
rules that will apply to entities that exist in the environment, such as objects and

84 Emergence in Games

agents. Therefore, defining the rules for the behavior of the environment itself is a
crucial step in developing a game world that facilitates emergent behavior.

As discussed in Chapter 3, modeling physics in games, such as gravity, momen-
tum, and other basic laws of physics, is important to ensure realistic and consistent
movement, interactions, and gameplay. Physics systems in games have become quite
realistic and advanced over the last few years, which is evidenced by games such as
Half-Life 2 and F.E.A.R. (see Figure 4.4). However, these types of interactions are
more relevant to the game objects, which you will read about in the next section,
than to the environment itself.

Chapter 4 Emergence in Games 85

FIGURE 4.4 Realistic physics in F.E.A.R. © Sierra Entertainment.

In Chapter 3, it was also noted that the physical behavior of fire, explosions,
and water in games is important to players. These elements pose more of a chal-
lenge to model realistically and believably in games than the laws of mechanics.
They also pertain to the environment itself, as well as the objects. Fire should burn,
releasing heat and causing damage. Water should flow across surfaces, following
contours, and making other substances wet. Pressure should diffuse and large pres-
sure differences should cause explosions.

The environment in most games is inert and unresponsive to player actions.
Chapter 6 discusses a framework for what I call an “active” game world, which can
be used to model environmental systems, such as heat, pressure, and fluid flow in
games. The Active Game World model uses simplified equations from thermo-
dynamics, implemented with a cellular automaton. The Active Game World, based
on simple interactions between cells of the environment, provides a foundation for
emergent behavior to occur in game objects and agents, as well as the environment
itself.

OBJECTS

Game objects are an integral part of any game world as they compose the major
source of player interactions. Objects in games are numerous and varied, including
weapons (for example, guns and swords) in first-person shooter games, quest items
(for example, the Holy Grail or a diary) in role-playing games, and buildings (such as
barracks or factories) in strategy games. Each type of game object interacts with the
game environment and the player in different ways, which gives rise to interesting
possibilities for action for the player, but complicates the job of the game developer.

Some games have allowed more freedom and variation through property-based
objects and rules for how the objects interact. For example, in the simulation game
The Sims, intelligence is embedded into objects in the environment, called “Smart
Terrain.” The objects broadcast properties to nearby agents to guide their behavior.
Similarly, the game objects in the first-person shooter game Half-Life 2 (see Figure 4.5)
use named links between pieces of content called “symbolic links” (Walker, 2004)
that define the properties of the objects and determine how they can be affected by
players and other objects. Using this global design, the objects behave more realis-
tically and are more interactive as they are encoded with types of behavior and
rules for interacting, rather than specific interactions in specific situations. These
objects afford emergent behavior and player interactions that were not necessarily
foreseen by the developers.

At the basic level, objects are the same as cells in the environment in that they
both exist in the physical world and are therefore subject to the same rules of physics,
such as heat transfer, fluid flow, and pressure. However, whereas all cells are uniform
in structure, in that they are all sections of terrain, objects have comparatively com-
plex physical structures. This is where the tags or labels used to create property-based
game objects, such as in The Sims and Half-Life 2, come in handy.

Chapter 6 presents a framework for creating property-based game objects that
can be integrated into the Active Game World model. Objects are implemented as
though they are cells, using the same low-level properties based on the object’s ma-
terial. However, objects are also imbued with high-level properties, based on their

86 Emergence in Games

structure, to constrain the possible physical interactions of the objects. Objects exist
within cells of the environment and can therefore be treated as additional neighbor-
ing cells for the purposes of interacting with the environment. Additionally, the
high-level property tags that are attached to objects can be used to create affordances
for interactions with the player and other objects. The resulting model is flexible and
extensible, allowing the game world to respond consistently and realistically to a
wide range of events and player actions in any situation in the game.

Chapter 4 Emergence in Games 87

FIGURE 4.5 Objects in Half-Life 2 use symbolic links. © Valve Corporation.

Used with permission.

KEY TERMS

Game worlds are the possibility spaces of games that define and constrain
the allowable actions and interactions.
Environments are the physical spaces of game worlds, including the terrain,
sky, and atmosphere.
Objects are the entities that populate game environment, including agents.

CHARACTERS AND AGENTS

Characters and agents are important types of objects in game worlds; they give the
game life, story, and atmosphere. Characters and agents serve many different pur-
poses and hold many different positions in games, which contributes to making the
game world rich, interesting, and complex. For example, strategy games include
units (marines) that the players control and role-playing games include characters
that fill a wide range of different roles in society, from kings to goblins. More than
anything else in the game world, players identify with and expect lifelike behavior
from game characters.

Players expect game characters and agents to behave intelligently by being
cunning, flexible, unpredictable, challenging to play against, and able to adapt and
vary their strategies and responses (Sweetser, Johnson, Sweetser & Wiles, 2003).
However, players often find that agents in games are unintelligent and predictable.
Players also believe that agents’ actions and reactions in games should demonstrate
an awareness of events in their immediate surroundings (Drennan, Viller & Wyeth,
2004). However, many games are proliferated with agents that do not demonstrate
even a basic awareness of the situation around them. These agents often occupy the
landscape as glorified pieces of scenery and behave in exactly the same way in any
number of situations, ranging from rain to open gun fire. The more responsive, re-
active, and dynamic the agents and characters in games, the more lifelike, believ-
able, and challenging the game worlds will become.

Agents are a vital ingredient in creating an emergent game world. Introducing
entities that have a choice of how to react to the changing environment amplifies
the variation and unpredictability of a system. Reactive agents can extend emergent
behavior and gameplay by adding a new level of complexity to the game world. As
agents are able to choose how to react to the environment, they are able to actively
change the state of the world in ways that might not have occurred without their in-
tervention. For example, if a tank catches on fire and reacts by rolling into a group
of trees, then those trees will in turn catch on fire, whereas the outcome would have
been different without the active role of the tank. Also, differences between indi-
vidual and types of agents, such as composition, structure, goals, personality, and
so on, can add further variation and complexity. Not only can agents choose how
to react to a given situation, different agents will choose to react in different ways
in the same situation.

Characters and agents can be used to create emergence in games by being given
an awareness of their environment and an ability to react to the changing state of
the environment. The agents then become part of the living system of the game,
which they sense, react to, and alter. Agents can be given the ability to respond to
players and other agents, events, and conditions in their environment, as well as

88 Emergence in Games

their own goals and motivations, by having a model of their environment and a set
of rules for reacting. Characters and agents that follow simple rules for behavior,
taking into account the complex environment around them, will become emergent
entities in the game world.

SENSING

The agents in most games rely heavily on the prior knowledge of their designers and
little on their current situation. Many agents in games, such as units in strategy
games and villagers in role-playing games, do not react to the environment in any
way. This behavior demonstrates a lack of situational awareness, which is an agent’s
dynamic mental model of its operating environment and its place in it.

Situational awareness gives an agent a sense of what is happening in its current
environment, what could happen next, what options there are for action and the
possible outcomes of those actions. Situational awareness is the foundation for
making decisions in complex operational environments.

Giving an agent an awareness of its environment and a way to sense and model
the situation is the most crucial step in creating reactive, dynamic, and emergent
behavior. The more information and intelligence that can be embedded in the en-
vironment, the simpler the agents themselves can become.

The ideal framework for facilitating emergent agent behavior is to have simple
agents in a complex environment. The emergence comes from the interactions be-
tween agents, between the agents and the players, and the collective interactions of
the agents with the game world. In order to achieve this, the agents must be given
a way to sense and model their environment. Some common approaches to sens-
ing game environments are probing, broadcasting, and influence mapping. A
framework for using each of these approaches in an emergent game system is pre-
sented in Chapter 7.

Probing

There are some games in which the agents sense and react to other agents by
actively probing the environment for information. For example, the agents in Half-
Life have sight and hearing and periodically “look at” and “listen to” the world (see
Figure 4.6). Also, the game Thief: the Dark Project uses the same core concepts as
Half-Life, but with a wider spectrum of states.

The agents in Half-Life and Thief periodically run through a list of rules to
determine whether they sense an opponent. The agents must actively check to de-
termine whether they can sense something at given time intervals, unlike real vision
and hearing, which arrive at the senses continuously. Depending on the agents’
frequency of probing the environment, it is likely that events and actions will be
missed.

Chapter 4 Emergence in Games 89

Probing is quite fast and efficient if there are only a few specific things that the
character is checking. However, as the number and frequency of these checks in-
creases, the character can spend most of its time probing the environment. When
the character is running a large number of checks, it is likely that most of these
probes will be negative. With a lot of agents in a large environment, this can get out
of hand quickly.

Broadcasting

The agents in The Sims, unlike Half-Life and Thief, continuously receive informa-
tion from the environment. In The Sims, the intelligence is embedded in the objects
in the environment, known as “Smart Terrain”. Each agent has various motivations
and needs and each object in the terrain broadcasts how it can satisfy those needs.
For example, a refrigerator broadcasts that it can satisfy hunger. When the agent
takes the food from the refrigerator, the food broadcasts that it needs cooking and
the microwave broadcasts that it can cook food. Consequently, the agent is guided
from action to action by the environment.

90 Emergence in Games

FIGURE 4.6 Games agents in Half-Life sense the environment.
© Valve Corporation. Used with permission.

The behavior of the agents in The Sims is autonomous and emergent, based on
their current needs and their environment. Whereas the agents in Thief and Half-
Life use a list of rules to determine their behavior, the agents in The Sims use
weighted sums to determine the best behavior based on the current situation.

When information is broadcast to agents, they are sent all the events that are
happening in the game world and they must sort out what they need. This results in
a large amount of redundancy and unused information, but the trade-off is flexibil-
ity. Agents can be set up to listen for the information they need, and discard the rest.

Influence Mapping

Influence mapping, a technique used in many strategy games, divides the game map
into a grid with multiple layers of cells, each of which contains different information
about the game world. For example, the layers could store data for combat strength,
vulnerable assets, area visibility, body count, resources, or traversability.

The values for each cell in each layer are first calculated based on the current
state of the game and then the values are propagated to nearby cells, thereby spread-
ing the influence of each cell. This influence propagation gives a more accurate
picture of the current strategic situation, because it not only shows where the units
are and what they are doing, but also what they might do and the areas they poten-
tially influence.

Each layer, or set of layers, provides information about a different aspect of the
game. For example, the influence map can indicate where a player’s forces are de-
ployed, the location of the enemy, the location of the frontier, areas that are unex-
plored, areas where significant battles have occurred, and areas where enemies are
most likely to attack in the future. When these layers are combined, they can be
used to make strategic decisions about the game. For example, they can be used to
make decisions about where to attack or defend, where to explore, and where to
place assets for defense, resource-collection, unit-production, and research.

Influence mapping provides passive sensing of a continuous environment (as
opposed to discrete entities), allows the agents’ situational awareness to evolve as a
function of the environment, and gives rise to reactive and emergent behavior. Un-
like probing, the agent is continuously adapting its behavior to the environment
(rather than probing at given time intervals) and its behavior is a function of its en-
vironment (rather than following a prescribed set of rules). The difference between
influence mapping and broadcasting is that the agent is presented with a single
value (calculated using the weighted sum to combine all the factors) instead of
numerous messages being sent to the agent about the environment.

Chapter 4 Emergence in Games 91

The sensing method that is used (probing, broadcasting, influence mapping, or
other) depends on the type of agents and game world. Probing and broadcasting
are frequently used in first-person shooter games and other games where individ-
ual agents react to a complex environment in real-time. Influence mapping is com-
monly used in games that require coordinated group behavior, such as strategy
games and sports games. The computational complexity of each method in relation
to the game requirements is also an important factor.

ACTING

After the agent has sensed its environment and has an understanding of its situa-
tion, it must choose an action. Even if the agent has a sophisticated world model, if
it fails to act or react appropriately, it will appear lifeless and unintelligent. There
are a wide range of specific actions that agents are required to take in game worlds,
which vary depending on game genre. There are two major types of actions that
agents are required to take—individual actions and group actions. Individual ac-
tions require the agent to behave autonomously and make decisions based on its
own situation and needs. Group actions require the agent to play a role in a group
of agents, which involves cooperation and coordination.

Individual

Agents that act individually are usually game characters or enemies. In first-person
shooter games, a large proportion of the agents are there to fight the players. The
primary actions of these agents are to run, jump, dodge, hide, and shoot enemies.
In role-playing games, agents include friendly and enemy characters, as well as
monsters and animals. The actions of these agents include talking, fighting, walk-
ing, and appearing to follow normal lives and routines. In strategy games, individ-
ual agents (or units) must move, attack, guard, and hold positions. Agents in sports
games must move around the field or court, score goals, pass, tackle, and so on. The
cars in racing games drive around the track, dodge or ram other cars, and some-
times perform stunts. The most common actions for agents in all of these types of
games are movement and decision-making.

Movement

Characters spend a large amount of their time moving around, performing actions
such as running away, walking around town, driving, moving to a strategic loca-
tion, or charging at the players. As agents spend such a large amount of their time
moving, they must do it efficiently, smoothly, and intelligently. In terms of emer-
gent behavior, the pathfinding of individual characters is not that interesting. There
are many good references on pathfinding in games, with A* being the method of
choice. Deciding where to move to, on the other hand, is of more interest, especially

92 Emergence in Games

when the agent takes into consideration the state of the environment, other agents,
as well as its own goals and personality. Chapter 7 discusses how characters can use
their environmental model to guide their movement.

Decision-Making

With enough information about their environment, agents can use a simple set of
rules to decide how to act and react appropriately. Agent decision-making in games
involves choosing an action based on goals, personality, and the current state of the
game. Agents in games must decide when to run away, attack, hide, eat, talk, sleep,
heal, and so on. Chapter 7 presents a simple, flexible, general-purpose framework
that can be used for agent decision-making.

Group

Many games have groups of agents that must be able to interact, coordinate, and
cooperate. This is particularly important in team-based games, such as strategy
games and sports games. When there are two or more sides fighting or competing,
the agents must cooperate in an organized way to have any chance of success. The
two most important group actions in games are group movement and tactics.
Emergence has a lot of potential to improve group behavior, with a focus on self-
organization, rather than top-down orchestration.

Group Movement

Coordinated and fluid group movement can be achieved with a bottom-up, agent-
based approach. Many movies and games have used flocking as a steering behavior
for groups, schools, or herds of animals, people, and monsters. Agent-based steer-
ing behaviors are based on individual agents having a few simple rules to guide their
movement in relation to their environment and other agents. These types of steer-
ing behaviors can also be extended to include goals, personality, threats, and other
relevant factors. Chapter 7 discusses methods for achieving emergent group move-
ment in games using agent-based steering behaviors.

Tactics

Tactics involve a group or team cooperating and behaving in a coordinated way in
order to achieve a group goal, such as securing an area, defeating the enemy, win-
ning a match, or making a successful play. As well as coordinated group movement,
agent-based systems can be used to create emergent group tactics. If each agent
considers its goals, personality, current situation, and the behavior of its team and
opponents, it can make low-level decisions that will allow the high-level tactics and
strategies to be emergent. Chapter 7 presents a framework for creating emergent
group tactics using an agent-based approach.

Chapter 4 Emergence in Games 93

94 Emergence in Games

KEY TERMS

Agents are decision-making entities in games that sense and react to the
game world.
Situational awareness is an agent’s mental model of its environment and its
place in it.
Sensing allows agents to monitor the changing state of their environment.
Probing involves agents periodically querying the state of their environment.
Broadcasting involves the environment sending game agents information
about events and the state of the environment.
Influence mapping provides a persistent map of the changing state of the en-
vironment, in terms of the influence of various aspects of the game world.
Acting involves agents responding to changes in their environment.
Movement requires agents to decide where to move to and how to get there.
Decision-making involves agents choosing an action to take in their
environment.
Group movement requires agents to move in coordination with members of
a group or team.
Tactics involves agents cooperating in order to achieve a common goal.

EMERGENT NARRATIVE

A game’s narrative is the story that is being told, uncovered, or created as the player
makes his or her way through the game. This story might take the form of a single,
linear plot that is divulged to the player at selected points in time. Alternatively, it
could be the deep, underlying truth of the game world that requires the player to
solve puzzles and investigate the world to discover. It could also be the product of
the player’s interactions in the game world—the internal story that players create
about their characters or challenges as they play the game. No matter the format of
the narrative, it is central to enjoyment and understanding of all games, even games
that do not have a story.

People in all cultures teach and learn through storytelling. From a very early
age, we are told stories to not only ignite our imagination, but to teach us how to
live and behave in the real world. Narrative in games frames the game in a way that
players can understand and reflect upon. It is these stories that have the greatest
impact on the players and that they will take with them long after they have played

the game. In creating emergent narrative, the developer is tailoring the narrative to
the player’s experience and putting the player center stage.

NARRATIVE STRUCTURE

If you examine forms of narrative in games from the player’s perspective, there are
three main categories that can be identified. The first is the traditional “player as
receiver” model that is drawn from other forms of storytelling, such as movies and
books. In this form, the story is entirely prewritten and is simply transmitted to the
player. The player receives the story and has no potential to affect the outcome or
progression. A similar type of narrative is “player as discoverer,” in which the story
is embedded in the game world and the player must uncover the pre-existing plot.
The third, and considerably different form, is “player as creator,” which involves
the players actively creating and affecting the story as a product of their actions and
interactions. Each of these forms of narrative has been used in previous games with
varying degrees of success.

Player as Receiver

Games that put the player in the role of the receiver of narrative simply deliver the
plot to the player, usually in installments throughout the game. This can be done
in various ways, but usually involves the player being given a piece of the story,
followed by a sequence of actions or gameplay, followed by another piece of the
story, and so on. In the extreme form, players are given a pre-rendered cinematic
in which they watch a piece of the story unfold, followed by a discrete piece of
gameplay, such as a game level. In this form, the story, at best, provides a backstory
or motivation for completing the level and what the player actually does in the
game has no bearing on how the story plays out. The player as receiver model is the
simplest and most linear form of game narrative.

The player as receiver structure is common in first-person shooter games that
use cinematics to tie together a series of game levels. For example, in the game
Painkiller (see Figure 4.7), an introductory cinematic provides the players with a
backstory that explains the main character’s motivations and situation. The player
then plays through a series of discrete game levels, which are interspersed with
cinematics that extend the story and deepen the plot. The cinematics are all pre-
scripted and pre-rendered, so they play out the same way no matter how many
times the game is played. There are no alternate endings, branches, or player
choices. The same format is also used in many action games, adventure games, and
other level-based games. Although very simple and entirely linear, this model is
used to great effect in Painkiller and many games like it, which is why it is so preva-
lent in current games.

Chapter 4 Emergence in Games 95

96 Emergence in Games

FIGURE 4.7 A pre-rendered cinematic in Painkiller. © DreamCatcher Interactive Inc.

The player as receiver model is also used in many role-playing games, especially
for the central storyline. Despite subplots and side-quests that might be happening
at the same time, most role-playing games have a central, linear storyline. This
central story is usually tied to a particular series of quests. Once the conditions for
advancing the main story have been met, a cinematic or a scripted in-game dialogue
sequence will play out to give the players the next installment of the story. For ex-
ample, in Diablo II, the player is given a pre-rendered cinematic at the completion
of each chapter of the game (see Figure 4.8).

A similar approach is used in many real-time strategy games, such as Warcraft
III. In general, games that use the player as receiver structure of narrative require
the players to complete a level, chapter, mission, or quest to be rewarded with the
next piece of the story and advancement to the next level of the game. The story and
gameplay are often not tightly intertwined, with the cinematics acting more as a re-
ward or motivation for the action than a critical part of the gameplay.

Player as Discoverer

Games in which the player is the discoverer of the narrative are still usually very
linear and scripted in nature. The pieces of the story might not occur in the same
order each time, but the overarching story is linear and the outcome is predeter-
mined. The narrative in player as discoverer games is usually more interactive than

in player as receiver games. The player cannot simply wait to be told the story; they
must actively try to uncover the plot. This is usually accomplished by talking to
game characters, exploring, completing quests, and interacting with the game
world. For this reason, the gameplay and narrative is usually more intertwined and
interdependent than in player as receiver games.

Due to the interactive nature of the narrative, player as discoverer games often
have branching storylines or multiple endings. The players don’t just observe a piece
of the story playing out; they play a role in it. This might be in the form of choosing
dialogue options during a cinematic or having interactive conversations with game
characters.

The player as discoverer model is used in interactive fiction (as described in
Chapter 3), as well as many role-playing games. In interactive fiction, the player
interacts with the game world and characters to sequentially move through the
world and story. Until the player discovers what to do next, the rest of the game and
story is inaccessible.

In role-playing games, such as the Might and Magic series, the player often
needs to find the key characters to acquire information from, in order to advance
the story. Depending on the player’s interactions with these characters or the
player’s choices, the plot might branch off into different directions.

An example of a branching storyline is in the game Wing Commander IV.
Depending on the player’s choices in the cutscenes (game movies), the story plays
out differently and the game has different outcomes. The player as discoverer
model has not been as successful or as prevalent as the simple and effective player
as receiver model.

Chapter 4 Emergence in Games 97

FIGURE 4.8 Diablo II plays a pre-rendered cinematic at the completion of each chapter.
Diablo II® images provided courtesy of Blizzard Entertainment, Inc.

Player as Creator

In the player as creator model of narrative, the players are creators or co-creators of
the game’s story. The story is a function of the player’s actions and interactions in
the game world. Narrative in player as creator games can be generated by the
interactions between characters in the game world, the player’s interactions in the
game world, as well as any knock-on effects of these interactions. In player as cre-
ator narrative, the final destination is not important; it is the journey that counts.
Players have a definite sense of agency and impact onto the game world; they are
actively creating and changing the world and its story.

Games that are generally not considered to have a defined storyline fall into
the category of player as creator narrative. This includes simulation games, such as
The Sims and SimCity, strategy games, such as Total War and Civilization, and
other open, sandbox games. In these games, the players use the basic elements of
the game, such as buildings, people, and armies, to create their own stories. In

98 Emergence in Games

FIGURE 4.9 Strategy game Medieval II: Total War does not have a defined storyline.
© The Creative Assembly. Used with permission.

The Sims, players create a life story for their characters and in Total War (see Fig-
ure 4.10), players forge the history of a nation. The players are not discovering or
receiving an existing plot; they are creating a new one through the act of playing the
game.

Chapter 4 Emergence in Games 99

FIGURE 4.10 An epic, historical battle in Medieval II: Total War. © The Creative Assembly.

Used with permission.

Some games that do have well-defined, linear storylines can also have elements
of player as creator narrative. Games that have large, open game worlds with lots of
possibilities for action, such as some role-playing games, can allow players to create
their own subplots. For example, in The Elder Scrolls IV: Oblivion, there are many
optional quests that can be gained from characters throughout the world. These
quests are not connected to the main storyline, do not have to be completed in a
specific order, and are entirely optional. Additionally, players can go adventuring
into caves or ruins and fight monsters whenever they feel like it. Players can com-
pletely ignore the main storyline, although they won’t be able to complete the game

by doing so. Players have a fair amount of freedom in creating a unique path for
their characters through the game. Although the central storyline is linear and they
will reach the same final destination, the players have a significant ability to co-
create their journey through the game.

Player as creator narrative is emergent. Some, or all, of the story is a product of
the player’s interactions in the game world, interactions between objects or charac-
ters in the game world, and knock-on effects. The narrative is not predetermined
and scripted; it emerges from interactions between entities in the game world.
Emergent narrative does not need to be as complicated or as chaotic as it sounds.
Chapter 8 explains a few simple ways to achieve emergent narrative in games, using
the narrative elements of storyline and conversation, described in the next section.

NARRATIVE ELEMENTS

There are two key elements that can be used to create narrative in games—storyline
and conversation. Narrative is formed by telling stories about events, people, and
places. Players’ actions in a game can form a kind of internal narrative, but it is not
until the retelling that it becomes a story.

The storyline is the overarching plot, as well as subplots, that play out in the
game. As discussed in the previous section, the storyline can be received, discov-
ered, or created by the player. The storyline is often presented in installments, such
as pre-rendered or in-game cutscenes, throughout the game. These installments
can recap what has happened in the previous section, reveal more depth to thicken
the plot, or foreshadow what is yet to come.

Conversations are a more informal, continuous form of narrative. Players can
engage in conversations with various characters throughout the game, or observe
conversations between other characters, to gain small pieces of information about
events, people, and places in the game. By allowing emergence in storylines and
conversations in games, the developer can create emergent narrative.

Storyline

If the player’s actions in the game world and interactions with objects and charac-
ters are the low-level elements of the game world, the storyline is the high-level
behavior. If the story is received (as opposed to discovered or created) by the play-
ers, their actions are irrelevant to the overarching storyline, because it is imposed
over their actions. There is no connection between the low-level interactions in the
game world and the high-level storyline.

For a story that is discovered, the player’s interactions are forced to fit the
mould of the high-level behavior. This can be considered more of a top-down ap-

100 Emergence in Games

proach, where the interactions are determined by the high-level design, or storyline.
Interactions that are incorrect or not part of the scripted path have no consequence.

In stories that are created, the low-level actions of the player, game world, ob-
jects, and characters interact to form the overarching storyline. This is where emer-
gence can occur. The difficulty lies in designing a story system that not only enables
emergence, but that makes for compelling, believable, and coherent narrative.

There are several components of storylines in games that can be used to create
a compelling narrative. These components are backstory, storytelling, story cre-
ation, and post-game narrative. A backstory presents events that occurred prior to
the start of the game and can be used to establish setting, character, and motivation.
Storytelling is used throughout a game to impart further information about the plot
or game world to the player, usually via cutscenes. Story creation is the more inter-
active form of storytelling in which the player performs certain actions, such as
completing missions or quests, to create subplots or advance the overall plot. Fi-
nally, post-game narrative is storytelling that occurs after the game is completed,
which can be used to create a story out of the player’s journey through the game.
Each of these components can be used to create narrative in an emergent game.
Chapter 8 provides a framework for developing an emergent storyline using these
components.

Conversation

Conversation is a common form of creating narrative in not only games, but other
forms of storytelling, such as books and movies. The format of conversations in
games is diverse, with varying levels of freedom and interactivity. Conversations
can be entirely scripted, including the player’s part, and simply play out for the
player to observe, such as in a pre-rendered cutscene. Alternatively, characters often
have conversation trees, where the player can choose a response from a limited set
of options when talking to a game character. This response can be in the form of a
scripted sentence, a keyword, or an emotion.

Rather than engaging in a continuous conversation, players might simply have
a list of conversation topics that they can choose to ask the character about. This
method often seems more like accessing a help system than having a conversation,
because you are merely requesting information on a given topic. Conversation is
the staple of storytelling in most role-playing games, but is also used to a lesser ex-
tent in first-person shooter and strategy games.

The character’s awareness, reactions, and involvement in the conversation are
also key parts of the construction of the narrative. To properly engage in a conversa-
tion, the character must have an awareness of the state of the game world, an attitude
toward the player, a memory of previous interactions, their own motivations and
goals, and appropriate reactions to the player’s conversation choices.

Chapter 4 Emergence in Games 101

Chapter 8 describes a conversation system for enabling emergent narrative
through conversation. The system involves the use of a core set of variables that affect
a character’s conversation and a set of rules for how the conversation is affected. The
rules and variables of the system are simple, but allow emergent conversations in the
context of a complex game world. A simple conversation system that is sensitive to
the state of the game world, characters, and player can create emergent conversations
between the player and characters, or between game characters.

102 Emergence in Games

KEY TERMS

Narrative is the story that is being told, uncovered, or created as the play-
ers make their way through the game.
Player as receiver narrative is delivered to the players in installments as they
play the game, usually in the form of cutscenes.
Player as discoverer narrative involves the players actively trying to uncover
the plot, by talking to game characters, exploring, completing quests, and
interacting with the game world.
Player as creator narrative allows the players to create or co-create the story,
which is a function of the players’ actions and interactions in the game
world.
Storyline is the overarching plot, as well as any subplots, that play out in the
game.
Conversations are verbal or textual exchanges that players engage in with
game characters, or observe taking place between characters.

SOCIAL EMERGENCE

Of all the forms of emergence in games, social emergence is by far the most com-
plex and unpredictable in current games. When millions of people come together
to play popular massively multiplayer online role-playing games, such as World of
Warcraft (see Figure 4.11) or Lineage, the result is comparable to the divergence and
complexity of a large city. Rather than trying to find ways of creating emergent social
systems in games, it is more a matter of trying to understand, model, constrain, and
support the complexities that arise naturally from human interactions. In order
to do this, game developers must draw on psychology, sociology, economics, and
even law.

The most prevalent forms of social emergence in games include emergent
economies, social structures, and communities. Chapter 9 draws on the lessons
learned from developers of major online games, as well as research into the com-
plexities of these worlds from the perspectives of psychology, sociology, economics,
and law. The result is an exploration of the major highlights and issues, as well as
guidelines and suggestions for supporting and harnessing these forms of social
emergence in games. Finally, you look at how artificial social networks can be cre-
ated in single-player games and the emergence of artificial social communities.

ECONOMIES

The virtual economies in many massively multiplayer online games have become as
complex, intricate, and difficult to manage as real-world economies. The largest
virtual economies exist in popular massively multiplayer online role-playing games,
such as EverQuest (see Figure 4.12), Ultima Online, Dark Age of Camelot, World of

Chapter 4 Emergence in Games 103

FIGURE 4.11 Millions of people come together to play World of Warcraft. World of

WarCraft® images provided courtesy of Blizzard Entertainment, Inc.

Warcraft, Lineage, and EVE Online. Virtual economies are emergent systems that
change dynamically with supply and demand, based on the trading patterns of the
world’s inhabitants. They share many characteristics with real-world economies,
such as trading and banking, but are also subject to many of the same problems,
such as inflation and gambling.

104 Emergence in Games

Inflation occurs in online games as the average holding per character increases
over time. As a result, things continuously cost more, which causes problems for
game balance. One way developers get around this problem is to create money
sinks, which are things that players want to buy that don’t affect gameplay. Other
solutions include taxation and limiting the amount of stuff that characters can
store. As games are continuously generating new currency, there must be effective

FIGURE 4.12 EverQuest 2 has a large and complex virtual economy. © Sony Online

Entertainment. Used with permission.

sinks to maintain a stable economy. Game economies can also be destabilized by
destructive actions by players, such as gold farming and hacking, which can give rise
to hyperinflation.

Online role-playing games, such as EVE Online and Dark Age of Camelot, also
play host to gambling and lotteries. The gambling takes the form of lotteries, bet-
ting, card games, and other real-world gambling mechanisms, using the in-game
currency, but usually occurs on external Web sites. Bets and winnings are paid to
the player’s game accounts.

Financial institutions have begun to appear in online games that do not have game
mechanics governing financial law. EVE Online (see Figure 4.13) was the host to the
first bank in an online game world, created by the Interstellar Starbase Syndicate.

Chapter 4 Emergence in Games 105

One of the most interesting and controversial forms of social emergence in on-
line games is the crossover between virtual and real economies. Some players work
to acquire in-game assets (such as characters and items) that they can sell for real-
world money on auction or currency exchange Web sites. The crossover also works

FIGURE 4.13 EVE Online was the first online game to host a bank. © CCP.

in the other direction, with players offering real-world services (such as Web site
design) for in-game currency. This behavior also feeds back into the game system,
because the economy and gameplay are influenced by events external to the game,
which alter player motivations (to make real-world money, rather than to progress
in the game) and the virtual economy of the game.

The demand to trade in-game money and the surge in popularity of online
games, such as World of Warcraft, have given rise to a large number of external
online marketplaces, auction sites, and currency converters (see Figure 4.14). The
proliferation of these secondary markets has further given rise to tools for market-
place comparisons (www.gamerprice.com), which is a second-order emergent
effect external to the game. It has even been suggested that secondary market sales
(totaling approximately $1–3 Billion USD in 2006) may overtake subscription sales
in the near future. Chapter 9 examines the emergence of economies and trading
in massively multiplayer games, as well as the considerations and potential for
developers.

106 Emergence in Games

FIGURE 4.14 World of Warcraft has many external marketplaces and marketplace
comparison Web sites.

www.gamerprice.com

SOCIAL STRUCTURES

Players in massively multiplayer role-playing games often have full, developed
characters with identities, skills, specializations, duties, friends, and property. These
characters forge relationships, build houses, have jobs, and fulfill a role in the vir-
tual society. Some players have characters dedicated to farming, mining, crafting
and selling objects, hunting, and many other specialized activities. The individual
interactions, motivations, and behavior of these players give rise to complex social
structures that share many common elements with real societies.

Emergent social structures in online games include governments and political
parties that form around common beliefs, desires, or goals. Virtual governments
even institute laws and punish law-breakers. Virtual crimes are becoming more
common-place and varied, with thefts, assaults, prostitution, and bullying. Even
online mafia has emerged in some games, where powerful players threaten new
players into giving them protection money, as well as carrying out organized crime.
Chapter 9 discusses the emergence of social structures in games and the consider-
ations for game developers.

COMMUNITIES

Players invest large amounts of their time into games and form strong social bonds
with other players over time. Communities of like-minded players come together
inside and outside of game worlds, forming guilds, forums, competition ladders,
and mod communities. Strong social themes of competition and cooperation are
common in these communities. Status is important, and hierarchies and leaders
emerge over time. Supporting the development and continuance of these commu-
nities is important for developers in sustaining interest in their games. Social bonds
between players can keep them playing the game far longer than almost any game-
play mechanism.

Game communities can range from interested players coming together to dis-
cuss the game to strong social networks devoted to playing or extending the game.
Guilds are common in many online games, with competition between guilds to
recruit new members. The cooperation of players within a guild can allow difficult
quests to be completed and better items to be acquired.

Many games have some form of online multiplayer, which allows players to
compete against each other in skirmishes or tournaments, or cooperate to defeat
other teams of players. Games that support non-developers in extending or modi-
fying the game often have mod communities devoted to developing their own ver-
sions of the game for hobby or for profit in some cases. Chapter 9 discusses the
various forms of game communities and what developers can do to encourage and
support these communities.

Chapter 4 Emergence in Games 107

ARTIFICIAL SOCIAL NETWORKS

The emergence of social structures and communities in massively multiplayer
games provides insight into the power of social dynamics in games, as well as
inspiration for translating these dynamics into artificial social networks for single-
player games. Giving game characters the ability to form social relationships with
the player, as well as other game characters, has the potential to add more life and
interaction to game worlds.

Artificial social networks can be formed in games by attributing characters with
status, social connections, memory of other characters, and attitude toward char-
acters and the players. Using social networks to determine the flow of information
in game worlds and character behavior in social situations can allow for emergent
social interactions and character behavior. Chapter 9 presents a model for social
networks in games.

108 Emergence in Games

KEY TERMS

Social emergence occurs when many players interact to form complex social
structures and communities.
Economies are emergent in massively multiplayer games, giving rise to
inflation, trading, money exchange, and banks.
Social structures emerge in massively multiplayer games as the result of
individual players contributing to complex societies that spawn social
ladders, governments, politics, and crime.
Communities form in and around games, composed of like-minded indi-
viduals that unite around common interests or goals.
Artificial social networks are networks of linked non-player characters that
can imitate natural social networks that emerge in games.

DEVELOPING FOR EMERGENCE

Some of the important issues to consider for game developers, especially when cre-
ating new technology, are as follows:

Creative Control—Level of creative control for game developers
Design, Implementation, and Testing—Effort in designing, implementing, and
testing the game

Modification and Extension—Effort in modification and extension
Uncertainty and Quality Assurance—Issues for uncertainty and quality assurance
Feedback and Direction—Ease of giving feedback and direction to players

Each of these issues is described in this section and discussed with respect to
developing for emergence in games. These issues will be revisited throughout the
book, in relation to specific aspects of emergence in games.

CREATIVE CONTROL

The use of emergent systems in games can result in a loss of creative control for
game developers. Using an emergent system involves defining types of interactions
and behaviors, which makes it is more difficult to set up specific narrative and se-
quences. Consequently, controlling the flow of the game and telling a specific story
is not as straightforward in an emergent system.

Games where developers manually plan and set up specific situations, interac-
tions, and events, allow complete creative control over the game. The designers are
empowered to create a specific narrative flow for the game, by defining the order
and nature of the player’s actions and encounters in the game. They decide what
will happen and when. However, emergent systems allow a more approximate con-
trol, in that the game developer guides the player, providing boundaries for game-
play rather than dictating specifically what will happen. In an emergent system, the
developer can set goals, but cannot specify how the player will get there.

DESIGN, IMPLEMENTATION, AND TESTING

Emergent systems involve substantial initial effort in planning the rules and prop-
erties that will govern the behavior of the system. It can be difficult to decide how
certain behavior should be modeled and what rules and properties best capture the
behavior. Emergent systems also require substantial testing and tuning to get the
rules to generate behavior that is desirable or acceptable. Getting even a simple
emergent system to behave in a desired way can be difficult and involves significant
tuning. With a full-scale game world, a large amount of development time would
need to be spent on testing and tuning the system, to ensure it behaves reasonably,
plays as intended, and to minimize undesirable exploits.

Specific game systems can also require considerable effort in planning, as well
as implementing and testing. At the extreme, they involve every game element to be
set up manually. Specific interactions need to be planned by the game designers and
the possible courses of action that the players can take need to be manually setup.
Scripted games require a great deal of time and effort by the designers, as well as
vigilant manual effort to ensure consistency in the game world.

Chapter 4 Emergence in Games 109

In an emergent system, the game problems can be determined and the player
can find their own solution. However, in a specific system, the problem and solu-
tion must both be set and the player must find the developer’s preset solution. De-
velopment of emergent systems can be more efficient as programmers can build
tools that allow designers to drop objects into levels, with the properties and
behavior of the object already defined. Designers can also create new objects and
attribute properties to the objects using the tools.

The emergent approach definitely has benefits as games grow in size, making it
impossible to predict, plan, and code everything. Games are now very large, in
terms of the size of the worlds and the amount of content, and they will continue
to grow. Scripting everything is already infeasible and some game developers have
found that the initial outlay of effort to get an emergent game world working is
a superior solution to creating the entire world manually (such as Half-Life 2). But
so far, these games have been limited to game companies with extensive resources,
experience, and time, and only the game objects have been emergent.

MODIFICATION AND EXTENSION

The minimal effort required for modification and extension is one of the major
benefits of an emergent system. Once an emergent system is built successfully, the
design scales well (it increases in size easily, maintaining robustness and manage-
ability) and is easily extended. Making changes to the system (fixing bugs) has the
potential to be more efficient as changes can be made to global rules and object
types, rather than each particular instance of an object that needs to be changed.

Specific game systems scale poorly and do not lend themselves to extensibility.
The properties and parameters of objects in specific systems can be different for
each instance. Fixing bugs in the system requires each instance of a game element
to be visited and reconfigured manually. Also, objects must have explicit relation-
ships with other game elements for interactions to occur. Any changes that need to
be made to the system require revision of any aspect of the game that is affected by
the change.

Ease of modification and extension is an important factor in game develop-
ment as it allows developers to easily add more content, create expansion packs for
their games (currently a big source of revenue for games), quickly release patches
to fix bugs in the games, and allow players to make modifications and create addi-
tional content. Once the initial work is done in creating and tuning an emergent
system, setting up new scenarios should be a straightforward process that involves
dropping in types of objects, agents, terrain, setting any desired events, and letting

110 Emergence in Games

the system run. Conversely, modifying and extending a specific system can be dif-
ficult, time-consuming, and potentially impossible.

UNCERTAINTY AND QUALITY ASSURANCE

Emergent systems introduce uncertainty, which means that the game can behave in
ways that the developers had not anticipated. Although this uncertainty can give rise
to desirable, emergent gameplay, it can also be undesirable if the system allows
behavior that is detrimental to the game. The larger an emergent system (more
entities, rules, and so on), the more complex it will become and the more variations
in behavior that will be exhibited. Extensive testing is required to ensure that the
game does not allow detrimental behavior. However, the emergent events can be too
numerous or subtle for the development team to predict or detect during testing.

Uncertainty is an important property of emergent systems; it gives rise to new
and unexpected behavior. It is also perceived as the main drawback of emergence
by game developers. When human players are introduced into an emergent system,
they have the ability to use the system in ways it was not meant to be used, change
things in the game that the developer had not expected, and play the game in ways
that could not be foreseen. Furthermore, human players seem to have a perverse
drive to intentionally push the game to its limits, exploit its weaknesses, and to
make it break. Consequently, game developers’ fears of using emergent systems are
justified, in that if a game has loopholes, exceptions, or problems then the players
will not only find them, but will actively seek them out and exploit them.

FEEDBACK AND DIRECTION

Giving feedback and direction to players is straightforward in scripted games as the
developer knows when and how the player will interact with various game ele-
ments. As the desired outcome is known, it is straightforward to give players feed-
back on their success at performing actions or fulfilling goals.

Providing feedback and direction is non-trivial in emergent games. Players
have a far greater range of possible interactions and actions and there is a lot more
uncertainty in the game world. Due to the openness of emergent game worlds and
the space of possibilities, players also have a greater need for feedback on the out-
come and success of their actions. Players need more feedback to know that they are
on the right track and that their actions are successful. Consequently, the problem
in giving feedback and direction in emergent games is two-fold; players require
more feedback, but the feedback is much more difficult to give.

Chapter 4 Emergence in Games 111

EMERGENT GAMES

The future of game development is toward more flexible, realistic, and interactive
game worlds. Games have become increasingly more realistic visually, with graph-
ically lifelike and detailed characters, creatures, and game worlds. However, the
environments, objects, and agents in these game worlds are often static, lifeless, and
afford limited interaction. Players are now seeking more realistic and interactive
behavior from these game elements. Consequently, it is now necessary to search for
a new approach to game design that will allow game worlds to accommodate the
needs of the players, affording more flexible and interesting behavior and gameplay.
Emergent games are the next step in game development.

The ways that emergence can be incorporated into games depends on the genre
of the game and the level of creative control that is required. Emergence can be
incorporated into games via emergent objects, agents, or entire game worlds. Al-
ternatively, game narrative could be made emergent (as a function of the player’s
interactions in the game world), as could conversations with game characters and
game quests, objectives, and puzzles.

Role-playing games could include emergence in the form of characters that
have general rules for behavior, conversation and goals, rather than specifically
scripted dialogue. First-person shooter games could include emergent objects, en-
emies, and buildings. Strategy games can include emergent environmental effects,
as well as active and reactive buildings, units, and terrain.

112 Emergence in Games

KEY TERMS

Creative control is the control and certainty that game designers have in
defining and creating interactions, narrative, and game progression.
Design, implementation, and testing is the effort required in planning, im-
plementing, and testing a game system.
Modification and extension is the effort that is involved in modifying and
extending an existing game system.
Uncertainty and quality assurance include the issues related to ensuring
that a game will behave as expected and within reasonable limits to allow
quality to be controlled.
Feedback and direction involve giving players feedback on the success of
their actions and directions on how to proceed in the game.

SUMMARY

This chapter has identified and discussed four key areas that hold potential for de-
veloping emergence in games—game worlds, characters and agents, narrative, and
social systems. The remainder of this book will be dedicated to expanding these
areas and giving specific examples and frameworks for introducing emergence into
these areas of games.

Game worlds can be divided into the game environment (that is, the physical
space) and the game objects (the entities that exist in the game environment).
Chapter 6 examines the concept of an “active” game world, in which the environ-
ment and objects are active and reactive to players, as well as other elements of the
game world. I’ll present a framework for developing an Active Game World, using
a cell-based world model and property-based game objects.

For agents in games to display emergent behavior, they require a way to sense
and model the environment, as well as simple rules for reacting and acting in the
game world. Chapter 7 discusses methods that agents can use to sense and model
their environment. Subsequently, I present a method that allows individual agents
to use their environmental model to guide their movement, as well as a simple,
flexible, general-purpose framework that can be used for agent decision-making.
Finally, I explore methods for achieving emergent group movement and group tac-
tics in games using an agent-based approach.

Players can become the creators of emergent game narrative, by creating their
own storyline and engaging in emergent conversations with game characters.
Chapter 8 explains a few simple ways to achieve emergent narrative in games, using
the narrative elements of storyline and conversation. I present a framework for
developing an emergent storyline, as well as a conversation system for enabling
emergent narrative through conversation.

Social emergence is prevalent in massively multiplayer online games, in the
form of emergent economies, social structures, and communities. Chapter 9 ex-
amines the emergence of economies and social structures in games and the various
forms of game communities, as well as the considerations and potential for devel-
opers. Finally, I present a model for creating artificial social networks in single-
player games and the emergence of artificial social communities.

Before you enter into the specifics of each area of emergence in games, you will
first take a look at some algorithms and techniques that can be used to create emer-
gent behavior. Chapter 5 describes the design and implementation of various pro-
gramming techniques from complex systems, artificial life, and machine learning.
These techniques will be used as the basis for the models and frameworks pre-
sented in later chapters. You will also read about the considerations of choosing the
right technique for the right application.

Chapter 4 Emergence in Games 113

CLASS EXERCISES

1. Think of a board game or card game you have played.
a. What are the components (board, cards, pieces, and so on) and rules of

the game?
b. How many possible configurations of the board or cards are there? How

many different ways are there to reach each configuration?
c. What are some of the common strategies people use for winning this

game? How do you know who is winning in a given turn of this game?
Is this game emergent?

2. Think of the game worlds in the games you have played.
a. What makes up the game world? What constitutes the environment and

the objects?
b. How do you interact with the environment and objects in these game

worlds?
c. What are the limitations to your interactions? How could you make the

game world more active and interactive?
d. Have there been elements of emergence in any of these game worlds?

How have you been able to use objects to create new gameplay and
strategies?

3. Think of the characters and agents in a game that you have played.
a. What actions did individual characters perform in this game and what

did the characters need to be aware of in the game world to perform
these actions?

b. What group actions did agents perform in this game? What did the
agents need to know about their fellow agents to carry out these group
actions?

c. Did any of these characters or agents display emergent behavior? How?
4. Think of games you have played in which the narrative put you in the role

of receiver, discoverer, and creator.
a. How was the storyline conveyed to you in each of these games?
b. What was your role in the story? How much control or influence did

you have over how the story played out? Have you seen any examples of
emergent narrative in games?

c. List all the ways you participated in conversations with characters in
games.

d. Which was the most enjoyable and believable? How would you improve
conversations in games? How could emergence be used to improve
conversations?

114 Emergence in Games

5. Think about the massively multiplayer games you have played or are familiar
with.
a. What do you think about trading and money conversion in online

games? How does it affect gameplay? What could developers do to ben-
efit from player trading?

b. What types of emergent social structures have you seen in these games?
How has this changed the gameplay?

c. What types of game communities have you seen or participated in?
What could developers do to better support or facilitate these commu-
nities?

d. To what extent do you think artificial social networks could exist in
games? How could these networks be used to improve gameplay?

