

AWESOME GAME CREATION:
NO PROGRAMMING

REQUIRED
THIRD EDITION

JASON DARBY

CHARLES RIVER MEDIA

Boston, Massachusetts

Copyright 2008 Career & Professional Group, a division of Thomson Learning, Inc.
Published by Charles River Media, an imprint of Thomson Learning Inc. All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system of any type, or
transmitted by any means or media, electronic or mechanical, including, but not limited to, photocopy,
recording, or scanning, without prior permission in writing from the publisher.

CHARLES RIVER MEDIA
25 Thomson Place
Boston, Massachusetts 02210
617-757-7900
617-757-7951 (FAX)
crm.info@thomson.com
www.charlesriver.com

This book is printed on acid-free paper.
Jason Darby. Awesome Game Creation: No Programming Required, Third Edition
ISBN-10: 1-58450-534-6
ISBN-13: 978-1-58450-534-1

Library of Congress Catalog Card Number: 2007904967
All brand names and product names mentioned in this book are trademarks or service marks of their
respective companies. Any omission or misuse (of any kind) of service marks or trademarks should
not be regarded as intent to infringe on the property of others. The publisher recognizes and respects
all marks used by companies, manufacturers, and developers as a means to distinguish their products.

Library of Congress Cataloging-in-Publication Data
Printed in the United States of America
08 09 10 11 12 TW 10 9 8 7 6 5 4 3 2 1

CHARLES RIVER MEDIA titles are available for site license or bulk purchase by institutions, user groups,
corporations, etc. For additional information, please contact the Special Sales Department at 800-347-7707.
Requests for replacement of a defective CD-ROM/DVD must be accompanied by the original disc, your
mailing address, telephone number, date of purchase and purchase price. Please state the nature of
the problem, and send the information to CHARLES RIVER MEDIA, 25 Thomson Place, Boston,
Massachusetts 02210. CRM’s sole obligation to the purchaser is to replace the disc, based on defective
materials or faulty workmanship, but not on the operation or functionality of the product.

Publisher and General Manager, Charles River Media: Stacy L. Hiquet

Associate Director of Marketing: Sarah O’Donnell

Manager of Editorial Services: Heather Talbot

Acquisitions Editor: Heather Hurley

Marketing Assistant: Adena Flitt

Project Editor: Dan Foster, Scribe Tribe

PTR Editorial Services Coordinator: Erin Johnson

Copy Editors: Ruth Saavedra and Beth Roberts

Interior Layout Tech: Judy Littlefield

Cover Designer: Tyler Creative Services

DVD-ROM Producer: Brandon Penticuff

Indexer: Jerilyn Sproston

Proofreader: Sue Boshers

eISBN-10: 1-58450-603-2

www.charlesriver.com

Image Credits

Figure No. Copyright

2.3 Copyright Castle Software and Teddys Day Ltd

2.4 Copyright Clickteam.com

2.5 Copyright Clickteam.com

2.6 Copyright Castle Software and Teddys Day Ltd

2.8 Castle Software and Teddys Day Ltd

2.9 Copyright Teddys Day Ltd

2.10 Copyright Clickteam.com

2.11 Copyright Clickteam.com

2.12 Copyright Microsoft Corp.

2.13 Copyright Microsoft Corp.

2.14 Copyright Firefly Studios

2.15 Copyright Firefly Studios

2.16 Copyright Microsoft Corp.

2.17 Copyright Microsoft Corp.

2.18 Copyright Clickteam.com

2.19 Copyright Jason Darby and Castle Software Ltd

3.17–3.20 Copyright Jason Darby

8.1 Copyright Jason Darby and Teddys Day Ltd

10.1 Copyright Jason Darby and Teddys Day Ltd

12.1 Copyright Jason Darby and Teddys Day Ltd

13.11 Copyright Jason Darby and Teddys Day Ltd

23.1 Copyright Jason Darby and Castle Software Ltd

23.2 Copyright Jason Darby and Castle Software Ltd

23.3 Copyright Jason Darby and Castle Software Ltd

23.4 Copyright Clickteam.com

23.5 Copyright Empire Interactive

23.6 Copyright Jason Darby and Castle Software Ltd

23.7 Copyright Caligari

To my wonderful family,
Alicia, Jared, Kimberley and Lucas,

for all their support.