Chapter 4 Emergence in Games 115

This page intentionally left blank

117

C
hapter 4 identified four key areas of games that hold potential for emergent
gameplay—game worlds, characters and agents, narrative, and social
systems. The remainder of this book will be dedicated to expanding these

areas and giving specific examples and frameworks for introducing emergence into
these areas of games. Before you enter into the specifics of each area of emergence
in games, you will first take a look at some algorithms and techniques that can be
used to create emergent behavior.

This chapter discusses various programming techniques and algorithms from
fuzzy logic, complex systems, artificial life, and machine learning that can be used
to create emergence in games. It also outlines some traditional techniques that are
prevalent in current games. The design, application, and considerations of using
these techniques in games will be discussed. The basic techniques outlined in this
chapter will be used as the foundation for the models and frameworks presented in
later chapters. The chapter also covers the considerations of choosing the right
technique for the right application.

Techniques for Emergence5

In This Chapter

Linear Techniques
Approximate Reasoning
Machine Learning
Complex Systems
Artificial Life
Choosing a Technique

118 Emergence in Games

Techniques that are given the boundaries for behavior (rather than the script)
or are able to grow and change have the potential to give rise to behavior that may
not have been foreseen (or expected) by the developers. Emergent behavior occurs
when simple, independent rules interact to give rise to behavior that was not specif-
ically programmed into the system. Techniques that can be used to facilitate emer-
gent behavior come from complex systems, machine learning, and artificial life.
Some examples of techniques that can or have been used in games to facilitate
emergent behavior are decision trees, neural networks, flocking, evolutionary algo-
rithms, and cellular automata.

Decision trees are algorithms with a tree-like structure that are used for learning,
classification, and decision-making. Neural networks are machine-learning techniques
inspired by the human brain that are used for prediction, classification, and decision-
making. Flocking is an artificial life technique for simulating the natural behavior of a
group of entities, such as a flock of birds or school of fish. Evolutionary algorithms are
techniques for optimization and search that use concepts from natural selection and
evolution to evolve solutions to problems. Cellular automata are spatial, discrete time
models that are used to simulate complex systems. Each of these techniques are
described in this chapter and discussed in terms of their application to games.

Before you get into the techniques for emergence, the chapter will first have a
look at some traditional techniques that are commonly used in games—finite state
machines and scripting. It will also discuss some techniques that span the bound-
ary between determinism and emergence—fuzzy logic and fuzzy state machines.
Each of these techniques has a place in game development, which will not quickly
be surrendered to complex (and unnecessary) algorithms. The aim is to make the
best use of the tools at hand to facilitate emergence in a way that will suit game
development and enhance gameplay. The last part of this chapter overviews con-
siderations that need to be made when choosing a technique and summarizes the
techniques presented in this chapter.

LINEAR TECHNIQUES

Almost every commercial computer game uses scripting or state machines for
some, if not all, of the game system. These techniques are simple, proven, and
deterministic. They also require everything to be built into the system during
development, which means that the system can only behave as it has been told to
behave with no room for adaptation or unexpected behavior. Scripting and finite
state machines can, however, both be used as simple components of a system that
allows emergent behavior, when used in combination with other techniques or
more advanced structures. This section outlines the design, application, and con-
siderations of using scripting and finite state machines in games.

SCRIPTING

A scripting language in a game creates a high-level interface to the game engine so
that low-level code, such as C or C++, does not need to be programmed to control
the objects in the game. The script can be compiled into straight code, or inter-
preted by an interpreter in the game engine. Scripting languages lend themselves to
early prototyping and rapid content creation. The scope of a scripting language can
vary significantly, depending on the problems it is designed to solve, ranging from
a simple configuration script to a complete runtime interpreted language.

Scripting languages for games, such as Quake’s QuakeC or Unreal’s UnrealScript
(see Figure 5.1), allow game code to be programmed in a high-level, English-like
language. Scripting languages are ideal for games as they are suitable for non-
programmers, such as designers, artists, and end users. Scripting allows designers
and artists to implement sections of the game independently of the game program-
mers, and end users can make their own mods for the game. Also, scripting languages
are generally separate from the game’s data structures and codebase, providing a
safe environment for non-programmers and end users to make changes to the game.
Script can generally be reloaded without rebuilding or even exiting the game, has a
fast turnaround, and is good for prototyping.

The uses of scripting languages in games vary from simple configuration files to
entirely script-driven game engines. The common uses include creating events and
user interfaces, storytelling, and controlling game characters and enemies. A first-
person shooter game could use scripting to create a monster’s AI. Alternatively, a
real-time strategy game might use scripting to define how spells function or to
define a quest or part of the game story. In role-playing games, scripting can be
used to define simple conversation trees for a non-player character. A scripting
language could even be a complicated object-oriented language that controls every
aspect of gameplay.

Many commercial games use scripting to some degree and most developers
report success when they customize their own scripting tools. Games that have
successfully used scripting, whether it was a custom-made scripting language or an
off-the-shelf language, include Black & White, Unreal, Medieval II: Total War, and
most of the games developed by BioWare.

The game Black & White uses a custom scripting language to present a set of
“challenges” to the player. The challenges serve to advance the storyline, give play-
ers an opportunity to practice their skills, and entertain the players. The challenge
language allows designers to implement the logic and cinematic sequences for the
challenges, as well as to experiment independently of the programmers.

Scripting is used in Medieval II: Total War to define the behavior of computer-
controlled forces in historical battles, to guide players through the tutorial (see Figure
5.2), to control action, narration, and camera movement during in-game cinematics,

Chapter 5 Techniques for Emergence 119

120 Emergence in Games

to define historical events that take place during the campaign, and for various other
applications. The mod community also uses the Total War scripting system to rede-
fine large portions of the gameplay to suit the specific mods that they are creating.

The games developed by BioWare using their Infinity Engine, including Bal-
dur’s Gate, Baldur’s Gate II, Planescape: Torment, and Icewind Dale, all use a custom
scripting language, called BGScript. BGScript implements a very simple syntax in
which the scripts consist of stacked if/then blocks with no nesting, loops, or other
complicated structures. It was designed fundamentally as a simple combat script-
ing language. However, it was also used for simple, non-combat creature scripting,
trap and trigger scripting, conversation, and in-game movies.

FIGURE 5.1 Unreal’s UnrealScript allows game code to be programmed in a high-level, English-
like language. Copyright © 1998-2007. Epic Games, Inc. All Rights Reserved. Unreal and Unreal Editor are Trademarks or

Registered Trademarks of Epic Games, Inc.

BioWare’s Neverwinter Nights uses a scripting language called NWScript.
NWScript was designed to include the features from BGScript, as well as spells and
pathfinding around doors. Both BGScript and NWScript were designed to be used
by the end user. Also, Bioware’s game MDK2 and the LucasArts game Escape From
Monkey Island both used the Lua scripting language, which was heavily modified by
the game developers to give the desired behavior.

Scripting languages are simple, flexible, powerful, and easy to use for non-
programmers. These qualities make them ideal tools for game development. How-
ever, they are also deterministic and linear. Scripting is used by game developers to
hard-code character behavior, scenarios, and storylines. It is possible, however, to
use scripting in conjunction with other techniques to create more complex and
dynamic behavior.

Chapter 5 Techniques for Emergence 121

FIGURE 5.2 The tutorial in Medieval II Total War was created using the Total War
scripting language. © The Creative Assembly. Used with permission.

FINITE STATE MACHINES

A finite state machine (FSM) is a device that consists of a set of states, a set of input
events, a set of output events, and a state transition function. In an FSM, there are
a finite number of states, one of which is the current state. The transition function
takes the current state and an input event and returns the new set of output events
and the next state. The purpose of an FSM is to divide a game object’s behavior into
logical states so that the object has one state for each different type of behavior it
exhibits.

The possible ways in which to use FSMs in games are endless. They could be
used to manage the game world or maintain the status of the game or game objects.
An FSM could be used to model unit behavior in a real-time strategy game, parse
input from the human player, or to simulate the emotion of a non-player charac-
ter. When making an FSM for a game, the developer needs to anticipate, plan, and
test the elements on which the player’s attention might possibly be focused. The
more the developer can anticipate, the more immersive the environment will be for
the player.

122 Emergence in Games

ADDITIONAL READING

The following papers provide a more in-depth discussion on scripting in
games:

Barnes, J. (2002). Scripting for Undefined Circumstances. AI Game Pro-
gramming Wisdom. Hingham, MA: Charles River Media, pp. 530–540.
Berger, L. (2002) Scripting: Overview and Code Generation. AI Game Pro-
gramming Wisdom. Hingham, MA: Charles River Media, pp. 505–510.
Brockington, M. and Darrah, M. (2002). How Not to Implement a Basic
Scripting Language. AI Game Programming Wisdom. Hingham, MA:
Charles River Media, pp. 548–554.
Poiker, F. (2002) Creating Scripting Languages for Nonprogrammers. AI
Game Programming Wisdom. Hingham, MA: Charles River Media, pp.
520–529.
Stripinis, D. (2001) The (Not So) Dark Art of Scripting for Artists. Game
Developer Magazine, pp. 40–45.
Tozour, P. (2002) The Perils of AI Scripting. AI Game Programming Wis-
dom. Hingham, MA: Charles River Media, pp. 541–547.

There are at least two types of state machines that need to be used in a com-
puter game. The first deals with the game interface, including whether the game is
paused, the mode in which the player is viewing the game, and what the player can
and can’t see. The second type of FSM deals with what is actually going on in the
game. This includes the current state of the environment, objects in the level,
objectives completed or failed in the mission, and other variables that are used to
guide and challenge the player.

An example FSM for a game could be to represent a monster with emotional
states, such as berserk, rage, mad, annoyed, and uncaring (see Figure 5.3). In each
of these states, the monster would do something different to reflect its changing
attitude. The FSM would be used to manage the monster’s attitude and the tran-
sitions between states based on the input from the game. Different inputs could
include information about the player’s actions, such as whether they have come
into view of the monster, attacked the monster, or run away. Also, information
about the monster would also be important, such as whether the monster has been
hurt or healed. These variables form the input to the FSM and, based on the input
values and the monster’s current attitude, the monster’s attitude will change, or
transition, to another state.

Chapter 5 Techniques for Emergence 123

FIGURE 5.3 An example finite state machine for a game character.

Most commercial computer games make use of finite state machines, including
Age of Empires, Enemy Nations, Half-Life, Doom, and Quake 2. Age of Empires uses
an expert system, combined with some FSMs, for its AI. Enemy Nations uses a net-
work of cooperating intelligent agents, FSMs, fuzzy state machines, and a database

of goals and tasks. Half-life uses an AI architecture called a schedule-driven state
machine, which is state-dependent and response-driven. Each NPC has different
states and different schedules of behavior available from each state.

Quake 2 uses an FSM with nine different states for each character (see Figure
5.4). The states are standing, walking, running, dodging, attacking, melee, seeing the
enemy, idle, and searching. In order to form an action, these states may be connected
together. For example, in order to attack the player, the states could first go from idle
to run, to allow the attacker to get closer to the player, and then switch to attack.

124 Emergence in Games

FIGURE 5.4 Half-Life uses a schedule-driven state machine for characters. © Valve Corporation.

Used with permission.

In games, objects can also run more than one FSM at a time. As it can be diffi-
cult to design one FSM that controls everything, it can be quite useful for a game
character to run multiple FSMs simultaneously. This is also a good way to limit the
size and complexity of each component FSM. One way to structure this is to have
a master FSM that makes global decisions and other FSMs that deal with compo-
nents, such as movement, weapons, and conversation.

FSMs are simple to program, easy to understand and debug, and general
enough to be used for any problem. They provide the simplicity of having a choice,
weighing the factors, and deciding what to do in the given situation. An FSM may
not always provide the optimal solution, but it generally provides a simple solution
that works. Also, a game object that uses an FSM can also use other techniques,
such as neural networks or fuzzy logic.

Some problems with using FSMs are that they tend to be poorly structured, put
together ad hoc, and increase in size uncontrollably as the development cycle
progresses. These properties tend to make FSM maintenance very difficult. Also,
traditional FSMs are generally cumbersome, redundant, and not very useful for
complicated systems. Therefore, FSMs in games tend to include states within states,
multiple state variables, randomness in state transitions, and code executing every
game tick within a state. Consequently, game FSMs that are not well planned and
structured can grow out-of-hand quickly and become very challenging to maintain.

FSMs are one of the most popular techniques used in modern games, because
they are easy to understand and program. FSMs are amongst the simplest compu-
tational devices and have a low computational overhead. Most importantly, they
give a large amount of power relative to their complexity. These attributes make
FSMs ideal for the conditions of game development, which involves limited com-
putational resources, as well as limited development and testing time.

In general, games are primarily about creating the appearance or illusion of
reality or intelligence. In many games, it comes down to what the players can see
and whether they are convinced that the game and characters are behaving reason-
ably. Often, the use of more advanced algorithms and techniques is not possible,
due to computation or other constraints, and in these circumstances a simple
solution, such as an FSM, is desirable. If the simplest technique works for the prob-
lem, then the use of advanced techniques is not necessary, especially if it won’t give
better results.

Chapter 5 Techniques for Emergence 125

ADDITIONAL READING

The following papers provide a more in-depth discussion on state machines in
games:

Dybsand, E. (2000). A Finite-State Machine Class. Game Programming
Gems. Hingham, MA: Charles River Media, pp. 237–248.
Rabin, S. (2000). Designing a General Robust AI Engine. Game Program-
ming Gems. Hingham, MA: Charles River Media, pp. 221–236.
Rabin, S. (2002). Implementing a State Machine Language. AI Game Pro-
gramming Wisdom. Hingham, MA: Charles River Media, pp. 314–320.

APPROXIMATE REASONING

The approximate reasoning used in fuzzy logic and fuzzy state machines allows
greater flexibility, variation, and non-determinism than simple linear techniques.
Fuzzy logic allows ranges and continuous variables to be used deterministically. The
key concepts are the fuzzification and defuzzification of variables, the ability to belong
to multiple sets simultaneously and to varying degrees, as well as overlapping sets. The
power of fuzzy logic lies in the ability to use a small number of fuzzy variables and
rules, in place of the extensive, static states and rules in linear techniques.

FUZZY LOGIC

Fuzzy logic allows intermediate values to be defined between conventional values,
such as yes/no or true/false. Consequently, “fuzzy” values, such as “rather hot” or
“very fast,” that are used to describe continuous, overlapping states, can be used in
an exact mathematical way.

In Boolean logic, the sets are mutually exclusive and only one rule can be used.
However, in fuzzy logic, every object can belong to all relevant fuzzy sets to various
degrees, called the Degrees of Membership (DOM). Each object’s DOM is in the
range of zero to one for each set, with the intermediate values generated by a mem-
bership function. This graduation allows a smooth overlap of the boundaries
between sets. Each object’s inclusion in different sets can sum to more than 100
percent and multiple rules contribute to the output. Consequently, fuzzy logic
allows decisions to be made based on incomplete or erroneous data that cannot be
used in Boolean logic.

In fuzzy logic, there are operations that are equivalent to those in Boolean logic,
namely intersect, unify, and negate. However, these operations are different than
their Boolean counterparts. Fuzzy intersection is the minimum of each element
from each set, fuzzy union is the maximum of each element from each set, and
negation gives the complement (1-x) of each element in each set. Figure 5.5 shows
union, intersection, and negation of two sets, A and B, in fuzzy logic.

126 Emergence in Games

KEY TERMS

Scripting languages in a game create a high-level interface to the game
engine so that low-level code, such as C or C++, does not need to be
programmed to control the objects in the game.
Finite state machines are devices that consist of a set of states, a set of input
events, a set of output events, and a state transition function.

Chapter 5 Techniques for Emergence 127

FIGURE 5.5 Union, intersection, and negation of sets A and B in fuzzy logic.

The main difference between Boolean and fuzzy logic lies in the use of Fuzzy
Linguistic Variables (FLVs), which define a range of values to be used in place of
crisp values. FLVs represent fuzzy concepts that are associated with a range (for
example, LOW: 0 to 50, MEDIUM: 30 to 100, and HIGH: 80 to 150). The FLVs
overlap slightly to represent the fuzziness of the situation, usually by about 10–50
percent. A small number of FLVs and rules can be used in place of extensive, hard-
coded, Boolean rule bases.

Fuzzy rules are evaluated in a number of steps, with the final solution being
produced by fuzzification and defuzzification, giving a final crisp value, another
continuous value, or a fuzzy value for more fuzzy processing. Fuzzification is the
transformation of an objective term into a fuzzy concept. This means that a crisp
value is translated into its DOM for each category, thus allowing an FLV in a rule
to be interpreted. Figure 5.6 shows an example of fuzzification.

FIGURE 5.6 An example of fuzzification.

After the inputs have been fuzzified, a set of rules, similar to a truth table in
Boolean logic, is applied to the values. Each rule consists of an antecedent, inter-
preted from the fuzzy input sets, and a consequence, interpreted from the fuzzy
output set. A set of these rules that represents every combination of inputs is put
into a matrix called a Fuzzy Associative Memory (FAM). More than one rule may
be true as each input can belong to more than one category of fuzzy set. Figure 5.7
shows an example FAM.

128 Emergence in Games

FIGURE 5.7 An example fuzzy associative memory.

Each cell in the FAM contains the output in linguistic terms for the corre-
sponding input. The output of the FAM needs to be translated back into objective
terms in order for it to be used in practice. This process is called defuzzification and
can be done by taking the maximum value of the outputs from the FAM or by using
an averaging technique. Figure 5.8 shows an example of defuzzification.

FIGURE 5.8 An example of defuzzification.

Fuzzy logic makes its way into most computer games, but its role in games
usually doesn’t exceed complex if-then-else statements, due to the complexity of
creating a fuzzy logic system from scratch. A game engine can use fuzzy logic to
fuzzify input from the game world, use fuzzy rules to make a decision, and output
fuzzy or crisp values to the game object being controlled.

Fuzzy logic is especially useful in decision-making and behavior selection in
game systems. For example, fuzzy logic can be used for enemies to determine how
frightened they are of the player, for non-player characters to decide how much
they like the player, for flocking algorithms to determine how close together the
flock should stay, or even for events such as how the clouds would move given the
wind speed and direction.

Commercial computer games that have made use of fuzzy logic include Battle-
Cruiser: 3000AD, Platoon Leader, and SWAT 2. BattleCruiser: 3000AD, developed by
Derek Smart, mostly uses neural networks to control the non-player characters in
the game. However, in situations where neural networks are not applicable, it uses
fuzzy logic. Also, the game SWAT 2, developed by Yosemite Entertainment, makes
extensive use of fuzzy logic to enable the non-player characters to behave sponta-
neously, based on their defined personalities and abilities.

The power of fuzzy logic lies in the ability to represent a concept using a small
number of fuzzy values, whereas, in Boolean logic, every state and transition needs
to be hard-coded. Fuzzy logic is suitable to problems that are non-linear, where no
simple mathematical model can solve the problem. However, it’s not the best solu-
tion if there is a simple way to solve the problem or an existing mathematical
model.

FUZZY STATE MACHINES

A fuzzy state machine (FuSM) brings together fuzzy logic and finite state machines
(FSMs). Instead of determining that a state has or has not been met, a FuSM assigns
different degrees of membership to each state. Therefore, instead of the states
on/off or black/white, a FuSM can be in the states “slightly on” or “almost off.” Fur-
thermore, a FuSM can be in both the on and off states simultaneously to various
degrees. Therefore, in a game situation, a non-player character doesn’t have to
simply be mad at the player. Instead, they can be “almost mad,” “very mad,” or
“raging mad” at the player, behaving differently in each situation. Thus, by using a
FuSM, a character can have varying degrees of membership of a state assigned to it
and these states do not have to be specific or discreet.

A FuSM’s states are characterized by fuzzy sets, so that each fuzzy state is a state
with possible degrees of membership (DOM) between zero and one. This differs
from a crisp state, which has an implicit DOM of zero or one. A fuzzy state machine
allows the system to be partially in the current state. FuSMs also have fuzzy events,

Chapter 5 Techniques for Emergence 129

which allow each state to be assigned a DOM. Similarly to an FSM, the next state is
a function of both the current state and the fuzzy event. However, FuSMs can allow
membership in more than one state at any given time. This means that if the system
resides in one state with DOM 0.5, then it may also reside in other states.

In games, it is important that behavior is not overly predictable. However, in
FSMs, the requirement of determinism prevents variable behavior from being
exhibited, because they are composed of a large set of predetermined states and
transitions. On the other hand, FuSMs are composed of fewer, non-deterministic
transitions, allowing greater flexibility and variability with far fewer fuzzy states and
transitions.

An FuSM is an easy way to implement fuzzy logic, which can allow more depth
in the representation of the concepts and relationships between objects in the game
world. An FuSM can increase gameplay by allowing for more interesting and var-
ied responses by non-player characters, which leads to less predictable non-player
character behavior. Therefore, the player can interact with non-player characters
that can be various degrees of mad, wounded, or helpful. This variability increases
gameplay by adding to the level of responses that can be developed for the non-
player characters and seen by the human player. Also, an FuSM can increase re-
playability of a game by expanding the range of responses and conditions that the
player may encounter in given situations during the game. Therefore, players will
be more likely to experience different outcomes in similar situations each time they
play the game.

FuSMs can be used in varying forms in different types of computer games. For
example, an FuSM could be used in a role-playing game or first-person shooter for
the health or hit points of a non-player character or agent. In this case, instead of
the finite states healthy or dead, a range could be used for the hit points that would
allow the agent to be in the fuzzy states “totally healthy,” “almost healthy,” “slightly
wounded,” “badly wounded,” “almost dead,” or “dead.”

In a racing game, an FuSM could be used for the control process for accelerat-
ing or braking an AI-controlled car. The FuSM would allow various degrees of ac-
celeration or braking to be calculated rather than the finite states of “throttle-up,”
“throttle-down,” “brake-on,” and “brake-off.”

An FuSM is also ideal for representing non-player character emotional status
and attitude toward the player or other non-player characters. Instead of simply
liking or disliking the player, the non-player character could have a range of
emotional states from “really liking” or “rather liking” to “slightly disliking” or
“violently disliking” the player.

The games that have made use of FuSMs include Civilization: Call to Power,
Close Combat 2, Enemy Nations, Petz, and The Sims. In Call to Power, FuSMs are

130 Emergence in Games

used to set priorities for the strategic-level AI, allowing the creation of new unit
types and civilizations. Close Combat 2 uses an FuSM that weighs hundreds of vari-
ables through many formulas to determine the probability of a particular action.

As FuSMs are a combination of FSMs and fuzzy logic, they consist of fuzzy
states and fuzzy transitions, rather than the usual finite set of crisp states and
transitions. Consequently, FuSMs can represent a greater variation in states and
transitions with far fewer variables and rules than in an FSM, where everything
must be hard-coded. Most games that make use of FuSMs do so in combination
with other techniques such as flocking, FSMs, or neural networks. FuSMs are ideal
for controlling the behavior of game characters, giving greater variation in actions
and reactions.

Chapter 5 Techniques for Emergence 131

ADDITIONAL READING

The following papers provide a more in-depth discussion on fuzzy logic in
games:

Alexander, T. (2002). An Optimised Fuzzy Logic Architecture for Deci-
sion-Making. AI Game Programming Wisdom. Hingham, MA: Charles
River Media, pp. 367–374.
Dybsand, E. (2001). A Generic Fuzzy State Machine in C++. Game Pro-
gramming Gems 2. Hingham, MA: Charles River Media, pp. 337–341.
McCuskey, M. (2000). Fuzzy Logic for Video Games. Game Programming
Gems. Hingham, MA: Charles River Media, pp. 319–329.
Zarozinski, M. (2002) An Open-Source Fuzzy Logic Library. AI Game Pro-
gramming Wisdom. Hingham, MA: Charles River Media.

KEY TERMS

Fuzzy logic allows intermediate values to be defined between conventional
values, allowing continuous, overlapping states to be used in an exact
mathematical way.
Fuzzy state machines combine fuzzy logic and finite state machines, so that
instead of determining that a state has or has not been met, each state is
assigned a degree of membership.

MACHINE LEARNING

A key element that distinguishes living organisms from machines is the ability to
learn and adapt. Life can react to its environment, learn from its mistakes, and
adapt its behavior to perform better in the future. Machine learning is concerned
with giving computers that ability to recognize patterns, learn from past events, and
adapt output and behaviors. Two common techniques in machine learning are
decision trees and neural networks, both of which are used for pattern recognition,
learning, classification, and behavior selection.

DECISION TREES

Decision trees are techniques used for prediction and classification, which take the
form of tree-like structures. Decision trees are used to classify examples into one of
a given set of classes. These examples are composed of attribute-value pairs and
can be used to describe game characters, objects, or events that the game needs to
classify.

Decision trees are composed of nodes, branches, and leaves, which represent
different attributes, possible values of these attributes, and possible classifications,
respectively. Decision trees learn by starting at the root node and splitting, or
partitioning, the data by the attribute that provides the maximum information gain
(see Figure 5.9). The partitions are called branches, with the root node encompass-
ing all data records. The root is split into subsets, or child branches, which may be
split into sub-branches. This process of splitting the information is repeated until
the branches have no more splits, resulting in classification at the leaves.

An algorithm that is commonly used for decision-tree learning is ID3. More re-
cent incarnations of the ID3 algorithm include C4.0, C4.5, and C5.0.

Pseudo-code for the ID3 algorithm is as follows:

FUNCTION ID3 (example set, attribute set)

IF all examples in example set are in the same category

THEN create a single node tree and label with this category

ELSE

node = root

WHILE example set is not empty

split = attribute from attribute set with maximum

information gain

node.attribute = split

FOR EACH value of node.attribute

add branch to tree as a node and label with value

132 Emergence in Games

FOR EACH branch

node = branch

tree = ID3 (example subset, remaining

attributes)

END

END

END

END

RETURN tree

END FUNCTION

A decision tree is a straightforward description of the splits found by the algo-
rithm. Each terminal or leaf node describes a particular subset of the training data
and each case in the training data belongs to exactly one terminal node in the tree.
Therefore, exactly one prediction is possible for any particular data record pre-
sented to a decision tree.

Chapter 5 Techniques for Emergence 133

FIGURE 5.9 Decision-tree learning.

After the tree has been generated, it is then used for classifying new examples
(see Figure 5.10). Decision trees classify instances by sorting them down the tree
from the root node to some leaf node, which provides the classification of the in-
stance. Each node in the tree specifies a test of some attribute of the instance. Each
branch descending from that node corresponds to one of the possible values for this

attribute. An instance is classified by starting at the root node of the decision tree,
testing the attribute specified by this node, then moving down the tree branch cor-
responding to the value of the attribute. This process is repeated at the node on this
branch, and so on, until a leaf node is reached.

134 Emergence in Games

FIGURE 5.10 Decision tree classification.

Pseudo-code for a decision-tree classification algorithm is as follows:

FUNCTION classify (example)

node = root

WHILE node is not a leaf

WHILE branch is not equal to example(node attribute).value

next branch

END

node = branch

END

RETURN node

END FUNCTION

Decision trees are appropriate for problems in which the instances can be
represented as attribute-value pairs. That is, the instances are described by a fixed
set of attributes and their values. The ideal situation for decision tree learning is
when each attribute has a small number of possible values. Also, decision trees can
only be used when the target function has discrete output values. This allows the
decision tree to assign a classification to each example, chosen from two or more
possible classes.

Decision trees are widely used in data mining, to find relationships in large sets
of data and to predict future outcomes. However, their use in commercial com-

puter games has been limited. Decision trees are applicable in games where classi-
fication or prediction is required. For example, a character could use a decision tree
to learn which of a set of actions will most likely have the best result in different
situations. This could be achieved by using the example situations during play to
build up a tree and then using the tree to estimate the best action to take. Alterna-
tively, the tree could be pre-built before shipping and simply used for prediction,
rather than learning.

Another example would be to allow a character to learn about objects or other
characters in its environment. The tree would be built of attributes of objects the
character has encountered and their classification, or type. Then, given a new ob-
ject, the character could predict what the object is and what to do with it.

The game Black & White allows the player to have a creature that can learn
from the player and other creatures as the game progresses. Each creature has a set
of beliefs based on a Belief-Desire-Intention architecture. A creature’s beliefs about
objects are represented symbolically as a list of attribute-value pairs and its beliefs
about types of objects are represented as decision trees.

The creature has opinions about what types of objects are most suitable for sat-
isfying different desires. The creature can learn opinions by dynamically building
decision trees. The creature remembers the learning episodes and uses the attrib-
utes that best divide the learning episodes into groups. The algorithm used is based
on the ID3 algorithm. For example, a creature learns what sorts of objects are good
to eat by looking back at its experience of eating different types of things and the
feedback it received in each case, such as how nice it tasted. The creatures try to
make sense of this data by building a decision tree that minimizes entropy, which
is a measure of the degree of disorder of the feedback.

Decision trees are robust in the presence of errors, missing data, and large
numbers of attributes. They do not require long training times and are easier to
understand than other types of models, because the derived rules have a straight-
forward interpretation. Decision tree learning methods are robust to errors, both in
classification of the training examples and in the attribute values that describe these
examples. Also, decision tree methods can be used when some training examples
have unknown values.

Decision trees are generally preferred over other non-linear techniques due to
the readability of their learned rules and the efficiency of their training and evalu-
ation. Although decision trees have not been used widely in games, they are much
simpler to implement, tune, and understand than other learning and classification
techniques, such as neural networks. They are ideal for allowing a character to
explore and learn about concepts and objects during the game.

Chapter 5 Techniques for Emergence 135

136 Emergence in Games

NEURAL NETWORKS

Our brains are made up of about 100 billion neurons, each with up to 10,000
connections to other neurons. Each neuron has four main components: a soma,
an axon, buttons, and dendrites (see Figure 5.11). The soma is the cell body of the
neuron and the metabolic center, the axon carries the electrical signal from the
soma, the buttons are the endings of the axon branches that release chemicals, and
the dendrites receive chemical stimuli. The gap between the buttons and dendrites
of adjacent neurons are called synapses, which carry chemical signals between
neurons. These chemical signals are transferred by accumulation and potential
difference of sodium, potassium, and chloride ions.

ADDITIONAL READING

For further information on decision trees in games:

Fu, D. and Houlette, R. (2004) Constructing a Decision Tree Based on Past
Experience. AI Game Programming Wisdom 2. Hingham, MA: Charles
River Media, pp. 567–578.

FIGURE 5.11 Neurons consist of a soma, an axon, buttons, and dendrites.

Artificial neural networks are made up of units and weights, which represent
biological neurons and synapses, respectively. In an artificial neural network,
knowledge is acquired from the environment through a learning process and the
network’s connection strengths are used to store the acquired knowledge.

Networks generally consist of an input layer, zero or more hidden layers, and
an output layer. An example of a simple neural network is shown in Figure 5.12.
The input layer consists of units that represent the input to the network. Each input
unit has one or more weights that feed into the first hidden layer or the output
layer, which provide the excitatory or inhibitory influences of the input unit. The
output layer consists of one or more units that comprise the output of the system.

Chapter 5 Techniques for Emergence 137

FIGURE 5.12 An example of an artificial neural network.

With one output unit, the system can be used to classify the input as being in
one of two categories (for example, true/false). With multiple output units, the
system can classify the input into one or more of many categories. For example,
with 26 output units, the system could classify the input as being a letter in the
alphabet. The hidden layers are used to extract higher order statistics. When there
is no direct mapping from input to output, the hidden units provide another
dimension for intermediate calculations. Each hidden unit also has an associated
set of weights that feed into the next hidden layer or the output layer.

Each unit in the hidden and output layers has an adder for combining its input
signals and an activation function for determining whether or not it fires. The
adder sums the input values of the unit, where each input value is calculated by

138 Emergence in Games

FIGURE 5.13 The activation function in an artificial neuron.

multiplying the input unit by its associated weight. This gives the activation of
the unit as shown in Figure 5.13, where a is the activation, n is the number of units,
i(1-n) are the inputs and w(1-n) are the weights.

The activation function determines whether or not the unit fires and propa-
gates information, giving the output as shown in Figure 5.14. The four most com-
mon activation functions are the threshold, piecewise-linear, sigmoid, and
Gaussian functions (see Figure 5.14).

FIGURE 5.14 Common activation functions for a neural
network—threshold, piecewise-linear, sigmoid, and Gaussian.

The following pseudo-code implements the propagation and activation of
a feed-forward neural network, including summing the input signal to a unit and
determining if it fires via the sigmoid activation function:

PROCEDURE feedforward()

// Propagate input to hidden layer

FOR EACH hidden unit

FOR EACH input unit

sum of input += this input

* weight between this hidden and this input

END

// Sigmoid activation function

hidden activation = 1.0 / (1.0 + exp(-1.0 * sum of input))

sum of input = 0

END

// Propagate hidden to output layer

FOR EACH output unit

FOR EACH hidden unit

sum of input += this hidden

* weight between this output and this hidden

END

// Sigmoid activation function

output activation = 1.0 / (1.0 + exponential(-1.0 * sum of

input))

sum of input = 0

END

END PROCEDURE

The most common type of neural network is the feed-forward network, so
called because each layer of units feeds its output forward to the next layer. In feed-
forward networks, each unit in one layer is connected to every unit in the next layer.
There are two types of feed-forward networks, the single-layer and the multi-layer.
In the single-layer feed-forward network, the input units map directly to the out-
put layer. In multi-layer feed-forward networks, there are also one or more hidden
layers (see Figure 5.12). There are many other types of networks that each perform
well on certain problems. Some of the more popular types include Hopfield net-
works, Kohonen networks, and Hebbian networks (see Figure 5.15).

Neural networks can learn via supervised, reinforcement, or unsupervised
learning. In supervised learning, the neural network’s weights are initially set to

Chapter 5 Techniques for Emergence 139

random values and sets of inputs, called the training set, are fed into the system. For
each training example, the actual output is compared to the desired output and the
weights are adjusted to minimize the difference. The backpropagation learning rule
is commonly used for supervised learning.

140 Emergence in Games

FIGURE 5.15 Hopfield, Kohonen, and Hebbian neural networks.

Backpropagation works by calculating the difference between the actual output
(generated by the network) and the expected output (from the training example).
The backpropagation learning rule then backpropagates this error back through the
system, adjusting each weight according to its influence on the output. As learning
progresses, the weights in the network are adjusted to minimize the error. The fol-
lowing pseudo-code implements the backpropagation learning rule:

PROCEDURE backpropagation()

// Calculate the output error

FOR EACH output unit

output error = expected output – actual output

END

// Calculate the hidden error

FOR EACH hidden unit

FOR EACH output unit

sum += output error * output weight

END

END

hidden error = hidden unit * (1 – hidden unit) * sum

// Adjust output weights

FOR EACH hidden unit

FOR EACH output unit

// Calculate change in weight

change in weight = (momentum * previous change in

weight) + (output error * Output unit)

// Calculate new weight

new weight = output weight + change in weight

END

END

// Adjust hidden weights

FOR EACH input unit

FOR EACH hidden unit

// Calculate change in weight

change in weight = (momentum * previous change in

weight) + hidden error + hidden unit

// Calculate new weight

new weight = output weight + change in weight

END

END

END PROCEDURE

In supervised learning, the network is taught to mimic the teacher until the
training sample has been learned satisfactorily, at which point the network functions
on its own. In reinforcement learning, the network acquires feedback from the en-
vironment on its performance, such as whether it won or lost a game. Unsupervised
learning involves a task-independent measure of performance, which requires the
network to look for statistical regularities in a set of data in order to learn.

Artificial neural networks are flexible techniques that can be used in a wide
variety of applications in games, including environmental scanning and classifica-
tion, memory, and behavioral control. Environmental scanning and classification
involves teaching the neural network to interpret visual and auditory information
from the environment. Memory involves allowing the network to learn a set of
responses through experience and then respond with the best approximation in
a new situation. Behavioral control relates to the output of the neural network

Chapter 5 Techniques for Emergence 141

controlling the actions of game objects, with the inputs being various game engine
variables. Neural networks can also be taught to imitate human players.

A neural network can be used to make decisions or interpret data, based on
previous input and output or its success in the game. Input to the neural network
represents the game state and the output is the decision or action to be performed,
similar to a finite state machine. The important difference between a neural net-
work and a state machine is that not every state needs to be predicted and encoded
specifically. Instead, a neural network can make an approximation, based on the
states that it already knows about. As a result, in a new situation, the network will
choose an action that would have been performed in a similar state.

Neural networks can be trained in-game (a character can learn from its experi-
ences) or during development (that is, the network is trained on a set of training
data created by the developers). In-game learning allows the game to adapt to the
player and learn different things depending on individual experiences, but requires
computation time for learning. It is also possible that the game will learn undesir-
able things that the development team can’t predict or test. Training the network
during development and locking the settings prior to shipping allows thorough
testing of game behavior and requires minimal in-game resources for use of the
network, but learning and adaptation will not occur. Game developers have been
reluctant to use in-game learning due to the possibility of unexpected and undesir-
able behavior and have preferred to train their networks during development and
lock the settings before shipping.

Some examples of games that include neural networks for various tasks in-
clude BattleCruiser: 3000AD, Black & White, Creatures, Dirt Track Racing, and
Heavy Gear. In BattleCruiser: 3000AD, neural networks are used to control the
non-player characters, as well as to guide negotiations, trading, and combat. Neural
networks are also used for very basic goal-oriented decision-making and pathfind-
ing, with a combination of supervised and unsupervised learning (see Figure 5.16).

142 Emergence in Games

FIGURE 5.16 BattleCruiser: 3000AD uses neural networks to control game characters.
© 1996, 3000AD, Inc.

Chapter 5 Techniques for Emergence 143

ADDITIONAL READING

For further information on neural networks in games:

Champandard, A. J. (2002). The Dark Art of Neural Networks. AI Game
Programming Wisdom. Hingham, MA: Charles River Media, pp. 640–651.
Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New
York: Maxwell Macmillan International.
LaMothe, A. (2000). A Neural-Net Primer. Game Programming Gems.
Hingham, MA: Charles River Media, pp. 330–350.

Æ
Manslow, J. (2001). Using a Neural Network in a Game: A Concrete Ex-
ample. Game Programming Gems 2. Hingham, MA: Charles River Media,
pp. 351–357.
Manslow, J. (2002). Imitating Random Variations in Behavior Using a
Neural Network. AI Game Programming Wisdom. Hingham, MA: Charles
River Media, pp. 624–628.
Sweetser, P. (2004) How to Build Neural Networks for Games. AI Game
Programming Wisdom 2. Hingham, MA: Charles River Media, pp. 615–625.
Sweetser, P. (2004) Strategic Decision-Making with Neural Networks and
Influence Maps. AI Game Programming Wisdom 2. Hingham, MA: Charles
River Media, pp. 439–446.

In Black & White, the player has a creature that learns from the player and other
creatures. The creature’s mind includes a combination of symbolic and connec-
tionist representations, with their desires being represented as a neural network.
The Creatures series of games includes heterogeneous neural networks, in which the
neurons are divided into lobes that have individual sets of parameters. In com-
bination with genetic algorithms, the creatures use the neural network to learn
behavior and preferences over time. The game Dirt Track Racing uses a neural net-
work for driving around the racetrack. Finally, Heavy Gear uses a neural network as
part of the Mech control mechanisms, with each Mech having several specialized
neural networks for particular aspects.

144 Emergence in Games

COMPLEX SYSTEMS

A complex system is a system that consists of many interconnected and inter-
dependent parts. The parts themselves may be simple or complex, but the real com-
plexity comes from their interaction. Complex systems are made up of many
simpler components, each following a set of behaviors and interacting with its local
environment. The result of these behaviors and interactions is far more than what
would be expected by examining a component in isolation. The collective behavior
of the system is not equal to the simple sum of its parts—it is something that is
dynamic, organic, and alive. The complex behavior of the system is said to be emer-
gent, it cannot be simply inferred by the behavior of its components.

Most complex systems have a common set of properties. These properties
include elements, interactions, formation, diversity, environment, and activities.

Elements are the basic components of a complex system.
Interactions occur between these elements to give rise to the overall complex
behavior of the system.
The system and its components are formed by some process of formation.
Complex systems have a diverse range of behaviors and states.
Complex systems exist within environments that they must respond to and
interact with.
Complex systems carry out activities in order to achieve certain objectives or for
some purpose.

CELLULAR AUTOMATA

Cellular automata are commonly used to model complex systems. A traditional
cellular automaton is a spatial, discrete time model, in which space is represented as
a uniform grid. Each cell in the grid has a state, typically chosen from a finite set.

KEY TERMS

Decision trees are techniques used for prediction and classification, which
take the form of tree-like structures.
Neural networks are techniques for learning and decision-making, in which
knowledge is acquired from the environment through a learning process and
the network’s connection strengths are used to store the acquired knowledge.

Time advances in discrete steps and at each time step, each cell changes according to
a set of rules that represent the allowable physics of the model. The new state of a cell
is a function of the previous state of the cell and the states of its neighboring cells.

Cellular automata can be represented in one, two, or more dimensions (see
Figure 5.17). A one-dimensional cellular automaton consists of a single line of cells,
where the new state of each cell depends on its own state and the state of the cells
to its left and right. In a two-dimensional cellular automaton, each cell can have
four or eight neighbors, depending on whether cells diagonally adjacent to a cell are
considered neighbors.

Chapter 5 Techniques for Emergence 145

FIGURE 5.17 States and rules in one- and two-dimensional cellular
automata.

Most worlds in current games are in three dimensions (3D). Games such as
first-person shooters, role-playing games, and racing games play out in 3D, human-
sized worlds. Other types of games, such as some strategy games and simulation
games, are in two dimensions (2D) or two and a half dimensions. Depending on the
types of interactions that will take place in the game world, the environment can be
modeled in 2D or 3D. For human-sized games, where gravity and height are im-
portant elements, the environment needs to be modeled in 3D. For other games,
2D should be sufficient to get the desired environmental effects.

The set of rules include conditions for when the state of a cell will change, de-
pending on the state of its neighbors. The rules apply only to a cell’s immediate
neighborhood, but the combination of the rules can produce complex and system-
wide effects. The individual rules that are used, even in a very simple cellular auto-
maton, can produce diverse and interesting behavior.

Cellular automata are well-suited to modeling systems and processes with a
large number of identical, simple, locally interacting components. They are able to
capture the complex, detailed patterns present in many complex systems via a set of
simple rules for local interactions. Each of the examples of complex systems in
biology, physics, and society discussed in Chapter 2 can be modeled using cellular
automata, including the crystallization of snowflakes, self-organization in ant
colonies, and the flow of traffic on streets and highways (see Figure 5.18).

146 Emergence in Games

FIGURE 5.18 Cellular automata for snowflakes and ant colonies.

The most common example of complex behavior in cellular automata is Con-
way’s Game of Life. The Game of Life is simulated on a nine by nine grid of cells,
using a Moore neighborhood (that is, each cell has eight neighboring cells). The
grid is first seeded with cells that are either “alive” or “dead.” Subsequently, the fol-
lowing three rules are applied simultaneously every time step (see Figure 5.19):

Birth—A dead cell becomes alive if three of its neighbors are live
Death—A live cells dies if it has a maximum of one live neighbor (isolation) or
if it has more than three live neighbors (overcrowding)
Survival—Live cells survive if they have two or three live neighbors

The following pseudo-code implements birth, death, and survival in the Game
of Life:

PROCEDURE game_of_life ()

FOR EACH cell

count = 0

FOR EACH neighbor of cell

IF neighbor is alive THEN

count = count + 1

END

END

IF cell is alive THEN

IF count = <= 1 or count > 3 THEN

set cell to dead next iteration

END

ELSE

IF count = 3 THEN

set cell to alive next iteration

END

END

END

END PROCEDURE

Chapter 5 Techniques for Emergence 147

FIGURE 5.19 Rules for birth, death, and survival in the Game of Life.

Various complex patterns emerge in Conway’s Game of Life, including gliders
(creatures that appear to walk across the grid) and glider-guns (stationary entities
that appear to create gliders) (see Figure 5.20).

148 Emergence in Games

Cellular automata can be used to model environments and environmental
effects in games. The use of cellular automata to model game worlds can lead to
more dynamic and realistic behavior of many game elements, such as fire, water,
explosions, smoke, heat, and social systems. Cellular automata are used in the
X-Com series of games for environmental modeling, including fire, smoke, dust,
gas, and destructible terrain.

The SimCity series of games also use cellular automata to model the dynamic
state of the simulated cities, including social and physical effects, as well as the
development of buildings over time as a function of their neighborhood.

FIGURE 5.20 Emergent patterns in Conway’s Game of Life—gliders and a glider-gun.

Chapter 5 Techniques for Emergence 149

ARTIFICIAL LIFE

Artificial life is the attempt to understand life as it is by examining life as it could
be. In artificial life, the way information is organized is as important to life as the
physical substance that embodies the information. Life is studied by using artificial
components to capture the behavior of living systems. If the artificial components
are organized in a way that captures the organization of the living system, the arti-
ficial system will also exhibit the same higher-level behavior as the living system.

Systems in artificial life have five general properties:

A set of simple instructions about how individuals interact
No master or director that directs the actions of the individuals
Each instruction defines how individuals respond to their local environment
No rules that direct the global behavior of the system
Behaviors on higher levels than the individuals are emergent

Systems in artificial life include a large number of individuals, or agents, that
are independently interacting with their local environment and each other.

ADDITIONAL READING

For further information on cellular automata in games:

Bar-Yam, Y. (1997) Dynamics of Complex Systems. Reading, MA: Addison-
Wesley.
Forsyth, T. (2002) Cellular Automata for Physical Modeling. Game Pro-
gramming Gems 3. Hingham, MA: Charles River Media, pp. 200–214.
Ilachinski, A. (2001) Cellular Automata: A Discrete Universe. Singapore:
World Scientific.

KEY TERMS

Cellular automata are spatial, discrete time models, in which space is
represented as a uniform grid.
The Game of Life is a cellular automaton that simulates life, using simple
rules for birth, death, and survival.

150 Emergence in Games

Through the multitude of simple, local interactions that occur, the collective man-
ages to acquire properties, dynamics, and global behaviors that are not present
or predictable on the scale of an individual. The behavior that occurs often seems
organized and directed, as though there were some higher power directing the
movement of the individuals. The result is complex, self-organizing, and adaptive
systems that carry out surprisingly complex and intricate tasks and behaviors.

FLOCKING

Flocking is an artificial life technique for simulating the natural behavior of groups
of entities that moves in herds, flocks, or swarms. Flocking was devised as an alter-
native to scripting the paths of each entity individually, which was tedious, error-
prone, and hard to edit, especially for a large number of objects. Flocking is based
on particle systems, which are used to represent dynamic objects that have irregu-
lar and complex shapes. Particle systems consist of collections of large numbers of
individual particles and have been used to model fire, smoke, clouds, and the spray
and foam of ocean waves.

In flocking, the aggregate motion of the simulated flock is created by a distrib-
uted behavioral model like that in a natural flock. Each bird in the flock is an indi-
vidual that navigates according to its local perception of its environment, the laws
of physics that govern this environment, and a set of programmed behaviors.
Flocking assumes that a flock is simply the result of the interaction between the be-
haviors of individual birds.

Flocking is an example of emergence; the interaction of simple local rules gives
rise to complex global behavior. In flocking, the complex yet organized group
behavior comes from the interaction between the simple behaviors of individual
boids. Mixing the non-linear component behaviors of the boids gives the emergent
group dynamics a chaotic aspect. However, the negative feedback provided by the
behavioral controllers tends to keep the group dynamics ordered, resulting in life-
like behavior.

In flocking, the generic simulated flocking creatures are called boids. The basic
flocking model consists of three steering behaviors (see Table 5.1), separation,
alignment, and cohesion, which describe how an individual boid maneuvers based
on the positions and velocities of its nearby flockmates. In separation, each mem-
ber of a flock tries to keep a minimum distance from its neighboring flockmates. It
helps to prevent boids from crowding together, while ensuring a lifelike closeness.
Each boid of a flock tests how close it is to its nearby flockmates and then adjusts
its steering to obtain the desired distance. Alignment involves each member at-
tempting to go in the same direction as its neighbors. Each boid looks at nearby

Chapter 5 Techniques for Emergence 151

Steering Behavior Rule

Separation Maintain a minimum distance from other boids

Alignment Match the velocity of nearby boids

Cohesion Move toward the perceived center of nearby boids

TABLE 5.1 Steering Behaviors in Flocking

flockmates and adjusts its steering and speed to match the average steering and
speed of its neighbors. In cohesion, each member tries to get as close as possible
to its neighbors. Each boid examines its neighbors, averages their positions and
adjusts its steering to match. Figure 5.21 illustrates the three steering behaviors.

FIGURE 5.21 Rules for separation, alignment, and cohesion in
flocking.

The following pseudo-code implements the three steering behaviors of separa-
tion, alignment, and cohesion:

PROCEDURE flocking ()

FOR EACH boid

sum of mass = sum of mass + position

perceived velocity = perceived velocity + velocity

END

center of mass = sum of mass / number of boids

average velocity = perceived velocity / number of boids

FOR EACH boid

new position = position + separation(boid)

+ alignment(boid) + cohesion(boid)

END

END PROCEDURE

FUNCTION separation (this boid)

separation = 0

FOR EACH boid

IF boid is not equal to this boid THEN

// minimum separation = 10

IF abs(position - boid.position) < 10 THEN

// double the separation from boid

separation = separation – (position -

boid.position)

END

END

END

RETURN separation

END FUNCTION

FUNCTION alignment (this boid)

// move 10% closer to average velocity

RETURN (average velocity – velocity) / 10

END FUNCTION

FUNCTION cohesion (this boid)

// move 1% closer to center of mass

RETURN (center of mass – position) / 100

END FUNCTION

152 Emergence in Games

A fourth steering behavior, avoidance, can be added to allow a flock to react to
predators and obstacles. Avoidance makes each member keep a certain distance
from obstacles or members in other flocks, such as predators. This provides a boid
with the ability to steer away from obstacles and avoid collisions. Each boid looks
ahead some distance and determines whether a collision with some object is likely
and adjusts its steering accordingly.

Flocking is a stateless algorithm, because no information is maintained from
update to update. Each member in the flock revaluates its environment at every
update cycle, which reduces the memory requirements and allows the flock to be
purely reactive, responding to the changing environment in real time.

Each boid in the flock has direct access to the whole scene’s geometric descrip-
tion. However, flocking only requires the boid to react to flockmates in its local
neighborhood, which is characterized by a distance from the center of the boid and
an angle from the boid’s direction of flight. The flockmates that are outside this
local neighborhood are ignored. This neighborhood is the region in which flock-
mates influence a boid’s steering.

There are several constraints that restrict how boids can move and react,
namely perception range, velocity, and environment. The perception range is the
distance that the boid can look around to detect flockmates, obstacles, and enemies.
A flock with a larger perception range is more organized and better at avoiding
enemies and obstacles. Whereas a smaller range results in a more erratic flock with
groups of boids splitting off more often. The velocity refers to the boids’ ability
to keep up with their flockmates by how fast they can move and turn. The flock’s
environment can also impose constraints, such as a size limit or many obstacles or
predators.

In simulated flocking (see Figure 5.22), the boids initially move together
rapidly to form the flock. As they are flocking, the boids at the edge of the flock
either increase or decrease their flying speed to maintain the integrity of the flock.
Each boid in the flock makes minor adjustments to its heading as the flock winds
its way around. The boids fluidly flock around obstacles in their path, which may
temporarily divide the flock, but they are soon reunited. Each boid only perceives
its neighbors and their actions and reacts accordingly. However, the collective
movement of the boids closely resembles real flocking, even though there are no
rules that dictate the behavior of the flock as a whole.

Flocking can be used in games for unit motion and to create realistic environ-
ments the players can explore. In a real-time strategy or role-playing game, groups
of animals can be made to wander the terrain more realistically than with simple
scripting. Similarly, flocking can be used for realistic unit formations or crowd
behaviors. For example, groups of archers or swordsmen can be made to move
realistically across bridges or around obstacles, such as boulders. Alternatively, in

Chapter 5 Techniques for Emergence 153

first-person shooter games, monsters can wander the dungeons in a more believ-
able fashion, avoiding players and waiting until their flock grows large enough to
launch an attack.

154 Emergence in Games

FIGURE 5.22 Simulated flocking.

Many games have successfully used flocking to simulate the group behaviors of
monsters and animals, including Half-Life, Theme Hospital, Unreal, and Enemy
Nations. Half-Life uses flocking to simulate the squad behavior of the marines, who
run for reinforcements when wounded, lob grenades from a distance, and attack
the players with dynamic group tactics. Theme Hospital uses flocking to simulate
the hustle-and-bustle of patients, doctors, and staff in a hospital. Unreal uses flock-
ing for many of the monsters, as well as other creatures, such as birds and fish.
Enemy Nations uses a modified flocking algorithm to control unit formations and
movement across a 3D environment.

Flocking has also been used to simulate crowds of extras and flocks of animals
in feature films. The movie Batman Returns made use of flocking algorithms to
simulate bat swarms and penguin flocks.

Flocking is currently used in games where there are groups of animals or mon-
sters that need to simulate lifelike flock behavior. It is a relatively simple algorithm
and only composes a small component of a game engine. However, flocking makes
a significant contribution to games by making an attack by a group of monsters or
marines realistic and coordinated. It therefore adds to the suspension of disbelief of
the game and is ideal for role-playing or first-person shooter games that include
flocks, swarms, or herds.

Chapter 5 Techniques for Emergence 155

ADDITIONAL READING

For further information on flocking in games:

Reynolds, C. (1987) Flocks, Herds, and Schools: A Distributed Behavioral
Model. Computer Graphics 21 (4), pp. 25–34.
Woodcock, S. (2000) Flocking: A Simple Technique for Simulating Group
Behavior. Game Programming Gems. Hingham, MA: Charles River Media,
pp. 305–318.
Woodcock, S. (2001) Flocking with Teeth: Predators and Prey. Game Pro-
gramming Gems 2. Hingham, MA: Charles River Media, pp. 330–336.

GENETIC ALGORITHMS

A Genetic Algorithm (GA) is a technique for optimization and search, which
evolves a solution to a problem, in a similar way to natural selection and evolution.
A GA includes a population of possible solutions to a problem, referred to as chro-
mosomes, as well as processes that evaluate each chromosome’s fitness and select
which chromosomes will become parents. The chromosomes that are selected to be
parents take part in a process similar to reproduction in which they generate new
offspring by exchanging genes. The new offspring also have a chance that they will
mutate, similar to natural mutation. As the cycle continues over time, more effec-
tive solutions to the problem are evolved.

A simple GA initializes the population with random solutions and evaluates
each trial solution by a fitness function. It then erases the poor solutions and copies
the remaining good solutions to replace the ones that were erased. Finally, it mixes
and matches those copies in a similar way to genetic mutation and recombination.
This process is repeated until the desired level of performance is met or until the
time limit expires (see Figure 5.23).

It must be possible to represent a single solution in a single data structure that
is appropriate to the problem. For example, if optimizing a function of real num-
bers, then real numbers should be used in the chromosome. Also, the representa-
tion should be minimal but completely expressive. It needs to be able to represent
any solution to the problem and be designed so that it cannot represent infeasible
solutions. Different types of representations include numeric representation, such
as an array of real numbers or a string of bits that map to real numbers, a sequence
of items implemented as a list or array, or even a tree structure.

A fitness function is used to evaluate the candidate solutions. The choice of fit-
ness function is dependent on the problem. The closer a chromosome is to solving
the problem, the higher the fitness score it is given. After the fitness score has been
assigned to each chromosome, a method is needed for choosing which solutions
will become parents and the number of offspring they will produce. Some of the
methods for assigning offspring include Roulette Wheel Selection, Tournament
Selection, Linear Ranking, and Stochastic Remainder Selection (see Figure 5.24).

In Roulette Wheel Selection, the probability of being selected to be a parent is
proportional to the chromosome’s fitness. Each solution is assigned a piece of the
“roulette wheel” that is proportional to its fitness value. For each new offspring that
is to be created, the roulette wheel is “spun” to determine which of the possible so-
lutions will become a parent. Tournament Selection involves randomly choosing
two trial solutions from the population. The better of these two solutions is selected
to be a parent, where each solution’s probability of being selected as a parent is pro-
portional to their fitness. Linear ranking is where the trial solutions in the popula-
tion are sorted and given a linearly decreasing number of offspring. Stochastic
Remainder Selection involves normalizing the fitnesses so they sum to give the size
of the population and the average equals one. This normalized fitness is then used
as the expected number of offspring.

156 Emergence in Games

FIGURE 5.23 The flow of an evolutionary algorithm.

The following pseudo-code implements the Roulette Wheel Selection algorithm:

PROCEDURE roulette_wheel_selection ()

// two parents to generate one offspring

// need to assign twice the number of offspring as parents

number of offspring = population size * 2

total fitness = sum of all parent fitness values

FOR 1 to number of offspring

// spin the wheel

r = random number between 0 and total fitness

sum = 0

p = first parent

// find the winner

WHILE sum < r

sum = p’s fitness + sum

next p

END

p gets an additional offspring

END

END PROCEDURE

Chapter 5 Techniques for Emergence 157

FIGURE 5.24 Methods for assigning offspring in a genetic algorithm.

As well as generating new solutions, it is also necessary to decide how many of
the good solutions to copy unchanged. Elitism refers to the copying of the best
solutions to keep for the next generation. At one extreme is generational elitism,
which is where all parents are replaced by the offspring. At the other extreme is
steady state, where only one offspring is created at a time. The most common ap-
proach is to copy the best few solutions unchanged to the next generation.

Once it is decided which solutions will become parents, which will be copied
unchanged, and which will be erased, it is necessary to determine how to evolve the
parent solutions for the next generation. Copies are made of the selected parents to
replace the erased non-parents. However, making identical copies won’t search
new trial solutions so the copies need to be slightly different. This is accomplished
through crossover and mutation. The aims are to search the regions of the space
that seem to be promising, because good solutions have already been found there,
and to search unexplored regions, in case good solutions are located where the GA
has not yet looked. However, these aims are mutually exclusive.

The Two-Armed Bandit Problem is an analogy for the process of exploring trial
solutions in unexplored regions and explored regions that seem promising. In this
problem, there are two slot machines, one which pays with probability less than 50
percent and the other pays with more than 50 percent, but it is unknown which is
which. Therefore, they both must be tried and more trials assigned to the one that
seems better with increasing probability. This generalizes to the k-armed bandit
problem, which is a classical problem in statistical sampling.

In mutation, a small number of random changes take place as too many or too
big can be disruptive. However, if there is not enough mutation then the popula-
tion fills with clones of the same few solutions. In mutation, the variables that need
to be tuned are mutation probability per variable, which is how likely each variable
is to mutate, and mutation step size, which is the size of the mutation. Figure 5.25
illustrates mutation in a bit string.

158 Emergence in Games

FIGURE 5.25 Mutation in a bit string.

Most problems represent solutions as a vector of numbers, in which the op-
tions for mutation include range mutation, Gaussian mutation, and Cauchy muta-
tion. In range mutation, the new value is uniformly random from a set range. In
Gaussian mutation, the standard deviation is used and most changes are small.

Finally, Cauchy mutation is similar to Gaussian mutation, but the tail of the bell
curve never goes to zero, allowing a few very big changes. The following pseudo-
code implements range mutation:

PROCEUDRE mutation ()

// Mutation chance = 1 in 1000

FOR EACH offspring

FOR EACH gene in chromosome

r = random number between 1 and 1000

IF r == 1 THEN

// mutate in range of 1 to 5

m = random number between -5 and 5

this gene of this offspring += m

END

END

END

END PROCEDURE

Crossover (or recombination) takes two or more solutions and generates
one solution. The aim is to use features from both parents and avoid disruption
by keeping features intact. If the solutions are represented as an array of numbers
then crossover simply involves cut-and-paste. This can be done with one-point
crossover, n-point crossover, or in extreme cases, uniform crossover, in which each
variable can come from either parent (see Figure 5.26). A random number is gen-
erated and if it is over the specified threshold, then the chromosomes crossover at
randomly chosen or specified points.

The following pseudo-code implements one-point crossover, using a randomly
generated number to determine the crossover point:

PROCEDURE crossover ()

// Crossover takes two parents and generates one offspring

WHILE offspring < population size

p1 = randomly choose parent one

WHILE number of offspring of p1 = 0

randomly choose another p1

END

// we found a parent with offspring

p1 becomes a parent and loses one offspring

p2 = randomly choose parent two

WHILE number of offspring of p2 = 0

randomly choose another p2

END

// we found a parent with offspring

p2 becomes a parent and loses one offspring

Chapter 5 Techniques for Emergence 159

i = randomly choose a position along the chromosome

// parent genes combine to form offspring

FOR EACH gene in the offspring’s chromosome

IF this gene’s index < I THEN

offspring (this gene) = p1 (this gene)

ELSE

offspring (this gene) = p2 (this gene)

END

END

END PROCEDURE

160 Emergence in Games

FIGURE 5.26 One-point, n-point, and uniform crossover.

GAs can be used to find non-intuitive, unpredictable solutions to problems in
games. A GA could be used in a real-time strategy game to adapt the AI’s strategy
to exploit the player’s weaknesses or to define the behavior of individual units. A
role-playing game or first-person shooter could use a GA to evolve behaviors of
characters. For example, a GA could take the creatures in the game that have sur-
vived the longest and evolve them to produce future generations. This would only

need to be done when a new creature is needed. GAs could also be used in games
for pathfinding, in which the chromosome could represent a series of vectors and
the fitness function could be the distance the sum of vectors is away from a target
point.

Computer games that have used GAs include Cloak, Dagger, and DNA, the
Creatures series, Return Fire II, and Sigma. Cloak, Dagger, and DNA uses GAs to
guide the computer opponent’s play. It starts with four DNA strands, which are
rules governing the behavior of the computer opponents. As each DNA strand
plays, it tracks how well it performed in every battle. Between battles, the user can
allow the DNA strands to compete against each other in a series of tournaments,
which allows each DNA strand to evolve. There are a number of governing rules for
DNA strand mutation and success, and the player can edit a strand’s DNA ruleset.
The Creatures series of games uses a GA to evolve the creatures (see Figure 5.27).

Chapter 5 Techniques for Emergence 161

FIGURE 5.27 Creatures uses a GA to evolve the creatures. © Gameware Development. Used

with permission.

Considerations that need to be made when designing a GA for a game include
the many parameters that need to be tuned, such as choice of a suitable represen-
tation, population size, number of generations, choice of a fitness function and
selection function, and mutation and crossover parameters.

There are many advantages to using a GA, because they are a robust search
method for large, complex, or poorly understood search spaces and non-linear
problems. A GA is useful and efficient when domain knowledge is limited or expert
knowledge is difficult to encode, because they require little information to search
effectively. They are useful when traditional mathematical and search methods fail.

On the down side, a GA is computationally expensive and requires substantial
tuning to work effectively. In general, the more resources they can access the better,
with larger populations and generations giving better solutions. However, a GA
can be used offline, either during development or between games on the user’s
computer, rather than consuming valuable in-game resources.

162 Emergence in Games

ADDITIONAL READING

For further information on genetic algorithms in games:

Laramee, F. D. (2002) Genetic Algorithms: Evolving the Perfect Troll. AI
Game Programming Wisdom, Charles River Media, pp. 629–639.
Buckland, M. (2004) Building Better Genetic Algorithms. AI Game Pro-
gramming Wisdom 2. Hingham, MA: Charles River Media, pp. 649–660.
Sweetser, P. (2004) How to Build Evolutionary Algorithms for Games. AI
Game Programming Wisdom 2. Hingham, MA: Charles River Media, pp.
627–637.

KEY TERMS

Flocking is an artificial life technique for simulating the natural behavior of
groups of entities that move in herds, flocks, or swarms.
Genetic algorithms are techniques for optimization and search, which
evolve solutions to problems, in a similar way to natural selection and
evolution.

CHOOSING A TECHNIQUE

This chapter provides the basics of various techniques that can be used in games for
both simple and complex behaviors. Game development is about creating an expe-
rience for the player and how this is achieved is secondary. The right technique
should be chosen based on the needs of the situation, including desired results and
limitations of the game developer. Research is often about experimenting with new
techniques or extending existing techniques to new situations. However, develop-
ment is about producing the best results within development constraints. In devel-
opment, you should always start with the problem that needs to be solved, and
engineer a solution with the tools at hand.

In this book, you are investigating ways to push current technologies to new
levels of realism and immersion. However, the remainder of the text will still adhere
to a problem-based approach. You will draw on the basic techniques that have
been discussed in this chapter, constructing architectures that draw on multiple
techniques in order to achieve the desired results. There are two main components
that you need to bear in mind when constructing these frameworks—development
considerations and desired gameplay. The resulting solutions are a trade-off be-
tween what you want, what you know, and what is possible and achievable.

DEVELOPMENT

Chapter 4 outlined some of the primary concerns of game developers when devel-
oping new technology and discussed emergence with respect to these issues. The
primary concerns of developers include:

Creative control—Level of creative control for game developers
Design, implementation, and testing—Effort in designing, implementing, and
testing
Modification and extension—Effort in modification and extension
Uncertainty and quality assurance—Issues for uncertainty and quality assurance
Feedback and direction—Ease of giving feedback and direction to players

Linear techniques tend to give more creative control, whereas emergence in-
volves a more general, open-ended approach. Linear techniques can involve a large
amount of time in planning, implementing, and testing specific rules and scenarios.
However, emergent systems are risky as they are relatively unproven and unknown
techniques, which involve significant testing to ensure stability. Emergent tech-
niques are more conducive to modification and extension, because they are general
systems that are extensible by nature. There is certainly more room for uncertainty

Chapter 5 Techniques for Emergence 163

in emergent systems. However, specific rules and linear techniques can give rise to
many exceptions and individual cases to test. Finally, feedback and direction is
generally more straight-forward in linear systems as the player’s path and possible
actions are easier to plan and predict.

When devising a solution to a problem, developers need to consider available
programming and testing time, future uses of the technology by the development
team and end users, and how much control over the gameplay and story is required
by the designers. These constraints will dictate the possible methods that can be
used. If the project involves developing a simple, linear game in the shortest time
possible, then simple and proven techniques is the obvious choice. However, if you
are trying to create more freedom or flexibility and push gameplay to the next level,
then you need to explore new options.

GAMEPLAY

Chapter 3 identified the key elements of interacting in games: consistency, immer-
sion, intuitiveness, freedom, and physics:

Consistency relates to objects behaving in a consistent manner, enabling play-
ers to learn the rules of the game and to know when and how they can interact.
Immersive games draw players into the game and affect their senses and emo-
tions through elements such as audio, graphics, and narrative.
Intuitiveness is about meeting player expectations, in terms of how they would
expect to be able to interact with game objects and solve problems in the game
world.
Players want to be free to express their creativity and intentions by playing the
game in the way that they want.
The physical elements of the game world, such as gravity, momentum, fire, and
water, should behave in a way that the player expects.

You also learned how gameplay has progressed over the life of computer games,
from very scripted and limited interaction in interactive fiction and linear games to
open and immersive play in sandbox and emergent games. This progression has oc-
curred due to a combination of advances in technology and a drive for more real-
istic and immersive games from players.

The interactivity required in a computer game is an important consideration
when choosing the algorithms and techniques that will form the basis of your
gameplay or artificial intelligence. How important are each of the key elements of
interaction in the game? The type of game that you are creating will also determine
the relevance of each issue. Realistic physical modeling is not as important in a
turn-based strategy game as it is in a first-person shooter. Immersion is likely to be

164 Emergence in Games

more important in a role-playing game than in a racing game. Also, the more open
and unrestricted the game environment, the more important consistency and
intuitiveness become. Large game worlds with many options and interactions need
to be intuitive and consistent or players will become confused and lost.

Chapter 3 also discussed the key concepts of enjoyment in games and the eight
elements of the GameFlow model: concentration, challenge, player skills, control,
clear goals, feedback, immersion, and social interaction:

Games should require concentration and the player should be able to concen-
trate on the game
Games should be sufficiently challenging and match the player’s skill level
Games must support player skill development and mastery
Players should feel a sense of control over their actions in the game
Games should provide the player with clear goals at appropriate times
Players must receive appropriate feedback at appropriate times
Players should experience deep but effortless involvement in the game
Games should support and create opportunities for social interaction

Each of these elements contributes to player enjoyment in games, but has vary-
ing importance in different games. When choosing models and techniques for your
game, it is important to consider how these models will allow you to facilitate the
player’s enjoyment, in terms of each GameFlow element, and which elements are
important and relevant to your game. Concentration, challenge, and player skills
are highly important to strategy games, feedback and immersion are vital in first-
person shooter games, and clear goals and control are central in role-playing games.
Social interaction is not relevant to all games, but it will have a significant impact
on your choice of models if it is relevant to your game.

SUMMARY

Each of the techniques outlined in this chapter have advantages, disadvantages,
and applications that they are more suited towards. Table 5.2 gives a summary of
each of the techniques with respect to these qualities, as well as a list of some of the
games that have made use of the technique. Each of these techniques can be used
for various purposes in games, separately or in combination with other techniques.
Chapters 6 to 9 will investigate different problems in games that could benefit from
emergence. Specific models and frameworks are created to solve these problems,
drawing on various techniques, in order to facilitate greater enjoyment, immersion,
realism, and emergent gameplay in games.

Chapter 5 Techniques for Emergence 165

166 Emergence in Games

Technique Advantages Disadvantages Applications Games

Finite State Simple Can be poorly Manage Age of Empires
Machine structured game world

General Poor scaling Manage objects Half-Life
and characters

Use in conjunction Need to anticipate Doom
with other all situations
techniques

Computationally Deterministic Quake
inexpensive

Scripting Simple Deterministic Events Black & White

Can be used by Need to anticipate Opponent AI Unreal
non-programmers all situations

Safe environment Tell the story Baldur’s Gate

Automate tasks

Conversation trees

Fuzzy Logic When no Not good when Decision making SWAT 2
simple solution there is a simple

solution

When expert Complicated to Behavioral Call to Power
knowledge is build from selection
needed scratch

Non-linear Input/output Close Combat
problems filtering

More flexible Health of NPC Petz
and variable

Emotional status The Sims
of NPC

Decision Robust to noise Needs tuning Prediction Black & White
Trees and missing values

Readable Classification

Efficient training Learning
and evaluation

Æ

TABLE 5.2 Technique Comparison

CLASS EXERCISES

1. What would you like to improve in games that you have played? What have
you found to be too linear, limited, or synthetic?
a. How has this aspect of gameplay been limited in terms of consistency,

immersion, intuitiveness, freedom, or physics?
b. How has this aspect of gameplay affected your enjoyment? Which ele-

ments of GameFlow do you find are decreased by this aspect of gameplay?
How could your enjoyment be increased by changing this aspect?

c. How could this aspect of gameplay be changed to be more open, emer-
gent, or realistic? How would you like to improve it?

Chapter 5 Techniques for Emergence 167

Technique Advantages Disadvantages Applications Games

Neural Flexible Needs tuning Memory Black & White
Networks

Non-deterministic Choosing variables Pattern BC3K
is difficult recognition

Non-linear Complicated Learning Creatures

Resource intensive Prediction Heavy Gear

Classification

Behavioral control

Flocking Purely reactive Limited applications Unit motion Half-Life

Memory Groups of animals Unreal
requirements and monsters

Realistic and lifelike Enemy Nations

Genetic Robust search Resource intensive Optimization Cloak, Dagger
Algorithms method & DNA

Effective in large, Slow Learning Creatures
complex, poorly
understood search
spaces

Non-linear Needs a lot Developing Return Fire II
of tuning game strategies

Non-deterministic Complicated Evolve behavior

Pathfinding

2. How well can linear techniques, such as scripting or state machines be used
to improve your chosen aspect of gameplay?
a. How have these techniques been used in the past for this feature in

games?
b. Are the techniques currently used for this feature a limiting factor?
c. Could linear techniques be extended or improved to make this feature

better?
d. What are the considerations for gameplay in using linear techniques to

implement this feature?
e. What are the considerations for developers in using linear techniques to

implement this feature?
3. Could you use techniques from machine learning, complex systems, or

artificial life to improve your chosen gameplay feature?
a. Which non-linear techniques would be most suited to this problem?

Why?
b. How could non-linear techniques be used to improve this aspect of

gameplay?
c. How would using non-linear techniques for this problem improve game-

play? Would it make the game more interactive? Would it create emer-
gent gameplay? How would it increase your enjoyment of the game?

d. What would be the considerations for developing these techniques?
Have they been used for this purpose before? How much planning, im-
plementation, and testing would be involved? Is the effort expended
worth the gain in gameplay?

168 Emergence in Games

169

G
ame worlds are the possibility spaces of games. The space, terrain, objects,
physics, and environmental effects dictate the possibilities for actions and
interactions that compose and constrain the gameplay. The elements of the

game world (such as weapons, chairs, walls, and enemies) are the basic elements of
gameplay, similar to the board and pieces in chess. The laws of physics and rules for
interaction are the game rules, which constrain the possibility space. Within this
space are the allowable actions and interactions of the player.

Interactions in the game world are the foundation of the gameplay. The game-
play is made up of how the player uses the basic interactions to solve problems,
achieve goals, and advance through the game. The key to creating emergent game-
play is to define a simple, general set of elements and rules that can give rise to a
wide variety of interesting, challenging behaviors and interactions in varying situ-
ations. The simpler and more generalizable the rules, the easier they will be to test,
tune, and perfect for emergent gameplay.

Game worlds can be divided into two fundamental components—environment
and objects. The environment is the space, including boundaries such as terrain,
sky, and walls, as well as the physical space (such as air in an earth-based game or
water in an underwater game). Game objects are the entities that populate the game

Game Worlds6

In This Chapter

Active Game Environment
Property-Based Objects
Emergent Game Worlds

170 Emergence in Games

world. There are a wide variety of objects in game worlds, which vary by game
genre. Together, the environment and objects make up the game world and their
properties and behavior determine the interactions that are possible and the re-
sulting gameplay.

This chapter presents a framework for creating emergent game worlds and
player interactions in those game worlds. Game worlds can be divided into the
game environment (the physical space) and the game objects (the entities that exist
in the game environment). The environment in many games is inert and unre-
sponsive to players, objects, and events. This chapter examines the concept of an
“active” game world, in which the environment and objects are active and reactive
to players, as well as other elements of the game world.

The Active Game World framework uses a cell-based environment model and
property-based game objects. In this chapter, the framework is used to create an en-
vironmental system for use in a strategy game, which models heat, pressure, and
fluid flow.

The Active Game World implements simplified equations from thermody-
namics with a cellular automaton. An active environment, based on simple inter-
actions between cells of the environment, provides a foundation for emergent
behavior to occur in game objects and agents, as well as the environment itself.
Property-based game objects can be integrated into the active environment to
create an Active Game World.

Objects in the Active Game World are implemented as though they are cells,
using the same low-level properties, based on the object’s material. Objects are also
imbued with high-level properties, based on their structure, to constrain the possi-
ble physical interactions of the objects. The resulting Active Game World model is
flexible and extensible, allowing the game world to respond consistently and real-
istically to a wide range of events and player actions in any situation in the game.

ACTIVE GAME ENVIRONMENT

The environment is the central component of an emergent game system as it de-
fines the game world and the interactions that are possible within the world. The
rules that are defined for the interactions within the environment itself dictate the
rules that will apply to entities that exist in the environment, such as objects and
agents. Therefore, defining the rules for the behavior of the environment itself is a
crucial step in developing a game world that facilitates emergent behavior.

As discussed in Chapter 3, modeling physics in games, such as gravity, momen-
tum, and other basic laws of physics, is important to ensure realistic and consistent
movement, interactions, and gameplay. The physical behavior of fire, explosions,
and water in games is important to players. Fire should burn, releasing heat and

causing damage. Water should flow across surfaces, following contours, and making
other substances wet. Pressure should diffuse and large pressure differences should
cause explosions.

An active environment, based on simple interactions between cells, provides a
foundation for emergent behavior to occur in game objects and agents, as well as
the environment itself. One technique that can be used as a foundation for an active
game environment is cellular automata.

This section discusses the design and implementation of the Active Game
World, based on cellular automata, which models basic elements of the environ-
ment, such as heat, pressure, and fluid. You’ll begin with simplified equations from
thermodynamics, implement a two-dimensional cellular automaton and basic
strategy game environment, tune the rules and properties until reasonable observ-
able behavior is achieved, and test the system’s behavior with possible strategy game
scenarios.

STRATEGY GAMES

Cellular automata can be used to model game environments in a variety of game
genres, each with individual constraints. However, a strategy game was chosen to
demonstrate the Active Game World for several reasons. First, the abstract nature
of strategy games means that the rules and properties can be more abstract. More
specifically, a strategy game is conducted on a map that represents a world or a large
region, with each cell representing an area that covers several kilometers. On this
scale, there is no need to model effects such as ripples in water or drops of rain caus-
ing splashes. Rather, it is the large-scale effects, such as forest fires and dams burst-
ing that are important.

Second, the environmental interactions are more likely to directly impact on
gameplay in a strategy game. As the interactions are inherently on a larger scale,
it is more likely that they will have a more significant effect on gameplay. For
example, a forest burning down can give the players a way into an opponent’s base
or destroy a needed resource of wood.

Third, due to the abstract nature of the game map, the world needs to be
represented in two-dimensions only, which means the cellular automaton needs to
be represented in two-dimensions only. In games such as first-person shooters, the
entire three-dimensional world would need to be represented. However, in a strat-
egy game, the important interactions are occurring only on the surface of the world.
The system may need to take the height of the surface into consideration, but there
is still only one plane of cells that require calculations to be performed.

Fourth, strategy games are almost always divided into grids, called influence
maps. As influence maps are already widely used in games, a system that uses in-
fluence maps is likely to be easier to implement and integrate into existing systems.

Chapter 6 Game Worlds 171

172 Emergence in Games

Fifth, strategy game maps are generally much smaller than maps in other types
of games. Strategy games usually have one static map that represents the world,
whereas other types of games have multiple cities or regions that continually need
to be loaded as the player moves into each region.

For these reasons, strategy games have been selected as an ideal environment to
demonstrate the Active Game World, because they are far simpler, have more ob-
vious effects, and will involve far fewer issues in implementing and incorporating
into current games.

PHYSICAL MODELING WITH CELLULAR AUTOMATA

Most approaches to modeling real-world phenomena in virtual worlds aim to
develop accurate, error-free models. These models are usually developed for the
purposes of simulating natural disasters (such as forest fires) or visually realistic
effects (such as smoke or fluid flow), using complex equations. Equations and
models that are commonly used in these applications include Navier-Stokes equa-
tions, Euler equations, and the Stable Fluids algorithm.

However, these computationally expensive, complex methods are not needed
in game worlds, where the emphasis is on credible and acceptable behavior, rather
than accurate and error-free simulation. Game worlds only need to approximately
model reality for the purposes of entertainment.

In traditional cellular automata, space is represented as a uniform grid and
each cell in the grid has a state, typically chosen from a finite set. In a game envi-
ronment, the cells in the cellular automaton can include data for a variety of game
variables and are represented by continuous values, rather than finite values. In the
Active Game World, variables such as the heat, pressure, fluid, and terrain of each
cell are tracked and stored in the cellular automaton.

Not only does the cellular automaton store these values, but it also uses
equations to determine how the variables change over time. Similar to traditional
cellular automata, cellular automata in games update each time step by applying
rules for how neighboring cells should interact. In the Active Game World, this
involves exchanging heat, pressure, fluid, and other relevant elements, according to
a set of rules for the physics of the system.

The rules and variables that the cellular automaton requires depends on what
is being modeled in the game environment. For example, to model fire, the cellu-
lar automaton will need rules for heat exchange and burning and variables such as
temperature, burning temperature, flashpoint, and specific heat capacity. To model
fluid flow, the cellular automaton will need rules for how fluid should be exchanged
between cells and variables for height, fluid, absorption, and so on.

Forsyth (2002) has identified ways in which environmental processes can be
simplified for games using cellular automata and has formulated some example

equations for these processes in human-sized (first-person shooter) games. In this
section, Forsyth’s equations for heat, pressure, fluid flow, and fire are summarized.

Heat

There are three different mechanisms for transmitting heat through the environ-
ment: conduction, convection, and radiation. In conduction, neighboring cells pass
heat to each other until they reach the same temperature (see Figure 6.1). Convec-
tion models the process of heat rising and radiation models the phenomenon that
hot objects emit light. Convection and radiation are not relevant to this strategy
game model, because it works on a single plain and the emission of light is not im-
portant. In the Active Game World, only conduction will be used for modeling heat.

Chapter 6 Game Worlds 173

FIGURE 6.1 Conduction.

Pressure

Pressure diffusion calculates the difference in pressure between a cell and its neigh-
bor and divides that amount by the number of neighbors (see Figure 6.2). Conse-
quently, pressure flows from areas with higher pressure to areas with lower pressure,
at a rate corresponding to the difference in pressure, until equilibrium is reached.

Fluid Flow

Pressure diffusion can be used as a basis for modeling fluid flow (see Figure 6.3). If the
fluid is made compressible, the fluid at greater depth seems to have greater pressure
(more fluid stored in the same space). The compression property allows water to

behave realistically in three dimensions. In the Active Game World, you are working
in two dimensions, so the use of fluid compression to simulate depth is not necessary.

Fire

The process of burning materials is extremely complex. The best results are given
by using a function that shows the amount of heat energy that is released per unit
of time when a material burns at a certain temperature. In order to model burning
in real-time, the materials need to be reduced to their main characteristics. Two key
variables, maximum burning rate and burning temperature, can be tweaked to
allow the burning of any material to be simulated. See Figure 6.4.

Developing a System

The preceding equations provide a foundation for developing an emergent game en-
vironment based on cellular automata. However, to create an emergent game world,
they must be developed into a full world model that includes structure, as well as
means for integrating the individual components and updating the game world.

174 Emergence in Games

FIGURE 6.2 Pressure diffusion.

Chapter 6 Game Worlds 175

FIGURE 6.3 Fluid flow.

FIGURE 6.4 Burning.

For the Active Game World example, the equations will be developed into
complete algorithms and adapted to strategy games, as opposed to human-sized
games. Extensive tuning is also required to ensure the behavior of the system meets
the requirements. The development and tuning of the Active Game World for a
strategy game is discussed in the following sections.

176 Emergence in Games

ADDITIONAL READING

For further information on physical modeling with cellular automata in games:

Forsyth, T. (2002) Cellular Automata for Physical Modeling. Game Pro-
gramming Gems 3. Hingham, MA: Charles River Media, pp. 200–214.

KEY TERMS

Conduction involves neighboring cells passing heat to each other until they
reach the same temperature.
Convection models the process of heat rising.
Radiation models the phenomenon that hot objects emit light.
Pressure flows from areas with higher pressure to areas with lower pressure,
at a rate corresponding to the difference in pressure, until equilibrium is
reached.
Fluid flow works the same as pressure diffusion, except fluid is compress-
ible so that the fluid at greater depth seems to have greater pressure.
Fire is the amount of heat energy that is released per unit of time when a
material burns at a certain temperature.

ACTIVE ENVIRONMENT STRUCTURE

The Active Game World model presented in this chapter can be viewed as a hierar-
chy with three levels (see Figure 6.5). The top level (Level 1) is the behavior of the
system that is observable by the players, such as the effects of fire, damage, and fluid
flow. The player can see that a cell is on fire or that it is damaged, because these are
observable effects.

The second level (Level 2) consists of the simple rules that give rise to the visi-
ble, complex, top-level behavior. There are two types of rules at the second level of
the system. First, there are rules that define the interactions between neighboring
cells, such as the spread of heat from one cell to another. An example rule for
interactions between cells is that heat flows from a hot cell to a cooler cell. At the
second level, there are also rules for interactions within a cell, such as the burning
of a cell. An example rule for interactions within a cell is that hot cells catch on fire.

Finally, the third level (Level 3) of the hierarchy contains the properties of the
cells, which determine how cells act and react in accordance with the rules at the
level above. For example, each cell is made of a material that has a certain flash-
point, burning temperature, and burning rate that determines how hot it needs to
be to catch on fire, how fast it burns, and how long it will burn.

Chapter 6 Game Worlds 177

FIGURE 6.5 Active Game World model.

The multi-leveled design of the Active Game World model allows the system to
be systemic, facilitates emergent top-level behavior, and lends it to future extension.

The implementation of an emergent system is an iterative process. First, the
rules need to be implemented and approximate starting values set for parameters
(see the “Properties” section). Subsequently, rules and variables must be tuned
through testing in various game scenarios (see the “Observable Behavior” section).

Each system in the Active Game World was added incrementally (fluid, heat,
and pressure) and first tested individually and then together. During development,
it was found that some systems needed significant changes to suit the strategy-game
environment and achieve desired behavior (such as fluid flow) and that others could
be integrated without alteration (such as heat). The properties, rules for interactions
between cells, and rules for interactions within cells are explained in the following
sections, including their design, implementation, and considerations.

Properties

Level 3 of the Active Game World hierarchy (see Figure 6.5) contains the proper-
ties of the cells. This level contains the data structures for the cellular automaton
and materials of the system. The system consists of a grid of cells and each cell has
a set of properties. Included in the set of properties is the material (or terrain) of the
cell. Each material has its own set of properties that govern its behavior.

The main data structure in the system is the grid for the cellular automaton.
The grid consists of 100 cells (10 by 10), each of which represents a piece of a strat-
egy game map of arbitrary size. In commercial strategy games, the size of the cells
that are used in structures such as influence maps is arbitrary and there is a trade-
off between accuracy and efficiency. If the cells are too large, the influence map will
miss important features and if the cells are too small then there is redundant infor-
mation and substantial memory is used. Usually, the cells are made fairly large,
approximately big enough to fit 10–20 standard units side by side, and from there
the cell size is tuned to obtain optimal results.

Each cell in the Active Game World model is a record with a set of 12 associated
properties, including the terrain type (material), temperature, mass, damage, wet-
ness, height, fluid, and pressure. The following code implements the data structure
for the cellular automaton:

// Structure of a cell

struct cell{

int Material;

float Temp;

178 Emergence in Games

float NewTemp;

float Mass;

float NewMass;

float Burn;

float Damage;

float NewDamage;

float Wetness;

float Height;

float Fluid;

float NewFluid;

};

// Active Game World cells

int numX, numY, buffer;

numX = 100;

numY = 100;

buffer = 2;

cell cells[numX+buffer][numY+buffer];

There is also a set of materials, which contains information about all the materi-
als in the system. Each material has a set of properties, including flashpoint, burning
temperature, maximum burning rate, specific heat capacity (SHC), and maximum
fluid level before overflow (see Table 6.1). The values were initially estimated and
then tuned until satisfactory behavior was achieved. The following code implements
the data structure for the materials:

// Structure of a material

struct material{

float FlashPoint;

float BurnTemp;

float MaxBurn;

float SHC;

float BurnRate;

float MaxFluid;

};

// Active Game World materials

int numMaterials;

numMaterials = 3;

material materials[numMaterials];

Chapter 6 Game Worlds 179

Rules for Interactions between Cells

Level 2 of the hierarchy contains the rules of the cellular automaton, which define
the interactions between cells. An important process for maintaining the cellular
automaton is the update procedure. Apart from the update process, there are rules
for the environmental systems that use the cellular automaton to spread their
effects, including heat, fluid flow, and pressure. The following sections discuss
the equations, algorithms, and pseudo-code for heat, pressure, and fluid flow in the
Active Game World model.

Updating the Cellular Automaton

In the update process, the new values for fluid, temp, damage, and pressure are sub-
stituted for the old values in the cellular automaton. Any rain that is currently falling
is added to the fluid value. The following code implements the update procedure:

for (int x=0; x < numX+buffer; x++)

{

for (int y=0; y < numY+buffer; y++)

{

180 Emergence in Games

Values

Property Description Water Grass Woods

Flashpoint Ignition temperature of the material 99999 99 2000

BurnTemp Multiplier for the temperature that
the material burns at (amount of
heat released) 0 3 5

BurnRate Multiplier for the rate that the
material burns at (rate of
consuming fuel) 0 20 10

MaxBurn Maximum rate that the material 0 200 300
can burn at

SHC Specific heat capacity—the amount 1 100 100
of energy required to heat up
this material

MaxFluid Maximum amount of fluid a cell 60 60 60
can hold

TABLE 6.1 Cell Material Properties

cells[x][y].NewFluid += Rain[x][y];

cells[x][y].Fluid = cells[x][y].NewFluid;

cells[x][y].Temp = cells[x][y].NewTemp;

cells[x][y].Damage = cells[x][y].NewDamage;

cells[x][y].Pressure = cells[x][y].NewPressure;

}

}

Finally, the buffer is cleared. The buffer is made up of the outermost layer of
cells in each direction and is used to simulate the effects of the system moving out
into the world beyond the game world. For example, heat is released into the buffer
each turn and at the beginning of each turn the buffer is reset to zero. The follow-
ing code implements the buffer clearing:

if ((x==0) || (x>numX) || (y==0) || (y>numY))

{

cells[x][y].Temp = 0;

cells[x][y].Damage = 0;

cells[x][y].Burn = 0;

cells[x][y].Fluid = 0;

}

Chapter 6 Game Worlds 181

KEY TERMS

Level 1 is the behavior of the system that the player can observe.
Level 2 consists of the simple rules that give rise to the visible, complex, top-
level behavior.
Level 3 of the hierarchy contains the properties of the cells, which deter-
mine how cells act and react in accordance with the rules at the level above.
Properties include the data structures for the cellular automaton and mate-
rials of the system.
Buffer is made up of the outermost layer of cells in each direction and is
used to simulate the effects of the system moving out into the world be-
yond the game world.

Heat

The algorithm for conduction described in Forsyth (2002) was used as a basis for
heat diffusion in the Active Game World. In the Active Game World, each mater-
ial has a specific heat capacity, which determines how much heat is required to raise

the temperature of that material. Materials with a high specific heat capacity require
more energy to raise their temperature.

In order to diffuse heat in the Active Game World, the heat capacity of the cell,
HCCell, is first calculated. The heat capacity is equal to the specific heat capacity of
the material, material(cell).SHC, multiplied by the mass of the material in the cell,
cell.Mass. The heat capacity for the neighbor, HCNeigh, is calculated in the same
way.

HCCell = material(cell).SHC * cell.Mass

HCNeigh = material(neigh).SHC * neigh.Mass

The energy flow, EnergyFlow, between the cell and its neighbor is equal to the
difference in temperature between the cell, cell.Temp, and its neighbor, neigh.Temp.
The energy flow value is converted from heat to energy by multiplying it by the heat
capacity of the transmitting cell. The energy flow is then multiplied by a constant,
ConstantEnergyFlowFactor, to control the speed of the cell update.

EnergyFlow = cell.Temp – neigh.Temp

EnergyFlow *= HCCell

EnergyFlow *= ConstantEnergyFlowFactor

Subsequently, the new heat values for the cell, cell.NewTemp, and neighbor,
neigh.NewTemp, are calculated by dividing the energy flow by the heat capacity for
each cell.

neigh.NewTemp += EnergyFlow / HCNeigh

cell.NewTemp -= EnergyFlow / HCCell

To reduce oscillations (heat moving back and forth between the same two cells),
the heat of neighboring cells is distributed evenly if the neighbor cell has more heat
than the cells as a result of the heat transfer.

TotalEnergy = (HCCell * cell.Temp) + (HCNeigh * neigh.Temp)

AverageTemp = TotalEnergy / (HCCell + HCNeigh)

cell.NewTemp = AverageTemp

neigh.NewTemp = AverageTemp

The diffusion of heat is increased in the direction that the wind is blowing and
reduced against the wind, proportional to the speed of the wind.

Convection and radiation were not modeled in the Active Game World as the
scale of the strategy game environment means that these processes are likely to go

182 Emergence in Games

unnoticed. In a first-person game, where the environment is on a “human-sized”
scale, convection and radiation are likely to be more important.

A possible enhancement to the Active Game World would be to model
convection to some extent. In a strategy game environment, the most appropriate
application of convection would be to allow heat to transfer faster uphill by a small
amount. However, such a subtle difference may not be noticed by the player or add
to the gameplay in any way.

The following pseudo-code implements the diffusion of heat in the Active
Game World:

PROCEDURE heat (currentCell, neighborCell)

// get the heat capacities of the cell and the neighbor

HCCell = material(currentCell).SHC * currentCell.Mass;

HCNeigh = material(neighborCell).SHC * neighborCell.Mass;

// calculate the difference in temp between the cell and neighbor

EnergyFlow = currentCell.Temp – neighborCell.Temp;

// convert from heat to energy

EnergyFlow *= HCCell;

// multiply by a constant for cell update speed

EnergyFlow *= ConstantEnergyFlowFactor;

// heat doesn’t flow directly against wind

IF (neighborCell isn’t directly against wind) THEN

// cell has higher heat than neigh

IF (EnergyFlow > 0) THEN

// heat flow into neighbor

neighborCell.Temp += EnergyFlow / HCNeigh;

// heat flows from cell

currentCell.Temp -= EnergyFlow / HCCell;

END

// detect and kill oscillations

IF ((EnergyFlow > 0) AND (neighborCell.Temp <

currentCell.Temp))

THEN

// find average temp of cell and neigh

TotalEnergy = (HCCell * currentCell.Temp)

+ (HCNeigh * neighborCell.Temp);

AverageTemp = TotalEnergy / (HCCell + HCNeigh);

Chapter 6 Game Worlds 183

// set cell and neigh to average temp

currentCell.Temp = AverageTemp;

neighborCell.Temp = AverageTemp;

// increase heat flow directly with wind

IF (neighborCell is directly with wind) THEN

currentCell.Temp /= (1 + (windspeed *

wind_const));

neighborCell.Temp *= (1 + (windspeed *

wind_const));

END

END

END

END PROCEDURE

Fluid Flow

The method suggested for fluid flow by Forsyth (2002) is not well suited to a strat-
egy game environment, because it is designed to simulate the effects necessary in a
“human-sized” game, such as a first-person shooter. For example, it is more suited
to water flowing into a container, such as a bucket, and would not be viable for
simulating large bodies of water, such as a river in a strategy game.