CONTENTS

F O R E W O R D x i

A C K N O W L E D G M E N T S x i i

A B O U T T H E A U T H O R x i i i

I N T R O D U C T I O N x v

C H A P T E R 1 I N T R O D U C T I O N T O G A M E D E V E L O P M E N T 1

Setting Up a Game Studio 2

Chapter Summary 9

C H A P T E R 2 T H E H I S T O R Y O F G A M E D E V E L O P M E N T 1 1

Silicon Circuits 12

Spacewar 12

Assembly Language 14

A Computer on a Chip 16

Advances in Graphics 16

It’s a Polygon World 17

Making Programming Languages Easier 17

Game Consoles Shape the Future 19

The Future of Game Development 20

Game Genres 21

Chapter Summary 34

C H A P T E R 3 G R A P H I C S : T H E B A S I C B U I L D I N G B L O C K S O F A G A M E 3 5

Sights 36

Basic Elements of an Image 38

v

Manipulating Images 45

Advanced Image Manipulation 50

Chapter Summary 57

C H A P T E R 4 S O U N D A N D M U S I C 5 9

Why Sound and Music Are Important 60

Types of Sound 60

Obtaining or Creating Sounds and Music 61

Recording Sounds 62

Creating Music 67

ACID XPress 69

Dance eJay 7 79

Chapter Summary 87

C H A P T E R 5 E L E M E N T S O F D E S I G N I N G A G A M E 8 9

Introduction 90

Game Elements 91

Game Market 101

Technical Information and Associated Risks 102

Required Resources and Scheduling 103

Chapter Summary 103

C H A P T E R 6 I N T R O D U C T I O N T O G A M E M A K E R 1 0 5

Installation 106

System Requirements 109

Game Maker Interface 109

Resource Explorer 110

Menus and Toolbar 112

Chapter Summary 116

C H A P T E R 7 Y O U R F I R S T G A M E M A K E R P R O J E C T 1 1 7

Game Maker Basics 118

Creating a Simple Program 120

Save and Run 126

Chapter Summary 127

vi Contents

Contents vii

C H A P T E R 8 2 D S P A C E S H O O T E R — E N D O F T H E E A R T H 1 2 9

Setting Up the Game 131

Programming Objects 147

Adding Sound Using a Script 168

Adding a Help File 169

Creating an Executable File 170

Chapter Summary 171

C H A P T E R 9 I N T R O D U C T I O N T O T H E G A M E S F A C T O R Y 2 1 7 3

About TGF2 174

TGF2 Requirements 175

Installation of TGF2 176

Starting TGF2 for the First Time 179

A Quick Introduction to TGF2 180

Chapter Summary 183

C H A P T E R 1 0 B E H I N D T H E S C E N E S O F T H E G A M E S F A C T O R Y 2 1 8 5

About Alien Wars 186

Loading Alien Wars 187

Alien Wars: The Storyboard Editor 188

Alien Wars: The Frame Editor 191

Alien Wars: The Event Editor 193

Chapter Summary 201

C H A P T E R 1 1 A L I E N W A R S 2 0 3

Library 204

Initial Setup 205

Event Programming 217

Chapter Summary 253

C H A P T E R 1 2 L I T T E R B U G 2 5 5

Introduction 256

Library 256

Initial Setup 258

Event Programming 269

Chapter Summary 295

C H A P T E R 1 3 A D V A N C E D G A M E O V E R V I E W 2 9 7

Advanced Games 298

Chapter Summary 315

C H A P T E R 1 4 A D V A N C E D C O N T R O L O F O B J E C T S 3 1 7

Using Objects in Your Games 318

Active Objects 319

Backdrop and Quick Backdrop Objects 321

Hi-Score Object 323

Text Objects 325

Lives Object 326

Score Object 328

Movement 328

Multiple Movements 338

Chapter Summary 339

C H A P T E R 1 5 W O R K I N G W I T H P I C T U R E S A N D A N I M A T I O N S I N T G F 2 3 4 1

The Picture Editor 342

The Animation Tool 354

Chapter Summary 359

C H A P T E R 1 6 I N T R O D U C T I O N T O F P S C R E A T O R 3 6 1

Introduction 362

Installation Walkthrough 363

FPS Creator Terminology 365