Due to the difference in the scale of a human-sized game and a strategy game, a
new approach was needed for the Active Game World. A new algorithm was
developed that was similar to the heat and pressure diffusion algorithms, with the ad-
dition of terrain height. For heat and pressure, the terrain can be treated as though it
is flat. However, for fluid flow, it is necessary to know the contours of the landscape,
because fluid has different rules for flowing downhill, uphill, and on level ground.

The main principle modeled in the Active Game World’s fluid-flow algorithm
is the flowing of the fluid from one cell to its neighboring cells. Once the fluid in a
cell, cell.Fluid, exceeds a certain amount (dependent on the maximum amount of
fluid the material in the cell can hold, material(cell).MaxFluid), the fluid then flows
into the surrounding cells. The flow of fluid between cells is affected by the relative
height of the cell, cell.Height, and its neighbors, neigh.Height.

IF (currentCell.Fluid > (material(cell).MaxFluid

* (neighborCell.Height / currentCell.Height)))

Fluid flows faster to lower cells and less fluid is accumulated in a cell before it
starts flowing to a lower neighbor. When flowing uphill, more fluid is accumulated
in the cell, until the cell overflows to its higher neighbors. Fluid flows at a slower
rate uphill. The steeper the slope, the more effect it has on the flow of the fluid, in
terms of the rate of the flow and the amount of fluid that is accumulated before
flowing to the neighbors.

184 Emergence in Games

flow = flow * (currentCell.Height / neighborCell.Height)

Fluid flows faster when there is a greater difference between the amount of fluid
in a cell, cell.Fluid, and the amount in the neighboring cells, neigh.Fluid, because
there would be greater pressure. The difference is divided by four as each cell has a
maximum of four neighboring cells, providing a good approximation to how the
fluid will be divided into the neighbors.

flow = (currentCell.Fluid – neighborCell.Fluid) * 0.25

Another property of fluid is that it wets. Material that is wet has a lower temper-
ature, as well as being harder to ignite and slower to burn. The wetness in a cell also
reduces slowly overtime, as the moisture evaporates, and gradually repairs damage
over time.

Currently, there is only one type of fluid that is modeled in the Active Game
World. However, a possible enhancement to the Active Game World would be to
model different types of fluids. Different fluids flow at different rates, depending on
properties such as their viscosity. However, the need to model fluids other than
water would be more relevant to human-sized games, rather than strategy games.
In a strategy game, it is unlikely that there will be large bodies of fluid other than
water, but a possible example would be lava or fuel, which would flow very differ-
ently to water.

The following pseudo-code implements fluid flow in the Active Game World:

PROCEDURE fluid (currentCell, neighborCell)

// neighborCell lower than currentCell

IF ((neighborCell.Height < currentCell.Height)

// currentCell has the max fluid it will hold,

// modified by the slope – easier to flow downhill

AND (currentCell.Fluid > (material(currentCell).MaxFluid

* (neighborCell.Height / currentCell.Height)))) THEN

// flow equals the difference between fluid in currentCell

// and neighborCell divided by four

flow = (currentCell.Fluid – neighborCell.Fluid) * 0.25;

// flow is increased proportionally to slope

flow = flow * (currentCell.Height / neighborCell.Height)

* flow_const;

Chapter 6 Game Worlds 185

// flow cannot be less than zero

IF (flow < 0) THEN flow = 0;

// update currentCell and neighborCell with flow

currentCell.Fluid -= flow;

neighborCell.Fluid += flow;

// currentCell.Fluid cannot be less than zero

IF (currentCell.Fluid < 0) THEN currentCell.Fluid = 0;

END

// neighborCell higher than currentCell

ELSE IF ((neighborCell.Height > currentCell.Height)

// currentCell has the max fluid it will hold,

// modified by slope – harder to flow uphill

AND (currentCell.Fluid > (material(currentCell).MaxFluid

* (neighborCell.Height / currentCell.Height)))) THEN

// flow equals difference between the fluid in currentCell

// and neighborCell divided by four

flow = (currentCell.Fluid – neighborCell.Fluid) * 0.25;

// flow is decreased proportionally to slop

flow = flow * (currentCell.Height / neighborCell.Height)

/ flow_up_const;

// flow cannot be less than zero

IF (flow < 0) THEN flow = 0;

// update currentCell and neighborCell with flow

currentCell.Fluid -= flow;

neighborCell.Fluid += flow;

// currentCell fluid cannot be less than zero

IF (currentCell.Fluid < 0) THEN currentCell.Fluid = 0;

END

// neighborCell on same level

// fluid in currentCell must exceed max fluid cell can hold

ELSE IF (currentCell.Fluid > material(currentCell).MaxFluid) THEN

186 Emergence in Games

// flow equals difference between currentCell and neighborCell

// divided by four

flow = (currentCell.Fluid – neighborCell.Fluid) * 0.25;

// flow cannot be less than zero

IF (flow < 0) THEN flow = 0;

// update currentCell and neighborCell with flow

currentCell.Fluid -= flow;

neighborCell.Fluid += flow;

// cell fluid cannot be less than zero

IF (currentCell.Fluid < 0) THEN currentCell.Fluid = 0;

END

END PROCEDURE

Pressure

The Active Game World extends the simple pressure diffusion equations presented
by Forsyth (2002) to include a model for explosions. In the Active Game World, the
rate of diffusion of pressure, PressureFlow, is determined by the difference in pres-
sure between a cell, cell.Pressure, and its neighbor, neigh.Pressure. As with fluid, the
pressure flow is divided by four, because each cell has a maximum of four neighbor
cells, providing a good approximation.

PressureFlow = currentCell.Pressure – neighborCell.Pressure

neighborCell.Pressure += PressureFlow * 0.25

currentCell.Pressure -= PressureFlow * 0.25

If there is a sufficient difference in pressure between two adjacent cells then an
explosion occurs, due to the rapid change in pressure. An explosion occurs when a
material produces a large amount of air in a short period of time.

pressure_ratio = currentCell.Pressure / neighborCell.Pressure

When an explosion occurs in the Active Game World, heat is released in an
amount proportional to the ratio of pressure between cells (the size of the explosion).

currentCell.NewTemp += (explosion_const * pressure_ratio) * 0.25

If there is enough heat, a fire is started (see the “Fire” section) and damage is
caused to the surrounding cells. Additionally, explosions cause damage due to high
absolute pressures, as well as high pressure differences. Therefore, the Active Game

Chapter 6 Game Worlds 187

World models the effects of high absolute pressure in cells. A cell with a high enough
pressure causes damage to itself and its contents, irrespective of the pressures of the
surroundings cells.

A possible enhancement to the Active Game World would be to have the
pressure system affecting the wind, so they are part of the same force rather than
different forces acting independently. This integration would be particularly useful
when objects are introduced into the system. When an explosion occurs, small
objects and debris should be picked up and carried by the force of the explosion.

The following pseudo-code implements pressure diffusion in the Active Game
World:

PROCEDURE pressure (currentCell, neighborCell)

// if there is more pressure in cell than in neighbor

IF (currentCell.Pressure > neighborCell.Pressure) THEN

// pressure ratio between currentCell and neighborCell

pressure_ratio = currentCell.Pressure / neighborCell.Pressure;

// if pressure ratio is more than explosion ratio then explode

IF (pressure_ratio > explosion_ratio) THEN

// release heat proportional to pressure ratio

currentCell.Temp += (explosion_const *

pressure_ratio) * 0.25;

END

// pressure difference between currentCell and neighborCell

PressureFlow = currentCell.Pressure – neighborCell.Pressure;

// pressure diffuses to neighborCell

neighborCell.Pressure += PressureFlow * 0.25;

currentCell.Pressure -= PressureFlow * 0.25;

// detect and remove oscillations

IF ((PressureFlow > 0) AND

(neighborCell.Pressure < currentCell.Pressure)) THEN

// calculate the average pressure of currentCell

// and neighborCell and distribute evenly

TotalPressure = currentCell.Pressure

+ neighborCell.Pressure;

AveragePressure = TotalPressure / 2;

currentCell.Pressure = AveragePressure;

neighborCell.Pressure = AveragePressure;

188 Emergence in Games

END

END

END PROCEDURE

Rules for Interactions within Cells

Level 2 of the Active Game World hierarchy (see Figure 6.5) also includes rules for
interactions that occur within a cell. Similar to the rules for interactions between
cells, the rules for interactions within cells interact with Level 3 of the hierarchy—
the properties. However, the rules for interactions within cells are specific to what
is happening within an individual cell, irrespective of what is happening in neigh-
boring cells, and include rules for fire, wind, and rain. The following sections dis-
cuss the equations, algorithms, and pseudo-code for fire, wind, and rain in the
Active Game World.

Fire

The simulation of fire in the Active Game World is based on the equations provided
by Forsyth (2002). In the Active Game World, if the temperature of a cell, cell.Temp,
exceeds the flashpoint of the material in the cell, material(cell).Flashpoint, the cell
ignites. The rate that the cell burns at depends on the burning rate of the material in
the cell, material(cell).MaxBurn, and the temperature of the cell. The wetness of the
cell, cell.Wetness, affects the rate that it burns and how difficult it is to ignite.

Temp = cell.Temp – (material(cell).Flashpoint + cell.Wetness)

Burn = (1.0 –((0.25 * Temp)/material(cell).MaxBurn)) * Temp

As a cell burns, damage is caused to the cell, cell.NewDamage, proportional to
the temperature of the cell. As a cell becomes more damaged, it burns slower until
all the fuel in the cell is used up and it can burn no longer.

cell.Damage += (Temp * material(cell).BurnRate) – cell.Wetness) *

burn_const

Burn -= cell.Damage

As the cell burns, the fire releases heat and the cell heats up proportional to the
burning rate of the cell and burning temperature of the material, material(cell).
BurnTemp.

cell.NewTemp += Burn * material(cell).BurnTemp

Chapter 6 Game Worlds 189

Different materials burn at different rates and have different flashpoints. Three
materials are modeled in the Active Game World: water, grass, and wood. Water
cannot burn, grass is easy to ignite and burns quickly, and wood is harder to ignite
and burns longer as it provides more fuel per cell.

The following pseudo-code implements fire in the Active Game World:

PROCEDURE fire (cell)

// temperature is the difference between the temp of the cell and

// the flashpoint of the material in the cell

// and the wetness of the cell

tempDifference = cell.Temp – (material(cell).FlashPoint +

cell.Wetness);

// damage the cell

IF (tempDifference > 0) THEN

cell.Damage = ((tempDifference * material(cell).BurnRate)

- cell.Wetness) * burn_const;

END

// convert to actual burning value

IF (tempDifference > (material(cell).MaxBurn * 2)) THEN

Burn = material(cell).MaxBurn;

ELSE IF (tempDifference> 0) THEN

Burn = (1.0 – ((0.25 * tempDifference) /

material(cell).MaxBurn)) * tempDifference;

END

// burn cannot exceed MaxBurn

IF (Burn > material(cell).MaxBurn) THEN

Burn = material(cell).MaxBurn;

END

// reduce burn by amount of damage in cell (less fuel to burn

// when damaged)

Burn -= cell.Damage;

// burn cannot be less than zero

IF (Burn < 1) THEN Burn = 0;

// Heat the cell up from the burning

cell.Temp += Burn * material(cell).BurnTemp;

cell.Burn = Burn;

END PROCEDURE

190 Emergence in Games

Wind

In the Active Game World, wind is a global value that is comprised of two compo-
nents, speed and direction. Wind blows from one of four directions, north, south,
east, or west. The speed of the wind is set to an arbitrary strength of ten. The only
effect of the wind in the Active Game World is that it modifies the spread of heat.
Heat spreads slower against the wind and spreads faster in the direction that the
wind is blowing, depending on the speed of the wind, windspeed.

IF (neighborCell is with wind) THEN

currentCell.NewTemp /= 1 + (windspeed * wind_const)

neighborCell.NewTemp *= 1 + (windspeed * wind_const)

END

IF (neighbor is against wind) THEN

currentCell.NewTemp *= 1 + (windspeed * wind_const)

neighborCell.NewTemp /= 1 + (windspeed * wind_const)

END

Wind currently affects the entire grid in the same way (there is a uniform wind
speed and direction for the entire grid). A possible enhancement to the Active
Game World would be to have local wind effects, as opposed to the current global
wind effects.

Rain

In the Active Game World, rain affects fluid flow by adding fluid to the cells where
it is raining. In turn, cells that contain fluid are wet by the fluid, increasing their
wetness value. The effects of wetness are described in the section on fluid flow. In
the update cycle, the amount of rain in a cell is added to the fluid in the cell.

Chapter 6 Game Worlds 191

KEY TERMS

Rules for interactions between cells are rules for the environmental systems
that use the cellular automaton to spread their effects, including heat, fluid
flow, and pressure.
Rules for interactions within cells are specific to what is happening within an
individual cell, irrespective of what is happening in neighboring cells, and
include rules for fire, wind, and rain.
Wind is a global value that is comprised of two components, speed and
direction.
Rain affects fluid flow by adding fluid to the cells where it is raining.

PROTOTYPES OF THE ACTIVE GAME WORLD

Originally, the Active Game World was implemented in DirectX and visualized in
two dimensions (2D). The 2D prototype included three types of terrain: grass,
water and woods, which were represented as light green, blue, and dark green, re-
spectively (see Figure 6.6). The observable effects in the system were also visualized,
including fire, fluid flow, rain, and damage caused by heat.

Each of the effects was visualized as different colored pixels, where fire was red,
fluid was blue, rain was light blue, and damage was black. The number of pixels for
each effect in each cell was equal to the magnitude of the effect. For example, as a cell
became more damaged there were more black pixels to illustrate the damage. The
code and demo for the 2D prototype can be found on the accompanying CD-ROM.

192 Emergence in Games

FIGURE 6.6 Active Game World prototype in 2D.

Subsequently, the Active Game World was ported into a three-dimensional
(3D) game engine, the Auran Jet (www.auran.com/jet/overview.htm), to provide
a realistic game-like environment. Similar to the 2D representation, the 3D repre-
sentation included the same three terrain types, water, woods, and grass. The
observable effects are modeled in the 3D system by the use of sprites (2D objects),
including a rain cloud, water, fire, and damage (see Figure 6.7). The 3D represen-
tation also visualizes contour of the terrain.

www.auran.com/jet/overview.htm

OBSERVABLE BEHAVIOR

In games, scenarios and sequences of actions are often specifically scripted and
coded. The advantage to using cellular automata and a systemic approach, as used in
the Active Game World, is that the observable behavior of any object or situation in
the game can be dynamic and emergent, without needing to be scripted individually
for each object or situation. As a result, the game engine is flexible and responds con-
sistently and realistically to a wide range of actions that players may take and events
in any situation in the game.

This section examines four scenarios that are possible situations for a strategy
game and evaluates the performance of the Active Game World and a conventional
scripted system in terms of the observable behavior. In order to tune the behavior
of an emergent game system, a series of scenarios such as these need to be run, and
the parameters and rules tuned until the game behaves as expected. The four sce-
narios used for evaluation and tuning are as follows:

Heat and fire
Fluid and wetness
Pressure and explosions
Integrated system with each of the previous components

Demos for each of these scenarios in the 3D Active Game World can be found
on the CD-ROM.

Chapter 6 Game Worlds 193

FIGURE 6.7 3D Active Game World.

Scenario 1: Heat and Fire

Consider an example where a fire starts in a forest or woods. To appear natural, the
fire needs to burn, cause damage to the woods, and spread through the woods, all
at a believable rate. Subsequently, the fire is blown north to grasslands by wind.

As grass has different properties than woods, the fire should behave differently
when interacting with the grass, it will burn out faster as the grass provides less fuel,
it will spread faster as the grass is easier to ignite and it will release less heat as it
burns. Finally, the fire runs into a river that runs across the map and the fire spreads
no farther since the river cannot be ignited, although some heat can be passed
across it (see Figure 6.8).

194 Emergence in Games

FIGURE 6.8 A fire starts in a forest (a), wind spreads the fire north to grasslands (b–c),
and the fire is blocked by a river (d).

Scripted System Evaluation

In a game where the heat and fire scenario is scripted, the rate at which the fire
burns, spreads, and damages would need to be specifically coded. Also, the rate of
the fire spreading from the woods to the grass would need to be specified, as would
the information that the fire must stop burning when it reaches the river. For
example, the script would include instructions such as burn each cell of woods for
x seconds, spread fire to neighboring woods cells after y seconds, spread fire from
woods to grass after z seconds and so on.

If the scenario were changed slightly, such as increasing the density of the
woods, the variables that are dependent on the density of the woods, such as the
rate at which the fire spreads in woods, would need to be changed. It becomes
apparent that a system with a specifically coded, static architecture is not robust to

even small changes in the heat and fire scenario. Each time a change is made, each
variable that is associated with the change would need to be updated by hand, or the
system would not work.

Furthermore, extending this scripted system would become difficult and awk-
ward. For example, if a new type of terrain were added, such as scrub, there would
need to be new variables for fire moving from woods to scrub, grass to scrub, scrub
to woods, and scrub to grass, as well as all the variables for burning scrub. It is clear
that the number of instructions needed to run the heat and fire scenario would
rapidly grow out of control with even a few small extensions.

Active Game World Evaluation

In contrast to scripted systems, when the heat and fire scenario is run in the Active
Game World, the resulting behavior depends on the underlying properties of the
terrain, which are used by the equations for heat and fire to determine the behav-
ior of the system dynamically.

The approach that is taken when scripting is to attempt to encode the behavior
directly. For example, the woods burn for five seconds because it is told to burn for
five seconds. However, the Active Game World uses lower-level information so
that the visible behavior of the system will be emergent. With the Active Game
World, the woods burn for five seconds because the system rules consider its flash-
point, specific heat capacity, rate of burning, amount of fuel, temperature, and so
on, and calculates at each time step whether it is still burning. Due to the extra level
of complexity, the Active Game World works on any material in any scenario.

It may seem more complex to make these calculations, but there is one set of
formulae that applies in any situation with any material and the only difference is
the properties of each material. Therefore, once the set of formulae is coded, the
burning of any material can be simulated as long as the values of the properties are
available, making it a data-driven system. There is no awkward expansion of the
system, no limit to the number of materials that can be added, and a great deal of
flexibility in handling new situations, which reduces the difficulty and cost of qual-
ity assurance.

Scenario 2: Fluid and Wetness

The second scenario presents a case study with fluid and wetness, in which rain falls
on the map in a position that is at the top of a hill. A certain amount of the water is
able to soak into the ground at the top of the hill (depending on the terrain), but
after some rain has fallen the water starts to run down the hill. The harder the rain,
the faster the water runs down the hill. Also, the steeper the slope, the faster the
water runs down the hill.

Chapter 6 Game Worlds 195

At the bottom of the hill is a valley, which rises back up into a hill on the other
side. When the water reaches the valley it starts to build up and runs outward to fill
the level ground in the valley. With sufficient rainfall, the water will fill the valley
and start to flow back up the hills on either side of the valley (see Figure 6.9).

196 Emergence in Games

FIGURE 6.9 Rain falls at the top of a hill (a) and the water runs down the hill (b) and
spreads out in the valley below (c–d).

Scripted System Evaluation

When scripting the fluid and wetness scenario specifically, the script would need to
encode information for where the water will run, how fast it will run and other
behaviors such as how deep it will pool in different areas. Scripting the behavior of
the water specifically would be relatively simple, but would rely on the rain falling
in the same position and at the same rate and the contours of the landscape always
being the same.

If the rain were to fall from a different position, or if the contours of the land-
scape were to change even slightly, the behavior of the water would be completely
different and a new script would be needed. So, if the fluid and wetness scenario
was an event in a game that always played out the same way, a script would be fine.
However, if rain was a random event that occurred in the game, it could not be
foreseen where it would fall or what path it should follow.

Active Game World Evaluation

In the Active Game World, the position of the rain, the speed of the rain and the
contour of the landscape are not a problem. The Active Game World makes calcu-

lations every time step for which way the water will flow, how fast it will flow and
how deep it will pool. The Active Game World uses its formulas and the data it is
provided, such as the relative height of the neighbors of each cell and the amount
of water in each cell, and it dynamically calculates the behavior of the water at each
time step.

As a result, the Active Game World can accommodate changes in the environ-
ment and simulate the flow of water down the hill for different positions and speed
of the rain and for different contours of the hill. The Active Game World uses its
rules and properties to determine the behavior of the water in real-time, dependent
on the current situation, rather than having the behaviors of the water pre-scripted.

Scenario 3: Pressure and Explosions

The third scenario presents a case study with pressure and explosions, in which an
explosion occurs somewhere on the map. The high absolute pressure of the explo-
sion causes immediate damage in the vicinity of the explosion. The area that is
affected by the pressure depends on the magnitude of the explosion.

In addition to the damage from pressure, energy is generated as a result of the
difference in pressure between the explosion and the surrounding area. As a result
of the energy (heat) that is released, a fire is started in the area around the explo-
sion. The fire then spreads and causes damage to a wider area around the initial
explosion (see Figure 6.10).

Chapter 6 Game Worlds 197

FIGURE 6.10 An explosion occurs, the high absolute pressure causes immediate
damage and a fire starts as a result of the heat released by the explosion. Each panel
shows different-sized explosions.

Scripted System Evaluation

An explosion is relatively simple to simulate in the conventional manner, and is
commonly scripted in many commercial games. However, there is a difference
between a scripted explosion occurring that is triggered by a bomb going off and an
explosion naturally occurring as there is suddenly a large difference in pressure
between two cells.

With the scripted example, there must always be a high-level trigger for the
explosion, such as a bomb, a grenade, or some other discrete explosion event. On
the other hand, if there are conditions under which an explosion naturally occurs,
such as a large difference in pressure brought about by piercing a gas cylinder, the
explosion will naturally occur when these conditions are met. Therefore, there does
not need to be a discrete event, rather the explosion will occur because an explosive
device has just caused a large difference in pressure or for unforeseen reasons.

Active Game World Evaluation

In the Active Game World, an interesting occurrence is the second degree effect of
the explosion, namely the fire that is started as a result of the rapid increase in heat
around the explosion. This second degree effect could be manufactured in a
scripted explosion, but would not reach the same level of realism as the Active
Game World, which can dynamically take into consideration the type of terrain,
objects in the area, and other important factors.

Depending on the magnitude of the explosion, there would be different
amounts of heat generated and different effects of the fire. Although this variation
could be scripted, it would not have the flexibility of the Active Game World. For
example, if an explosion occurs in an area containing highly flammable material,
the behavior of the Active Game World would be significantly different, but a
scripted explosion would consider only the magnitude of the explosion and burn
an area around the explosion accordingly.

Scenario 4: Integrated System: Heat, Fluid, and Pressure

The fourth scenario is a combination of the previous three case studies and illus-
trates the real power of the Active Game World. An explosion occurs in the woods
and the high pressure causes damage to the immediate area. As a result of the en-
ergy released from the explosion a fire is started, which then spreads through the
woods. A wind then blows the fire west into a neighboring grassy valley, which con-
tains a small village.

It has been raining at the top of the hill next to the valley and the water flows
down the hill into the valley and puts out the fire. The fire recedes into the woods
and burns until the woods are burnt out and there is no more fuel (see Figure
6.11).

198 Emergence in Games

Scripted System Evaluation

It would take a great deal of effort to specifically script the complex behavior of the
environment in the integrated scenario, as well as careful attention to detail. Every
small change to the scenario would result in different desired behavior, requiring
the scenario to be rescripted. Therefore, specifically scripting a scenario as complex
as the fourth scenario would require substantial initial effort as well as significant
ongoing effort to update and maintain the system.

Active Game World Evaluation

Each element in the Active Game World looks after its own behavior, the heat
spreads, the fire burns, the water flows and so on, dependent on its own set of rules
and the properties and state of the materials it is acting on. As these elements
simultaneously work independently, they impact on each other and give rise to
emergent, complex behavior that was not specifically programmed into them. The
observable complex behavior in the scenario arises from the independent behavior
of the elements, making the whole more than the sum of its parts.

The use of cellular automata means that the complex behavior arises as a result
of the individual elements interacting with each other. The Active Game World
accommodates the possible variations in a complex scenario, such as different types
of terrain, the effect of wind, the contours of the terrain, the interactions of heat,
pressure, and fluid, without the need to recode for each specific scenario.

Chapter 6 Game Worlds 199

FIGURE 6.11 An explosion in the woods causes immediate damage and starts a fire (a).
The fire is blown west by the wind (b) and extinguished by the water flowing down the
hill from the rain falling above (c–d).

The complex situation described in the integrated scenario demonstrates the
benefit of the emergence of the Active Game World. Rather than the complex
behavior having to be specifically scripted, it just happens as a result of all the
components of the system working together.

ACTIVE ENVIRONMENT SUMMARY

In the first part of this chapter, you developed and tested a set of properties and
rules for a cellular automaton that can be used to model basic environmental effects
in a strategy game environment. To create the environment for the Active Game
World, you started with simplified equations from thermodynamics and devel-
oped three complete, independent systems: heat, fluid flow, and pressure, with
local effects of rain, explosions, and fire.

Each of the major systems, heat, fluid, and pressure, demonstrated various
advantages over conventional scripted approaches. For heat and fire, the major
advantage was that any number of terrain types could be added to the system and
no additional scripting or calculating would be required. In contrast, in a con-
ventional system, the script would need to be updated for each new material and
transition between materials.

In the rain and fluid flow system, the advantage was found in the contours of
the terrain. As the Active Game World used the underlying rules and properties to
calculate the speed and direction of the flow, any possible terrain contours could
be accommodated, whereas a scripted system would need to have the contours of
the terrain specified in advance.

For the pressure and explosions system, advantages were that the explosions
could occur naturally due to a difference in pressure between two cells, rather than
needing an event to trigger the explosion. Also, a fire was started as a second degree
effect of the explosion, if sufficient heat was generated by the explosion to ignite the
material.

Each of these sub-systems had advantages over conventional scripting meth-
ods, which were mostly related to the Active Game World being able to dynamically
accommodate changes or variations to the environment that a scripted system
would be unable to do. However, the real power of the Active Game World became
apparent when the heat, pressure, and fluid flow systems were combined.

In combining these systems, the Active Game World was able to demonstrate
the emergent interactions that take place in a complex scenario that would otherwise
need to be scripted specifically, such as water flowing downhill to put out a fire that
had been blown there from an explosion to the east. Additionally, due to the real-
time simulation of the environmental rules, variables in emergent game worlds can
be tuned on-the-fly while the game is running. Tuning conventional approaches in
real-time is substantially more difficult and can even be impossible in some cases.

200 Emergence in Games

PROPERTY-BASED OBJECTS

Game objects are an integral part of any game world as they compose the major
source of player interactions. Objects in games are numerous and varied, including
weapons (such as guns and swords) in first-person shooter games, quest items
(such as the Holy Grail or a diary) in role-playing games, and buildings (such as
barracks and factories) in strategy games. Each type of game object interacts with
the game environment and the players in different ways, which gives rise to in-
teresting possibilities for action for the players, but complicates the job of the game
developer.

Some games have allowed more freedom and variation through property-based
objects and rules for how the objects interact. For example, in the simulation game
The Sims, intelligence is embedded into objects in the environment, called Smart
Terrain. The objects broadcast properties to nearby agents to guide their behavior.
Similarly, the game objects in the first-person shooter game Half-Life 2 use named
links between pieces of content called symbolic links (Walker, 2004) that define the
properties of the objects and determine how they can be affected by players and
other objects.

Using this global design, the objects behave more realistically and are more
interactive as they are encoded with types of behavior and rules for interacting,
rather than specific interactions in specific situations. These objects afford emer-
gent behavior and player interactions that were not necessarily foreseen by the
developers.

At the basic level, objects are the same as cells in the environment, in that they
both exist in the physical world and are therefore subject to the same rules of physics,
such as heat transfer, fluid flow, and pressure. However, whereas all cells are uniform
in structure, in that they are all sections of terrain, objects have comparatively com-
plex physical structures. This is where the tags or labels used to create property-based
game objects, such as in The Sims and Half-Life 2, come in handy.

This section describes property-based game objects that can be integrated into
the Active Game World model. Objects are implemented as though they are cells,
using the same low-level properties based on the object’s material. Objects are also
imbued with high-level properties, based on their structure, to constrain the possi-
ble physical interactions of the objects.

Objects exist within cells of the environment and can therefore be treated as
additional neighboring cells for the purposes of interacting with the environment.
Additionally, the high-level property tags that are attached to objects can be used to
create affordances for interactions with the player and other objects.

Chapter 6 Game Worlds 201

OBJECT STRUCTURE

In the Active Game World model, the objects are designed to have a similar struc-
ture as the cells of the environment. Each object has a set of properties that include
coordinates (position in the cellular automaton), temperature, pressure, fluid,
mass, wetness, and material. Objects are defined in the Active Game World as
follows:

// Structure of an object

struct obj{

int Material;

float Temp;

float NewTemp;

float Mass;

float NewMass;

float Burn;

float Damage;

float NewDamage;

float Wetness;

float Height;

float Fluid;

float NewFluid;

};

// Objects in the Active Game World

int numObj;

numObj = 10;

obj objects[numObj];

The materials that objects are composed of have the same properties as materi-
als for the terrain, including flashpoint, burning temperature, specific heat capacity,
and maximum burning rate. An additional property, strength, was needed for objects
to model the amount of pressure a particular material can withstand before explod-
ing, which was unnecessary for terrain. Object materials are defined as follows:

// Structure of a material

struct material{

float FlashPoint;

float BurnTemp;

float MaxBurn;

float SHC;

float BurnRate;

202 Emergence in Games

float MaxFluid;

float Strength;

};

// Materials in the Active Game World

int numMaterials;

numMaterials = 3;

material materials[numMaterials];

In strategy games, the majority of objects in the environment are buildings,
such as houses, bunkers, or factories. Therefore, the materials that have been chosen
for the Active Game World are common types of building materials, such as wood,
metal, and brick. These materials have significantly varying properties and are
therefore ideal for illustrating the emergent behavior of the system when interact-
ing with different objects (see Table 6.2). The values for each property for each ma-
terial in the Active Game World was initially estimated and subsequently tuned
until satisfactory behavior was achieved.

Chapter 6 Game Worlds 203

Values

Property Description Wood Metal Brick

Flashpoint Ignition temperature of the material 2000 5000 4000

BurnTemp Multiplier for the temperature the 5 10 8
material burns at (amount of heat
released)

BurnRate Multiplier for the rate the material 10 5 7
burns at (rate of consuming fuel)

MaxBurn Maximum rate the material can burn at 300 100 200

SHC Specific heat capacity—the amount of 100 50 150
energy required to heat up this material

MaxFluid Maximum amount of fluid the material 50 0 20
can absorb

Strength Modifier for the pressure the material 0.6 1.0 0.8
can withstand before it breaks

TABLE 6.2 Object Material Properties

First, metal is hard to ignite, transfers heat easily, and absorbs little fluid. Sec-
ond, wood is much easier to ignite, but does not transfer heat as well and is far more
absorbent. Third, brick is moderate to ignite, poor for heat transfer, and can absorb
a moderate amount of water.

In addition to these low-level properties, objects have a set of high-level prop-
erties (represented as Boolean values) that encode attributes of the object’s physi-
cal structure, including whether the object has volume, is solid, or is open.

OBJECT DESIGN

At the basic level, objects are the same as cells in the environment in that they both
exist in the physical world and are therefore subject to the same rules of physics,
such as heat transfer, fluid flow, and pressure. However, whereas all cells are uni-
form in structure, in that they are all squares of terrain, objects have comparatively
complex physical structures.

In order to model the structure of objects at the same level as the rest of the
system, it would be necessary to divide the objects up into cells in the same way the
terrain is divided into cells. Unit mapping objects would allow the cellular
automaton to dynamically determine the contours (that is, the structure) of the
object in the same way as the contours of the terrain are dynamically determined.
However, there are two main considerations with breaking objects down into cells.

First, given the number of objects in a game environment and the complexity
of game objects, it would be prohibitively expensive to perform the necessary
calculations. Second, the relative benefit to the game would be minimal, especially
in comparison to the cost involved. For example, whereas it is of great benefit to a
game to be able to map how water would flow from one cell of the map to the next,
it is much less important to calculate exactly how water will flow into an object,
such as a bucket. However, knowing that water will flow into the bucket has signif-
icant potential in terms of emergent gameplay, in that a player could fill up a bucket
with water, carry it to a fire, and extinguish the fire.

The potential benefit of structural object properties to gameplay lies in knowing
the important features of the game objects that will have an impact on the possible
actions and interactions of the objects. A possible solution is to give the objects de-
scriptors of the important features of their physical structure that predispose them
to certain actions and behaviors. For example, only an object that has volume can be
filled with water, so that a bucket can be filled with water but a sword cannot.

A logical and computationally viable solution is to have two different levels of
properties for objects. As with cells, objects have low-level properties, which define
how the matter of the objects interacts in the world. Additionally, objects have
high-level properties, defined by the structure of the object, which determine
whether it is structurally able to participate in certain interactions. As a result,

204 Emergence in Games

objects in the Active Game World have low-level properties related to their com-
position and high-level properties related to their structure.

Having two levels of properties necessitates a two-part approach to modeling
objects in a game environment. The first part of the approach is to treat the objects
as cells, where each object has only one neighbor (its host cell). The second part of
the approach is to consider the high-level properties of the objects.

High-level properties can be assembled into affordances that determine whether
the object is able to participate in each interaction. For example, only objects that
afford flow can participate in fluid or pressure flow. The two-part approach used for
defining the interactions of objects with the environment in the Active Game World
is described in the following sections.

LOW-LEVEL PROPERTIES

At the basic level of physical interactions, objects are the same as cells, because they are
both entities in the physical environment that are subject to the rules of physics. There-
fore, the first part of the approach to modeling objects in the Active Game World is to
treat the objects as cells, where each object interacts exclusively with its host cell.

There are two key types of interactions possible between objects and cells. First,
objects within a cell are affected by the cell in the same way that neighboring cells
are affected by the cell (exchange of heat, pressure, and fluid). Second, objects affect
their host cell as if the host were the object’s only neighbor. Therefore, the object
both affects and is affected by its host cell.

In some components of the Active Game World, such as heat transfer, there is
no difference between object-to-cell interactions and cell-to-object interactions.
However, in other components there needs to be a differentiation between these
two types of interactions.

For example, a high-pressure object in a comparatively low-pressure cell will
explode. However, the effect of the inverse of this state, a high-pressure cell (with a
low or high-pressure object), is to damage anything within the cell from high
absolute pressure (including the cell itself), rather than the cell exploding.

The interactions that take place between cells and objects are described in this
section, with the differences from cell-to-cell interactions highlighted. The follow-
ing sections also contain pseudo-code for each algorithm, which illustrates how the
equations are integrated.

Heat

When transferring heat between two entities, whether they are two cells or an object
and a cell, the heat capacities of the two entities first need to be calculated. The main
difference between transferring heat between two cells and between a cell and an
object is that objects are much smaller than cells, indicated by the mass of the

Chapter 6 Game Worlds 205

object. As such, the heat transfer between an object and a cell will be much less than
the transfer between two cells of the same size.

The heat capacity of the object, HCObj, is equal to the specific heat capacity of
the object’s material, material(obj).SHC, multiplied by the mass of the object,
obj.Mass. Similarly, the heat capacity of the cell, HCCell, equals the specific heat
capacity of the cell’s material, material(cell).SHC, multiplied by the mass of the cell.

HCObj = material(obj).SHC * obj.Mass

HCCell = material(cell).SCH * cell.Mass

The energy flow, EnergyFlow, between the object and the cell is equal to the dif-
ference between the cell’s temperature, cell.Temp, and the object’s temperature,
obj.Temp.

EnergyFlow = cell.Temp – obj.Temp

Once the energy flow is calculated, it can be used to determine whether energy
will flow from the object to the cell or from the cell to the object. If EnergyFlow is a
positive value, the cell’s temperature is greater than the object’s temperature and
heat will flow from the cell to the object. Otherwise, heat will flow from the object
to the cell. In the case where the cell’s temperature is greater and heat flows from
the cell to the object, the EnergyFlow is converted from heat to energy by multiply-
ing by the heat capacity of the cell.

EnergyFlow *= HCCell

Otherwise, if energy is flowing from the object to the cell, the EnergyFlow is
converted from heat to energy by multiplying by the heat capacity of the object.

EnergyFlow *= HCObj

In both cases, the EnergyFlow is then multiplied by a constant, ConstantEnergy
FlowFactor, to control the speed of the cell update.

EnergyFlow *= ConstantEnergyFlowFactor

Subsequently, the new heats for the cell, cell.NewTemp, and the object, obj.
NewTemp, are calculated by dividing the EnergyFlow by the heat capacity for the cell
and object, respectively. In the case where heat flows from the cell to the object, the
cell’s temperature decreases and the object’s temperature increases. Otherwise, if
the heat flows from the object to the cell then the object’s temperature decreases
and the cell’s temperature increases.

206 Emergence in Games

cell.NewTemp (+/-) = EnergyFlow / HCCell

obj.NewTemp (+/-) = EnergyFlow / HCObj

To avoid oscillations (heat moving back and forth between the object and cell),
the difference in heat is distributed evenly between the object and the cell if the
transfer of heat would result in the entity that previously had less heat having more
heat after the exchange.

TotalEnergy = (HCObj * obj.NewTemp) + (HCCell * cell.NewTemp)

AverageTemp = TotalEnergy / (HCObj + HCCell)

obj.NewTemp = AverageTemp

cell.NewTemp = AverageTemp

The following pseudo-code implements the diffusion of heat in the Active
Game World with objects:

PROCEDURE heat_obj (obj, cell)

// Find current heat capacities

HCObj = material(obj).SHC * obj.Mass;

HCCell = material(cell).SHC * cell.Mass;

EnergyFlow = cell.Temp - obj.Temp;

// Energy flowing from cell to object

IF (EnergyFlow > 0) THEN

// Convert from heat to energy

EnergyFlow *= HCCell;

// A constant according to cell update speed

EnergyFlow *= ConstantEnergyFlowFactor;

cell.NewTemp -= (EnergyFlow / HCCell);

obj.NewTemp += (EnergyFlow / HCObj);

// Detect and kill oscillations

IF (cell.NewTemp < obj.NewTemp) THEN

TotalEnergy = (HCObj * obj.NewTemp)

+ (HCCell * cell.NewTemp);

AverageTemp = TotalEnergy / (HCObj + HCCell);

obj.NewTemp = AverageTemp;

cell.NewTemp = AverageTemp;

END

END

Chapter 6 Game Worlds 207

// Energy flowing from object to cell

ELSE IF (EnergyFlow < 0) THEN

EnergyFlow *= -1;

// Convert from heat to energy

EnergyFlow *= HCObj * ConstantEnergyFlowFactor;

cell.NewTemp += (EnergyFlow / HCCell);

obj.NewTemp -= (EnergyFlow / HCObj);

// Detect and kill oscillations

IF (obj.NewTemp < cell.NewTemp) THEN

TotalEnergy = (HCObj * obj.NewTemp)

+ (HCCell * cell.NewTemp);

AverageTemp = TotalEnergy / (HCObj + HCCell);

obj.NewTemp = AverageTemp;

cell.NewTemp = AverageTemp;

END

END

END PROCEDURE

Fluid Flow and Wetness

There are two main interactions of fluids with objects: flow and wetness. Fluid flow
between an object and a cell is relatively simple compared to fluid flow between
cells, because there is no height difference between a cell and the objects in the cell.

There are two cases for fluid flow between an object and a cell modeled in the
Active Game World, flow from cell to object and flow from object to cell. The two
fluid flow cases are discussed in this section. The wetness of an object is dependent
on the wetness of the object’s host cell and the absorbency of the object’s material.

Flow from Cell to Object

Fluid flows from a cell to an object within the cell if the cell contains fluid and if the
object contains less than the maximum amount of fluid it can hold, which depends
on the size of the object. The object must also afford flowing, which is discussed in
the “High-Level Properties” section.

The amount of fluid that flows into the object from the cell, flow, is equal to the
difference between the amount of fluid in the cell, cell.Fluid, and the amount of
fluid in the object, obj.Fluid. This difference is then divided by four, because the
fluid from the cell must be divided amongst the cell’s neighbors and the object and
one quarter provides a good approximation.

The difference between cell.Fluid and obj.Fluid is multiplied by the ratio of the
mass of the object, obj.Mass, to the mass of the cell, cell.Mass, to account for the dif-

208 Emergence in Games

ference in size between the cell and the object. Consequently, the object is filled
with the same proportion of fluid as is in the cell.

flow = (cell.Fluid – obj.Fluid) * 0.25 * (obj.Mass / cell.Mass)

Flow from Object to Cell

Fluid flows from a cell when the material in that cell contains the maximum
amount of fluid that it can hold. As a result, the excess fluid spills from the cell into
its neighboring cells. However, fluid flow from an object does not depend on the
amount of fluid that the object’s material can hold. Rather, it depends on the max-
imum amount of fluid that the structure of the object can hold, which depends on
the volume of the object.

When the fluid in an object exceeds the volume of the object, as determined by
the mass of the object, the excess fluid spills over into the object’s host cell. The
excess fluid in an object, excess, is the difference between the amount of fluid in the
object, obj.Fluid, and the mass of the object, obj.Mass.

excess = obj.Fluid – obj.Mass

If the object contains more fluid than it can hold, it overflows into the host cell.
The amount of fluid that flows, flow, from the object to the cell is equal to the ex-
cess, multiplied by the ratio of the obj.Mass to the cell.Mass.

flow = excess * (obj.Mass / cell.Mass)

The following pseudo-code implements fluid flow between objects and cells in
the Active Game World:

PROCEDURE fluid_obj (obj, cell)

// will flow into obj if cell has any fluid

IF ((cell.Fluid > 0)

// and if obj is not full of water

AND (obj.Fluid < (material(obj).MaxFluid * obj.Mass/cell.Mass))

// and object affords flowing

AND AffordsFlow(obj))

THEN

// should fill obj with same proportion of fluid as in cell

flow = (cell.Fluid - obj.Fluid) * 0.25 * (obj.Mass/cell.Mass);

Chapter 6 Game Worlds 209

IF (flow < 0) THEN flow = 0;

cell.NewFluid -= flow;

obj.NewFluid += flow;

IF (cell.NewFluid < 0) THEN cell.NewFluid = 0;

END

// will flow from obj to cell if obj is over-full

excess = obj.Fluid – material(obj).MaxFluid;

IF ((excess > 0)

// and object affords flowing

AND AffordsFlow(obj))

THEN

// objects are smaller than cells

flow = excess * (obj.Mass / cell.Mass);

cell.NewFluid += flow;

obj.NewFluid -= flow;

END

END PROCEDURE

Pressure

The three main interactions of pressure with objects modeled in the Active Game
World are (1) high-pressure damage, (2) flow, and (3) explosions. Objects that are
located in a cell that has high enough pressure are damaged, as is the cell itself.
Similar to fluid, pressure can flow from objects to cells and cells to objects. Finally,
if an object contains significantly more pressure than its host cell then it will
explode, under the right conditions.

The pressure ratio between an object and a cell that is necessary for an explo-
sion to occur depends on the object’s material. For example, a metal crate can hold
more pressure than a wooden crate before it explodes, due to the strength of the
material. Additionally, the metal crate exploding results in a bigger explosion than
the wooden crate, due to the increased pressure capacity.

In the “Active Game Environment” section, neighboring cells with high pres-
sure differences exploded. However, it was decided that cells themselves should
not explode in the Active Game World, due to the scale of cells in a real-time strat-
egy game.

It would make sense for small cells in a human-sized game to be able to explode
based on pressure differences, but not for cells several kilometers across to explode
in strategy games. Instead, only objects can explode within cells in the Active Game

210 Emergence in Games

World. The rules used for each of the pressure interactions are explained in this
section.

First, if an object is located in a cell that has high absolute pressure then the
object will be damaged. If the pressure of the cell, cell.Pressure, is greater than the
constant for high absolute pressure, high_pressure, the object will incur damage,
obj.NewDamage, proportional to the cell’s pressure.

obj.NewDamage += cell.Pressure * pressure_damage_const

Second, if the pressure in the cell, cell.Pressure, is higher than the pressure in the
object, obj.Pressure, pressure flows from the cell to the object. Pressure flows
between a cell and an object only when the object affords flow. The amount of
pressure that flows from the cell to the object, PressureFlow, is equal to the differ-
ence between the cell’s pressure, cell.Pressure, and the object’s pressure, obj.Pressure.
The rate of the PressureFlow between a cell and an object is modified by the ratio of
the size of the object, obj.Mass, to the size of the cell, cell.Mass.

PressureFlow = (cell.Pressure – obj.Pressure) * (obj.Mass / cell.Mass)

Third, if the pressure in an object is substantially greater than pressure in
its host cell, it is possible that an explosion will occur. The ratio of the pressure,
pressure_ratio, in the object to the cell is calculated.

pressure_ratio = obj.Pressure / cell.Pressure

If the pressure_ratio is greater than the pressure ratio required for an explosion,
explosion_ratio, an explosion will occur. The explosion_ratio is modified by the
strength of the object’s material, material(obj).Strength, so that the explosion_ratio
required for an object that is made of a relatively weak material, such as wood, is
much lower than for an object made of a much stronger material, such as metal.
Also, the object must afford exploding.

The explosion releases an amount of heat that is proportional to the size of the
explosion, pressure_ratio, multiplied by a constant, explosion_const. The heat gen-
erated by the explosion of the object is released into the host cell, increasing the
temperature of the cell, cell.NewTemp.

IF ((pressure_ratio > (explosion_ratio * material(obj).Strength))

AND AffordsExploding(obj)) THEN

cell.NewTemp += pressure_ratio * explosion_const

END

Chapter 6 Game Worlds 211

When an explosion occurs, as well as releasing heat, the pressure from the ob-
ject is transferred to the cell. The amount of pressure that flows from the exploded
object to the cell, PressureFlow, is equal to the difference between the pressure of the
object and the pressure of the cell.

PressureFlow = obj.Pressure – cell.Pressure

If an explosion does not occur because the pressure_ratio is too low, pressure
will flow only from the object to the cell. In order for pressure to flow from the ob-
ject to the cell, the object must afford flowing, as discussed in the “High-Level
Properties” section. The amount of pressure that flows from the object to the cell,
PressureFlow, is equal to the difference in pressure between the object and the cell.
The rate of the PressureFlow between an object and a cell is modified by the ratio of
the size of the object, obj.Mass, to the size of the cell, cell.Mass.