FPS Creator Creation Process 366

FPS Creator Walkthrough 367

Chapter Summary 374

C H A P T E R 1 7 C R E A T I N G A B A S I C G A M E W I T H F P S 3 7 5

Creating Your First Room 376

Testing Your First Level 380

Player Starting Position 382

Adding a Weapon 383

Adding an Enemy Player 385

Creating a Corridor 386

Chapter Summary 394

viii Contents

Contents ix

C H A P T E R 1 8 F P S C R E A T O R : N E X T S T E P 3 9 5

Adding Windows 396

Creating Door Switches 398

Lighting Rooms and Corridors 400

World Effects: Smoke and Fire 401

Making Your World More Visually Exciting 405

Chapter Summary 406

C H A P T E R 1 9 T A K I N G F P S C R E A T O R T O T H E N E X T L E V E L 4 0 7

Stairs, Elevators, and Teleporters 408

Creating Enemy Patrols Using Waypoints 415

Zones 417

Chapter Summary 424

C H A P T E R 2 0 F P S C R E A T O R A D V A N C E D O P T I O N S 4 2 5

Performance Checking 426

Building an Executable 428

Creating a Multiplayer Online Game 432

Chapter Summary 436

C H A P T E R 2 1 T H E 3 D G A M E M A K E R 4 3 7

System Requirements 438

Installation 438

Creating a Game with The 3D Gamemaker 441

Saving the Game 445

Playing the Game 445

Chapter Summary 447

C H A P T E R 2 2 G A M E S P A C E L I T E 4 4 9

System Requirements 450

Installation 451

gameSpace Lite Interface 454

Creating Primitives 456

A Simple 3D Example 459

Exporting the Model 462

Chapter Summary 462

C H A P T E R 2 3 G A M E M A K I N G W E B S I T E S 4 6 3

Useful Websites 464

Chapter Summary 470

A P P E N D I X A D E S I G N D O C U M E N T : F I R S T - P E R S O N S H O O T E R 4 7 1

Design History 471

Game Overview 471

Features 472

The Game World 473

Graphics 473

Game Characters 473

Weapons 474

Music and Sound Effects 474

Appendix ABC 474

A P P E N D I X B T H E K E Y P O S I T I O N S I N A D E V E L O P M E N T T E A M 4 7 5

Designer 475

Programmer 476

Audio-Related Positions 477

Art-Related Positions 477

Producer 479

Secondary Positions 479

A P P E N D I X C A B O U T T H E D V D 4 8 1

General Minimum System Requirements 481

ACID XPress (www.acidplanet.com) Trial 481

Dance eJay 7 (www.ejay.co.uk) Trial 482

Game Maker 7.0 Lite (www.yoyogames.com) Trial 482

Games Factory 2.0 (www.clickteam.com) Trial 483

FPS Creator (www.fpscreator.com) Trial 483

3D Game-Maker (www.thegamecreators.com) Trial 484

gameSpace Lite (www.caligari.com) Trial 484

Folders 484

I N D E X 4 8 7

x Contents

www.ejay.co.uk
www.yoyogames.com
www.clickteam.com
www.fpscreator.com
www.thegamecreators.com
www.caligari.com
www.acidplanet.com

FOREWORD

Igrew up in the golden age of video games. I remember the long lines of
people in the local pizza parlor waiting in amazement when the first
commercial pong game was installed, when Pac-Man fever swept the

world and Donkey Kong introduced everyone to the legendary Mario.
Every kid I grew up with had a head full of ideas for making the next

big video game, but the bar of learning computer programming kept the
vast majority of people from turning dreams and ideas into reality. Only
a select few ever attempted to put their ideas into action.

Fast forward a couple of decades and it’s a completely different
world. No longer is video game creation the sole domain of hard-core
programmers; with many advanced visual tools, just about anyone can
create commercial quality video games.

These new tools focus on the visual and logical flow of the game and
do not require the mechanics of traditional programming. You’re free to
experiment and develop your ideas without a hassle or a time-consuming
process. I believe we have already begun to see a new renaissance in
video game creation with the massive success in the casual game market.
As more and more “nonprogrammers” are given creation tools, we will
see more and more new ideas come to life.

My good friend Jason has put together a wonderful outline of some
of the popular and easy-to-use visual creation products. I encourage you
to try them all and find one that suits your style.

Video game creation changed my life—and it can change yours.

Jeff Vance
Flyin V Interactive—Independent Game Developer

xi

ACKNOWLEDGMENTS

Iwould like to thank a number of people who were involved in the
creation of this book, without whose help it would not have come to
fruition.
To my wife Alicia, and my children, Jared, Kimberley, and Lucas,

who supported me throughout this project.
To Raymond of Teddysday Ltd, who created some amazing graphics

and games for the book, and the front cover image. Without his help, I
would have taken a lot longer to complete the book.

To my good friends Yves Lamoureux and Jeff Vance, who provided
help and support to ensure the book is as complete as it can be.

To the professional and very friendly staff at Thomson Learning, who
again provided excellent support throughout the entire process.

xii

ABOUT THE AUTHOR

Jason Darby has been working in the IT industry for the past
decade, writing user and systems documentation for users with little
or no knowledge of the programs they are using. For a number of

years he has been the director of his own company, Castle Software, Ltd.,
working in the games and application creation market, where he makes
games, applications, and DVD demos. Jason is the author of Make Amazing
Games in Minutes and Power Users Guide to Windows Development, which are
also published by Charles River Media.

He has also had a number of articles published in the UK press including
several in Retro Gamer® and PC Format®, both leading magazines in their
field.

xiii

This page intentionally left blank

INTRODUCTION

Welcome to Awesome Game Creation: No Programming Required,
Third Edition. This book is aimed at anyone who wants to make
exciting and fun games for Windows. This book will show

you how to make a number of games in different drag-and-drop and no-
programming-required game creation systems. You will learn to make
games in four different game making packages as well as use other tools
that will aid you in your game creations.

Audience

If you’ve purchased this book or are reading it in a bookstore, we can as-
sume you’re interested in developing games for the Windows platform.
You may be an indi developer looking to make shareware programs, a
multimedia designer, or a marketing manager looking at making games to
advertise a service or Web site. You may be a skilled graphic artist who does
not want to learn a programming language to create games or have to find
a programmer to help realize your ideas. You might even be an educator
or someone working for a software company who is looking at making
games without the need for skilled programmers or reskilling your current
staff. Whichever group you are from, you’re reading the right book.

Aim of the Book

The aim of the book is to allow anyone with no programming background
(or in fact even if you are a programming professional) to create a whole
range of games for the Windows Operating System quickly and easily.

Some of the things that are covered in this book are:

• Understanding the history of games
• Learning about game genres
• Game design and storyboarding
• Jobs in the games industry
• Learning how to use Game Maker 7
• Learning how to use The Games Factory 2 (TGF2)
• Learning how to use FPS Creator

xv

• Learning about objects in The Games Factory 2
• Learning about creating your own sounds
• Learning how to create your own music
• Learning how to use eJay
• Learning how to use ACID XPress
• Creating a space shoot-’em-up
• Creating a space invaders–type game
• Creating a 2D collection game

We’ve tried to include everything that we feel would be useful to anyone want-
ing to make their own games, from designing them to finding the right tool, to cre-
ating them. By the end of the book you should be very comfortable with the
software tools available in this book and know which one will best suit your goals.
We hope you will then be able to make your own ideas a reality.

This book does not:

• Teach more complex programming languages such as C++, C#, or Java. This
book is aimed at those who want to make games easily without needing to learn
those more complex languages. If you are interested in C++, then consider C++
Programming Fundamentals, by Chuck Easttom.

• Teach how to be a graphic artist or music creator. Look at Composing Music for
Video Games, by Andrew Clark, or 3D Graphics Tutorial Collection, by Shamms
Mortier.

• Show you how to become an indi developer or build a team. If you want more
information on being an indi developer read The Indi Game Development Survival
Guide, by David Michael.