PressureFlow = (obj.Pressure – cell.Pressure) * (obj.Mass / cell.Mass)

The following pseudo-code implements pressure diffusion between objects and
cells and explosions in the Active Game World:

PROCEDURE pressure_obj (obj, cell)

// high absolute pressure in cell immediately damages object

IF (cell.Pressure > high_pressure) THEN

obj.NewDamage += cell.Pressure * pressure_damage_const;

END

// cell pressure is higher than object pressure

// and object affords flowing

IF ((cell.Pressure > obj.Pressure) AND AffordsFlow(obj)) THEN

// flow of pressure: cell to object

PressureFlow = (cell.Pressure - obj.Pressure)

* obj.Mass/cell.Mass;

obj.NewPressure += PressureFlow;

cell.NewPressure -= PressureFlow;

END

// high pressure in object — causes explosion

ELSE IF (obj.Pressure > cell.Pressure) THEN

// ratio of object pressure to cell pressure

// modified by obj material

pressure_ratio = (obj.Pressure / cell.Pressure);

212 Emergence in Games

// if pressure difference is great enough then explode

IF ((pressure_ratio > (explosion_ratio

* material(obj).Strength))

and AffordsExploding(obj)) THEN

cell.NewTemp += (explosion_const * pressure_ratio);

PressureFlow = obj.Pressure - cell.Pressure;

cell.NewPressure += PressureFlow;

obj.NewPressure -= PressureFlow;

// flow of pressure: object to cell

ELSE

// object affords flowing out of

IF (AffordsFlow(o)) THEN

PressureFlow = (obj.Pressure - cell.Pressure)

* obj.Mass/cell.Mass;

obj.NewPressure -= PressureFlow;

cell.NewPressure += PressureFlow;

END

END

END

END PROCEDURE

Fire

The rules for the burning of an object are the same as the rules for the burning of a
cell of the terrain, because burning is dependent only on the properties of the ob-
ject or cell and its material. The burning temperature of the object, Temp, is the dif-
ference between the temperature of the object, obj.Temp, and the flashpoint of the
object’s material, material(obj).FlashPoint, modified by the wetness of the object,
obj.Wetness.

Temp = obj.Temp – (material(obj).FlashPoint + obj.Wetness)

If the burning temperature is greater than zero, the object will incur damage
proportional to the burning temperature multiplied by the burning rate of the ob-
ject’s material, material(obj).BurnRate, modified by the wetness of the object and
multiplied by a constant.

obj.NewDamage += ((Temp * material(obj).BurnRate) – obj.Wetness)

* burn_const

Chapter 6 Game Worlds 213

The burning temperature of the object must then be converted to an actual
burning value, Burn. If the burning temperature is greater than double the maximum
burning rate of the object’s material, material(obj).MaxBurn, Burn is equal to the
maximum burn rate of the object’s material. Otherwise, Burn equals one minus the
temperature divided by the maximum burn rate, multiplied by the temperature.

Burn = (1.0 – ((0.25*Temp) / material(obj).MaxBurn)) * Temp

As the object burns, the fire releases heat and the object heats up from burning.
The amount the object is heated is proportional to the burning value multiplied by
the burning temperature of the object’s material, material(obj).BurnTemp, and a
constant value.

obj.NewTemp += (Burn * material(obj).BurnTemp) * BurnHeatConst

The following pseudo-code implements objects burning in the Active Game
World:

PROCEDURE fire_obj (obj)

//Burning temperature

tempDifference = obj.Temp - (material(obj).FlashPoint +

obj.Wetness);

//Damage the cell

IF (tempDifference > 0) THEN

obj.NewDamage += ((tempDifference * material(obj).BurnRate)

- obj.Wetness) * const;

END

//Convert to actual burning value

IF (tempDifference > (material(obj).MaxBurn * 2)) THEN

Burn = material(obj).MaxBurn;

ELSE IF (tempDifference > 0) THEN

Burn = ((1.0 - ((0.25 * tempDifference) /

material(obj).MaxBurn))

* tempDifference);

END

IF (Burn > material(obj).MaxBurn) THEN

Burn = material(obj).MaxBurn;

END

Burn -= obj.Damage;

214 Emergence in Games

IF (Burn < 1) THEN Burn = 0;

// Heat the object up from the burning

obj.NewTemp += (Burn * material(obj).BurnTemp) * BurnHeatConst;

obj.Burn = Burn;

END PROCEDURE

Wind and Rain

Currently, wind and rain do not directly affect the objects in the Active Game
World. Instead of rain directly affecting the objects, rain affects the fluid in a cell,
which determines the wetness of a cell, which in turn determines the wetness of the
objects in the cell. Wind does not affect objects, because the wind is on the scale of
cell to cell, rather than within a cell.

Within the context of a strategy game, it is unlikely that wind would affect the
objects in the environment as they are mostly very large objects, such as buildings.
Wind would have a more interesting effect when modeled in human-sized games,
such as first-person shooter or role-playing games, where there are small objects to
blow around, such as paper and cans.

HIGH-LEVEL PROPERTIES

Whereas the low-level properties discussed in the previous section are pertaining to
an object’s composing material, the high-level properties relate to an object’s struc-
ture. Low-level properties consist of continuous numeric values, such as a mater-
ial’s flashpoint or burning temperature, which are substituted into equations to
determine when and how that material will be affected by heat, water, and pressure.

High-level properties consist of discrete descriptors of an object’s structural
properties, which constrain the interactions that an object will be able to take part
in due to its physical structure. For example, only an object that has volume will be
able to hold water, whereas an object’s volume has no effect on whether it will
catch on fire. High-level properties are implemented in the Active Game World as
Boolean values, such as is_open = false or has_volume = true.

Objects with different combinations of high-level properties afford different
types of interactions. An object’s high-level properties can be combined to form
different affordances. For example, for an object to afford fluid flow it must have
volume, some kind of opening, and be solid (as opposed to perforated). An object
can contain a large amount of pressure only when it does not have an opening.

Affordances can then be used as preconditions for certain interactions. For
instance, only objects that afford flow can engage in fluid or pressure flow. Affor-
dances are implemented in the system as functions that read in an object, check the

Chapter 6 Game Worlds 215

relevant properties of the object, and return a true or false value to indicate whether
the object affords the given behavior.

It would be possible to define affordances for materials in the same way as for
structure. For example, rather than having a flashpoint, burning temperature, and so
on, a material could simply afford burning. However, encoding these properties at
a high level would reduce the emergent potential of the environment. These prop-
erties are modeled at a low level so that the high-level behavior will be emergent.

Modeling the high-level properties at a low level (reducing the object to a set of
cells to define its structure) would be impractical and provide little benefit to the
gameplay in comparison to the computational complexity. Therefore, it is neces-
sary to separate the properties of objects into two levels, a low level related to the
object’s material to allow emergent behavior and a high level related to the object’s
structure to constrain the object’s set of interactions to what is possible given its
physical structure.

Heat and Fire

Heat is a system that is solely dependent on the composition of an object. The
structure of an object does not determine whether it can transfer heat, only the
material of the object does. For example, an object made of metal will transfer heat
in the same way, dependent on the rules of heat transfer, whether it is a metal crate
or a metal chair. Similarly, the burning of an object depends only on its material,
not its structure. A wooden table will burn in the same way as a wooden house,
following the rules of fire, which take the object’s mass into consideration.

Fluid Flow and Wetness

There are two behaviors of fluids that need to be considered with respect to objects.
First, fluids can fill objects that have structures that afford filling. Second, fluids can
wet objects, dependent on the material of the object.

The second behavior depends solely on the material of the object. Objects made
of wood can absorb a considerable amount of water, whereas objects made of metal
can absorb substantially less water. As discussed in the previous section, the wetness
of an object is determined by the wetness of its host cell and the object’s material.

Objects can be filled with fluid only when their structure affords filling or flow.
There are three main high-level properties that have been identified for an object to
afford flow. First, an object must have volume, because an object such as a sword
or a book cannot hold fluid. Second, an object must have an opening for the fluid
to flow into, because a crate that is sealed has volume but no way for the fluid to
enter. Third, the object must have solid sides (as opposed to perforated), because a

216 Emergence in Games

crate that is made of wire mesh would not be able to hold fluid. Therefore, an ob-
ject that has_volume, is_open, and is_solid affords flow.

The function AffordsFlow is used as a precondition for fluid flowing from an
object to a cell and from a cell to an object.

FUNCTION AffordsFlow (obj)

AffordsFlow = false

IF (obj.has_volume AND obj.is_open AND obj.is_solid) THEN

AffordsFlow = true

END

RETURN AffordsFlow

END FUNCTION

Pressure

There are two affordances relevant to pressure modeled in the Active Game World.
First, pressure can only flow to and from objects that afford flow, identical to fluid
flow. Second, only objects with structures that afford exploding (can contain high
pressure) can explode.

For the first behavior, pressure flow, the function AffordsFlow is used as a pre-
condition for pressure flowing from an object to a cell and from a cell to an object.
Therefore, only an object that has_volume, is_open, and is_solid affords pressure
flow.

The same three properties used in fluid and pressure flow are relevant to
whether an object affords exploding. First, in order for an object to hold the neces-
sary pressure, the object must have volume. Second, the object must have solid
sides to keep in the pressure. Third, the object must be closed (or not open), which
also keeps in the pressure.

If the object does not have these properties, it is not possible for the pressure in-
side the object to increase enough to exceed the external pressure so much that it
explodes. Therefore, an object that has_volume, not (is_open), and is_solid affords
exploding.

The function AffordsExploding is used as a precondition for an object exploding.

FUNCTION AffordsExploding (obj)

AffordsExploding = false

IF (not(obj.is_open) AND obj.has_volume and obj.is_solid) THEN

AffordsExploding = true

END

RETURN AffordsExploding

END FUNCTION

Chapter 6 Game Worlds 217

OBSERVABLE BEHAVIOR

In games, scenarios and sequences of actions are often specifically scripted and
coded. The advantage of using cellular automata and a systemic approach is that the
observable behavior of any object or situation in the game can be dynamic and
emergent, without needing to be scripted individually for each object or situation.
This allows the game engine to be flexible and respond consistently and realistically
to a wide range of actions that players may take and events in any situation in the
game.

This section examines four possible scenarios within a strategy game world,
focusing on the interactions between the objects and the environment. For each
scenario, the advantages and disadvantages of the Active Game World and a con-
ventional scripted system are compared and evaluated in terms of the observable
behavior of the objects, environment, and the interactions between the two. In
order to tune the behavior of an emergent game system, a series of scenarios such
as these need to be run, and the parameters and rules tuned until the game behaves
as expected. The four scenarios are as follows:

Heat and fire
Fluid and wetness
Pressure and explosions
The integrated system including each of the previous components

Demos for each of these scenarios in the 3D Active Game World can be found
on the CD-ROM.

Scenario 1: Heat and Fire

Consider a situation where a wooden building, located in a forest, is set on fire (see
Figure 6.12). Not only should the building burn and be damaged as a result, but the

218 Emergence in Games

KEY TERMS

Property-based objects are encoded with types of behavior and rules for
interacting.
Low-level properties define how the matter of the objects interacts in the
world.
High-level properties are defined by the structure of the object and deter-
mine whether it is structurally able to participate in certain interactions.

heat from the fire should also spread into the surrounding area. As the fire burns,
the surrounding forest should heat up and catch on fire, which will cause sub-
sequent damage to the forest and the spread of heat to surrounding areas. The heat
and fire will continue to spread until the fuel is exhausted (there are no more trees)
or until some other event causes the fire to stop (such as rain).

Chapter 6 Game Worlds 219

FIGURE 6.12 A wooden building in a forest is set on fire (a), the fire spreads to the
forest (b–c), and the surrounding area (d).

Scripted System Evaluation

In a system where the heat and fire scenario is scripted, the observable behavior of
the fire burning the building, and then burning the surrounding area, and eventu-
ally stopping would need to be specifically encoded. This would include specifying
how long the fire will burn the building and each section of the terrain, how much
damage will be caused by the fire in the process, and what the fire will look like
while it is burning.

Specifically scripting the observable behavior of the heat and fire scenario means
that the scenario will behave only in a pre-scripted and limited way. Any changes to
the scenario would require the behavior of the fire to be manually rescripted.

For example, there could be more than one building, the building could be
made of brick instead of wood and the surrounding terrain could be grass instead
of forest. As the observable behavior of burning brick is different than burning
wood, the script would need to be updated to encode the new observable behavior.
The alternative would be to have a brick building burn in the same way as a wood
building, which would not be as believable.

The same problem would exist for the surrounding terrain. If the building were
surrounded by grass rather than forest, the way the fire spreads from the building

to the terrain and then through the terrain should be significantly different for
grass than for forest, which would require further alterations to the script.

The major problem that exists for specifically scripting the heat and fire sce-
nario is that there is considerable initial effort in implementing the scenario and
small changes to the material of the terrain and objects requires the script to be
rewritten or the same behavior to be used for different scenarios.

Active Game World Evaluation

When the heat and fire scenario is implemented using the Active Game World,
the resulting behavior depends on the underlying properties of the materials of the
cells and objects, which are used by the equations for heat and fire to determine
the behavior of the system dynamically. As such, the system is robust to changes in
the heat and fire scenario, such as the number and position of buildings, the mate-
rial of the buildings, and the material of the surrounding terrain.

Whereas a scripted system requires the observable behavior to be encoded
directly, the Active Game World works at a lower level, so that the observable
behavior of the system is emergent. Emergent behavior is possible because cells and
objects are subject to the same rules of heat and fire and their low-level properties
and materials determine how they are affected by the system’s rules.

Scenario 2: Fluid and Wetness

The second scenario presents a case study for fluid and wetness, in which rain falls
on a hillside and the water from the rain runs down the hill into the valley below
(see Figure 6.13). Subsequently, the water pools in the valley and floods the village
that is located in the valley.

In the village there are wooden houses, which absorb water from the flood.
There is also a factory made of metal, which absorbs much less water from the flood.
Some of the buildings are closed up, but others are open and become flooded. Even-
tually, the rain stops and over time the flood water and buildings dry out.

Scripted System Evaluation

Scripting the fluid and wetness scenario would require many details to be consid-
ered. The water must follow a certain path to flow down the hill into the valley, the
water will accumulate in the valley to cause a flood, the flood water will soak and
flow into the buildings in a certain way, and the water will dry out.

For the fluid and wetness scenario, the observable behavior of each component
would need to be scripted, paying careful attention to detail. Due to the complex-
ity of the fluid and wetness scenario, the resulting behavior would be highly specific
to the situation.

220 Emergence in Games

For example, the contours of the hill, the location of the town, or the position
of the rain would each greatly change the observable flowing of the water. If the
town were located on the side of the hill, if the rain fell on the other side of the hill
or if the contours of the hill forced the water to flow in a different direction then the
town would not flood.

Additionally, when the water does flood the town, the way it interacts with each
type of building is different and this behavior would need to be specifically scripted.
If the buildings were different, in terms of material or affordances (such as whether
they’re open or not), the behavior of the water interacting with the buildings would
need to be rescripted.

There are several variables that affect the observable behavior in the fluid and
wetness scenario that require careful attention to detail and considerable initial
effort in implementing. Additionally, small changes to any of the variables would
give rise to significant changes in the observable behavior of the system, requiring
considerable effort in maintenance and updating.

Active Game World Evaluation

In contrast to scripted systems, the complex observable behavior of the fluid and
wetness scenario emerged in the Active Game World as a result of the simple, low-
level rules interacting with each other. There are three main components of the Ac-
tive Game World that allow the behavior in fluid and wetness scenario to be
emergent.

Chapter 6 Game Worlds 221

FIGURE 6.13 Rains falls on a hillside (a) and runs into the valley below (b). The houses
that are open are flooded (c) and remain flooded for a while after the water has dried
up (d).

First, as with the previous scenario for fire and heat, objects and cells have
common low-level properties and materials and are subject to the same rules,
which allow complex, high-level behavior to emerge. The low-level properties allow
the varying materials of the objects and terrain to absorb water differently.

Second, objects in the Active Game World have affordances so that structurally
different objects behave differently. The high-level properties allow water to inter-
act differently with buildings, depending on their structure (water can flow only
into buildings that are open).

Third, in the Active Game World, the way that water flows over the terrain is
determined by the contours. Consequently, in the fluid and wetness scenario, the
water flow over the terrain is dynamically determined by where the rain falls and
the contour of the terrain, which may or may not cause the town to flood.

The Active Game World allows the behavior in the fluid and wetness scenario to
be dynamic and emergent due to the properties of the cells and objects, the affordances
of the objects and the contours of the terrain, which all contribute to the complex,
high-level behavior that is observable to the players.

Scenario 3: Pressure and Explosions

The third scenario presents a case study with pressure and explosions, in which a
high-pressure object is placed in an area with significantly lower pressure, located
in a village (see Figure 6.14). The object explodes and the pressure in the sur-
rounding area is immediately increased.

As a result of the high absolute pressure, the surrounding buildings are dam-
aged. Some buildings are more damaged than others, depending on their material.
After the immediate release of pressure, the pressure flows out from the explosion
into surrounding buildings and into the surrounding area.

222 Emergence in Games

FIGURE 6.14 A high-pressure object is placed in an area with significantly lower
pressure (a). The effects of three different-sized explosions are shown (b–d).

Scripted System Evaluation

The factors that need to be considered when implementing the pressure and
explosions scenario include the size of the explosion, the trigger for the explosion,
the spread of pressure, damage to objects and cells, and any secondary effects of the
explosion. In a system that is specifically scripted, each of these factors needs to be
specified and hard-coded.

The size of the explosion will determine the area that the explosion effects and
how much damage is done. If the size of the explosion varies, the variables need to
be manually adjusted accordingly.

In a scripted system, there would need to be a scripted trigger for an explosion
to occur, such as a grenade being thrown. Additionally, any secondary effects of the
explosion, such as a fire starting, would need to be hard-coded.

The effect that the explosion has on different objects and terrain would also
need to be scripted. For example, more damage would be done to a tin can than to
a lead barrel and this behavior would need to be specifically scripted.

Active Game World Evaluation

In the Active Game World, the rules for explosions and pressure flow allow any
changes in the system to be automatically accommodated. For example, larger ex-
plosions cause more heat to be released from the explosion, automatically causing
a larger area to be affected and more damage to be done to nearby objects and cells.

Events do not need to be scripted to trigger explosions (although they can be),
because an explosion will naturally occur under the right conditions. Similarly,
secondary effects, such as the release of heat and subsequent fires occur naturally as
a result of the explosion, rather than needing to be scripted.

The flow of pressure between the objects and environment occurs dynami-
cally, due to the affordances of the objects. Also, objects and cells made of different
materials are affected by the explosion to varying degrees, depending on their low-
level properties.

The Active Game World can respond dynamically in the pressure and explo-
sions scenario due to the affordances of objects (determining how pressure will flow
between objects and cells), the low-level properties of objects and cells (determin-
ing how they will be affected by explosions) and the global rules of the system.

The global rules of the Active Game World allow the explosion and secondary
effects to occur naturally, as well as variations to the pressure and explosions sce-
nario (the size of the explosion) to be automatically accommodated.

Scenario 4: Integrated System: Heat, Pressure, and Fluid

The fourth scenario is a combination of the previous three scenarios. Rain falls on
a hillside and runs down the hill, causing a flood in a village that is located in the

Chapter 6 Game Worlds 223

valley below. As the flood washes through the village, the buildings made of wood
absorb fluid, as does the grassland on the hillside and in the valley.

Immediately afterwards, a small explosion occurs as a result of a high-pressure
object in the village. The surrounding buildings in the village are damaged, but due
to their wetness they are difficult to ignite. The wooden buildings catch on fire and
burn briefly and the fire spreads to the forest on the hillside on the other side of the
valley (see Figure 6.15).

224 Emergence in Games

FIGURE 6.15 Rain falls on a hillside and causes a flood in the valley below (a). An
explosion occurs in the village (b), damaging the buildings and causing a fire that spreads
to a nearby forest (c–d).

Scripted System Evaluation

The integrated scenario combines the attributes of each of the previous scenarios.
The same problems exist for the specifically scripted system as in each individual
scenario, but to a far greater degree due to the increase in complexity in the inte-
grated scenario.

There are many more variables in the integrated scenario, including the number,
composition, structure, and placement of buildings; the composition, contours and
layout of the terrain; as well as attributes of the flood, explosion, and fire. Changes
that are made to any of these variables present complications for every aspect of the
observable behavior, including water flow, fire, explosions, and damage, giving rise to
a problem of combinatorial complexity.

Active Game World Evaluation

Similar to a scripted system, the increased complexity of the integrated scenario has
an impact on the performance of the Active Game World. However, this impact

increases the value and visibility of the emergence of the Active Game World. In the
integrated scenario, the rules of each of the systems of heat, pressure, and fluid, as
well as wetness, fire, and explosions, combine with the affordances of the objects,
the low-level properties of the objects and cells, and the contours of the terrain, so
that many simple, local interactions occur simultaneously to give rise to a living,
complex environment with realistic, global, observable behavior.

PROPERTY-BASED OBJECT SUMMARY

In the second part of this chapter, you integrated game objects into the cellular
automaton of the Active Game World. You first implemented the objects as though
they were cells, using the same low level properties, based on their material. Sub-
sequently, you gave the objects high-level properties, based on their structure, to
constrain the possible interactions of the objects with the environment.

The environmental systems that were modeled for objects were the same as for
the cells: heat, pressure, fluid, fire, wetness, and explosions. The key differences
between the object-to-cell interactions and the cell-to-cell interactions were that
objects have only one neighbor (its host cell) and objects have affordances (deter-
mined by high-level properties).

For the objects in the Active Game World, high-level properties were related to
an object’s structure, whereas low level properties were related to its composition
(material). Structure was modeled at a high level, because modeling it at a low level
would result in impossible computational complexity for a computer game, with
marginal improvement in behavior. Composition was modeled at a low level as
modeling it at a high level would substantially decrease the emergent capacity of the
objects and remove the link to the game environment.

For game objects in the Active Game World, determining whether object prop-
erties were high or low level was clear cut. However, deciding on the appropriate
level to model properties comes down to a trade-off between computational
complexity and the gain of modeling at a lower level. In some cases, it will be pro-
hibitively expensive to model properties at a low level, in other cases there will be
no gain in modeling properties at a low level, and other cases will not be as clear cut.

As with the environmental interactions, each of the major systems in the Active
Game World (heat, fluid, and pressure) demonstrated various advantages over
conventional scripted approaches for game object interactions.

For heat and fire, the major problems that exist for specifically scripted systems
is that changes to the material of objects and the terrain, as well as the number and
placement of objects, requires the script to be rewritten. However, the model of
heat and fire implemented in the Active Game World uses the underlying proper-
ties of the materials of the objects and cells, as well as global rules for heat and fire,
resulting in emergent high-level behavior.

Chapter 6 Game Worlds 225

Scripting the behavior of fluid and wetness requires considerable initial effort
and careful attention to detail due to the number of variables that affect the ob-
servable behavior of the system, such as the material of objects and cells, structure
of objects, and contours of the terrain. However, the Active Game World allows the
behavior of fluid and wetness to be emergent due to the global rules of the cellular
automaton, which dynamically process the low-level properties of cells and ob-
jects, the high-level properties of objects, and the contours of the terrain.

For pressure and explosions, the factors that are problematic in scripted
systems include the size of the explosion, the trigger for the explosion, the spread of
pressure, damage to objects and cells, and any secondary effects of the explosion.
In a scripted system, the cause and effect of each of these factors needs to be an-
ticipated and specifically scripted. However, the Active Game World can respond
dynamically to pressure and explosions due to the affordances of objects (for pres-
sure flow), the low-level properties of objects and cells (effect of explosions), and
global rules of the system (secondary effects and variations to scenario).

The integrated scenario illustrated that a complex system with many variables
poses significant problems for scripted systems, because changes to one variable in
the system present complications for every aspect of the observable behavior of the
system. However, in the Active Game World, the rules of each of the systems of
heat, pressure, and fluid, as well as fire, wetness, and explosions, combine with the
affordances of the objects, the low-level properties of the objects and cells, and the
contours of the terrain, so that many simple, local interactions occur simultane-
ously to give rise to a living, complex environment with realistic, global, observable
behavior. Also, timing is very important in games and careful attention must be
paid when setting up the right timing in game scripts. For example, the game must
be scripted to create a cause (for example, an explosion) before its effects (objects
being damaged as a result of the explosion). In the Active Game World, timing is
implicit in the rules of the system, because the effects are actual outcomes of the
cause, rather than scripted reactions.

Objects with a property-based design can be incorporated into an Active Game
World by dividing their properties into two levels, high level and low level. An ob-
ject’s low-level properties are the same as the cells in the Active Game World and
as such the objects are easily incorporated into an Active Game World, because they
are subject to the same rules. An object’s high-level properties constrain which
rules affect various types of objects, because different objects have different affor-
dances, unlike cells of the environment, which are uniform in structure.

Property-based objects, in conjunction with the Active Game World, can facil-
itate emergent behavior and gameplay by means of the global rules of the system
and the properties of the objects and cells. These aspects of the Active Game World

226 Emergence in Games

enable real-time, dynamic processing of the game environment and objects to gen-
erate emergent, high-level behavior that was not specifically planned and scripted
in advance.

The game objects design presented in the chapter addresses the problems asso-
ciated with current scripted systems for game developers and game players. For
game developers, the objects have general, global properties, simplifying design of
objects, planning of interactions, and subsequent implementation and testing. For
the game players, the global properties of the objects give rise to intuitive, consis-
tent, emergent interactions, rather than pre-scripted, specific gameplay. With the
use of two-part property-based objects, within an Active Game World, game design
can be simplified and gameplay can be enhanced in strategy games, as well as other
game genres.

EMERGENT GAME WORLDS

Players are dissatisfied with the static, unintuitive, and unrealistic worlds in current
games and emergence provides the opportunity to enhance player enjoyment with
game worlds that allow consistency, freedom, intuitiveness, and realistic physics.

Previous games, such as The Sims and Half-Life 2, have included property-
based game objects that afford greater freedom and interaction. However, the
Active Game World models an emergent game world (the environment itself, as
well as its objects), rather than emergent game objects only. Emergent worlds pro-
vide far greater potential for interactions and complexity than emergent objects
alone.

Obviously, the behavior of the world alone is not a game, but it defines the
potential actions and interactions of the players. The more flexible and reactive the
game world, the more opportunities and freedom the players have in interacting
and affecting the game world. Once the game world is in place, the agents, story,
and players can be added to the game. If the game world is static and linear, the
remaining game elements can be only static and linear as well.

The same property-based system that is used for cell-to-cell and object-to-cell
interactions can be extended for object-to-object, player-to-object, and player-to-
player interactions. With a property-based approach and a simple set of rules for
affordances and interactions, player interactions can easily be integrated into an
Active Game World.

An active environment design, based on cellular automata, can facilitate emer-
gent environmental effects and complex behavior. The use of a cellular automaton,
as well as property-based materials, objects, and rules in the Active Game World
gives rise to behavior that is not specifically scripted into the system. The behavior

Chapter 6 Game Worlds 227

of heat, fire, fluid flow, pressure, and explosions responds dynamically to the
changing game world and gives rise to second order effects that are not directly
specified.

The Active Game World displays advantages related to its ability to dynamically
determine and accommodate the specific state of the game world (such as number,
type, and position of entities, terrain, and external effects), due to the underlying
properties of the cells and objects. The properties of materials allow new materials
to transfer heat and burn in reasonable ways that were not predetermined. The
rules, height field of cells, and affordances of objects and cells allow fluid flow over
contours and with object structures that are not predefined. Explosions occur
spontaneously (not triggered) and second order fire effects occur spontaneously.
Interactions occur in cells by the rules of heat, pressure, and fluid and these simple
interactions sum to give emergent effects (for example, it is not specified that water
puts out fire, but water reduces heat and raises the flashpoint and therefore pre-
vents or stops burning).

Cellular automata can facilitate emergence in game worlds in terms of the
behavior of environmental systems and the corresponding effects on terrain and
objects. The cellular automaton used in the Active Game World can facilitate emer-
gent behavior of environmental systems (water, heat, and pressure) and effects
(explosions, fire) with cells of different terrain and objects of different material and
structure. Cellular automata are suitable algorithms to form the basis of emergent
game worlds. The grid-based structure of cellular automata allows them to be easily
integrated into game systems, which are often divided into grids.

Emergent game worlds, such as the Active Game World, can provide an alter-
native to currently scripted game worlds. Active environments and property-based
objects can facilitate the development of more enjoyable games, by giving rise to
emergent behavior and the potential for emergent gameplay.

228 Emergence in Games

INTERVIEW WITH RICHARD EVANS

Senior AI Engineer, Maxis, Electronic Arts

Richard Evans is senior AI engineer on The Sims 3, where
he is responsible for the AI architecture. He also likes to
get involved in game design.

Previously, he was head of AI at Lionhead Studios, where he designed and
implemented the AI for Black & White. The artificial creature in Black & White
holds the Guinness World Record for most intelligent being in a game.

Æ

Chapter 6 Game Worlds 229

What is the role of emergence and emergent gameplay in Black & White?
The creatures were the main source of emergence in Black & White. You could
train your creature to behave in a wide variety of ways. For example, to only attack
when provoked, to fertilize fields, to only eat old female villagers, or to eat when-
ever bored. With careful training, it was possible to make your creature almost
entirely self-sufficient. He could look after your towns and convert new towns.

What kind of methods and techniques did you use in Black & White to
create emergent gameplay?
I used a combination of connectionist and symbolic machine-learning algo-
rithms: perceptron training algorithms for learning desires and decision-tree
learning algorithms for learning which sorts of objects are appropriate to choose
for each desire. There is an article in AI Game Programming Wisdom called
“Varieties of Learning,” which goes into more detail on the techniques used.

What are the major challenges you have faced in creating emergent gameplay
in your games?
The larger the possibility space, the harder debugging becomes.

When the creature was first put in the world, he just stared at his feet. It
turned out, after some debugging, that his most dominant initial desire was
hunger, and he was trying to eat himself.

Another example. When the first quest was implemented in the game, in-
volving a villager who had lost her brother, the creature came along and picked
up the poor villager halfway through the cutscene, and carried her off!

Even if you can reproduce a problem, finding out why the creature per-
formed that particular action becomes increasingly complicated as the simula-
tion becomes richer. Visual in-game debugging tools are vital to diagnosing
why decisions were made.

My colleagues Jonty Barnes and Jason Hutchens wrote an article about the
problem of debugging emergent games in AI Game Programming Wisdom:
“Scripting for Undefined Circumstances.”

What key lessons have you learned about creating emergent games that you
would share with other developers?
At a lofty level of generality, it’s like this: create emergence by having a large set of
things to draw from, and make each game configuration be a small subset of those
things. Try to ensure that most things are independent from most other things.

Example: objects in The Sims. Each lot has a small subset of all the possible
objects. The objects are nearly independent of each other. Interacting with one
object rarely affects another (with rare exceptions like one object catching on fire).

Æ

230 Emergence in Games

What would you recommend to other game developers trying to create
emergent gameplay?
The better the in-game visual debugging tools, the better the perceived quality
of the AI.

You have previously advocated the importance of social activities in games.
Social interactions give rise to a great deal of complexity in society—can we
harness this to create new and emergent gameplay?
One way to generate emergence is to ensure that one action can satisfy many
descriptions. For example: turning on a light may also be alerting a burglar.

In The Sims 3, we model social situations so that actions can satisfy multi-
ple descriptions. For example, suppose a host has invited a guest over, and then
the host goes off and has a bath. The action of having-a-bath can be described
also as ignoring-his-guest. It is the visiting social situation itself which allows
the action to be redescribed as ignoring-the-guest.

When an action has multiple independent consequences, and the set of
consequences depends dynamically on the current social situations, new game-
play possibilities emerge, like flowers on a spring day.

How does The Sims 3 improve its modeling of social activities over previous
Sims games?
When playing The Sims for the first time, my Sim invited over another Sim. The
host Sim talked to his guest for a moment, before walking off to have a bath!

This (arguably degenerative) emergent behavior arose because the Sim did
not understand that, having invited his guest over, there was an expectation to
look after his guest. The Sim did not understand the norms implicit in the so-
cial practice of visiting! In the words of Bob Dylan, “something is happening
here, but you don’t know what it is.”

The Sims in The Sims 3 have a much deeper understanding of the social sit-
uations they are in. They understand each social situation as a hierarchy of
norms. They understand the consequences of violating each norm. They can be
in a variety of different social situations simultaneously.

How does The Sims 3 support and encourage emergent gameplay?
Returning to the high-level strategy of creating emergence outlined above. Cre-
ate emergence by having a large set of things to draw from, and make each
game configuration a small subset of those things. Ensure that each thing is
independent from all the other things.

Æ

Chapter 6 Game Worlds 231

What kind of methods and techniques are used in The Sims 3 to create
emergent gameplay?
In The Sims 3, each agent has a small subset of desires from a large pool of
possible desires. Satisfying each desire is mostly independent from other desires.
This creates a vast combinatorial set of possibilities, but maintains debuggabil-
ity because each desire can be tested independently (because the consequences
of satisfying one desire are nearly entirely orthogonal to the consequences of
satisfying other desires).

How do you go about tuning the rules for an emergent system? Do you follow
a structured process?
We spend a lot of time writing tools which allow us to visualize the state of the
AI from various different perspectives. The better your debugging and visual-
ization tools, the less buggy your final behavior.

Many developers are reluctant or unable to try new techniques and approaches
in their games; are they justified in these fears?
It depends on the game genre—innovation is more acceptable in some genres
than others. Innovation is expected in The Sims.

What drives you to use non-deterministic techniques in your games?
We use non-deterministic techniques in decision-making, so that Sims do not
appear robotic. The probability of performing an action should be a function
of the utility of the action. If two actions have similar utility, they should have
similar probability. The final stage of decision-making is transforming a utility
distribution into a probability distribution.

SUMMARY

In this chapter, you explored the framework for an emergent game world with
reactive game objects. You covered the two fundamental components of game
worlds: the environment (physical space) and the objects (entities within the
space). You learned how to structure, implement, and tune an active environment
with property-based game objects. You should now have a solid understanding of
how to go about creating an emergent game world using a bottom-up emergent
design approach with rules, properties, cells, and objects.

The Active Game World example demonstrates how simple, low-level interac-
tions between the game environment and objects can give rise to high-level emer-
gent behavior and gameplay. In the Active Game World example, you explored the

creation of a system to model environmental effects. Using a similar framework
with a cell-based environment and property-based objects, you can create a wide
range of environmental effects, object behavior, and gameplay.

CLASS EXERCISES

1. What other fluids could be simulated in a strategy game using the fluid
flow algorithm?
a. What would be reasonable starting values for the properties of these

fluids?
b. Design scenarios to test and tune the behavior of these fluids.

2. How could wind play a larger role in the Active Game World? What other
effects could it have? How would this affect gameplay?
a. Extend the pressure algorithm to include wind effects.
b. Write an algorithm to simulate local wind effects.

3. What other affordances could objects be given to interact with the Active
Game World?
a. What properties would be needed to define these affordances? Write

algorithms to define the affordances with these properties.
b. How could these affordances be used in the Active Game World? What

interactions would they be used are preconditions for?
4. How could the Active Game World be extended to include object-to-object

interactions?
a. What types of interactions could occur between objects?
b. How could these interactions be modeled in the Active Game World?

What additional data structures, properties, and rules would be required?
c. What effect would adding these interactions have on the observable

behavior of the game world? How would you test these interactions?
5. How could the Active Game World be extended to include player

interactions?
a. What types of interactions could the players carry out?
b. How could these interactions be modeled in the Active Game World?

What additional data structures, properties, and rules would be required?
c. How would incorporating a player affect the behavior of the game

world? What would be the benefits and drawbacks of developing a game
in the Active Game World?

232 Emergence in Games

233

C
haracters and agents are important types of objects in game worlds, because
they give the game life, story, and atmosphere. Characters and agents serve
many purposes and hold many positions in games, which contribute to

making the game world rich, interesting, and complex.
More than anything else in the game world, players identify with and expect

lifelike behavior from game characters. The more responsive, reactive, and dynamic
the agents and characters in games, the more lifelike, believable, and challenging the
game worlds will become.

Players expect game characters and agents to behave intelligently by being cun-
ning, flexible, unpredictable, challenging to play against, and able to adapt and vary
their strategies and responses (Sweetser, Johnson, Sweetser & Wiles, 2003). How-
ever, players often find that agents in games are unintelligent and predictable.

Players also believe that agents’ actions and reactions in games should demon-
strate an awareness of events in their immediate surroundings (Drennan, Viller &
Wyeth, 2004). However, many games are proliferated with agents that do not
demonstrate even a basic awareness of the situation around them.

Agents are a vital ingredient in creating an emergent game world. Introducing
entities that have a choice of how to react to the changing environment amplifies
the variation and unpredictability of a system. Reactive agents can extend emergent
behavior and gameplay by adding a new level of complexity to the game world.

Characters and Agents7

In This Chapter

Sensing
Acting

234 Emergence in Games

As agents are able to choose how to react to the environment, they are able to
actively change the state of the world in ways that might not have occurred without
their intervention. Also, differences between individual and types of agents, such as
composition, structure, goals, personality, and so on, can add further variation and
complexity. Not only can agents choose how to react to a given situation, different
agents will choose to react in different ways in the same situation.

Characters and agents can be used to create emergence in games by being given
an awareness of their environment and an ability to react to the changing state of
the environment. The agents then become part of the living system of the game,
which they sense, react to, and alter.

Agents can be given the ability to respond to the players and other agents, events,
and conditions in their environment, as well as their own goals and motivations, by
having a model of their environment and a set of rules for reacting. Characters and
agents that follow simple rules for behavior, taking into account the complex envi-
ronment around them, will become emergent entities in the game world.

This chapter covers emergence in individual characters and groups of agents in
games. First, I will discuss how characters and agents can sense and interpret their
environments using probing, broadcasting, and influence mapping. I will discuss
how characters can use their environmental model to guide their movement. I will
also present a simple, flexible, general-purpose framework that can be used for
agent decision-making. The chapter then explores an example of individual agents
reacting to an emergent game world, while pursuing a goal, using the Active Game
World from Chapter 6.

The second part of the chapter explores group movement and decision-mak-
ing. I will discuss methods for achieving emergent group movement in games using
agent-based steering behaviors. I will also present a framework for creating emer-
gent group tactics using an agent-based approach, illustrated with a 2D agent-based
game called Halloween Wars.

SENSING

An agent is anything that can be viewed as perceiving its environment through sen-
sors and acting upon that environment through actuators. An agent is considered
autonomous if it relies on its own percepts, rather than the prior knowledge of its
designer.

The agents in most games rely heavily on the prior knowledge of their design-
ers and little on their current situation. Many agents in games, such as units in strat-
egy games and villagers in role-playing games, do not react to the environment in
any way. This behavior demonstrates a lack of situational awareness, which is an
agent’s dynamic mental model of its operating environment and its place in it.

Situational awareness gives an agent a sense of what is happening in its current
environment, what could happen next, what options there are for action and the
possible outcomes of those actions. Situational awareness is the foundation for
making decisions in complex operational environments.

Giving an agent an awareness of its environment and a way to sense and model
the situation is the most crucial step in creating reactive, dynamic, and emergent
behavior. The more information and intelligence that can be embedded in the en-
vironment, the simpler the agents themselves can become.

An important decision that needs to be made when designing an agent is
whether the agent is to be reactive, goal-directed, or some combination of the two.
A purely reactive agent is suited to highly dynamic environments where little
information about previous actions and states is necessary. At the other extreme, a
purely goal-directed agent is suited to a static environment where planning and
considering previous moves are highly desirable.

For example, a monster in a first-person shooter or a role-playing game would
be more suited to simply reacting to what is currently happening in the game.
However, an agent governing the strategy for the AI in a strategy game needs to
carefully plan its moves depending on what has happened so far in the game.

The ideal framework for facilitating emergent agent behavior is to have simple
agents in a complex environment. The emergence comes from the interactions be-
tween agents, between the agents and the players, and the collective interactions of
the agents with the game world. In order to achieve this, the agents must be given
a way to sense and model their environment.

Some common approaches to sensing game environments are probing, broad-
casting, and influence mapping. In short, probing is where agents ask for particu-
lar pieces of information as they need it, broadcasting is where the agents are sent
all the information whether they need it or not, and influence mapping is where the
information is collected, stored, and synthesized separately from the agents.

Chapter 7 Characters and Agents 235

KEY TERMS

Agents are decision-making entities in games that sense and react to the
game world.
Reactive agents react to their environment based on the current situation
and require little information about previous actions and states.
Goal-directed agents plan their actions in relation to goals and must con-
sider previous and future states and actions.

Æ

236 Emergence in Games

PROBING

There are some games in which the agents sense and react to other agents by
actively probing the environment for information. For example, the agents in Half-
Life have sight and hearing and periodically “look at” and “listen to” the world.
Also, the game Thief: the Dark Project uses the same core concepts as Half-Life, but
with a wider spectrum of states.

The agents in Half-Life and Thief are based on finite state machines that take
into consideration what they can “see” and “hear” in the environment. The method
used by these agents is to periodically run through a list of rules to determine
whether they sense an opponent (Leonard, 2003):

PROCEDURE look

Get a list of entities within a specified distance

FOR EACH entity found

IF I want to look for them

AND they are in my viewcone

AND I can raycast from my eyes to their eyes

THEN

IF they are the player

AND I cannot see the player until they see me

AND they do not see me

END look

ELSE

Set various signals depending on my relationship

with the seen entity

END

END

END

END PROCEDURE

PROCEDURE listen

FOR EACH sound being played

IF the sound is carrying to my ears

Add the sound to a list of heard sounds

IF the sound is a real sound

Set a signal indicating heard something

Situational awareness is an agent’s mental model of its environment and its
place in it.
Sensing allows agents to monitor the changing state of their environment.

END

IF the sound is a “smell” pseudo-sound

Set a signal indicating smelled something

END

END

END PROCEDURE

The agents must actively check to determine whether they can sense some-
thing at given time intervals, unlike real vision and hearing, which arrive at the
senses continuously. Depending on the agents’ frequency of probing the environ-
ment, it is likely that events and actions will be missed.

Probing is quite fast and efficient if there are only a few specific things that the
character is checking. However, as the number and frequency of these checks
increases, the character can spend most of its time probing the environment. When
the character is running a large number of checks, it is likely that most of these
probes will be negative. With a lot of agents in a large environment, this can get out
of hand quickly.

The agents in Halloween Wars use probing to assess the position of their own and
enemy entities, as well as their own and enemy flags (see the “Tactics in Halloween
Wars” section). The use of probing is possible and efficient, due to the simplicity of
the environment, rules, and the knowledge that the agents require for decision-
making. If the number or type of entities, and subsequently the required probes was
increased, it could quickly become too demanding to use.

Chapter 7 Characters and Agents 237

ADDITIONAL READING

For further information on probing in games:

Leonard, T. (2003) Building an AI Sensory System: Examining the Design
of Thief: The Dark Project. Gamasutra, March 7, 2003. Online at: http://
www.gamasutra.com/gdc2003/features/20030307/leonard_01.htm.

BROADCASTING

The agents in The Sims, unlike Half-Life and Thief, continuously receive informa-
tion from the environment. In The Sims, the intelligence is embedded in the objects
in the environment, known as “Smart Terrain.” Each agent has various motivations
and needs and each object in the terrain broadcasts how it can satisfy those needs.
For example, a refrigerator broadcasts that it can satisfy hunger. When the agent
takes the food from the refrigerator, the food broadcasts that it needs cooking and

http://www.gamasutra.com/gdc2003/features/20030307/leonard_01.htm
http://www.gamasutra.com/gdc2003/features/20030307/leonard_01.htm

the microwave broadcasts that it can cook food. Consequently, the agent is guided
from action to action by the environment.

When information is broadcast to agents, they are sent all the events that are
happening in the game world and they must sort out what they need. This results
in a large amount of redundancy and unused information, but the trade-off is flex-
ibility. Agents can be set up to listen for the information they need, and discard the
rest. Broadcasters can also be configured to select what information they will send
and to which agents.

Although the agents in each of these games are able to sense entities in the
environment in some way, they are still unable to sense the state of the environment
itself. The agents in Thief and Half-Life are limited to sensing other agents in the
environment and the agents in The Sims are limited to sensing other agents and
objects in the environment. These agents would still be unable to react to events
and states of the environment.

The broadcasting approach, as used in The Sims, could be extended to incor-
porate the environment as well as the game objects. However, there are a finite
number of objects in the environment in The Sims and a finite number of ways to
interact with these objects. When considering the environment itself and the pos-
sible events and states in the environment, the problem becomes infinitely more
complex and broadcasting could potentially become too computationally de-
manding and difficult to manage.

Translating the broadcasting approach to a game environment would require
every element and event in the environment to project information to every agent
in every location. Influence mapping, a technique used in many strategy games, is
more applicable to the problem of agents reacting to the game environment, as
opposed to other agents or objects.

238 Emergence in Games

ADDITIONAL READING

For further information on broadcasting in games:

Millington, I. (2006) Artificial Intelligence for Games. Boston, MA: Morgan
Kauffman.

INFLUENCE MAPPING

Influence mapping, a technique used in many strategy games, divides the game map
into a grid with multiple layers of cells, each of which contains different information
about the game world. For example, the layers could store data for combat strength,
vulnerable assets, area visibility, body count, resources, or traversability.

The values for each cell in each layer are first calculated based on the current
state of the game and then the values are propagated to nearby cells, thereby spread-
ing the influence of each cell (see Figure 7.1). This influence propagation gives a
more accurate picture of the current strategic situation, because it not only shows
where the units are and what they are doing, but also what they might do and the
areas they potentially influence.

Chapter 7 Characters and Agents 239

FIGURE 7.1 Influence propagation in an influence map.

Influence maps can be used for strategic assessment and decision making,
because their structure makes it possible to make intelligent inferences about the
characteristics of different locations in the environment. For example, areas that
have high strategic control can be identified, as well as weak spots in an opponent’s
defenses, the enemy’s front, flanks and rear, prime camping locations, strategically
vulnerable areas, choke points on the terrain, and other meaningful features that
human players would choose through experience or intuition.

Each layer, or set of layers, provides information about a different aspect of the
game. For example, the influence map can indicate where a player’s forces are
deployed, the location of the enemy, the location of the frontier, areas that are un-
explored, areas where significant battles have occurred, and areas where enemies
are most likely to attack in the future. When these layers are combined, they can be

used to make strategic decisions about the game (see Figure 7.2). For example, they
can be used to make decisions about where to attack or defend, where to explore,
and where to place assets for defense, resource-collection, unit-production, and
research.