• Assume you are an expert at game creation. This book is aimed at those with lit-
tle or no knowledge of game creation but also those who might have an idea of
how things are put together but need more information.

• Show you how to make Windows-based applications. This book is totally geared
to games and game creation. If you want more information on making your
own Windows applications, read Power Users Guide to Windows Development, by
Jason Darby.

• Concentrate on a single product but covers many different tools so you can get as
much knowledge about the programs available to you. You can then make an in-
formed choice on which to use for a particular project. If you are looking for more
information on TGF2 then read Make Amazing Games in Minutes, by Jason Darby.

Chapter Overview

This book runs in a simple yet effective order to allow you to get the most out of
reading it. It is possible to skip certain chapters, but it is recommended that you read
through every chapter in order. Different products are used throughout the book,
and using each of them will give you more knowledge about the game creation gen-
res and overall what makes a good game.

xvi Introduction

Introduction xvii

Chapter 1: Introduction to Game Development. The book begins with
some general advice on the type of equipment available to the budding
game developer and those wanting to create their own game studio.

Chapter 2: The History of Game Development. A look back into the past at
how the games industry started and what happened after that.

Chapter 3: Graphics: The Basic Building Blocks of a Game. Provides infor-
mation on different graphic settings, techniques, and features found in most
paint packages.

Chapter 4: Sound and Music. Reasons for using sound and music in your cre-
ations and how to create and record your own.

Chapter 5: Elements of Designing a Game. Things you need to look at when
designing your own games, including the technology involved, the team
you need to create your game, and the target audience.

Chapter 6: Introduction to Game Maker. An introduction to the first game
tool that we will use in the book. We will install Game Maker 7.0 Lite and
have a tour of the program and be ready to begin creating our first game.

Chapter 7: Your First Game Maker Project. You make your first game, a
simple example that shows you all the important aspects of the Game
Maker functionality, including how to save and run the program.

Chapter 8: 2D Space Shooter—End of the Earth. It’s time to create a stun-
ning shoot-’em-up game and learn in depth about the Game Maker fea-
tures.

Chapter 9: Introduction to The Games Factory 2. An introduction to the
second game making tool used in the book, TGF2. You will learn about its
requirements and how to install it and have a quick introduction to the
basic terminology of the program.

Chapter 10: Behind the Scenes of The Games Factory 2. Before you begin
to make your first game in TGF2, you will get a walkthrough of the main ed-
itors and screens used in the program by looking at the game you will make
in Chapter 11, called Alien Wars.

Chapter 11: Alien Wars. It’s time to make your first game with TGF2, a space
invaders-type game. Making this game, you will learn a lot about the Event
Editor and the Frame Editor, two of the most commonly used editors in the
program.

Chapter 12: Litter Bug. Now that you have completed your first game, you
can attempt the second game in TGF2, called Litter Bug. You play the part of
a robot cleaning machine. In this chapter you will learn many new tech-
niques, including how to make your own movement engine.

Chapter 13: Advanced Game Overview. In this chapter you will be intro-
duced to two advanced games made in TGF2. You get to take a tour of how
they were put together and see new features and functionality that you
could include in your own games. The first game is a card game called Black
Jack, and the second game is a side scrolling game involving a fire-breathing
dragon.

Chapter 14: Advanced Control of Objects. In this chapter you will look at
the additional objects you can use in TGF2 to increase the power of your
games. You will also be introduced to the different built-in movements that
are available with TGF2 out of the box.

Chapter 15: Working with Pictures and Animations in TGF2. In this chap-
ter you will look at how to create pictures and animations using The Games
Factory's built-in picture editor. You will learn how to import or draw your
own pictures and then animate them.

Chapter 16: Introduction to FPS Creator. We take a look at the third game-
creating tool in the book, the FPS Creator. This program allows anyone to
make first-person shooters without any programming knowledge. We begin
with a basic walkthrough of the terminology and the interface.

Chapter 17: Creating a Basic Game with FPS. Here we create our first FPS
game with a gun and a single enemy player.

Chapter 18: FPS Creator: Next Step. Now that you have created your first
game in FPS Creator, you will be taken through some additional functional-
ity to start building upon what you have learned. You will learn to create
windows, doors, switches, smoke and fire effects, and much more.

Chapter 19: Taking FPS Creator to the Next Level. In this chapter you will
learn about adding special features that will make your game stand out, in-
cluding stairs, elevators, and teleporters.

Chapter 20: FPS Creator Advanced Options. In the final chapter about FPS
Creator you get to learn how to make advanced changes to your games and
are walked through the creation of an online multiplayer version of your
game.

Chapter 21: The 3D Game-Maker. The final game making tool in the book is
The 3D Game Maker, a simple and easy-to-use product. It’s not the most re-
cent of game creation engines, but it provides good insight into the different
3D game genres that are available. You will learn how to install the product
and make a simple 3D game by the end of the chapter.

Chapter 22: gameSpace Lite. In this chapter we explore a product called
gameSpace from Caligari. This is a product for making your own 3D models,
which you can then use in your games.

Chapter 23: Game Making Web Sites. A quick look at some of the useful
websites you can visit to help you in your game making.

Appendix A: Design Document: First-Person Shooter. A design document
detailing the making of an FPS game. It gives you a document template that
you can use in the design of your own games.

Appendix B: The Key Positions in a Development Team. This appendix
details the types of job roles that are available in most game development
environments.

Appendix C: About the DVD. This final appendix provides additional infor-
mation about the DVD-ROM included with this book.

xviii Introduction

C H A P T E R

1 INTRODUCTION TO GAME
DEVELOPMENT

1

In This Chapter

• Setting Up a Game Studio

2 Awesome Game Creation: No Programming Required

Developing a computer game is a unique production, in which you combine a
wide range of elements into what you hope will be an enjoyable experience
for the end user. Games consist of a variety of components, which can seem

overwhelming for a new developer. In this chapter, you’ll look at what you need to
set up your own development studio. Later chapters will introduce you to the various
components that make up a game project and will walk you through the creation of
several complete games.

SETTING UP A GAME STUDIO

Before you can make anything, you need to have the proper equipment. While it
may sound expensive, setting up a game development studio doesn’t have to be. With
Moore’s Law continuing to hold true (i.e., the processing power of computers doubles
every 18 months), the cost of computers continues to plummet. Great deals for rela-
tively powerful computers are everywhere. As many families are embracing the digital
age and have many different types of digital-based equipment at home, you may
find that you have some or most of the equipment already.

To go along with inexpensive computers, the variety of software designed for
small game developers has greatly increased in the past couple of years. With these
tools, you can now develop games without doing any programming.

When setting up your game studio, several factors help determine the type of
equipment you need. Fortunately, you may already have the essentials of a game
studio—a computer and this book. In this chapter, you’ll learn how to determine if
what you have is enough, and what else you may need.

As an aspiring game developer, you have a wide range of computers from which
to choose, and trying to decide which system you need can be a daunting task. One
way to look at this problem is to compare it to the purchase of other items, such as
an automobile. For instance, if you were driving six kids to school, driving in a road
race, or driving into combat, what vehicle would you choose? Computers are simi-
lar to vehicles in this respect. While a minivan, a racecar, and a jeep all have four
wheels, each is designed for very different purposes.

So the big question for you is, what will you be doing with your computer? This
book will help you answer this question, by giving you a chance to try the different
types of things you will have to do on your computer as a game developer. After you
have worked a bit with the various applications and learned their specific require-
ments and your needs as a developer, you will know what kind of system you need.

The first thing to consider while working on your current system is the system
requirements for the applications you will be using or intend to use, which appear
on the box, in ads, and on the home pages of the product. The system requirements
are usually broken down into minimum and recommended.

Chapter 1 Introduction to Game Development 3

Usually, the minimum system requirements are just that, the bare minimum to run the
application. A minimum system will usually not be the most comfortable or even the most
usable system to run the application. Moreover, the minimum requirements do not take into
account other applications you may be running at the same time.