240 Emergence in Games

FIGURE 7.2 Layers of the influence map can be combined
to make strategic decisions.

Influence maps are commonly used in games for strategic, high-level decision-
making. However, it is also possible to use them for tactical, low-level decision-
making, such as individual agents or units reacting to the environment. Similar to
strategic influence maps, a tactical influence map requires values for the environ-
mental factors that need to be considered and a method for combining these factors
into values that can be used for decision-making.

The factors that need to be considered by the agents include any events and
effects that are relevant to their decision. The method to combine these factors is
the same as in strategic influence maps, a weighted sum that weights the factors in
the environment, depending on how important they are for the decision that is
being made.

The advantage of using influence maps over broadcasting and probing is that
the agent is presented with a single value (calculated using the weighted sum to

combine all the factors) instead of numerous messages being sent to the agent
about the environment. Therefore, the agents can choose the best cell (based on the
weighted sum) for the decision that it is making (such as where to move to avoid
danger).

Influence mapping has further advantages over probing, because the agent is
continuously adapting its behavior to the environment (rather than probing at
given time intervals) and its behavior is a function of its environment (rather than
following a prescribed set of rules).

Influence mapping provides passive sensing of a continuous environment (as
opposed to discrete entities), allows the agents’ situational awareness to evolve as a
function of the environment, and gives rise to reactive and emergent behavior. The
reactive agents in the Active Game World use influence mapping to sense the state
of the environment (see the “Agents in the Active Game World” section).

Chapter 7 Characters and Agents 241

ADDITIONAL READING

For further information on influence maps in games:

Sweetser, P. (2004) Strategic Decision-Making with Neural Networks and
Influence Maps. AI Game Programming Wisdom 2. Hingham, MA: Charles
River Media, pp. 439–446.
Tozour, P. (2001) Influence Mapping. Game Programming Gems 2. Hing-
ham, MA: Charles River Media, pp. 287–297.
Woodcock, S. (2002) Recognizing Strategic Dispositions: Engaging the
Enemy, AI Game Programming Wisdom. Hingham, MA: Charles River
Media, pp. 221–232.

KEY TERMS

Probing involves agents periodically querying the state of their environment.
Broadcasting involves the environment sending game agents information
about events and the state of the environment.
Influence mapping provides a persistent map of the changing state of the
environment, in terms of the influence of various aspects of the game
world.
Influence propagation spreads the influence of a cell to nearby cells, provid-
ing a more accurate picture of the current strategic situation and what
might happen next.

ACTING

After the agent has sensed its environment and has an understanding of its situa-
tion, it must choose an action. Even if the agent has a sophisticated world model, if
it fails to act or react appropriately, it will appear lifeless and unintelligent. There
are a wide range of specific actions that agents are required to take in game worlds,
which vary depending on game genre. There are two major types of actions that
agents are required to take—individual actions and group actions. Individual ac-
tions require the agent to behave autonomously and make decisions based on their
own situation and needs. Group actions require the agent to play a role in a group
of agents, which involves cooperation and coordination.

INDIVIDUAL

Agents that act individually are usually game characters or enemies. In first-person
shooter games, a large proportion of the agents are there to fight the players. The
primary actions of these agents are to run, jump, dodge, hide, and shoot enemies.
In role-playing games, agents include friendly and enemy characters, as well as
monsters and animals. The actions of these agents include talking, fighting, walk-
ing, and appearing to follow normal lives and routines. In strategy games, individ-
ual agents (or units) must move, attack, guard, and hold positions. Agents in sports
games must move around the field or court, score goals, pass, tackle, and so on. The
cars in racing games drive around the track, dodge or ram other cars, and some-
times perform stunts. The most common actions for agents in all of these types of
games are movement and decision-making.

Movement

Characters spend a large amount of their time moving around, performing actions
such as running away, walking around town, driving, moving to a strategic loca-
tion, or charging at the players. As agents spend such a large amount of their time
moving, they must do it efficiently, smoothly, and intelligently. In terms of emer-
gent behavior, the pathfinding of individual characters is not that interesting. There
are many good references on pathfinding in games, with A* being the method of
choice.

Deciding where to move to, on the other hand, is of more interest, especially
when the agent takes into consideration the state of the environment, other agents,
as well as its own goals and personality. The reactive agents in the Active Game
World use their environmental model to guide their movement (see the “Agents in
the Active Game World” section).

242 Emergence in Games

Decision-Making

With enough information about their environment, agents can use a simple set of
rules to decide how to act and react appropriately. Agent decision-making in games
involves choosing an action based on goals, personality, and the current state of the
game. Agents in games must decide when to run away, attack, hide, eat, talk, sleep,
heal, and so on. The next section presents a simple, flexible, general-purpose frame-
work that can be used for agent decision-making.

Chapter 7 Characters and Agents 243

KEY TERMS

Acting involves agents responding to changes in their environment.
Movement requires agents to decide where to move and how to get there.
Decision-making involves agents choosing an action to take in their
environment.

Agents in the Active Game World

To exemplify emergence in individual agents, I incorporated reactive agents into
the Active Game World described in Chapter 6. In the Active Game World, agents
have an identical structure to the objects discussed in Chapter 6. Each agent has a
set of properties that include coordinates (position in the cellular automata), tem-
perature, pressure, fluid, mass, wetness, and material.

The materials that agents are composed of have the same properties as materi-
als for terrain and objects, including flashpoint, burning temperature, specific heat
capacity, and maximum burning rate. In strategy games, there are a wide range of
possible agent types, such as humans (marines), vehicles (tanks), boats (fishing
boats), and aircraft (B-52s). Therefore, possible materials for agents include flesh,
metal, and wood (see Table 7.1). The values for each material were initially estimated
and then tuned until the materials burned at an acceptable rate and duration.

Agents also have the same high-level properties as objects, which encode at-
tributes of the agents’ physical structure. These attributes determine whether agents
will engage in various interactions (for example, a human cannot be filled with
water but a boat can).

Agent Design

The agents in the Active Game World are identical to the objects in terms of struc-
ture and composition. The defining difference between agents and objects is that an
object is acted upon only by the environment and responds according to its physi-
cal composition and structure, whereas agents have a choice of how to respond to
the environment. If an agent does not respond to the environment in a way that

seems reasonable to the players (such as preserving its own safety), they seem un-
realistic and unintelligent.

For example, if an object (for example, a crate) is in a room that is on fire, the
object’s only course of action is to sit there and burn. However, an agent in the same
situation would be expected to try and escape from the room in order to preserve
its own life. If the agent were only to stand in the room and burn, it would appear
neither intelligent nor realistic.

For an agent to react sensibly to the environment in the Active Game World, it
is necessary for it to have two things. First, it must have a way to sense the environ-
ment and second, it must have a way to choose a suitable reaction, based on what
it has sensed.

An agent’s understanding of its situation in the Active Game World is repre-
sented as a weighted sum of the factors affecting each cell on the map. Based on the
utility value of each cell, the agent chooses a cell to move to and reacts at a level that
reflects its current situation (for example, if the agent’s current cell is on fire then
it panics). After the agent chooses a destination, its task is simply to move toward it.

244 Emergence in Games

Values

Property Description Wood Metal Flesh

Flashpoint Ignition temperature of the material 2000 5000 300

BurnTemp Multiplier for the temperature that 5 10 3
the material burns at (amount of
heat released)

BurnRate Multiplier for the rate that the 10 5 15
material burns at (rate of
consuming fuel)

MaxBurn Maximum rate that the material 300 100 200
can burn at

SHC Specific heat capacity: the amount 100 50 100
of energy required to heat up this
material

MaxFluid Maximum amount of fluid a cell 50 0 20
can hold

Strength Modifier for the pressure the material 0.6 1.0 0.5
can withstand before it breaks

TABLE 7.1 Agent Material Properties

This section discusses the “comfort” function that determines the utility of each
cell, the agent’s level of reaction, and the agent’s choice of destination cell.

Comfort Function
The utility function for the agents in the Active Game World determines how com-
fortable each cell is for the agents and is therefore called a comfort function. The
comfort function is a weighted sum of the factors that affect the agents’ comfort in
each cell and includes temperature, fire, pressure, and wetness. Each of these factors
is weighted according to how distressing it is for the agent.

For human agents in the Active Game World, fire is the most distressing,
followed by temperature, pressure, and wetness. However, these weights (W1, W2,
W3, W4) can be tuned to reflect different priorities of different agents. For exam-
ple, an alien might find water far more dangerous than heat. The comfort function
returns a real value between zero and one, with a lower value representing a more
comfortable cell.

Comfort = Min(((fire*W1) + (temp*W2) + (pressure*W3) + (wetness*W4)) ,1)

The comfort function provides an efficient alternative to the environment
sending the agent multiple messages about its state, such as “it’s hot” or “it’s rain-
ing.” Instead, the relevant factors are weighted and combined into a single value
that gives the agent an estimate of the safety and comfort of its current location. The
purpose of the comfort value is twofold. First, it provides a means for the agents to
determine how comfortable they are in the current cell and to react accordingly.
Second, it provides a means for the agents to assess surrounding cells and find a
suitable destination. These two tasks are discussed in the following sections.

Level of Reaction
The comfort function returns a real value between zero and one, which allows the
agent to react with varying degrees of distress, providing for more diverse and inter-
esting behavior (see Table 7.2). A comfort value of less than 0.1 represents a com-
fortable cell and the agent does not react. A comfort value of 0.1 or more and less
than 0.3 represents a cell that is uncomfortable and the agent reacts calmly and
moves to a more comfortable cell. A comfort value of 0.3 or more and less than 0.6
represents a cell that is distressing and the agent runs from the cell. Finally, a com-
fort value of 0.6 or more represents a cell that is painful, which causes the agent to
panic and run from the cell.

The agent’s level of reaction is denoted by its speed of movement, as well as its
animation and sound. Scaling the agents’ reactions allows the agents to react in
varying ways to different situations, while greatly simplifying the process of deter-
mining how the agents will react. Instead of the agents considering each element in
the environment individually, the comfort function determines the agents’ level of

Chapter 7 Characters and Agents 245

discomfort and the agents respond accordingly by choosing the reaction level that
corresponds to their comfort value.

Choosing a Destination
If the agents are not comfortable in their current cell then they must locate and
move to a more comfortable cell. Each agent reassesses its situation each time step,
by calculating the comfort value for the cell it is standing in or passing through and
finding a destination cell based on the comfort of its neighbor cells.

As long as the agent is not comfortable, it will keep reassessing its situation and
finding a new destination, which means that agents can change destination while
they are moving toward their current destination, if they find a better destination.
Also, as the state of the environment is continuously changing, the destination the
agent found last cycle may no longer be a comfortable cell. In choosing a destina-
tion, the agents evaluate the comfort values of the cells in a neighborhood of a
given size and choose the cell with the lowest comfort value.

246 Emergence in Games

Value Level Reaction

< 0.1 Comfortable None

0.1–0.3 Uncomfortable Calmly moves to more comfortable cell

0.3–0.6 Distressing Runs from the cell

> 0.6 Painful Panics and runs quickly from cell

TABLE 7.2 Agent Reaction Levels

KEY TERMS

Comfort function is a weighted sum of the factors that affect the agents’
comfort in each cell and includes temperature, fire, pressure, and wetness.
Level of reaction is determined by the comfort function and allows the agent
to react with varying degrees of distress, providing for more diverse and in-
teresting behavior.
Choosing a destination occurs when agents are not comfortable in their
current cell, so they find a destination in neighboring cells that is more
comfortable.

Agent Tuning

Tuning is an important and time-consuming step in the development of any emer-
gent system. The more structured, methodical, and documented the tuning
process, the easier and smoother the tuning will be. Three rounds of tuning were
conducted to investigate and tune the behavior of the agents in the Active Game
World, in terms of efficiency, effectiveness, and observable behavior. The method
used to tune the agents is described in the “Process” section.

The first round of tuning aimed to determine the most appropriate neighbor-
hood size that should be used by the agents when choosing a destination. The sec-
ond round of tuning investigated combining different sized neighborhoods to gain
the benefits of both reactive and goal-directed behavior. The third, and final, round
of tuning involved combining desirability, in the form of a goal, with the comfort-
based reactive behavior of the agents. This section discusses the aims, process, and
outcomes of each round of tuning.

Chapter 7 Characters and Agents 247

KEY TERMS

Tuning involves testing and tweaking parameters and rules until desired
behavior is achieved.

Process
Several conditions were investigated in each round and 10 trials with 10 agents
were run in each condition. Each round was conducted on a 10-by-10 grid of cells
in the Active Game World. The criteria that were used to evaluate the performance
of the agents were:

The number of cycles the Active Game World ran before the agents converged
(that is, they located and reached comfortable cells).
The number of local optima (comfortable cells) on which the agents converged.
What (if any) strategies or patterns the agents exhibited.

The initial state of each trial was randomly generated, including the position of
the agents, the position of rain, and the number and position of explosions. After
the trials were started, notes were made in relation to the criteria of efficiency, strat-
egy, and patterns.

The Active Game World was stopped as soon as the agents converged for the first
time. At this point, the number of cycles the agents took to converge was noted, as was
the number of optima that the agents converged on (an optimum was considered to
be a single cell). If the agents failed to converge (which usually occurred if the agents

died before finding an optimum) then it was noted that the agents did not converge.
A screenshot was taken of the final state of the Active Game World in each trial,
showing the state of the system, the number of cycles, and the position of the agents.

Round 1: Determining Neighborhood Size
The aim of the first round of tuning was to determine the best neighborhood size, in
terms of agent performance and behavior, that agents should evaluate when choos-
ing a destination (such as where to move to maximize comfort). Four conditions
were investigated, including three conditions where the agents used neighborhood
sizes of one (n = 1), two (n = 2), and three (n = 3) to choose destinations (see Fig-
ure 7.3). The final condition involved the evaluation of the entire grid to find a
global optimum.

248 Emergence in Games

FIGURE 7.3 Neighborhood areas evaluated
for n = 1, n = 2, and n = 3.

Outcomes Each of the neighborhood sizes that were evaluated in the first round
of tuning had various advantages and drawbacks. The agents with a neighborhood
size of one performed the best at avoiding immediate danger. However, their short
sight meant that they often ran toward more dangerous situations or became stuck
in larger hazards as they were unable to find a way out.

With a neighborhood size of two, the agents were better at choosing safe desti-
nations and appeared more organized, but still expressed the problems associated
with short sight. The agents with a neighborhood size of three were exceptional at
picking particularly desirable cells and appeared organized as many agents moved
to similar locations. However, the problems for these agents were almost the op-
posite of the previous agents, because they performed the best at choosing a desti-
nation but were unable to avoid immediate hazards in getting to their destination.
They would often put themselves in great danger (such as run through fire) to get
to a safe destination cell.

Moving through hazards to reach a safe goal was a far more severe problem
when the agents were just moving toward a global optimum. The agents would
move across the whole map to get to their destination, rather than looking for a
local optimum or a “good enough” cell in local proximity. The global optimum
agents also took significantly more cycles to reach a goal cell than the agents in each
of the previous conditions, as the global optimum was continually changing.

Using a global optimum would be more reasonable if the goal cell was partic-
ularly desirable, such as fulfilling a mission or going home. The global optimum
works well if the agents are in close proximity to the global optimum, but does not
work at all if they are far away. Therefore, it would be much more logical for the
agents to find a local optimum, as in the previous conditions where they were eval-
uating their local neighborhood.

There were desirable traits expressed by the agents with short sight (avoiding
immediate danger) and the agents with longer sight (finding a local optimum). As
a result, a logical solution was to endeavor to combine these two approaches to en-
able the agents to move to a nearby, safe cell while avoiding hazards along the way.
Consequently, the next round of tuning investigated how these two approaches
could be combined and whether they would yield an improvement in behavior.

Round 2: Optimizing Agent Navigation
The previous round of tuning demonstrated that neither purely reactive nor goal-
directed behavior was desirable for the agents in the Active Game World. The re-
active agents were able to avoid immediate danger but often ran into another
hazard and the goal-directed agents chose a suitable goal but ran through hazards
to reach it. Therefore, the aim of the second round of tuning was to determine if a
combination of these two approaches is more effective than either approach indi-
vidually and what combination of reactive and goal-directed behavior is the most
suitable for the Active Game World.

The agents in the second round of tuning combined the reactive and goal-
directed behaviors of the agents in the first round by first selecting a goal (the most
comfortable cell) from the area around the agent (n=3). Second, the agents then
evaluated the cells in their immediate neighborhood (n=1) and chose which way to
move, based on the comfort of the immediate cells and how close the immediate
cells advanced the agent toward the goal (see Figure 7.4).

There were three conditions evaluated in the second round of tuning:

Condition 1: Weighted the comfort of each cell in the agent’s immediate area
with equal importance (50%) to the proximity of each cell to the agent’s goal
cell in the local area (50%).
Condition 2: Weighted the proximity of the immediate cells to the goal cell more
importantly (75%) and the comfort of the immediate cells less importantly (25%).

Chapter 7 Characters and Agents 249

Condition 3: Weighted the proximity of the immediate cells to the goal cell less
importantly (25%) and the comfort of the immediate cells more importantly
(75%).

250 Emergence in Games

FIGURE 7.4 The agents first selected a goal from their local neighborhood
(left), and then a direction to move from their immediate neighborhood (right).

Outcomes The agents in the second round of tuning displayed definite advan-
tages over the agents in the first round. The agents in the evenly weighted and goal-
directed conditions appeared far more intelligent, because they moved toward a
goal rather than running back and forth randomly. These agents appeared more re-
alistic, because they moved around hazards on the way to their goal rather than just
running in a straight line, which made the agents in the previous experiment appear
flat and synthetic.

The agents in the evenly weighted condition displayed more depth as they did
not always react in the same way, sometimes they would appear organized and at
other times they would appear more independent, with their behavior being heav-
ily dependent on the current situation. The agents in the evenly weighted condition
took the least amount of time to converge on safe cells.

The agents in the goal-directed condition behaved in a similar way to the agents
in the evenly weighted condition, but became stuck more often and still ran through
hazards. The agents in the reactive condition had the least desirable behavior as they
often appeared to move randomly, did not appear organized, and often became
stuck.

Therefore, the second round of tuning suggested that the most suitable combi-
nation of reactive and goal-directed behavior for the agents in the Active Game
World is approximately equal, where it is more desirable to err on the side of goal-
directed than on reactive behavior.

Round 3: Combining Comfort and Desire
The first and second rounds of tuning gave rise to agents that efficiently, intelli-
gently, and realistically react to the environment by moving from danger to safety.
However, in a computer game situation, it is likely that agents will have greater
goals or desires that they need to fulfill, apart from simply surviving and reacting
sensibly to the environment. For example, marines in a strategy game might be on
a mission to kill the enemy in a particular cell or a villager in a role-playing game
might want to stay near its house or shop.

Drawing on the notion of “desirability” values from influence maps, goal areas
could be given high desirability values for the agents. Additionally, desirability val-
ues could then be propagated out to surrounding areas to indicate that these areas
are more desirable as they are near the goal. Therefore, the aim of the third round
of tuning was to combine the desire to reach a greater goal with the agents’ current
behavior of reacting to the environment and avoiding hazards.

The third round of tuning combined an influence map to propagate the desir-
ability of the cells with the cellular automata to determine the comfort of the cells.
The goal of the third round of tuning was to determine the combination of desire
and comfort that would give the agents the best behavior, in terms of avoiding haz-
ards and reaching their goal.

The scenario for the third round of tuning was that 10 agents have been given
the order of getting to a single goal (for example, marines sent to attack an enemy
tank). The method used in the third round was to propagate the desire out from the
goal position (see Figure 7.5). I used a propagation constant of 0.7 (that is, the de-

Chapter 7 Characters and Agents 251

FIGURE 7.5 Propagation of desirability of
the goal cell in an influence map.

sirability value is multiplied by 0.7 for each step out from the goal). This value was
chosen because it allows the influence to spread over the entire map of 10-by-10
cells, with a high concentration of desirability near the goal and low levels away
from the goal.

Figure 7.6 shows the desirability on a map with a single goal and desirability
combined with comfort (darker is less desirable). Next, the agents calculated the
comfort values for their local neighborhood (n = 3). Subsequently, the agents se-
lected the best cell in this neighborhood, based on the desirability value combined
with the comfort value of each cell, which became their goal.

252 Emergence in Games

FIGURE 7.6 Desirability on a 10-by-10 map with a single goal and propagation constant
of 0.7 (left) and combined with comfort values (right).

The three conditions that were investigated in the third round of tuning were
designed to test different influences of comfort and desirability on the agent’s
choice. The three conditions were evenly weighted (50% desirability—50% com-
fort), goal-oriented (75% desirability—25% comfort), and self-preserving (25%
desirability—75% comfort).

After the agent has chosen the best cell in its local neighborhood, based on
comfort and desirability, it then chose which cell to move to in its immediate neigh-
borhood (as in Round 2). The best cell in the immediate neighborhood was chosen
based on its comfort value (50%) and its closeness to the chosen cell in the local
neighborhood (50%), which is the condition that was selected in the second exper-
iment. Figure 7.7 illustrates the process of choosing a local goal based on comfort
and desirability, and then a movement direction based on comfort and proximity
to the local goal.

Outcomes The first three conditions demonstrated that an equal weighting of
desirability and comfort gave the agents the most acceptable observable behavior,
in terms of organization, avoiding hazards, and navigating the environment realis-
tically and intelligently. The agents converged reasonably efficiently, but only about
half of the agents found the goal as they opted for comfort over the goal.

When the weighting was tipped toward comfort or desirability, the agents’
behavior appeared random, less organized, and less intelligent. The goal-directed

agents converged in a reasonable period of time, but only about half the agents
found the goal. The self-preserving agents required significantly more cycles to
converge than the agents in the previous conditions. There was no significant dif-
ference between the number of agents that found the goal in the self-preserving
condition and in the previous conditions.

Propagation Constant The agents in each of the first three conditions were not
particularly successful at finding the goal. Therefore, a fourth trial was run with
equal weighting to optimize behavior, but with a greater propagation constant to
increase desirability values around the goal.

Increasing the propagation constant (0.8) resulted in greater differentiation
between cells on the influence map and further improvements in observable agent
behavior (see Figure 7.8). The most noticeable change with a propagation constant
of 0.8 was the improvement in the agents’ behavior, in terms of organization,
intelligence, and rational behavior. The agents were consistently able to move in
organized and intelligent ways, exhibiting interesting and rich behavior.

In one situation, the agents were moving toward a goal that was blocked by rain
and they waited for the rain to pass before moving toward the goal, rather than
running through the rain or getting stuck. The increased differentiation between
cells on the influence map provided the agents with a clear view of the best way to
navigate through the environment.

Chapter 7 Characters and Agents 253

FIGURE 7.7 The agents choose a local goal based on comfort and
desirability (left), and then a movement direction based on comfort
and proximity to the local goal (right).

Multiple Goals A fifth and final condition was tested to determine how the agents
would perform with multiple goals instead of one. The agents in the multiple goals
condition were much better at finding the goals, but did not appear as intelligent or
realistic as the agents in the previous condition. The agent were more likely to find
the goals in this condition as there were more goals, but mostly because the desir-
ability from the goals was cumulative, allowing more cells to have higher values and
the influence to propagate further.

Outcomes of Agent Tuning
The outcome of the first two rounds of tuning was a model for agents that dynam-
ically respond to the environment in an intelligent and realistic way, based on con-
cepts from cellular automata and influence maps. The outcome of the third round
was an extension of this model that also integrates goal-directed behavior to enable
the agents to respond to the environment while pursuing a goal.

The tuning process produced an agent model that successfully integrates goal-di-
rected behavior (based on agent desires) with situation awareness (based on comfort),
which enabled the agents to both react to the environment in an intelligent, realistic,
and organized way, while simultaneously satisfying their desire to reach a goal.

An advantage of the model developed through this process is extensibility, in
that it can be extended to incorporate any aspects in the game world that are relevant
to the agents’ behavior (for example, other agents, terrain, and events). It would be
possible to incorporate other models for agent behavior, such as flocking, so that the
agents can take into consideration the movement of other agents around them.

254 Emergence in Games

FIGURE 7.8 Increasing the propagation constant from 0.7 (left) to 0.8 (right) resulted in
greater differentiation between cells on the influence map and further improvements in
observable agent behavior.

KEY TERMS

Propagation constant determines how much the influence in an influence
map will decrease for each step out from the origin.

The simplicity and flexibility of this model means that it can be used to govern
the behavior of almost any agent in any circumstance. The agent design used in the
Active Game World creates agents that can dynamically react to the changing situ-
ation of their environment, as well as an intelligent pathfinding algorithm that al-
lows agents to find a safe path to a goal, based on aspects of their environment.

Reactive Agent Algorithm

This section summarizes the agent model algorithm and code that was developed
and tuned through the process discussed in the previous sections. First, the desir-
ability of the goal is propagated by iterating through each cell on the map and set-
ting the propagated influence value in each cell, depending on its distance from the
goal, as well as the goal’s desirability and the propagation constant:

float CalcDesire (cells goal)

{

// distance = city block distance of x, y from goal

const float distance = abs(x – goal.x) + abs(y – goal.y);

// Desirability = goal’s desirability *

// Power (propagation constant, distance from goal)

float desire = goal.desire * Math.Pow (0.7, distance);

return desire;

}

Comfort
In each cycle, each agent calculates the comfort value for each cell in its local neigh-
borhood (n=3). The comfort value is a weighted sum of the environmental factors
in the cellular automata, including temperature, pressure, fire, and wetness:

float GetComfort ()

{

// fire > temperature > pressure > wetness

// Min(((fire*W1) + (temp*W2)

// + (pressure*W3) + (wetness*W4)), 1)

const float comfort = (temperature * TEMPCONST)

+ (fire * FIRECONST)

+ (pressure * PRESSCONST)

+ (wetness * WETCONST);

Chapter 7 Characters and Agents 255

if (comfort > 1.0)

{

comfort = 1.0;

}

return comfort;

}

Local Goal
Subsequently, the agent finds the optimal cell in its local neighborhood. The “good-
ness” of each cell in the local neighborhood is the sum of 50 percent of the comfort
of that cell and 50 percent of the desirability of that cell.

void GoalDest (float comfort, float speed, int n)

{

int destX, destY, minX, minY, maxX, maxY;

float thisComfort;

cont int empty = -1;

minX = std::max (position.x – n, 0);

maxX = std::min(position.x + n, numCells);

minY = std::max(position.y – n, 0);

maxY = std::min(position.y + n, numCells);

// for each cell in local neighborhood (n=3)

for (int i = minX, i < maxX, i++)

{

for (int j = minY, j < maxY, j++)

{

// only calculate if not previously calculated

// and store

if (cells[i][j].comfort == empty)

cells[i][j].comfort

= cells[i][j].GetComfort();

thisComfort = cells[i][j].comfort;

// add in desire from influence map

// Goodness of local cell

// = 50% comfort + 50% desirability

thisComfort =

(cells[i][j].comfort * 0.5)

+ ((1 – cells[i][j].desire) * 0.5);

256 Emergence in Games

// set destination to the most comfortable cell

// in neighborhood

if (thisComfort < comfort)

{

comfort = thisComfort;

destX = x;

destY = y;

}

}

}

// find destination within immediate neighborhood (n=1)

ImmDest(comfort, speed, 1, destX, destY);

}

Immediate Goal
The cell that the agent identifies as the optimal cell in its local neighborhood be-
comes its goal. Next, the agent assesses its immediate neighborhood (n=1) to find
the most optimal cell. The “goodness” of each cell in its immediate neighborhood
is the sum of 50 percent of the comfort of that cell and 50 percent of the proximity
of that cell to the agent’s goal in the local neighborhood.

void ImmDest (float comfort, float speed, int n, int goalX, int goalY)

{

int minX, maxX, minY, maxY;

float minComfort;

minX = std::max (position.x – n, 0);

maxX = std::min(position.x + n, numCells);

minY = std::max(position.y – n, 0);

maxY = std::min(position.y + n, numCells);

// Goodness of immediate cell = 50% comfort

// + 50% proximity to local goal

minComfort = (comfort * 0.5) + ((abs(goalX – position.x)

+ abs(goalY - position.y)) / 8.0f);

// for each cell in local neighborhood (n=1)

for (int i = minX, i < maxX, i++)

{

for (int j = minY, j < maxY, j++)

{

// 50% weighting = divide by 8

goal_dist = (abs(goalX - i) + abs(goalY - j)) / 8.0f;

Chapter 7 Characters and Agents 257

// 50% weighting = multiply by 0.5

thisComfort = (cells[i][j].comfort * 0.5) + goal_dist;

// set immediate destination to most comfortable cell

// in neighborhood

if (thisComfort < minComfort){

minComfort = thisComfort;

destX = x;

destY = y;

}

}

}

// move to destination at speed

Move(destX, destY, speed);

}

Reaction
After the agent determines its destination cell in the immediate neighborhood, it
moves toward that cell at a pace dependent on its current comfort. Each cycle, the
agent re-evaluates its local and immediate neighborhood and updates its goal and
destination.

void React ()

{

float comfort, speed;

int n;

comfort = GetComfort(x, y);

// neighborhood size = 3

n = 3;

// if comfortable – stand still

if (comfort < 0.1)

{

StopMove ();

}

// if uncomfortable – move

else if (comfort < 0.3)

{

// set speed – 1, animation walk

speed = 1.0f;

258 Emergence in Games

// move – to dest

GoalDest(comfort, speed, n);

}

// if distressed – move quickly

else if (comfort < 0.6)

{

// set speed – 2, animation run

speed = 2.0f;

// move – to dest

GoalDest(comfort, speed, n);

}

else

{

// set speed – 3, animation run

speed = 3.0f;

// move – to dest

GoalDest(comfort, speed, n);

}

}

Observable Behavior

Introducing entities that have a choice of how to react to the situation amplified the
variation and unpredictability of the Active Game World. Rather than the simple
physical exchange that existed in Chapter 6, a new level of depth was introduced to
the Active Game World by agents that actively change their own state.

Agents in the environment are not confined to the state of their current cell.
Instead, they are free to react to the changing environment in ways that optimize
values that are important to them, such as comfort and desirability. In doing so, the
agents actively change the state of the environment, because they carry effects
between cells in new and dynamic ways. For example, if a tank catches on fire and
reacts by rolling into a group of trees, those trees will, in turn, catch on fire, whereas
the outcome would have been different without the active role of the agent.

Furthermore, because the agents have the same set of physical and structural
properties as objects and cells in the Active Game World, different agents are
affected in varying ways by the same circumstances and subsequently react in dif-
ferent ways in these scenarios. This section examines four scenarios and discusses
the contrasting outcomes and considerations for agents, objects, and environments
in scripted and emergent systems with respect to these scenarios.

The four scenarios used for evaluation and tuning are (1) heat and fire, (2) fluid
and wetness, (3) pressure and explosions, and the (4) integrated system, including

Chapter 7 Characters and Agents 259

each of the previous components. Demos for each of these scenarios in the Active
Game World can be found on the CD-ROM.

Scenario 1: Heat and Fire
The first scenario presents a case study for heat and fire, in which a fire is started in
a military base that contains a variety of buildings (for example, metal bunkers and
wooden barracks) and agents (for example, tanks or people). As discussed in Chap-
ter 6, the interactions of fire with each of the different types of objects and terrain
are emergent in the Active Game World (see Figure 7.9). Similarly, the interactions
of fire with the different types of agents in the scenario are emergent.

260 Emergence in Games

FIGURE 7.9 A fire is started in a military base (a) and spreads throughout the base
(b–d), affecting different agents (tanks, people) and buildings (bunkers, barracks) in
different ways.

The observable behavior of the fire is emergent, due to the high- and low-level
properties of the entities in the scenario, combined with the rules for the interac-
tions of heat and fire. Therefore, the observable behavior of fire in the heat and fire
scenario depends on the position, composition, number, and variety of objects,
agents, and terrain in the scenario.

The behavior and effects of the fire emerge and change as a function of the
situation. The agents also react dynamically to the changing situation and in vary-
ing ways, depending on their low-level properties (a tank has a higher threshold for
discomfort than a human) and high-level properties (a tank can move faster than a
human and a boat cannot move on land). Finally, the ways that the agents react to
the heat and fire scenario feed back to actively change the state of the scenario. For
example, a tank that is on fire will propagate the fire as the tank moves into cells
that the fire might not have reached otherwise.

It would be difficult and time-consuming to script the observable behavior of
the fire, the effects of the fire on the agents, objects, and terrain, as well as the re-
sulting reactions of the agents to the situation, especially with any level of realism.

As discussed in Chapter 6, it is prohibitively complex to script the interactions of
fire with game objects and environments to the level of complexity implemented in the
Active Game World. Each attribute of the objects and terrain that need to be consid-
ered add a new level of complexity to the problem. Furthermore, the layout of the ob-
jects, agents, and terrain in the heat and fire scenario magnifies the problem. Finally,
when the reaction of the agents to the fire needs to be considered (even without the
agents’ actions feeding back into the scenario), the problem becomes impossible.

Consequently, it is likely that scripting fire in a game scenario would result in
flat, unrealistic, uniform fire, or spending tedious hours specifically scripting the
multitude of combinations that are possible, which would fall far short of what is
simulated in an emergent system due to time and logistical constraints.

Scenario 2: Fluid and Wetness
The second scenario presents a case study for fluid and wetness, in which rain falls
on a hillside and runs down the hill and floods the village in the valley below. The
village contains different types of buildings, villagers, vehicles, and a boat. As dis-
cussed in Chapter 6, the interactions of water with different types of objects, agents,
and terrain are emergent in the Active Game World (see Figure 7.10), as well as
interactions of water with different terrain contours.

Chapter 7 Characters and Agents 261

FIGURE 7.10 Rain runs down a hillside (a) and floods the village in the valley below
(b–c) and dries out over time (d). The flood affects and interacts with the agents (trucks,
people, and a boat) in different ways.

The water from the rain runs down the hill and floods the valley, due to the
emergent interactions of the water with the contours of the hill and valley. Some
objects and agents (such as houses and cars) are filled with water, due to their high-
level properties and other agents can float on the water (such as boats), due to their
ability to move on water.

The different objects, agents, and terrain become wet from the water to varying
degrees, depending on their composition. For example, a wooden house absorbs
more water than a metal shack, making it harder to ignite and more water-damaged.
Again, small changes in the fluid and wetness scenario can give rise to significantly
different observable behavior. For example, changing the contours of the hill could
mean that the village will not flood. Also, different agents respond to the water in dif-
ferent ways, because a flood is far more dangerous to a villager than it is to a boat.

Scripting the behavior of the fluid and wetness scenario specifically would be
time-consuming, difficult, and impractical. Changes to the contours of the terrain
have a significant effect on the series of events in the scenario, by determining
whether the water will flood the valley, whether it will pass through the valley, and
the magnitude of the flood. Subsequently, the various entities in the valley are af-
fected by the flood water in varying ways, which would be prohibitively expensive
to script specifically. Furthermore, the agents add another layer of complexity to the
problem.

Again, there are two possible approaches to scripting the fluid and wetness sce-
nario. The first is to have a limited number of pre-scripted scenarios that can take
place and the second is to attempt to script the scenario with some level of realism
and flexibility, which is prohibitively time-consuming and complex.

Scenario 3: Pressure and Explosions
The third scenario presents a case study for pressure and explosions, in which a
bomb explodes in a military base that contains different types of buildings (such as
a metal bunker or wooden barracks) and agents (such as people and tanks). As dis-
cussed in Chapter 6, the observable effects of the interactions of the explosion (that
is, pressure) with the objects, agents, and terrain in the pressure and explosions
scenario are emergent in the Active Game World (see Figure 7.11), as are the
secondary effects of the explosion (for example, fire started as a result of heat
generated by explosions).

The objects, agents, and terrain are affected in varying ways by the explosion,
depending on the strength of their composing material, their high-level properties
(for example, objects with volume can be filled with pressure), size, and number of
explosions, as well as the position, size, number, and type of entities in the scenario.
The result is a dynamic, emergent chain of interactions that arise from the rules
for interaction, properties of the entities, and the initial and evolving state of the
scenario.

262 Emergence in Games

Furthermore, the actions of the agents again add an extra layer of complexity to
the Active Game World. The agents react in varying ways to the pressure and ex-
plosions scenario and as a function of the changing state of the scenario. In doing
so, they actively change the system state and propagate effects in ways that might
not have occurred naturally.

The same problems exist for specifically scripting the pressure and explosions
scenario, as discussed in the previous scenarios and in Chapter 6. The Active Game
World takes into consideration many different factors, such as the position and
magnitude of the explosion, proximity of game objects and agents to the explosion,
high- and low-level properties of objects, agents, and terrain that result in varied ef-
fects from the explosion, and so on.

The actions and reactions of the agents, which vary by type and situation of
agents, add another layer of complexity to the problem. Therefore, the pressure and
explosions scenario could be scripted to be executed in a prescribed way or the
system could attempt to consider various attributes of the situation and run a pre-
coded script. In either case, the script is preset, rigid, and cannot be interacted with
by the players or changed as a result of the situation.

Scenario 4: Integrated System: Heat, Fluid, and Pressure
The fourth scenario is a combination of the previous three scenarios. Rain falls on
a hillside and runs down the hill, flooding the village in the valley below. Subse-
quently, the flood washes away and an unrelated explosion occurs in the village.

In the Active Game World (see Figure 7.12), the initial flood accumulates in the
valley, as a result of the interactions of the water with the contours of the hill. The
flood water then interacts with the buildings, vehicles, and people in the village in

Chapter 7 Characters and Agents 263

FIGURE 7.11 A bomb explodes in a military base (b), causing a fire (c) that spreads
through the base (d).

varying ways, depending on their low and high-level properties. The flood washes
away due to the contours of the landscape and dries out over time.

When the explosion occurs, the entities in the village are affected by the high
pressure in different ways, depending on their composition. Under the right con-
ditions, a fire starts in the village as a result of the heat released by the explosion.
The fire then spreads through the village, affecting different buildings and agents
in different ways, depending on their composition, their wetness from the flood,
position, size, and various other factors.

264 Emergence in Games

FIGURE 7.12 Rain runs down a hillside and floods a village (a) and dries out over time
(b), followed by an explosion in the village (c) and a fire caused by the explosion (d).

As discussed in Chapter 6, the complexity, power, and flexibility of the Active
Game World becomes most apparent in the integrated scenario. The simple, low-
level rules of each system (pressure, heat, and water) interact to give rise to inter-
esting, rich, and complex high-level, observable behavior.

The low-level properties of the agents, objects, and terrain, the high-level
properties of agents and objects, and the contours of the terrain combine with the
system rules to create a living, evolving, and complex system. Changes to the initial
and continuing state of the integrated scenario give rise to different outcomes and
observable behavior of the system.

Each event that occurs in the Active Game World (rain, flood, explosion, fire)
is not the result of pre-planning and scripting. Instead, each event occurs because
the conditions of the integrated scenario are right for each of these events to hap-
pen, as would be the case in the real world.

The rules of how things work in the Active Game World (such as hot things
burn, and water flows downhill) combine and interact to mould the series of events
that occur in an integrated scenario. With the addition of the agents (entities that
have a choice of how to react in a given situation), the complexity of the system is
deepened further. As the system state changes, the agents choose how to react to
their environment (affected by their high- and low-level properties and goals),
which in turn feeds back into the state of the system.

The interactions and actions of the agents give another level of complexity to the
observable behavior of the Active Game World, bringing the environment
to life with thinking, responding, interacting entities. A script to run the events
described in the integrated scenario would need to be highly specific to the scenario.
Any change to the initial setup or any change to effects throughout the scenario
would require multiple changes to be made to the script. It would not be possible to
achieve the level of detail, interactivity, and dynamic behavior as is described in the
integrated scenario in a specifically coded system.

Emergent Individual Behavior

This section discussed the design, implementation, and tuning of reactive game
agents in the Active Game World. These agents use influence maps, in conjunction
with the cellular automata in the Active Game World, to dynamically respond to
the environment. The resulting agent model works by first populating the agents’
influence map with values based on the comfort of the cells and the agents’ desire
to move to a goal (if they have one). Subsequently, the agents find the best cell in
the influence map in their local neighborhood and decide which way to move
(north, south, east, or west), based on the comfort of the cell in each direction and
the proximity of this cell to their local optima.

Three structured rounds of tuning were conducted to determine the design
that would achieve the best behavior for the agents. The first round aimed to de-
termine the appropriate neighborhood size that agents should evaluate when
choosing a destination. The section concluded that it would be desirable to com-
bine the ability of agents with larger neighborhoods to find local optima with the
ability of agents with smaller neighborhoods to avoid immediate threats.

The second tuning session aimed to find the most appropriate combination of
immediate area (reactive) and greater area (goal) evaluation. From the second
round of tuning, we found that an equal weighing of reactive and goal-directed be-
havior gave rise to the most appropriate agent behavior in the Active Game World.

The third round of tuning aimed to determine how well the agents perform
with a goal, because many agents in games are required to do more than react to the
environment. From the third round of tuning, it was demonstrated that increased
differentiation between cells on the influence map provided the agents with a clear

Chapter 7 Characters and Agents 265

view of the best way to navigate through the environment, which had an important
impact on the success of the agent’s behavior.

The Active Game World, including cells, objects, and agents, exhibited the
same advantages over scripted systems as were discussed in Chapter 6, as well as a
new level of complexity and emergence added by the autonomous agents. As dis-
cussed in Chapter 6, the agents, objects, and cells have low-level properties, related
to their physical composition, which determine how they will interact with heat,
pressure, and water. Also, the agents and objects have high-level properties, related
to their physical structure, which further constrain the ways in which they are able
to interact with heat, pressure, and water. Therefore, the interactions that occur in
any given scenario are dependent on, and emerge as a function of, a variety of fac-
tors, including number, type, and position of entities in the environment, terrain,
and external effects (for example, rain and wind).

Reactive agents can further the emergent behavior and gameplay discussed in
Chapter 6 by adding a new level of complexity to the game world. As the agents are
able to choose how to react to the environment, they are able to actively change the
state of the world in ways that might not have occurred without their intervention.
Furthermore, the differences between individual and types of agents, such as com-
position, structure, goals, personality, and so on, means that different agents will
choose to react in different ways in the same situation.

The result of each component of the system (objects, agents, and cells) work-
ing together is a complex, rich, and living world that provides a suitable environ-
ment for interesting and emergent gameplay to take place.

The reactive agent model is also very extensible, in that it can be extended to
incorporate any aspects in the game world that are relevant to the agents’ behavior
(for example, other agents, terrain, and events). The simplicity and flexibility of this
model means that it can be used to govern the behavior of almost any agent in any
circumstance.

The model can be used for agents that dynamically react to the changing situ-
ation of their environment, as well as an intelligent pathfinding algorithm that
allows agents to find a safe path to a goal, based on aspects of their environment.
With the use of the influence map structure, the model can be easily adapted to be
used for different decisions with different variables and weightings. With the cellu-
lar automata feeding into a layer of the influence map, the environmental values
from the cellular automata can be used for other decisions in which environmen-
tal factors are relevant, such as strategic decision-making (for example, using flam-
ing catapults upwind of an opponent).

The reactive agent model described in this chapter provides a possible solution
for incorporating agents that appear intelligent to the players by reacting sensibly to
the game environment, into game worlds. As described, reactive agents can be
incorporated into game worlds by giving the agents a measure of comfort in the

266 Emergence in Games

current situation (via cellular automata or other means), as well as a map for de-
ciding where they might move to maximize their comfort.

As this design closely resembles an influence map, it is also possible to integrate
goal-directed behavior, and potentially personality, group movement, and various
other behaviors into the agent model. Within the Active Game World, the agents
are extensions of the existing objects and are therefore subject to the same rules of
interacting in the environment.

Whereas current agents in games do not demonstrate an awareness of their
situation or react appropriately to events in their immediate surroundings, the
reactive agents maintain a model of the comfort of their environment and react
according to the changing state of their situation. The reactive agent model allows
agents to dynamically react to the changing situation of their environment and to
intelligently find a path to a goal, increasing their visible level of intelligent, realis-
tic, and responsive behavior.

Chapter 7 Characters and Agents 267

ADDITIONAL READING

For further information on using cellular automata and influence maps for re-
active game agents:

Sweetser, P. (2006) Environmental Awareness in Game Agents. AI Game
Programming Wisdom 3, Hingham, MA: Charles River Media, pp. 457–468.
Sweetser, P., and Wiles, J. (2005) Combining Influence Maps and Cellular
Automata for Reactive Game Agents. 6th International Conference on
Intelligent Data Engineering and Automated Learning, Lecture Notes in
Computer Science, 3578, pp. 524–531.

For further information on movement of individual characters:

Reynolds, C. W. (1999) Steering Behaviors for Autonomous Characters.
Proceedings of Game Developers Conference 1999, San Francisco, CA: Miller
Freeman Game Group, pp. 763–782.

GROUP

Many games have groups of agents that must be able to interact, coordinate, and
cooperate. This is particularly important in team-based games, such as strategy
games and sports games. When there are two or more sides fighting or competing,
the agents must cooperate in an organized way to have any chance of success. The
two most important group actions in games are group movement and tactics.

Emergence has a lot of potential to improve group behavior, with a focus on self-
organization, rather than top-down orchestration.

Group Movement

Coordinated and fluid group movement can be achieved with a bottom-up, agent-
based approach. Many movies and games have used flocking as a steering behavior
for groups, schools, or herds of animals, people, and monsters. Games that have
successfully used flocking to simulate the group behaviors of monsters and animals
include Half-Life, Theme Hospital, Unreal, and Enemy Nations.

Half-Life uses flocking to simulate the squad behavior of the marines, who run
for reinforcements when wounded, lob grenades from a distance, and attack the
players with dynamic group tactics. Theme Hospital uses flocking to simulate the
hustle-and-bustle of patients, doctors, and staff in a hospital. Unreal uses flocking
for many of the monsters, as well as other creatures, such as birds and fish. Enemy
Nations uses a modified flocking algorithm to control unit formations and move-
ment across a 3D environment.

Movies have used flocking to simulate crowds of extras and flocks of animals.
For example, the movie Batman Returns made use of flocking algorithms to simu-
late bat swarms and penguin flocks.

Flocking in Games

Flocking can be used in games for unit motion and to create realistic environments
the players can explore. In a real-time strategy or role-playing game, groups of an-
imals can be made to wander the terrain more realistically than with simple script-
ing. Similarly, flocking can be used for realistic unit formations or crowd behaviors.

For example, groups of archers or swordsmen can be made to move realistically
across bridges or around obstacles, such as boulders. Alternatively, in first-person
shooter games, monsters can wander the dungeons in a more believable fashion,
avoiding players and waiting until their flock grows large enough to launch an attack.

Flocking is currently used in games where there are groups of animals or mon-
sters that need to simulate lifelike flock behavior. It is a relatively simple algorithm
and composes only a small component of a game engine. However, flocking makes
a significant contribution to games by making an attack by a group of monsters or
marines realistic and coordinated. It therefore adds to the suspension of disbelief of
the game and is ideal for role-playing or first-person shooter games that include
flocks, swarms, or herds.

Agent-Based Steering

Agent-based steering behaviors are based on individual agents having a few simple
rules to guide their movement in relation to their environment and other agents.

268 Emergence in Games

These types of steering behaviors can also be extended to include goals, personality,
threats, and other relevant factors. The game Halloween Wars on the demo CD-ROM
uses agent-based steering behaviors to create emergent group movement and tactics.

As discussed in Chapter 5, flocking is an artificial life technique for simulating
the natural behavior of groups of entities that moves in herds, flocks, or swarms.
Flocking was devised as an alternative to scripting the paths of each entity individ-
ually, which was tedious, error-prone, and hard to edit, especially for a large num-
ber of objects.

In flocking, the aggregate motion of the simulated flock is created by a distrib-
uted behavioral model like that in a natural flock. The generic simulated flocking
creatures are called boids. Each boid in the flock is an individual that navigates ac-
cording to its local perception of its environment, the laws of physics that govern
this environment, and a set of programmed behaviors. Flocking assumes that a
flock is simply the result of the interaction between the behaviors of individual
boids.

Steering Behaviors
The boids in the Halloween Wars flocking demo are based on the four steering be-
haviors discussed in Chapter 5: separation, alignment, cohesion, and avoidance.
These rules describe how an individual boid maneuvers based on the positions and
velocities of its nearby flockmates.

PROCEDURE flocking ()

sum of mass = 0

perceived velocity = 0

FOR EACH boid

sum of mass += boid.position

perceived velocity += boid.velocity

END

center of mass = sum of mass / number of boids

average velocity = perceived velocity / number of boids

FOR EACH boid

boid.position += boid.separation() + boid.alignment()

+ boid.cohesion() + boid.avoidance()

END

END PROCEDURE

Separation In separation, each member of a flock tries to keep a minimum dis-
tance from its neighboring flockmates. It helps to prevent boids from crowding

Chapter 7 Characters and Agents 269

together, while ensuring a lifelike closeness. Each boid of a flock tests how close
it is to its nearby flockmates and then adjusts its steering to obtain the desired
distance.

FUNCTION separation ()

separation = 0

FOR EACH boid

IF boid is not equal to this boid THEN

// minimum separation = 10

IF abs(position - boid.position) < 10 THEN

// double the separation from boid

separation -= (position - boid.position)

END

END

END

RETURN separation

END FUNCTION

Alignment Alignment involves each member attempting to go in the same direc-
tion as its neighbors. Each boid looks at nearby flockmates and adjusts its steering
and speed to match the average steering and speed of its neighbors.

FUNCTION alignment ()

// move 10% closer to average velocity

RETURN (average velocity – velocity) / 10

END FUNCTION

Cohesion In cohesion, each member tries to get as close as possible to its neigh-
bors. Each boid examines its neighbors, averages their positions and adjusts its
steering to match.

FUNCTION cohesion ()

// move 1% closer to center of mass

RETURN (centre of mass – position) / 100

END FUNCTION

Avoidance Avoidance allows a flock to react to predators and obstacles. Avoidance
makes each member keep a certain distance from obstacles or members in other
flocks, such as predators. This provides a boid with the ability to steer away from ob-
stacles and avoid collisions. Each boid looks ahead some distance, determines
whether a collision with some object is likely, and adjusts its steering accordingly.

270 Emergence in Games

FUNCTION avoidance ()

avoidance = 0

FOR EACH obstacle

// minimum separation = 20

IF abs(position - obstacle.position) < 20 THEN

// double the separation from boid

avoidance -= (position - obstacle.position)

END

END

RETURN avoidance

END FUNCTION

Simulated Flocking

Flocking is a stateless algorithm, because no information is maintained from
update to update. Each member in the flock revaluates its environment at every
update cycle, which reduces the memory requirements and allows the flock to be
purely reactive, responding to the changing environment in real-time.

Each boid in the flock has direct access to the whole scene’s geometric descrip-
tion. However, flocking requires the boid to react to flockmates in its local neigh-
borhood, which is characterized by a distance from the center of the boid and an
angle from the boid’s direction of flight. The flockmates that are outside this local
neighborhood are ignored. This neighborhood is the region in which flockmates
influence a boid’s steering.

There are several constraints that restrict how boids can move and react, namely
perception range, velocity, and environment. The perception range is the distance
that the boid can look around to detect flockmates, obstacles, and enemies. A flock
with a larger perception range is more organized and better at avoiding enemies and
obstacles. Whereas a smaller range results in a more erratic flock with groups of
boids splitting off more often. The velocity refers to the boids’ ability to keep up with
their flockmates by how fast they can move and turn. The flock’s environment can
also impose constraints, such as a size limit or many obstacles or predators.

In simulated flocking, the boids initially move together rapidly to form the
flock. As they are flocking, the boids at the edge of the flock either increase or de-
crease their flying speed to maintain the integrity of the flock. Each boid in the flock
makes minor adjustments to its heading as the flock winds its way around. The
boids fluidly flock around obstacles in their path, which may temporarily divide the
flock, but they are soon reunited. Each boid only perceives its neighbors and their
actions and reacts accordingly. However, the collective movement of the boids
closely resembles real flocking, even though there are no rules that dictate the
behavior of the flock as a whole.

Chapter 7 Characters and Agents 271

Flocking in Halloween Wars

The Halloween Wars demonstration on the CD-ROM has two modes—Flocking
mode and the Halloween Wars game mode. The mode can be changed by clicking
on the button on the top right of the window. When run, it defaults to Halloween
Wars mode. By clicking the Flocking button, you can change it into Flocking mode.

272 Emergence in Games

ADDITIONAL READING

For further information on flocking in games:

Reynolds, C. (1987) Flocks, Herds, and Schools: A Distributed Behavioral
Model. Computer Graphics 21 (4), pp. 25–34.
Reynolds, C. (2006) Big Fast Crowds on PS3. Proceedings of the 2006 ACM
SIGGRAPGH Symposium on Videogames, pp. 113–121.
Woodcock, S. (2000) Flocking: A Simple Technique for Simulating Group
Behavior. Game Programming Gems. Hingham, MA: Charles River Media,
pp. 305–318.
Woodcock, S. (2001) Flocking with Teeth: Predators and Prey. Game Pro-
gramming Gems 2. Hingham, MA: Charles River Media, pp. 330–336.

KEY TERMS

Group movement requires agents to move in coordination with members of
a group or team.
Flocking is an artificial life technique for simulating the natural behavior of
groups of entities that moves in herds, flocks, or swarms.
Agent-based steering behaviors are based on individual agents having a few
simple rules to guide their movement in relation to their environment and
other agents.
Separation involves each member of a flock trying to keep a minimum dis-
tance from its neighboring flockmates.
Alignment involves each member attempting to go in the same direction as
its neighbors.
Cohesion involves each member trying to get as close as possible to its
neighbors.
Avoidance makes each member keep a certain distance from obstacles or
members in other flocks, such as predators.

Within Flocking mode, there are four options (found on the bottom-right side of
the window)—Ignore, Avoid, Predator/Prey, and Chase (see Figure 7.13).

Chapter 7 Characters and Agents 273

FIGURE 7.13 Flocking mode in the Halloween Wars demonstration
includes four options—Ignore, Avoid, Predator/Prey, and Chase.

The basic steering behaviors used for the boids in the Halloween Wars flocking
demo are separation, alignment, cohesion, and avoidance. In Halloween Wars,
there are two, independent flocks, called redTeam and blueTeam, which correspond
to the pumpkins and marshmallows, respectively. When the flocking simulation is
started, each boid is randomly positioned on the map.

// for each boid in each team

for (int i = 0; i < army_size; i++)

{

redSprite[i].Boid_Position();

blueSprite[i].Boid_Position();

}

// randomly position on the map

void Boid_Position()

{

position.X = rand.Next(map_width);

position.Y = rand.Next(map_height);

}

As described in the flocking algorithm in the previous section, the center of
mass and the average velocity are first calculated.

// create 2D vectors for the center of mass of each team

Vector2 redTeamMass = Vector2(0,0);

Vector2 blueTeamMass = Vector2(0,0);

// update each team’s average velocity the their new velocity

redVelocity = redNewVelocity;

blueVelocity = blueNewVelocity;

// reset the new velocity, to be calculated in the flocking algorithm

redNewVelocity = Vector2(0,0);

blueNewVelocity = Vector2(0,0);

// add the positions of each boid together

for (int i = 0; i < army_size; i++)

{

redTeamMass += redSprite[i].position;

blueTeamMass += blueSprite[i].position;

}

// divide summed positions by the army size to get centre of mass

redTeamMass.X /= army_size;

redTeamMass.Y /= army_size;

blueTeamMass.X /= army_size;

blueTeamMass.Y /= army_size;

Subsequently, the new positions of each boid are calculated and updated using
the steering behaviors. The steering behaviors that are employed vary by the mode
set for the Halloween Wars flocking demo. Each of the four modes (Ignore, Avoid,
Predator/Prey, and Chase) use steering behaviors for cohesion, separation, and
alignment, as well as avoidance to avoid the edge of the map. The Predator/Prey
and Avoid modes also use steering behaviors for avoidance of the other team. Fi-
nally, the Predator/Prey and Chase modes use a steering behavior similar to cohe-
sion to move toward an object or the center of mass of the other team.

274 Emergence in Games

// Flocking algorithm for an individual boid

// initialize boid’s new velocity

Vector2 velocity = Vector2(0,0);

velocity = Cohesion(teamMass);

velocity += Separation(teamSprite);

// predator/prey mode enabled

if (predatorEnabled)

{

velocity += Avoidance(predator, enemyMass);

}

// avoid mode enabled

if (avoidEnabled)

{

velocity += Avoidance(false, enemyMass);

}

// chase mode enabled

if (chaseEnabled)

{

velocity += Chase(donut);

}

// avoid edge of map

velocity += AvoidEdge();

velocity += Alignment(teamVelocity, velocity);

// Move boid – but do not go outside edge of map

velocity = Move(velocity);

position += velocity;

// Update team velocity

teamNewVelocity += velocity;

Cohesion
Cohesion causes the boids to move toward the center of mass of the flock. Cohesion
works by moving the boid a given fraction (denoted by the COHESION_
MOD) closer to the center of mass of the flock. Both teams use cohesion to keep
the flocks together in each mode. Figure 7.14 shows the cohesion steering behavior
in the Ignore mode.

Chapter 7 Characters and Agents 275

const int COHESION_MOD = 300;

Vector2 Cohesion(Vector2 teamMass)

{

Vector2 boidVelocity = Vector2(0,0);

boidVelocity.X = (teamMass.X - position.X)/COHESION_MOD;

boidVelocity.Y = (teamMass.Y - position.Y)/COHESION_MOD;

return boidVelocity;

}

Separation
Separation is used in each of the modes and causes the boids to keep a minimum
distance from other boids in the flock. Separation causes the appearance of the
flock formation, because the boids attempt to maintain a minimum distance from
their fellow boids, giving rise to uniformly spaced boids. Separation works by
checking for fellow boids within a given distance (SEPARATION_MIN) and in-
creasing the boid’s distance from that boid by a given percentage (SEPARATION_
MOD). Figure 7.15 shows the separation steering behavior in the Avoid mode.

276 Emergence in Games

FIGURE 7.14 Cohesion draws the boids in toward their flock’s center of mass.

SEPARATION_MIN = 3

SEPARATION_MOD = 1.5

Vector2 Separation(MovingSprite[] teamSprite)

{

Vector2 boidVelocity = Vector2(0,0);

double distanceXY = 0;

for (int i = 0; i < Simple2D.army_size; i++)

{

Vector2 separation;

separation.X = teamSprite[i].position.X - position.X;

separation.Y = teamSprite[i].position.Y - position.Y;

if ((separation.X == 0) && (separationY == 0))

{

distanceXY = 0;

}

else

Chapter 7 Characters and Agents 277

FIGURE 7.15 Separation keeps the boids a minimum distance from their
fellow flockmates.

{

distanceXY = Math.Sqrt((separationX * separationX)

+ (separation.Y * separationY));

}

if (distanceXY < SEPARATION_MIN)

{

boidVelocity.X += (separation.X * SEPARATION_MOD);

boidVelocity.Y += (separation.Y * SEPARATION_MOD);

}

}

return boidVelocity;

}

Avoidance
Avoidance is used in each of the modes to deter the flock from coming into contact
with the edge of the map. If a boid is within a certain distance of the edge of the map
(AVOID_EDGE_MIN), it increases this separation distance by a given factor
(AVOID_EDGE_MOD). Figure 7.16 shows the avoidance of the edge of the map
steering behavior in the Avoid mode.

const int AVOID_EDGE_MIN = 10;

const int AVOID_EDGE_MOD = 2;

Vector2 AvoidEdge()

{

Vector2 boidVelocity = Vector2(0,0);

// Avoidance edge of screen

if ((maxWidth - position.X) < AVOID_EDGE_MIN)

boidVelocity.X -= ((maxWidth - position.X) *

AVOID_EDGE_MOD);

if ((maxHeight - position.Y) < AVOID_EDGE_MIN)

boidVelocity.Y -= ((maxHeight - position.Y) *

AVOID_EDGE_MOD);

if ((position.X – minWidth) < AVOID_EDGE_MIN)

boidVelocity.X += (position.X * AVOID_EDGE_MOD);

if ((position.Y – minHeight) < AVOID_EDGE_MIN)

boidVelocity.Y += (position.Y * AVOID_EDGE_MOD);

return boidvelocity;

}

Avoidance is also used in the Predator/Prey and Avoid modes, but in a differ-
ent way. Rather than using a separation-type rule, the boids use a rule similar (but

278 Emergence in Games

exactly opposite) to cohesion to avoid the other team. In the Avoid mode, boids in
both teams check their distance from the center of mass of the other team and in-
crease the separation by a given factor (PREY_MOD).

In the Predator/Prey mode, the prey (marshmallows) works in the same way as
in the Avoid mode, but the predators (pumpkins) decrease their separation by a
given factor (PREDATOR_MOD). To give them a sporting chance, the prey can
move faster than the predators, which is denoted by a smaller modification factor,
meaning that they can increase their separation from the predators further than the
predators can decrease the separation each timestep. Figure 7.17 shows the avoid-
ance steering behavior in the Predator/Prey mode.

const int PREDATOR_MOD = 1500;

const int PREY_MOD = 500;

Vector2 Avoidance(bool predator, Vector2 enemyMass)

{

Vector2 boidVelocity = Vector2(0,0);

Chapter 7 Characters and Agents 279

FIGURE 7.16 Avoidance keeps the boids a minimum distance from the
edge of the map.

if (predator)

{

// Chase the other team

boidVelocity.X = (enemyMass.X - position.X)/PREDATOR_MOD;

boidVelocity.Y = (enemyMass.Y - position.Y)/PREDATOR_MOD;

}

else

{

// Avoid the other team

boidVelocity.X -= (enemyMass.X - position.X)/PREY_MOD;

boidVelocity.Y -= (enemyMass.Y - position.Y)/PREY_MOD;

}

return boidVelocity;

}

280 Emergence in Games

FIGURE 7.17 Avoidance enables the prey to avoid their predators.

Chase
The Chase mode uses a steering behavior similar to the predators in the
Predator/Prey mode, which allows the boids to move closer to the object they are
chasing. The object itself (a donut) has a random movement pattern. Each timestep,

the chasers (marshmallows) move a given fraction (CHASE_MOD) closer to the
moving object, while maintaining their flock formation. Figure 7.18 shows the
marshmallows using the chase steering behavior to chase the donut.

const int CHASE_MOD = 500;

Vector2 Chase(const Vector2 donut)

{

// Move toward the donut

boidVelocity.X = (donut.X - position.X)/CHASE_MOD;

boidVelocity.Y = (donut.Y - position.Y)/CHASE_MOD;

return boidVelocity;

}

Chapter 7 Characters and Agents 281

FIGURE 7.18 The marshmallows chase the donut, while maintaining
their flock formation.

Alignment
The alignment steering behavior is also used in each flocking mode in the Halloween
Wars demo, and is a staple of the flocking algorithm. Alignment allows a boid to

move toward the perceived heading of the flock. Each boid takes the average veloc-
ity of the flock and changes its own heading by a given factor (ALIGNMENT_MOD)
to move toward the average heading.

const int ALIGNMENT_MOD = 10;

Vector2 Alignment(const Vector2 teamVelocity, const Vector2 velocity)

{

// Alignment

boidvelocity.X = (teamVelocity.X - velocity.X)/ALIGNMENT_MOD;

boidvelocity.Y = (teamVelocity.Y - velocity.Y)/ALIGNMENT_MOD;

return boidvelocity;

}

Update
Finally, the boids are moved to their new position and the flocking algorithm starts
again, without any memory of where they moved last cycle. In this example, the
boids are also locked to the boundaries of the map. Their avoidance steering
behavior does deter them from moving too close to the edge of the map, but it is
possible that the repulsion from avoiding another flock or predator might out-
weigh their desire to stay within bounds.

Vector2 Move(const Vector2 velocity)

{

Vector2 boidVelocity;

// don’t go outside edge of map

if ((position.X + velocity.X) > maxWidth)

boidVelocity.X = (maxWidth - position.X);

else if ((position.X + velocity.X) < minWidth)

boidVelocity.X = (position.X – minWidth);

else boidVelocity.X = velocity.X;

if ((position.Y + velocity.Y) > maxHeight)

boidVelocity.Y = (maxHeight - position.Y);

else if ((position.Y + velocity.Y) < minHeight)

boidVelocity.Y = (position.Y – minHeight);

else boidVelocity.Y = velocity.Y;

return boidVelocity;

}

282 Emergence in Games

Constants
There are several global constants used throughout the flocking algorithm that can
be tuned to substantially modify the behavior of the flock. Try altering each of
these constants and see how it changes the behavior of the flock. A summary of the
constants is shown in Table 7.3.

Chapter 7 Characters and Agents 283

Constant Value Purpose

COHESION_MOD 300 Determines how much closer the boid will
move to the center of mass of the flock

SEPARATION_MIN 3 The distance within which the boid checks
for flockmates

SEPARATION_MOD 1.5 Factor by which boid will increase current
distance from flockmate

AVOID_EDGE_MIN 10 The distance within the boid checks for the
edge of the map

AVOID_EDGE_MOD 2 Factor by which boids will increase current
distance from the edge of the map

PREDATOR_MOD 1500 Factor by which the boids decrease their
distance from their prey

PREY_MOD 500 Factor by which the boids increase their
distance from their predators

CHASE_MOD 500 Factor by which the boids decrease their
distance from the object they are chasing

ALIGNMENT_MOD 10 Factor by which the boid aligns its heading
with the flock’s average velocity

TABLE 7.3 Global Constants in Flocking Algorithm

Emergent Group Movement

The four modes in the Halloween Wars flocking demo demonstrate four different
behaviors, based on the same set of simple rules with minor variations. Changing
the rules or modifiers, evenly slightly, gives rise to different behavior. Adding or re-
moving individual rules has a substantial effect on the behavior. The combination
of the simple steering behaviors in flocking, when applied to many individual enti-
ties, illustrates the power, potential, and variability of emergence in games.

The rules themselves are simple to program and easy to understand, but they
can give rise to interesting, lifelike, and complex behavior. The key is to find the

right set of simple rules and tune the variables to give the desired behavior for your
game. The next section takes the same set of simple rules and alters them to suit a
game scenario. The result is a simple movement, tactics, and AI system for a basic
strategy game.

Tactics

Tactics involve a group or team cooperating and behaving in a coordinated way in
order to achieve a group goal, such as securing an area, defeating the enemy, win-
ning a match, or making a successful play. As well as coordinated group movement,
agent-based systems can be used to create emergent group tactics. If each agent
considers its goals, personality, current situation, and the behavior of its team and
opponents, it can make low-level decisions that will allow the high-level tactics and
strategies to be emergent.

Tactics in Halloween Wars

In the Halloween Wars game mode, two teams (pumpkins and marshmallows) fight
against each other for domination. Each side starts with 100 soldiers, 500 rein-
forcements, and control of three of the six domination points (that is, donuts) (see
Figure 7.19). The objective of the game is to hold all of the domination points
simultaneously, or kill all of the opposing force on the field.

Reinforcements
Each side can call for reinforcements when their fielded army drops below 100 sol-
diers. The players can call reinforcements by clicking the Reinforcements button on
the bottom-right of the screen. When reinforcements are called, the fielded army is
boosted back up to 100, or as many reinforcements remain. Reinforcements can be
called at any time, until the 500 soldiers in reserve are used up. Reinforcements
are deployed at each side’s deployment point (top-right for marshmallows and
bottom-left for pumpkins).

Stances
Each side can switch its stance between Attack, Defend, Capture, and Hold, each of
which corresponds to a button on the bottom-right of the window. Each of the
stances has the following effect:

Attack—Move toward the center of mass of enemy soldiers.
Defend—Move toward the center of mass of friendly soldiers.
Capture—Move toward the nearest enemy domination point.
Hold—Move toward the nearest friendly domination point.

However, these stances are not direct orders that are given to the team. They
change the weights that are applied to each steering behavior. For example, a team

284 Emergence in Games

given the Attack stance will move more toward the other team than toward its own
team members. The actual effect of each of these stances will be explained in the
following flocking algorithm.

Chapter 7 Characters and Agents 285

FIGURE 7.19 Each side starts with 100 soldiers, 500 reinforcements, and
control of three domination points.

KEY TERMS

Tactics involves agents cooperating in order to achieve a common goal.
Stances change weights that are applied to steering behaviors.

Game Cycle
When a new game is started, each team is given a full complement of soldiers and
reinforcements. The soldiers are randomly placed on each half of the map, as are
the domination points for each team. The pumpkin’s (redTeam) starting stance is
randomly set and the marshmallow’s (blueTeam) stance is initially set to Defend.

During each cycle, the game checks to determine if one team has won. A team
can win by killing all the fielded soldiers on the other team or by capturing all the
domination points. Next, the redTeam (controlled by the AI) evaluates the current
strategic position and sets the stance of the team.

Strategic AI The strategic AI is a simple list of prioritized switches, as follows:
If the redTeam do not control the majority of domination points, their stance
is set to Capture.
Otherwise, if the redTeam outnumber the blueTeam, their stance is set to At-
tack.
Otherwise, if the blueTeam have more than twice the strength of the redTeam,
their stance is set to Defend.
Otherwise, their stance is set to Hold (they are outnumbered by the blueTeam,
but by less than double).

The code for the strategic AI is as follows:

if (numRed <= (flags/2))

redPriorities.current_stance = capture;

else if (redAlive > blueAlive)

redPriorities.current_stance = attack;

else if (blueAlive > (2*redAlive))

redPriorities.current_stance = defend;

else

redPriorities.current_stance = hold;

Combat Next, the combat is resolved. The combat simply runs through the
redTeam and checks for blueTeam soldiers that are in range. For each soldier that is
found in range, the redTeam soldier has a 25% chance to kill the blueTeam soldier,
and vice versa, with a 50% chance that both will survive.

for (int i = 0; i < army_size; i++)

{

if (redArmy[i].alive)

{

for (int j = 0; j < army_size; j++)

{

// for each enemy alive within range

if ((blueArmy[j].alive)

&& (redSprite[i].InRange(blueSprite[j])))

{

int r = rand.Next(100);

286 Emergence in Games

// 25% chance to kill or be killed

if (r < 25)

{

blueArmy[j].alive = false;

blueAlive--;

}

else if (r < 50)

{

redArmy[i].alive = false;

redAlive--;

j = army_size;

}

}

}

}

}

Domination Subsequently, the game checks to determine which team is in con-
trol of each flag (donut). The number of soldiers of each team that are in range of
the flag is counted and the team with the majority in range controls the flag.

// capture the flag

for (int i = 0; i < flags; i++)

{

// if enemy in range outnumbers friendly change ownership

int redInRange = 0;

int blueInRange = 0;

for (int j = 0; j < army_size; j++)

{

if ((redSprite[j].InRangeFlag(flagPos[i].x, flagPos[i].y))

&& redArmy[j].alive)

redInRange++;

if ((blueSprite[j].InRangeFlag(flagPos[i].x, flagPos[i].y))

&& blueArmy[j].alive)

blueInRange++;

}

if (redInRange > blueInRange)

flagID[i] = RED;

else if (blueInRange > redInRange)

flagID[i] = BLUE;

}

Chapter 7 Characters and Agents 287

Movement The flocking algorithm is then run for each team, to determine where
each soldier will move next. Each stance has an associated set of weights for mov-
ing toward friendly flags (friendly_flag), moving toward enemy flags (enemy_flag),
moving toward friendly soldiers (friendly_army), and moving toward enemy
soldiers (enemy_army). Each modifier further modifies the weight of each steering
behavior (see Table 7.4).

288 Emergence in Games

Weight Attack Defend Capture Hold

friendly_flag 0.1 0.2 0.1 1.0

enemy_flag 0.2 0.1 1.0 0.1

friendly_army 0.1 1.0 0.1 0.2

enemy_army 1.0 0.1 0.2 0.1

TABLE 7.4 Weights for Each Strategic Stance

Steering Behaviors
The flocking algorithm that is run for the game mode is very similar to the algo-
rithm for the flocking demo mode, except for the application of the additional
weights for stances and some other small variations.

// initialize boid’s new velocity

Vector2 velocity;

velocity = Cohesion(teamMass);

velocity += Separation(teamSprite);

// chase the enemy team

velocity += Chase(enemyMass);

// avoid edge of map

velocity += AvoidEdge();

// chase flag

velocity += ChaseFlag();

velocity += Alignment(teamVelocity, velocity);

// Move boid – but do not go outside edge of map

velocity = Move(velocity);

position += velocity;

// Update team velocity

teamNewVelocity += velocity;

Cohesion The cohesion rule is identical to the cohesion rule in the flocking demo,
except that the base cohesion modifier (COHESION_MOD) is increased to 500,
to create a looser formation. The change in position due to cohesion is also modi-
fied by the friendly_army weight. Consequently, the soldiers flock closer together
in the Defend stance, where the friendly_army weight is higher (see Figure 7.20).

const int COHESION_MOD = 500;

Vector2 Cohesion(Vector2 teamMass)

{

Vector2 boidVelocity;

boidVelocity.X = (teamMass.X - position.X)

/ (COHESION_MOD / stance.friendly_army);

boidVelocity.Y = (teamMass.Y - position.Y)

/ (COHESION_MOD / stance.friendly_army);

return boidVelocity;

}

Chapter 7 Characters and Agents 289

FIGURE 7.20 Soldiers in the marshmallow team flock together when
set to Defend.

Separation The separation rule is identical to the separation rule in the flocking
demo, with the same modifiers applied. This ensures that the soldiers keep a min-
imum distance from each other at all times. However, it would be possible to mod-
ify the separation distance by the friendly_army modifier, or another modifier, so
that soldier formations would become tighter or looser depending on strategic
stances. Try modifying the separation rule with the friendly_army modifier to see
what effect it has.

Chase The chase rule works the same as the chase rule used to chase the donut in
the Chase mode of the flocking demo. However, instead of chasing the donut, the
soldiers are chasing the center of mass of the enemy team. The base chase modifier
(CHASE_MOD) has the same value as in the flocking demo, but the value is also
modified by the enemy_army weight. As a result, the soldiers move closer to the
enemy army in the Attack stance, where the enemy_army weight is higher (see Fig-
ure 7.21).

const int CHASE_MOD = 500;

Vector2 Chase(const Vector2 target)

{

Vector2 boidVelocity;

// Chase the other team

boidVelocity.X = (target.X - position.X)

/ (CHASE_MOD / stance.enemy_army);

boidVelocity.Y = (target.Y - position.Y)

/ (CHASE_MOD / stance.enemy_army);

return boidVelocity;

}

Chase Flag The major variation from the flocking demo comes with the need to
capture and hold flags. A team’s stance can be set to either capture enemy flags or
hold their own flags. Each soldier chooses only one flag to move toward each cycle.
The best flag for each soldier to move toward is determined by the distance between
the flag and the soldier, modified by the soldier’s enemy_flag and friendly_flag
weights, depending on the team to which the flag currently belongs.

The result is that the soldier moves toward the closest flag of the type it is try-
ing to pursue. When the Capture stance is set, the soldiers will move toward the
nearest enemy flag, and when the Hold stance is set, the soldiers will move toward
the nearest friendly flag (see Figure 7.22). If the team is set to Attack or Defend, the
soldier will move slightly closer to the nearest enemy or friendly flag, respectively.

290 Emergence in Games

However, if the team is set to Attack or Capture and the nearest enemy flag is
too far from the soldier, it will head toward the nearest friendly flag. The point at
which it deems the flag to be too far away can be tuned by the enemy_flag and
friendly_flag weights. With the current weight settings, the nearest enemy flag
must be twice as far away as the nearest friendly flag when the team is set to Attack
(that is, enemy_flag = 0.2, friendly_flag = 0.1), and 10 times as far when they are
set to Capture (that is,. enemy_flag = 1.0, friendly_flag = 0.1).

const int FLAG_CHASE_MOD = 300;

const int FLAG_DISTANCE_MOD = 10;

Vector2 ChaseFlag()

{

int goal = 0;

double goal_dist;

float flag_mod, goal_mod;

Vector2 boidVelocity;

// Go toward the most desirable flag

for (int r = 1; r < flags; r++)

Chapter 7 Characters and Agents 291

FIGURE 7.21 Soldiers in the marshmallow team move closer to the
enemy pumpkin army when set to Attack.

{

// is this our flag or the enemy’s flag, weight accordingly

if (flagOwner[r] == ourFlag)

flag_mod = stance.friendly_flag;

else

flag_mod = stance.enemy_flag;

// is current goal our flag or the enemy’s, weight

// accordingly

if (flagOwner[goal] == ourFlag)

goal_mod = stance.friendly_flag;

else

goal_mod = stance.enemy_flag;

// calculate weighted distance to current goal flag

goal_dist = Math.Sqrt (((flagPos[goal].x - position.X)

* (flagPos[goal].x - position.X))

+ ((flagPos[goal].y - position.Y)

* (flagPos[goal].y - position.Y)))

* (FLAG_DISTANCE_MOD / goal_mod);

// calculate weighted distance to this flag

double this_dist = Math.Sqrt (((flagPos[r].x - position.X)

* (flagPos[r].x - position.X))

+ ((flagPos[r].y - position.Y)

* (flagPos[r].y - position.Y)))

* (FLAG_DISTANCE_MOD / flag_mod);

// if this flag is better, it’s the new goal

if (this_dist < goal_dist)

goal = r;

}

if (flagOwner[goal] == ourFlag)

flag_mod = friendly_flag;

else

flag_mod = enemy_flag;

boidVelocity.X = (flagPos[goal].x - position.X)

/ (FLAG_CHASE_MOD / flag_mod);

boidVelocity.Y = (flagPos[goal].y - position.Y)

/ (FLAG_CHASE_MOD / flag_mod);

return boidVelocity;

}

292 Emergence in Games

Chapter 7 Characters and Agents 293

FIGURE 7.22 Soldiers in the marshmallow team move closer to the nearest enemy flag
when set to Capture (left) and the nearest friendly flag when set to Hold (right).

Alignment Alignment works the same as in the flocking demo, with the addition
of the friendly_army weight being applied to the soldier’s velocity. Consequently,
the soldiers align more closely to the heading of their teammates in the Defend
stance than in the other stances (see Figure 7.23).

const int ALIGNMENT_MOD = 10;

Vector2 Alignment(const Vector2 teamVelocity, const Vector2 velocity)

{

Vector2 boidVelocity;

// Alignment

boidVelocity .X = (teamVelocity.X - velocity.X)

/ (ALIGNMENT_MOD / friendly_army);

boidVelocity.Y = (teamVelocity.Y - velocity.Y)

/ (ALIGNMENT_MOD / friendly_army);

return boidVelocity;

}

Emergent Tactics

With the simple steering behaviors of cohesion, separation, alignment, chase, and
chase flag, the two teams can attack, defend, hold, and capture flags, giving rise to
interesting gameplay. However, more significantly, there are several interesting tac-
tical behaviors that emerge from these simple rules and stances.

Each team can divide into multiple groups, defending multiple flags simulta-
neously or attacking on multiple fronts (see Figure 7.24).

Teams can divide and conquer, splitting into groups then attacking the enemy
from two or three sides at the same time (see Figure 7.25).

294 Emergence in Games

FIGURE 7.23 Soldiers in the marshmallow team align more closely to the
heading of their teammates when set to Defend.

KEY TERMS

Chase involves the soldiers chasing the center of mass of the enemy team.
Chase flag involves a soldier moving toward the closest flag of the type it is
trying to pursue.

Chapter 7 Characters and Agents 295

FIGURE 7.24 Teams can divide into multiple groups.

FIGURE 7.25 Teams can attack the enemy from multiple sides.

An attacking team forms an offensive formation to drive into the enemy and a
defending team forms a tight, defensive structure. Two attacking teams meet head
on to engage the enemy (see Figure 7.26).

296 Emergence in Games

FIGURE 7.26 Attacking teams form offensive formations.

Teams that are holding their flags position themselves between their flags and
the enemy (see Figure 7.27).

The teams move around fluidly, rapidly adapting to their teammates, enemies,
and the state of the game. The order that stances are set and the timing of reinforce-
ments become important, because they determine the center of mass and velocity of
the teams at any one time, which affect the behavior of the teams when their stance
is changed. The state of the game and the current stance and position of the other
team also greatly affect the behavior of a team and the resulting gameplay.

From a simple set of steering behaviors that determine the movements of indi-
vidual soldiers in relation to their own team, enemy team, and flags, the group
movement, tactics, and gameplay is fluid, dynamic, and emergent. Altering the
rules, adding new rules or removing rules, and changing weights and stances can
give rise to great deviations in behavior and gameplay. This agent-based approach
is flexible, powerful, and can give rise to emergent, lifelike behavior in a variety of
games, game situations, and agents.

Emergent Group Behavior

The basic model of agent-based movement and tactics presented in this chapter can
be easily extended by adding different types of agents, new gameplay mechanics, and
new steering behaviors and stances, to create a wide range of different games, be-
haviors, tactics, and gameplay. The players could be given more control, setting the
stances of groups or individual agents, or giving more direct orders to be followed.
Different types of agents could have different steering behaviors, combat mechanics,
and abilities, giving a wider range of possibilities for action and combinations with
other agents. New objectives, gameplay modes, terrain, and maps could be added to
create a wide range of playing experiences.

Chapter 7 Characters and Agents 297

FIGURE 7.27 Teams that are holding their flags position themselves
between their flags and the enemy.

ADDITIONAL READING

For further information on agent-based systems for combat simulation:

Ilachinski, A. (2004). Multiagent-Based Simulation of Combat. River Edge,
NJ: World Scientific Publishing Company.

Agent-based steering behaviors have many potential possibilities to be used in
games. They are simple, flexible, easy to understand and program, and can give rise
to interesting, varied, and emergent behavior and gameplay. Agent-based steering
behaviors, such as flocking and related algorithms, can be used to create funda-
mental gameplay or emergent group movement and tactics, or simply to create
more lifelike movement behaviors for background characters or animals.

As with any emergent system, the most time-consuming part is the tuning
process. The best approach is to start with the simplest and minimal set of rules and
build up from there. Add in your first one or two rules and ensure they are tuned
and working properly before building on the system. The fewer rules and variables
you have, the easier the system will be to tune and understand.

The most effective and robust emergent systems are built on very few, simple,
fundamental rules. Remember that the emergence in an agent-based system comes
from the complexity created by the interaction of a large number of very simple en-
tities. The more complex these entities are themselves, the more chaotic and con-
fusing the system can become. Design the system in such a way that the entities
follow a set of simple, local rules for behavior, and that the emergence is a result of
their interactions with each other and their reactions to their complex and dynamic
environment.

298 Emergence in Games

INTERVIEW WITH CRAIG REYNOLDS

Senior Researcher, Sony Computer Entertainment,
US R&D

Craig Reynolds researches technology for autonomous characters at
Sony Computer Entertainment’s US R&D group in Foster City, California
(www.research.scea.com). Recent projects include PSCrowd, a high-performance
crowd simulator for PS3, and OpenSteer, an open source library of steering be-
haviors. He has previously worked on animation and game production, plus
developed tools for both fields, at: DreamWorks, Silicon Studio, Electronic
Arts, Symbolics, and Information International Inc. He won a Scientific and
Engineering Academy Award in 1998 for “pioneering contributions to the
development of three-dimensional computer animation for motion picture
production.”

Æ

www.research.scea.com

Chapter 7 Characters and Agents 299

In what areas do you think emergence has the most potential to improve
current and future games?
Generally, I would expect the use of emergence in games to provide a less scripted,
more improvisational nature to gameplay. This would tend to create more unique
and less predicable experiences for the players. That in itself is probably a worthy
goal, but in addition it means that the game would have more “replayability” be-
cause each time players go through the game it will be somewhat different. It also
suggests that each player’s experience would be unique, so this creates a topic of
conversation between players, say on online forums, where they can compare
notes about what happened to each of them at a given point in the game.

What are the benefits of emergence for the players and the impact on their
enjoyment?
Replayability. Unique experience for each player. Freedom to explore unique
and idiosyncratic strategies that the designer never thought of.

How does emergence change the gameplay and the player’s role in the game?
An emergent game world is unpredictable and so it is hard for the designer to
impose the same sort of fine-grained control over progress of the story, dra-
matic tension, and other aspects that are important to many of today’s games
and form the very basis of other art-forms like novels, plays, and movies. It has
been noted elsewhere that there is a tension between finely crafted storytelling
and “sandbox” game worlds where the players are always free to choose their
own actions. It seems there may be a similar disconnect from emergent game-
play and carefully designed and satisfying drama.

What kind of methods and techniques can be used to create emergent
gameplay?
Populating a game world with interacting autonomous characters produces a
complex environment for any sort of gameplay. For example, a game could
involve a car chase through streets full of autonomous vehicles. Sometimes
traffic would help the hunter, sometimes the hunted. I’ve heard Assassin’s Creed
will use city crowds like this and the people in the crowds react to the player
characters, so the crowd becomes part of the gameplay.

Other emergent elements can lend variety to games. Story fragments may
interact with each other in an emergent drama manager, vying for the right to
control the game flow for a while. Analogous techniques have been developed
where character animation is synthesized from a library of motion-capture
data with individual motion clips vying to move the character smoothly into a
desired pose.

Æ

300 Emergence in Games

Autonomous characters can be augmented with procedural models of emo-
tion and the equivalent of a long memory. Then interactions with the player’s
character will be modulated by the autonomous character’s emotional state,
which will be driven in part by memories of previous encounters between the
two.

How can flocking and steering behaviors be used in games for emergence
and emergent gameplay?
Crowds are related to flocks, at least in the abstract simplified sense of ‘boid
flocks.’ In the natural world, crowds are more closely related to herds, being
constrained to a surface, able to move slowly or stop, and able to handle very
small separation distances. Unlike a herd of cattle on open terrain, urban crowds
are constrained by many other factors: sidewalks, buildings, traffic lights, and
vehicles. Dealing with these other factors requires the use of other steering be-
haviors such as path following, obstacle avoidance, and evasion. So an agent-
based ‘urban pedestrian’ model could be seen as a specialized sort of flock model,
but it is probably more useful to consider both of them as examples of interact-
ing steering behaviors. ‘Vehicles in traffic’ is another similar one.

Seen from another perspective, crowds in games are less like crowds in real
life and more like crowds of ‘extras’ in a movie. Crowds in games or movies
look superficially like real crowds but can have very unrealistic motivations,
such as an innate desire to avoid getting between the main character and the
camera. Or, in order to advance a plot point, a villain can be allowed to slip
through the crowd while the player character is subtly blocked by the action of
the crowd.

The rules for flocking that you developed are very simple and elegant, but
how complex was the process to arrive at these simple rules?
I chalk it all up to luck. The process was simple, but certainly not elegant. In the
absence of any hard data or experimentation, I guessed at three rules. I think
my feeling was that these three rules were probably necessary, but might not be
sufficient. By a great stroke of luck, they worked almost unchanged. I devised
the three rules both by observing natural flocks and by imagining what it would
be like to be a bird in a flock, based on my own experience being in crowds and
vehicle traffic.

The hardest part was the amount of time that the idea was just knocking
around in my head before I actually took the time to try it. I think I mentioned
it in my undergraduate thesis in 1975, saying that making a flock model would
be a simple matter of programming behavior for one bird, then making many
instances of it and allowing them to interact. Eleven years later I was preparing

Æ

Chapter 7 Characters and Agents 301

slides for a tutorial talk at SIGGRAPH 1986 and figured that I better either im-
plement it or stop saying how simple it would be. In a couple weeks, I was able
to make a prototype layered on top of S-Geometry and S-Dynamics, the 3D
tools developed by the group where I worked at Symbolics.

I was lucky that a simple combination of the three rules produced interest-
ing behavior since in retrospect it has a lot of shortcomings. For example, Bajec
(http://lrss.fri.uni-lj.si/people/ilbajec/publications.htm) pointed out that an
isolated boid always flies in a straight line—very unlike an isolated bird. There
has been a lot of follow-up work by others looking at various improvements to
the model.

How far have agent-based steering behaviors come since your original model
for flocking in 1987?
There has been a lot of subsequent work in many fields, both in science and en-
gineering, which seems to have been inspired by the original boids model. A
Google Scholar search indicates my 1987 paper has been cited 1400 times in the
academic literature and its title is mentioned on 26,000 Web pages. Because it
is visual and intuitive, it is often used as an example when explaining ideas like
emergence, complex systems, and artificial life.

Research work that has built on these ideas range from the physics of
flocks, to biologically accurate models of real animal species, to autonomous
and swarm robotics, to data clustering algorithms, to data visualization, to
swarm-based search techniques like Particle Swarm Optimization and Ant
Colony Optimization and of course, autonomous character for applications in
games and films.

You won an academy award for the flocking behavior you developed for the
swarms of bats and armies of penguins in Batman Returns. What were the
benefits and challenges of using flocking in the movie?
The citation on my award is worded to include a body of work on several films.
Batman Returns was actually the first example of someone other than me using
boids in animation production. Within about a week, I got calls from two for-
mer Symbolics coworkers asking for the boids code. Only later did I realize this
marked the beginning of production on effects for Batman Returns. Andy
Kopra made beautifully motion blurred bat swarms at VIFX and Andrea Losch
at Boss Films with Paul Ashdown made armies of penguins. I recall Andy talk-
ing about how initially the bats were just flying freely around the set. Over time
the director imposed more and more constraints on where the bats could be.
Originally, they were “free as birds,” but by the end he felt like he was holding
a gun to their heads and barking directions at them.

Æ

http://lrss.fri.uni-lj.si/people/ilbajec/publications.htm

302 Emergence in Games

How can game developers use the OpenSteer library in their games? What
are the benefits and applications for developers?
OpenSteer is still in beta and development has been slow. In fact, it still has
more the structure of sample code than a production-ready library. It does, at
least, provide tested implementations of many steering behaviors usable for
building autonomous characters. This allows quick construction of NPC con-
trollers that combine behaviors like goal seeking, pursuit, evasion, path follow-
ing, and obstacle avoidance.

OpenSteer gets downloaded about 500 times a month, whereas the forum
gets a handful of new threads per month, which is probably a better gauge of
how many people look at it in any detail. Of the people who extend it, many
seem to be students doing class projects or thesis research, a few seem to be
from the game industry using it for prototyping. Many of these use the existing
demo framework as a testbed for their experiments. I know a couple commer-
cial game development teams looked at it in more detail. Generally, they grab
sections of code that provide functionality they need, then integrate it into
their own game engine.

What benefits are there for game developers in using emergence in their
games?
It allows gameplay to be improvised and so more varied, unexpected, and more
adaptive to unexpected player actions. Games can be designed with many ways
for players to choose to accomplish a goal, a complex world and adaptive char-
acters allow for a variety of gameplay styles. As mentioned above, this makes re-
playing the game more fun and leads to grist for discussions in a social network
of players.

What are the major challenges that game developers face in using emergence
in their games?
Whenever the topics of emergent gameplay, autonomous characters, strong
AI, large multipath worlds, or frankly anything beside tightly scripted games
with characters “on rails”—there is always a concern about testability . The
same properties that designers of emergent games seek cause nightmares for
product testing by removing the repeatability that is so important for testing
and debugging. By its nature, an emergent game is not repeatable. If a bug is
found during testing, how can it be reproduced? How can the programmer
recreate it to observe the symptoms? How can a fix be verified?

In addition to the problems caused by lack of repeatability there is the issue
of coverage in testing. Before a commercial game is released to the public, testers
go to great lengths to make sure that each possible game state has been reached

Æ

Chapter 7 Characters and Agents 303

and verified. Typically this means the tester has gone through each level, solved
every puzzle, taken every alternative. Games based on emergence can not be
enumerated this way. How can a game designer have any certainty that players
will not get into situations that have never been tested, which could cause the
game to crash, or otherwise misbehave in some very bad way (ruin playability,
lose stored game state data, or do something that would embarrass or even ex-
pose the publisher to legal liability).

Finally, there is the issue of emergent bugs. Just as the interaction between
many simple game agents can lead to complex global behavior, it can lead to
undesirable global misbehavior. The magic of emergence produces surprising
global behavior like flocking from simple local rules. The ‘inverse behavior
problem’ is very hard, so when a population of agents is not behaving as ex-
pected, it can be quite hard to figure out which part of which rule is responsi-
ble for the problem. Observed in isolation, each agent may seem to behave
correctly. The problem only becomes apparent with hundreds or thousands of
interacting agents. How can a programmer set a breakpoint on a symptom that
can only be seen while observing a large multiagent simulation?

How do you go about tuning the rules for an emergent system? Do you follow
a structured process?
No, and not merely because I have an undisciplined work style. I’ve never been
one to invest a lot of time in software “design” prior to implementation. I tend
to build a crude prototype followed by lots of incremental tweaking, with oc-
casional reimplementation of key modules. Moltke the Elder said “no battle
plan survives contact with the enemy.” Similarly, software design prior to im-
plementation and test is often futile. Certainly for emergent systems, I know of
no practical approach other than to repeatedly test and tweak.

Even if one wanted to take a principled approach to emergent system de-
sign, the science just does not yet exist to support it. There is no underlying the-
ory to describe emergence. Given a set of local rules, there is no reliable formal
way to predict what global behavior will emerge from them. Given an emergent
property of a complex system, there is no formal procedure to decompose it
into local rules. It is not even clear if there will ever be formal analytical tools
for these problems. For example, chaotic systems like turbulent fluid flow are
well understood, but are known to be unpredictable. The property of ‘sensitive
dependence on initial conditions’ makes long-range predictions meaningless.

Æ

SUMMARY

Emergence in games is about adding life, realism, and diversity, or at least the illu-
sion thereof, to computer games. Game agents and characters are one of the most
important components in games to have these attributes, because they are the part
of the game that the players identify with the most. Players understand that the
physics in games are restricted, that the world is finite, and that the narrative is

304 Emergence in Games

Many developers are reluctant or unable to try new techniques and ap-
proaches in their games. How can we best move forwards to integrate cut-
ting-edge research into new games?
This reluctance to try unproven technology is not surprising given the size and
cost of major commercial games these days. When a game can cost ten million
dollars to produce, decision making becomes very conservative. The same
thing happens in feature film production. So sequels and mashups of previous
winners seem the safest choices. Innovation is scary because it is less predicable.
I think the most practical approach for introducing new technology is to do it
in smaller game productions: indie productions, casual games, cell phone
games. . . . With smaller budgets and smaller teams, there can be more toler-
ance for risk.

There are several kinds of risk beyond the obvious difficulty making a
schedule for developing novel untested technology. If the technology is very
new, its effect on gameplay can be unpredictable. A novel feature may make the
game too easy or too hard, or it may just turn out to be less fun to play than it
sounded before it was implemented.

How does your research at Sony Computer Entertainment feed into game
development?
Libraries and demos developed in our R&D group are later made available to
PlayStation developers. Some of our work is made more widely available as
public presentations, academic publications, and as open source software.

What would you recommend to game developers trying to create emergent
gameplay?
Start designing the emergent aspects very early. Getting such systems to behave
as expected can be very difficult and time consuming. You don’t want to be
tuning the emergence on a deadline with a hundred coworkers waiting for you
and delivery deadlines looming.

often predetermined. However, they look to the characters and agents with the ex-
pectation of thought and intelligence, and even of cunning, creativity, and unpre-
dictable behavior. If you can create characters and agents in your games that have
the illusion of life, many other limitations will be forgiven.

This chapter looked at a few key components of game characters and agents. In
essence, characters and agents must be able to sense, act, and react to the players
and the game world. In creating emergence, you look at putting the onus on the
environment, making the information readily available for the agents to sense,
through probing, broadcasting, influence mapping, or other methods. The more
complex the environment and the better the information is synthesized for the
agent, the simpler the agent can afford to be. The emergence comes from many
simple interactions with other agents and a complex world.

In terms of acting and reacting, there are two types of agents—those that act on
their own and those that act in groups. There are many functions of individual
agents and many that weren’t covered here. Some of the more human-like func-
tions, such as communicating and storytelling, are covered in Chapter 8. What I
hoped to provide in this chapter was a simple, flexible model for creating individ-
ual agents that can sense and react to their environment, choosing how to react and
where to move. With this basic framework, additional information and decisions
can be incrementally added to create character models that suit other types of
games and characters.

The chapter also covered some of the basics of group behavior, including group
movement and tactics. The chapter approached group behavior from a bottom-up,
agent-based perspective, where simple, low-level entities interact locally to produce
emergent, and seemingly organized, high-level behavior. The agent-based steering
behaviors presented can be used in games for a wide range of purposes, from entire
gameplay systems to more natural-looking movement for background agents.

Game AI is a very large field and the concepts presented in this chapter are not
meant to be all-encompassing, nor are they meant to create the most intelligent and
cunning AI ever seen. Rather, I have presented a few basic concepts and examples
of how emergence can be incorporated into game characters and agents. More than
anything, these ideas should provide food for thought and give you a concrete place
to start in creating emergence in your games, and hopefully more natural, lifelike,
and diverse behaviors in your characters and agents. Once you have the basic un-
derstanding and tools, how you incorporate emergence into your games is up to
you, and limited only by your imagination.

Chapter 7 Characters and Agents 305

CLASS EXERCISES

1. In what types of games and for what types of agents would it be best to use
each of these sensing methods and why?
a. Probing
b. Broadcasting
c. Influence mapping

2. Choose one of the sensing methods above and devise a simple game that
would use this method, including:
a. What type of game is it and where is it set?
b. What are the basic agent/character types in this game?
c. What are the core mechanics? How does the game work?
d. What are the fundamental player interactions? What do the players do?

3. Think of the agents or characters in your game and the sensing method you
have chosen.
a. What decisions and actions would these agents need to perform?
b. What information would they need to perform these actions/decisions?
c. How would they receive and process this information using your chosen

sensing method?
4. How static/linear or dynamic/emergent will the behavior of these agents be?

a. How could their behavior be made more responsive, reactive, dynamic,
or emergent?

b. What additional information would they require to become more
emergent?

c. How suitable is the sensing and processing methods you have devised to
creating emergent behavior?

5. Consider the agents in the Halloween Wars example.
a. What additional mechanics, game rules, stances, or steering behaviors

could you add to change the gameplay?
b. How would this change the behavior of the agents and how the game is

played? How would you test and tune the game after making these
changes? Would their behavior be more or less emergent?

c. How would you add different types of agents to the game? What differ-
ent properties and actions would the different agent types have?

d. Revise the equations to incorporate different agent types.

306 Emergence in Games

307

A
game’s narrative is the story that is being told, uncovered, or created as the
player makes their way through the game. This story might take the form of
a single, linear plot that is divulged to the player at selected points in time.

Alternatively, it could be the deep, underlying truth of the game world that re-
quires the player to solve puzzles and investigate the world to discover. It could also
be the product of the player’s interactions in the game world—the internal story
that the players create about their characters or challenges as they play the game. No
matter the format of the narrative, it is central to the enjoyment and understand-
ing of all games, even games that do not have a story.

People in all cultures teach and learn through storytelling. From a very early
age, we are told stories to not only ignite our imagination, but to teach us how to
live and behave in the real world. Narrative in games frames the game in a way that
the players can understand and reflect upon. It is these stories that have the great-
est impact on the players and that they will take with them long after they have
played the game. In creating emergent narrative, game developers are tailoring the
narrative to the players’ experiences and putting the players center stage.

This chapter identifies three narrative paradigms that can be used in games—
player as receiver, player as discoverer, and player as creator of the narrative. It is the
third paradigm, player as creator, in which emergent narrative lies and so the chap-
ter focuses on expanding this paradigm. The chapter explores two ways to put the
players in the role of the creator of an emergent narrative, via storyline and conver-
sations. The storyline is the overarching plot, as well as subplots, that play out in the
game. Conversations are a more informal, continuous form of narrative. I discuss

Emergent Narrative8

In This Chapter

Narrative Structure
Narrative Elements

308 Emergence in Games

how both these narrative elements can be used to create emergent narrative and
gameplay and what the implications are for the game players and game developers.

NARRATIVE STRUCTURE

If you examine forms of narrative in games from the player’s perspective, there are
three main categories that can be identified. The first is the traditional “player as re-
ceiver” model that is drawn from other forms of storytelling, such as movies and
books. In this form, the story is entirely prewritten and is simply transmitted to the
player. The player receives the story and has no potential to affect the outcome or
progression. A similar type of narrative is “player as discoverer,” in which the story
is embedded in the game world and the player must uncover the pre-existing plot.
The third, and considerably different form, is “player as creator,” which involves
the player actively creating and affecting the story as a product of his or her actions
and interactions. Each of these forms of narrative has been used in previous games
with varying degrees of success.

RECEIVER

Games that put the player in the role of the receiver of narrative simply deliver the
plot to the player, usually in installments throughout the game. This can be done in
various ways, but usually involves the player being given a piece of the story, fol-
lowed by a sequence of actions or gameplay, followed by another piece of the story,
and so on. In the extreme form, the players are given a pre-rendered cinematic in
which they watch a piece of the story unfold, followed by a discrete piece of game-
play, such as a game level. In this form, the story, at best, provides a backstory or
motivation for completing the level and what the player actually does in the game
has no bearing on how the story plays out. The player as receiver model is the sim-
plest and most linear form of game narrative.

The player as receiver structure is common in first-person shooter games that
use cinematics to tie together a series of game levels. For example, in the game
Painkiller, an introductory cinematic provides players with a backstory that ex-
plains their motivations and situation. The players then play through a series of dis-
crete game levels, which are interspersed with cinematics that extend the story and
deepen the plot. The cinematics are all pre-scripted and pre-rendered, so they play
out the same way no matter how many times the game is played. There are no al-
ternate endings, branches, or player choices. The same format is also used in many
action games, adventure games, and other level-based games. Although very simple
and entirely linear, this model is used to great effect in Painkiller and many games
like it, which is why it is so prevalent in current games.

The player as receiver model is also used in many role-playing games, especially
for the central storyline. Despite subplots and side-quests that might be happening
at the same time, most role-playing games have a central, linear storyline. This
central story is usually tied to a particular series of quests. Once the conditions for
advancing the main story have been met, a cinematic or a scripted in-game dialogue
sequence will play out to give the player the next installment of the story. For ex-
ample, in Diablo II, the players are given a pre-rendered cinematic at the comple-
tion of each chapter of the game (see Figure 8.1).

Chapter 8 Emergent Narrative 309

FIGURE 8.1 Diablo II plays a pre-rendered cinematic at the completion of each chapter.
Diablo II® images provided courtesy of Blizzard Entertainment, Inc.

A similar approach is used in many real-time strategy games, such as Warcraft
III. In general, games that use the player as receiver structure of narrative require
the player to complete a level, chapter, mission, or quest to be rewarded with the
next piece of the story and advancement to the next level of the game. The story and
gameplay are often not tightly intertwined, with the cinematics acting more as a re-
ward or motivation for the action than a critical part of the gameplay.

DISCOVERER

Games in which the player is the discoverer of the narrative are still usually very lin-
ear and scripted in nature. The pieces of the story might not occur in the same order
each time, but the overarching story is linear and the outcome is predetermined. The
narrative in player as discoverer games is usually more interactive than in player
as receiver games. The players cannot simply wait to be told the story; they must
actively try to uncover the plot. This is usually accomplished by talking to game

310 Emergence in Games

characters, exploring, completing quests, and interacting with the game world. For
this reason, the gameplay and narrative is usually more intertwined and interdepen-
dent than in player as receiver games.

Due to the interactive nature of the narrative, player as discoverer games often
have branching storylines or multiple endings. The players don’t just observe a
piece of the story playing out; they play a role in it. This might be in the form of
choosing dialogue options during a cinematic or having interactive conversations
with game characters.

The player as discoverer model is used in interactive fiction (as described in
Chapter 3), as well as many role-playing games. In interactive fiction, the player in-
teracts with the game world and characters to sequentially move through the world
and story. Until the players discover what to do next, the rest of the game and story
is inaccessible to them.

In role-playing games, such as the Might and Magic series, the players often
need to find the key characters to acquire information from, in order to advance the
story. Depending on their interactions with these characters or other player choices,
the plot might branch off into different directions.

An example of a branching storyline is in the game Wing Commander IV. De-
pending on the player’s choices in the cutscenes, the story plays out differently and
the game has different outcomes. The player as discoverer model has not been as
successful or as prevalent as the simple and effective player as receiver model.

CREATOR

In the player as creator model of narrative, the player is creator or co-creator of the
game’s story. The story is a function of the player’s actions and interactions in the
game world. Narrative in player as creator games can be generated by the interac-
tions between characters in the game world, the player’s interactions in the game
world, as well as any knock-on effects of these interactions. In player as creator
narrative, the final destination is not important; it is the journey that counts. The
player has a definite sense of agency and impact onto the game world, because he
or she is actively creating and changing the world and its story.

Games that are generally not considered to have a defined storyline fall into the
category of player as creator narrative. This includes simulation games, such as The
Sims and SimCity, strategy games, such as Total War and Civilization, and other open,
sandbox games. In these games, the players use the basic elements of the game, such
as buildings, people, and armies, to create their own stories. In The Sims, the players
are creating a life story for their characters and in Total War (see Figures 8.2 and 8.3)
they are forging the history of a nation. The players are not discovering or receiving
an existing plot, they are creating a new one through the act of playing the game.

Chapter 8 Emergent Narrative 311

FIGURE 8.2 Strategy game Medieval II: Total War does not have a
defined storyline. © The Creative Assembly. Used with permission.

FIGURE 8.3 An epic, historical battle in Medieval II: Total War.
© The Creative Assembly. Used with permission.

312 Emergence in Games

KEY TERMS

Narrative is the story that is being told, uncovered, or created as the play-
ers makes their way through the game.
Player as receiver narrative is delivered to the players in installments as they
play the game, usually in the form of cutscenes.
Player as discoverer narrative involves the players actively trying to uncover
the plot, by talking to game characters, exploring, completing quests, and
interacting with the game world.
Player as creator narrative allows the player to create or co-create the story,
which is a function of the player’s actions and interactions in the game
world.

Some games that do have well-defined, linear storylines can also have elements
of player as creator narrative. Games that have large, open game worlds with lots of
possibilities for action, such as some role-playing games, can allow the players to
create their own subplots. For example, in The Elder Scrolls IV: Oblivion, there are
many optional quests that can be gained from characters throughout the world.
These quests are not connected to the main storyline, do not have to be completed
in a specific order, and are entirely optional. Additionally, the players can go ad-
venturing into caves or ruins and fight monsters whenever they feel like it. Players
can completely ignore the main storyline, although they won’t be able to complete
the game by doing so. The players have a fair amount of freedom in creating a
unique path for their character through the game. Although the central storyline is
linear and they will reach the same final destination, the player has a significant
ability to co-create his or her journey through the game.

Player as creator narrative is emergent. Some, or all, of the story is a product of
the player’s interactions in the game world, interactions between objects or charac-
ters in the game world, and knock-on effects. The narrative is not predetermined
and scripted; it emerges from interactions between entities in the game world.
Emergent narrative does not need to be as complicated or as chaotic as it sounds. A
few simple ways to achieve emergent narrative in games, using the narrative ele-
ments of storyline and conversation, are described in the next section.

NARRATIVE ELEMENTS

There are two key elements that can be used to create narrative in games—storyline
and conversation. Narrative is formed by telling stories about events, people, and
places. A player’s actions in a game can form a kind of internal narrative, but it is
not until the retelling that it becomes a story.

The storyline is the overarching plot, as well as subplots, that play out in the
game. As discussed in the previous section, the storyline can be received, discov-
ered, or created by the player. The storyline is often presented in installments, such
as pre-rendered or in-game cutscenes, throughout the game. These installments
can recap what has happened in the previous section, reveal more depth to thicken
the plot, or foreshadow what is yet to come.

Conversations are a more informal, continuous form of narrative. The player
can engage in conversations with various characters throughout the game, or ob-
serve conversations between other characters, to gain small pieces of information
about events, people, and places in the game. By allowing emergence in storylines
and conversations in games, you can create emergent narrative.

STORYLINE

If the player’s actions in the game world and interactions with objects and charac-
ters are the low-level elements of the game world, the storyline is the high-level
behavior. If the story is received (as opposed to discovered or created) by the play-
ers, their actions are irrelevant to the overarching storyline, because it is imposed
over their actions. There is no connection between the low-level interactions in the
game world and the high-level storyline.

For a story that is discovered, the player’s interactions are forced to fit the
mould of the high-level behavior. This can be considered more of a top-down ap-
proach, where the interactions are determined by the high-level design, or storyline.
Interactions that are incorrect or not part of the scripted path have no consequence.

In stories that are created, the low-level actions of the player, game world, objects,
and characters interact to form the overarching storyline. This is where emergence
can occur. The difficulty lies in designing a story system that not only enables emer-
gence, but that makes for compelling, believable, and coherent narrative.

There are various ways in which stories can be constructed or emerge in games.
The approach that is right for a given game depends on the constraints and re-
quirements of the game, as well as the desired effect and purpose of the narrative.
There are several components of storylines in games that can be used to create a
compelling narrative. These components are backstory, storytelling, story creation,
and post-game narrative.

A backstory presents events that occurred prior to the start of the game and can
be used to establish setting, character, and motivation. Storytelling is used through-
out a game to impart additional information about the plot or game world to the
player, usually via cutscenes. Story creation is the more interactive form of story-
telling in which the player performs certain actions, such as completing missions or
quests, to create subplots or advance the overall plot. Finally, post-game narrative is
storytelling that occurs after the game is completed, which can be used to create a

Chapter 8 Emergent Narrative 313

story out of the player’s journey through the game. Each of these components can be
used to create narrative in an emergent game, as discussed in the following sections.

Backstory

A backstory presents events that occurred prior to the start of the game and can be
used to establish setting, character, and motivation. A backstory is useful in an
emergent game as it can provide a story of events leading up to the point at which
the game starts. It can provide motivation and setting for the player, without dic-
tating how the game will proceed from the point at which the player takes control.

The backstory defines the game world and characters and identifies the major
players in the world, as well their goals and motivations. Even if no further narrative
is provided throughout the game, the backstory can go a long way to placing the
game within context and adding meaning to the player’s experiences in that world.

Telling It Backwards

Another possibility is that the backstory could be revealed as the players progress
through the world. Rather than telling the story forwards as the players progress
through the game, by artificially imposing a narrative over their actions or running a
story alongside the gameplay, the game can tell the story backwards. The players’ role
in the game could be to piece together something that has already happened, so their
actions will not affect how it “plays out,” but each discovery will give them insight into
the world they are exploring. Therefore, rather than going forwards, the story pro-
gresses deeper (into the truth) or backwards (finding out what has happened before).

If the narrative becomes about finding out events that took place before the
player entered the game or about uncovering the truth about the game world, there
is less need to railroad the player to follow a particular narrative path. The story can
also be more directly linked to the players’ actions and they can have more freedom
in creating their own path through the game. The players’ role is to construct the story
in the present and future, but what they are discovering has happened in the past.

Hebbian Stories

One model that could be used is to let the players discover pieces of the story in any
order. Depending on the pieces that they uncover, other pieces could become in-
valid, unlocked, or have a lower or higher chance to be uncovered. A neural network
model could be used to connect pieces of the story together via weights, rather than
having a simple or branching path to follow.

Consider a Hebbian network for example (see Chapter 5); each unit would be
a piece of the story (or state of the game world that is associated with a piece of the
story) and each piece would be connected via a weight to other pieces or states.
Upon the activation of one piece of the story, other pieces of the story could be-
come activated or inhibited (see Figure 8.4).

314 Emergence in Games

Chapter 8 Emergent Narrative 315

FIGURE 8.4 A Hebbian network for backstory.

In order to provide closure on the story, the activation pattern of the network
could result in the players discovering different end-states, or truths about the world
they are exploring. The end-states themselves would map to nodes in the network,
with an end-state being reached when sufficient other nodes have been activated to
active an end-state. This could bring about an end to the game, or simply an end to
the story that is being told.

Depending on the players’ actions in the game, the story would be pieced to-
gether in different ways, with the whole picture varying from player to player. As
the story being told is the backstory, there is no need to railroad the players along a
particular path. Even if they do end up in one of a set of end-states, their journey
has been their own. Varying paths can lead to the same end-state in non-linear
ways, due to the activation pattern of the neural network.

KEY TERMS

Storyline is the overarching plot, as well as any subplots, that play out in the
game.
Backstory presents events that occurred prior to the start of the game and
can be used to establish setting, character, and motivation.
Hebbian stories are based on Hebbian networks, with each unit corre-
sponding to a piece of the story and connected via weights to other pieces.
Upon the activation of one piece of the story, other pieces of the story
become activated or inhibited.

Storytelling

Storytelling is used throughout a game to impart additional information about the
plot or game world to the players, usually via cutscenes. You can view sandbox
games as having an entirely emergent storyline, which is created out of the actions of
the players, as defined in the player as creator approach. However, this storyline is
never actually told to the players, it is more of an internal narrative. It also has little
creative input from the game designers. Instead, the players are given the tools to
create their own stories, without any predefined structure. As such, the narrative is
unlikely to follow an ideal story arc, with dramatic tension rising and reaching a
climax, followed by a resolution (see Figure 8.5).

316 Emergence in Games

FIGURE 8.5 A traditional story arc.

At the other end of the scale, the story is entirely delivered to the player, who
has no role in its creation, as per the player as receiver model of narrative. The game
designer has complete control in telling the story, which is likely to be entirely sep-
arate from the gameplay. The narrative is kept safe from intervention and derailing
by the player’s actions, by being encapsulated in pre-rendered or in-game cine-
matics. The player has no active role in these cinematics, which are delivered to the
player between game levels or sections of player freedom and interaction.

Storytelling Continuum

Between these two extremes, there is a graduation between player as the creator and
player as the receiver of the narrative. This is where the potential for emergent sto-
rytelling in games becomes interesting. Imagine if you were to break a game’s story
into a number of components or elements. The smaller the components, the more
freedom the player has in combining and interacting with the components to cre-
ate the narrative. With small enough components, the game becomes a sandbox
and the narrative is the product of the player’s interactions.

The larger the components, the more you have preplanned chunks of story that
can be joined together in more predictable ways. With large enough components,
the story is one linear storyline that is delivered to the player, or perhaps a branch-
ing storyline that the player interacts with in a choose-your-own-adventure style.
The size of the components also relates to the player’s role in constructing the story.
The smaller the components, the more control the player has in constructing the
story. The larger the components, the more the designer has pre-constructed the
story for the player.

You can draw a continuum from narrative in sandbox games to storylines that
are a single component that is broken up into pieces and given to the players at
certain points in time. At the sandbox end of the continuum, the pieces are very
small and the players assemble them with a great deal of freedom to create stories
that are likely to be unique and highly emergent. However, these stories often exist
only internally to the players. At the single-storyline end of the continuum, the nar-
rative runs parallel to the gameplay and the game is switched into story-mode from
gameplay mode, to give the players the next chapter in the story. The story provides
motivation for their actions, but is not tightly intertwined with them. The narrative
is entirely told to, and not created by, the players.

Separating Actions from Story

An important consideration is how much the player’s actions are separated from
the components of the story and how much impact the player has on the story. In
sandbox games, the player’s interactions are directly pieced together to make the
story. However, there is also potential for other stories to be superimposed over the
top of the player’s actions. These higher-level stories are created from key moments
and components of the player’s low-level actions (see the “Story Creation” and
“Post-Game Narrative” sections).

In the choose-your-own-adventure style story, the player’s actions or choices
also map directly onto the components of the story. However, only particular ac-
tions have any consequence. At key moments, the player makes a choice that will
determine the next piece of the story. All their other actions and choices have no
impact on the overall story. The player’s choice of pieces is also limited to what can
come next at the point in time when the choice is given. The story branches from
this point in time forwards and the player must choose which path the story will
follow. Again, this model can be entirely separate from the player’s moment-to-
moment actions and the main gameplay.

If you look at game narrative across multiple vertical or hierarchical levels, you
can see the player’s low-level actions at the bottom and the game’s high-level story
at the top. How you map these things together is of key importance. From what you
have explored so far, you might conclude that:

Chapter 8 Emergent Narrative 317

The narrative in sandbox games maps directly to the player’s actions. However,
it is not very effective as a storytelling mechanism and it is implicit, or internal
to, the player.
In single-storyline games, the narrative does not map at all to the player’s actions.
In branching storyline games, the narrative maps directly to the player’s actions,
but only at key moments. For the most part, the story is separate from the
player’s actions.

An alternative to the current direct forms of mapping player actions to story-
line is to create levels of abstraction between the player’s actions and the story that
is being told. These additional levels are applicable to both the cases where you are
adding a narrative to the player’s created story (see the “Story Creation and Post-
Game Narrative” section) and the cases where you are giving the players impact on
the central narrative of a game.

318 Emergence in Games

KEY TERMS

Storytelling is used throughout a game to impart additional information
about the plot or game world to the players.
Story arcs are generated by increasing dramatic tension, culminating in a
climax, followed by a resolution.
Storytelling continuum is a graduation between player as the creator and
player as the receiver of the narrative.

Emergent Storytelling

Between the extremes of story creation and linear storytelling, the player can be em-
powered to co-create the central narrative of the game, by impacting how the chunks
of story are pieced together. Aristotle defined two core concepts of narrative—
Muthos (plot) and Mimesis (mimetic activity). Mimesis includes the actions and be-
haviors and Muthus is the organization of events to form the overall plot structure.

Aristotle defined Mimesis according to Muthos, so that the structure of the plot
determines the actions and behaviors of the characters and events. However, to em-
power the player and tell a story, you need Muthos and Mimesis, or actions and
plot, to behave more like equals. There must be an exchange between low-level ac-
tions and high-level plot structure to give the player a role in creating the plot and
impacting the world.

If the overarching storyline is determined by the player’s cumulative choices
and actions in the game, rather than simple switches throughout the game, each

decision becomes more important. The world and story become more fluid and the
game becomes less rigid and predictable. If the players know that it doesn’t matter
who they kill or how they talk to most characters in the game, their actions and
behavior have no consequence, making the game synthetic and shallow.

You could use a similar plot structure to the one described in Hebbian stories,
so that each time a bit of the story is revealed, it feeds into activating or inhibiting
other pieces of the story. At the same time, each action and decision the player
makes affects the activation of the story network. However, in telling a story for-
wards, there are likely to be more constraints on the order that pieces of the story
can be told and the valid combination of story elements.

Another possibility would be to use a more linear approach of weighted sums
and activation thresholds, with a more clearly defined structure of the element de-
pendencies and incompatibilities (see Figure 8.6). The approach would be closer to
current methods of telling stories in predetermined chapters, but would have the
benefit of being more dependent on the player’s actions in the game. Each time the
player does something or says something in the game, it would move the game
closer or further away to certain plot elements. Plot elements could include a
cutscene, the introduction of a new character, a new mission, or a game event.
Once the culmination of the player’s actions, or the weighted sum, surpasses a plot
threshold, the story would be propelled forwards in a given direction.

Chapter 8 Emergent Narrative 319

FIGURE 8.6 Emergent storytelling structure.

To attempt to create a more compelling plot structure, or match the emergent
storyline more closely with the traditional story arc (see Figure 8.5), you could use a
guiding plot algorithm to help the progression follow a pattern of dramatic tension.
Based on the length of play, player actions, action-levels of the game, and recent in-
teractions, you can determine when it is time for something to change, something

exciting to happen, or some new element to appear in the game. The easiest way to
incorporate this plot-propulsion factor would be to weight it into the thresholds for
moving the plot forwards. Consequently, as the need to propel the plot forwards
increases, the thresholds to trigger new plot elements would be reduced.

The plot elements could be a variety of things, such as characters, objects, events,
conversation elements, cutscenes, and so on. The size and number of the plot ele-
ments will determine the degree of variation and emergence that is possible in the
storyline. At one end of the scale, the elements could simply be cutscenes that join
together to make a linear story arc. The dependencies would enforce that they occur
one after the other and there would no variation in the story. However, the times
that they occur in the game could vary to adapt to the player’s actions and accom-
modate the player’s pace of playing and the need to advance the story.

In order to increase the potential for variation and emergent storytelling, the
components would need to be broken down into smaller parts, with more vari-
ability on the order and combination in which they are able to occur. The more the
components are broken down, the more potential they have to be rearranged and
recombined and the more capacity the game has for emergent storytelling. How-
ever, it also becomes possible and more likely that the created story might not make
sense or adhere to the requirements for interesting or exciting plot development.

The best approach and the level of variability and emergence that is permitted
depends on the type of game that you are making, the gameplay and story that you
want to achieve, and how much control you require over the storyline. The open
end of the scale could be used to create a loose narrative for sandbox games, while
the more restricted end of the scale could add more variation or adaptability to
games with linear or branching storylines.

320 Emergence in Games

KEY TERMS

Emergent storytelling empowers the player to co-create the central narrative
of the game, by impacting how the chunks of story are pieced together.
Plot algorithms help the plot follow a pattern of dramatic tension, by de-
termining when it is time for something to change, something exciting to
happen, or some new element to appear in the game.
Plot propulsion factor weights into the thresholds for moving the plot
forwards, reducing the thresholds as the need to propel the plot forwards
increases.
Plot elements are basic components that make up the plot, including char-
acters, objects, events, conversation elements, and cutscenes.

Story Creation

Story creation is the more interactive form of storytelling in which players perform
certain actions, such as completing missions or quests, to create subplots or ad-
vance the overall plot. This story creation does not occur completely randomly or
by accident in many games, which are designed to create exciting story moments
through conflict or action. The players can also be supported and nurtured in the
self-creation of their narrative. Furthermore, stories are not just told through words
or movies, they are reflected in everything in the game world. The physical space of
the world itself is an important tool in creating a narrative. Storytelling via the
physical game world is an ability that is unique to games and harnessing it will pro-
vide an effective storytelling medium to amplify the player’s sense of agency and
centrality in the game world. Finally, you can also make explicit the story a player
has created in the game by retelling it. The following sections explain these concepts
in detail.

Designing for Story Creation

Many games, such as role-playing games, are designed to allow the players to cre-
ate and follow branching side-plots and mini-stories during the game. If you look
at games like The Elder Scrolls, Neverwinter Nights, and Might and Magic, the world
is proliferated with characters, objects, and events that are stories waiting to hap-
pen. Every quest the players embark on, every encounter they have, and every char-
acter they talk to, adds to the growing story of their game. In these examples, the
basic narrative elements that the players are given are large enough to contain small
chunks of pre-planned story, but small and independent enough to be combined to
make an emergent narrative. The narrative is emergent as the players can create
their own combinations of elements and paths through the game. An emergent
story in no way needs to be random or unpredictable. The more the game can sup-
port the players in authoring an exciting, deep, and dramatic narrative, by provid-
ing the tools and elements to do so, the better the player experience will be.

Even if you look to games that are seemingly entirely open, with much smaller
elements and less scripted components, you can see that the created story is engag-
ing, as the elements have been designed to facilitate story creation. For example, the
elements in The Sims game world lend themselves to story creation. There is only a
limited set of interactions that are possible with every object and character, but these
interactions have been carefully chosen to create dramatic tension and exciting
moments. The Sims is a streamlined version of life, and what has been left out is as
important in creating the overall experience as what has been included in the game.

Chapter 8 Emergent Narrative 321

Supporting Story Creation

In a way, the narrative in games is simply created out of the actions of the players.
The story is the story of how they have played the game, what actions they have
taken, and how they have shaped and changed the game world. However, for the
most part, this story is implicit and internal to the players. The game itself has no
model or history of this story, except the current state of the game world that has
resulted from a player’s series of actions to date.

You can take this story creation to a new level by supporting the players in
building and tracking the story of their games. If the game keeps track of the play-
ers’ progress and path through the game, their story is made explicit, concrete, and
real. As the players progress through the game, you can keep track of key interac-
tions, important moments, and interesting statistics, to generate the story of their
play. The story can be told concurrently as the players progress through the game
or the players can be given a retelling of their journey at the end of the game (see the
“Post-Game Narrative” section). The story can also be told to the players in differ-
ent ways and with varying levels of abstraction.

Journals
Good examples of supporting the players in creating their own stories, as well as
providing a medium to retell the story to the players, are the journals, logs, and di-
aries that are used in many role-playing games. These journals have multiple func-
tions, in that they keep track of the player’s current goals (for example, quests or
missions), track the player’s progress through the game world (for example, world
map), and provide an interface to accessing a variety of information and game
functions. Simultaneously, the various aspects of game journals form a narrative of
where the players have been, what they have done, who they have encountered,
what their current understanding of the game world is, and what they’re currently
trying to achieve.

The game Elder Scrolls IV: Oblivion has a very extensive journal that tracks the
player’s current, active, and completed quests and shows a map of the world and
local area, which the players can also use to travel around by clicking on locations.
The completed quests log forms a story of what a player has done so far in the game
and in what order he or she did it. The active quest log shows all the tasks that the
player has done and is yet to do in a single quest line (for example, all the quests for
the Mage’s Guild). Finally, the current quest log shows the potential paths that the
player’s story can take next. Depending on which task the player chooses to take on
next, he or she will explore different parts of the game world, meet different char-
acters, gain different skills, and unlock new parts of the story.

Oblivion also keeps track of a host of different statistics and counts of things
that the players have done in the game. These range from how long the players have

322 Emergence in Games

been playing, how many times they’ve upgraded their skills, and how many crea-
tures they’ve killed, to how many jokes they’ve told, how many horses they’ve
stolen, and how many diseases they’ve contracted. These counts provide an inter-
esting summary of the player’s actions and effects on the game world. They also
provide interesting bites of information that players can share and compare with
other players. Trying to increase one of these counts or trying to beat someone
else’s statistics can provide a goal, or even a game, in itself.

Commentary
Another form of storytelling that is not often acknowledged as narrative is the com-
mentaries in sports games. Commentaries provide a verbal summary and explana-
tion of the action that is taking place in a sports game, as it happens. Commentaries
are a very good example of adding narrative to emergent gameplay. The low-level
actions involve things like kicking a ball, passing between players, scoring goals, but
the story that is created in the commentary is much more than these basic interac-
tions. The commentary tells a story of the game that is in progress, but it also pro-
vides content that extends beyond what is currently happening in the game.

If you think about real-world sports commentaries, they include extra infor-
mation about the background of the players, what’s been happening recently in
their careers and lives, and the social dynamics between players or teams. All these
little bits of information add spice and interest to the commentary (that is, the
story that is being told) and a greater context to the game that is being played.

For example, in the NHL series of games, there are two main types of commen-
tary: color commentary and play-by-play. Play-by-play describes what is happening
at a given time (for example, “Smith passes to Johnson”), based on transcriptions of
actual hockey games. The commentator has a set of events they can talk about (for
example, fights, shots, passes, and so on) and different emotional states (for exam-
ple, normal or excited). The closer the puck is to the net, the more excited the com-
mentator sounds. The music and ambient sounds (for example, crowd cheering) are
also driven by this emotional state (that is, proximity of puck to net), to increase the
excitement of the game at key moments.

In color commentary, the commentator makes a qualitative comment on what
is happening (for example, “that was a wicked slap shot!”), based on game statistics.
The color commentary gives the commentator an opinion, making them sound
more intelligent. The game keeps track of what has been said and the same com-
ment is not triggered again for a long time to avoid repetition.

In NHL 08, the commentary focuses on team and player rivalries. Storylines are
introduced pre-game and change in-game as a result of major events, such as big
hits, injuries, and goals.

Chapter 8 Emergent Narrative 323

Self-Documentation
Some games provide the players with the tools to document and retell their own
stories. For example, The Sims 2 gives the players a photo album tool in which they
can capture important moments in their game. The players can look over these
moments later and the story they tell of their experiences in the game or the lives of
their Sims. The Sims 2 also includes a movie-making feature, in which the players
can film the actions of their Sims. In order to encourage the community to use this
feature, Maxis held movie-making competitions on their Web site following the
release of The Sims 2.

Players of The Sims 2 can also share their photo albums and movies with friends
and other members of the gaming community. People don’t only like to review
their own stories and gameplay; they also like to share them with others. Players
often recount fantastic game experiences to each other, create stories and fiction
based on their playing experiences, and share screenshots, movies, and save games
with each other via game communities and forums.

The more you can support players in documenting and sharing their game ex-
periences and stories, the easier it is for players to become connected to their char-
acters, games, fellow gamers, and communities. Building a strong game community
and social relationships between players keeps them active and interested in your
game (see Chapter 9).

Machinima The popularity of end users using game engines to create movies has
been growing in recent years, with the spawning of a new form of entertainment,
called machinima. In machinima, end users use game engines to create movies and
stories that may or may not be related to the actual content of the game. Many
games include tools that allow players to easily capture in-game footage, which they
can then edit to create movies. Game tools that are used to make machinima include
level editors, script editors, cinematic editors, and replay functions. One such tool is
the cinematic editor in Medieval II: Total War, CinEd (see Figure 8.7), which allows
end users to create massive-scale battle movies. The Total War engine was used to
recreate historical battles in the TV series’ Time Commanders and Decisive Battles.

One of the most famous examples of end-user machinima is Red vs. Blue: The
Blood Gulch Chronicles, created in the Halo engine. Red vs. Blue became so popular
that the creators, Rooster Teeth Productions, made a total of 100 episodes over five
seasons. The World of Warcraft engine is also frequently used for machinima, even
featuring in the South Park episode “Make Love, Not Warcraft.” One of the more
famous of the end-user created World of Warcraft machimina is the movie Leeroy
Jenkins, in which a character, Leeroy, manages to single-handedly botch the well-
laid plans of his guild members, having been AFK (away from keyboard) during the
raid preparations.

324 Emergence in Games

Chapter 8 Emergent Narrative 325

KEY TERMS

Story creation is a more interactive form of storytelling in which the player
performs certain actions, such as completing missions or quests, to create
subplots or advance the overall plot.
Journals, logs, and diaries are used in many role-playing games to keep
track of the player’s current goals, track the player’s progress through the
game world, and provide an interface to accessing a variety of information
and game functions.
Commentaries provide a verbal summary and explanation of the action
that is taking place in a sports game, as it happens.
Self-documentation tools, such as photo albums and movie makers, allow
players to document and retell their own stories.
Machinima is a media in which end users use game engines to create
movies and stories out of in-game footage.

FIGURE 8.7 CinEd, a tool for creating in-game movies in Medieval II: Total War.
© The Creative Assembly. Used with permission.

Physical Storytelling

Games have the luxury of not being limited to words on a page or predefined cam-
era angles and sets. Games are dynamic—they can move and change to adapt and
suit the player in a variety of ways, ranging from minor, subtle modifications to
very evident alterations. One way to tell the story of how the player is impacting the
game world is to physically manifest the player’s impact in the game world itself.
Costume and set changes can be made very simply, cheaply, and quickly in games,
on-the-fly.

Game designers already convey most of the information about a game world
and its story to the player via the game space. The game space includes the artifacts,
characters, music, lighting, scenery, and so on, in the game world. The game space
can reflect the changing state of the world and plot, as well as the player’s effects on
the world, by changing the game space visually, aurally, and physically.

The narrative can be physically manifested in the game world by changing the
world as a result of the development of the players, characters, and narrative. As the
player develops, the player character’s appearance can be changed (for example, to
be appear more sinister). The game Black & White changes the appearance of the
player’s creatures to reflect how it is developing and changing to great effect.

The world can also be changed, by making changes to the ambient lighting to
reflect the mood (for example, darker times) or swapping in scenery, objects, and
characters. Game characters can be changed to look different and alter their reac-
tions to the player, via expressions, body language, voice, and behavioral responses.

The physical space of the game is the “set” where the game’s narrative plays out.
Changing the mood, look, ambience, and music of the space can have a dramatic
impact on the story and feeling of the game. Using the physical space to tell the
story is an accessible and effective way to support an emergent narrative. One such
example is the use of generative music in games.

Generative Music
Generative music is music that is procedurally or algorithmically generated or altered
using computer software. Similar to the other types of emergent systems discussed
in this book, generative music can have varying degrees of structure and constraints
imposed by audio designers or composers. The fewer rules and restrictions set for
the music system, the more variation and randomness that will be displayed in the
music. Conversely, the more structure and behavior that is predetermined, the less
variation the generated music will exhibit.

In a game scenario, it is likely that the music will be required to convey a par-
ticular mood or atmosphere. Consequently, to create generative music for a game,
the composer will most likely need to define most of the structure and parameters

326 Emergence in Games

for the music, allowing only minor variations to be made by the music engine in-
game. The type of music that will be generated and the degree of control that the
composer requires depends on the gameplay and the desired effect of the music.
Games that make use of generative music include Creatures 2 and Spore.

In Creatures 2, the composer, Peter Chilvers, designed the music engine to
score the emotion of the game as it is being played. Each of the major areas in the
game (for example, swamp, volcano, terrariums, and laboratories) has its own
atmospheric music, but within each setting, the music can vary according to mood
of the creatures and level of threat. Each composition has a set of players and each
player has a set of instructions for responding to the mood and threats in the game.
For example, the music becomes softer when the creature is sad and harsher when
a threat is present. A script controls the music engine, setting the volume, panning,
and interval between notes as the mood and threat changes.

Brain Eno is working on a generative music score for Spore, to create sound for
the game that is as procedural as the game itself. The music in Spore is generative,
so that players won’t have the same musical experience in a particular part of the
game at any moment. As the players progress through the game and explore differ-
ent parts, their choices will impact the music in various ways. The landscape of the
game space also affects the music that is playing. A piece of software used in Spore,
called The Shuffler, procedurally generates fragments for the soundtrack from a
number of samples. In Spore, the players won’t hear the same music repeatedly,
whereas most game music is based on a prewritten set of tracks looping.

Chapter 8 Emergent Narrative 327

ADDITIONAL READING

For further information on generative music:

Gameware Development. The Music Behind Creatures. Online at:
http://www.gamewaredevelopment.co.uk.
Wooller, R., Brown, A., Miranda, E., Berry, R., and Diederich, J. (2005) A
Framework for Comparison of Processes in Algorithmic Music Systems.
Generative Arts Practice. Sydney, Australia: Cognition Studios Press, pp.
109–124.
Wright, W., and Eno, B. (2006) Playing with Time. The Long Now Foun-
dation. Online at: http://www.longnow.org/projects/seminars/.

http://www.gamewaredevelopment.co.uk
http://www.longnow.org/projects/seminars/

Plot Generation

So far, you’ve learned about tracking, narrating, counting, or recording the player’s
low-level actions to create a story that retells exactly what the player has done. Al-
though this keeps track of the players’ progress through the game and gives them a de-
tailed account of what they have done and accomplished, it might not make for an
interesting or well-crafted story. You’ve moved from taking the player’s internal or im-
plicit story and making it explicit, but it’s still not the same as a well-written narrative.

In addition to tracking and recounting all the player’s low-level actions and each
detail of their journey, you can look at abstracting and refining these details to give
a more streamlined account of their story and their impact on the game world. You
can remove a lot of the unimportant actions and inconsequential choices to extract
and generate a main plot for the game. This is similar to the emergent storytelling
approach discussed previously, except that you’re not starting with any predefined
plot elements. All you have are the low-level actions and interactions of the players
and a structure for generating a plot (Muthos) from their actions (Mimesis).

Perspective
In creating a story out of the player’s actions, you need to be able to look across
their actions and interactions and find key moments of interest and trends that can
be added to a story. A story is just a series of events told from a particular perspec-
tive. Although the perspective or filter you use to tell the story might not align ex-
actly with how the player saw the events occur and unfold, it can be entertaining
and interesting all the same.

The story could be told from the perspective of a third party, onlooker, or disem-
bodied narrator that has no connection to the player. The perspective that is chosen
will determine a lot about the type of story that is told and the events and interactions
that are important. For example, in a city building game, the story could be told from
the perspective of the mayor, a citizen, or a separate narrator. Each story would be dif-
ferent, with varying elements being important and an alternate focus.

328 Emergence in Games

KEY TERMS

Physical storytelling involves physically manifesting the narrative in the
game world, by changing the world as a result of the development of the
player, characters, and narrative.
Generative music is music that is procedurally or algorithmically generated
or altered using computer software.

In creating a generated storyline, you should first choose the perspective from
which the story will be told and who or what type of character will tell the story. The
more you know about this character and their perspective, the more you can iden-
tify what will be important to them about the events that are unfolding and what
events and actions you should track. Different characters, with varying motiva-
tions and backgrounds, will also interpret the same events in different ways. Their
preferences, experiences, and biases, will also affect how they will retell the story.
Potential storytelling characters include:

The player—The story is told from the perspective of the player, such as a jour-
nal (for example, “I talked to,” “I discovered,” or “I was attacked by”).
A game character—The story is told from the perspective of a non-player char-
acter in the game. The story could be told directly about the actions of the
player (for example, “I watched as he entered the guild”) or indirectly about
how the player’s actions affect their life (for example, “Due to the increases in
taxes, I was unable to pay my rent this month”).
A disembodied narrator—The story is told from the perspective of an all-seeing
eye that was not physically present in the game. The narrator could be an im-
partial observer who simply recounts the player’s journey without bias or a
character that will interpret and spin the player’s actions in a particular way,
based on their own beliefs and characteristics.

Event Tracking
After you have identified the perspective from which the story will be told, you can
identify the elements that you will need to track while the players are playing the
game. These elements will also need to be important and interesting to the players
and will most likely relate to the core concepts of the gameplay.

For example, if the game is a first-person shooter, the elements to track will
most likely relate to who or what the players have killed, how frequently they use
each type of weapon, what kind of tactics they use, how often they pick up armor
or health packs, and enemies they had difficulty dispatching.

In a strategy game, you could keep track of how many units of each type the
players constructed, how much resources they allocated to researching, upgrading,
defending, and attacking, how many battles they won, how large an attacking force
they used to raid an opponent’s base, and what kind of buildings they destroyed.

Once you have all these basic statistics, you can use them to generate timelines
of the gameplay or to identify trends. You could trigger story elements based on the
number of times they did a particular thing, the ratio between different behaviors,
or identifying a series of events as a strategy. How the basic numbers are combined
or filtered to identify patterns, behaviors, and interesting story elements depends
entirely on the specific gameplay and the type of story that is being told. A good

Chapter 8 Emergent Narrative 329

place to start is to watch people playing your game and the types of stories that seem
to naturally emerge from their play. How would they describe how the game played
out or how would you tell a story about it?

Medium
Now that you know who will be telling the story and what the content will be based
on, it is also necessary to decide how the story will be told. The story could be con-
veyed to the player in a written form (for example, a journal, log, diary, book,
notes), in a movie form (for example, in-game cutscenes that are generated at var-
ious points in the game), or verbally (for example, a narrator that tells the story).
The story could also be told as the player progresses through the game or as a sum-
mary at the end of the game (see the “Post-Game Narrative” section).

The stories generated from a first-person shooter game could range from blow-
by-blow descriptions of each individual fight the player was involved in to colorful
narratives generated about the player’s path through a level or the whole game. Sto-
ries could be generated by:

Using prewritten sentences that can be selected and pieced together—Describ-
ing a fight by selecting the text that describes each of their moves and the
enemy’s responses or substituting words (for example, “shot,” “leg,” “five
points of damage”) into prewritten sentences.
Having movies or narratives that relate to particular patterns of play—Analyz-
ing the player’s statistics and choosing a prewritten story or movie that fits
their behavior.
Generating a story to fit a prewritten structure based on key statistics—A state-
ment about how many monsters they killed, followed by a reference to their use
of a particular weapon, and then a description of an important battle, and so on.

A more adventurous option would be to have an in-game cinematic that can
call on particular models, behaviors, and sequences to be generated on-the-fly
based on the player’s game. It could show the player’s character performing key
actions or reliving important moments in the game. The player’s actions and
choices could be encapsulated in a succinct cutscene that recaps the whole game or
a section of the game.

For example, the cutscene could show that when the player killed a key charac-
ter it set particular events in motion. Or when players were faced with a particular
decision, their choice had the following consequences. Recapping the player’s ac-
tions and choices in this way would provide a sense of consequence and importance
to their actions and decisions. Additionally, generating moving sequences in-game
is quite easy and cheap to do in many game engines. With the ability to swap in as-
sets and the right scripting and logic behind the generation, dynamic cutscenes
generated in-game could be fairly straight-forward and highly effective.

330 Emergence in Games