The more things you expect your computer to do, the more strain on the mini-
mum requirements. Modern operating systems require much larger hard disks,
processors, and memory amounts just to be able to run without needing to consider
everything else you might have running. Let’s say that the minimum RAM require-
ment for your art application is 64 MB. However, as a game developer, you also need
to run other applications at the same time, such as a level editor, game engine, word
processor, and 3D application. You might also have other programs running in the
background to help protect your system from viruses, and a software firewall to pro-
tect your computer when you are on the Internet. These programs will severely tax
your system and cause it to run poorly, if at all. And the minimum system require-
ments usually do not take into account the files with which you will be working. If
you have experience with image editing applications such as Photoshop or Paint
Shop Pro, you know that files can range from a few hundred kilobytes to over 50
megabytes, depending on what you’re working on. While you can open and close ap-
plications that are not in use, this takes time (especially with slow, RAM-deficient
machines) and will severely cut into your productivity and workflow.

Another area you should watch is the recommended amount of hard drive
space for installing the application. This number includes only the application itself;
it does not take into account the files you create with the application. Therefore, you
also need to ensure that you have room for your files. Processor speed is another
variable you should look at, which again only includes the speed to run the applica-
tion and does not take into account larger files.

System and Equipment

The equipment you will need to create a computer game depends on the type and
scope of your project. The right setup can range from a minimal investment of a few
hundred dollars, to tens of thousands of dollars for the latest and most powerful
computer and peripheral setup. To get started, you need to own a basic computer
setup with a few important peripherals.

Computer

A computer is obviously a necessary item for game development. As previously
mentioned, you can get many great deals these days for a minimal investment. Un-
less the requirements for your software indicate that you need a high-end system, a
general-purpose off-the-shelf system is sufficient.

4 Awesome Game Creation: No Programming Required

When purchasing your system, consider the work and applications you will run.
The operating system (OS) is important (Windows XP or above is recommended for
the tools in this book). New systems usually ship with the latest version of the
biggest OS on the market at the time. The minimal system today usually has a 17-
inch monitor, lots of RAM, and a fairly large hard drive. You should have no prob-
lem with an off-the-shelf or mail-order system from a reputable company.

See the end of this chapter for tips on buying equipment.

Processor

The processor can often be very difficult to upgrade. With this in mind, you should
try to buy the fastest system you can afford. There are two main manufacturers of
processors on the Windows side of things: Intel (Pentium), and AMD (Athlon). We
won’t get into a big discussion or try to decide which processor you should buy; you
can simply assume they are comparable.

One reason you should buy the fastest processor you can is that it’s harder to
upgrade the processor than to upgrade other components. Getting the fastest chip
possible makes sense if you are purchasing a system for general work. It’s even more
important for you as a game developer; you’ll be pushing your system harder than
most users and will need the speed. But don’t worry if your system isn’t the latest and
greatest. You can still design and develop games with a minimal system, as long as it
can run the specific applications you are using.

RAM

Along with the fastest processor you can afford, you should get as much RAM as
possible. RAM stands for random access memory and is measured in megabytes. The
computer uses RAM as temporary storage for the applications you run. When you
turn off the system or the power goes out, the information in RAM is lost. Although
RAM is cheap and very easy to upgrade, the prices are so low now that it’s often a
good idea to purchase a system that has a slightly slower processor, but more RAM.
This results in overall better performance at less cost. RAM is definitely the most im-
portant thing you can have.

Graphic (Video) Cards and 3D Cards

Having a quality video or graphics card is becoming more important as time goes on.
These cards allow images to appear on your monitor. A video card usually controls
how big the image is on your screen, how much detail the image can have, and how
many colors are displayed (in Chapter 3, “Graphics: The Basic Building Blocks of a
Game,” you’ll learn about the specific elements of an image).

Many applications only display simple pictures, but if you are interested in doing
3D-related games, it makes sense to consider buying one of these cards. Most new

Chapter 1 Introduction to Game Development 5

systems will have a hardware-accelerated card, but the type of card and the amount
of graphics memory it has will affect your performance. Two manufacturers are
head and shoulders above the rest—NVIDIA® with its GeForce line of cards, and ATI
with the Radeon line. Regardless of the type of card you get, it will take the tasks of
3D rendering away from the processor by handling textures, effects, and geometric
calculations.

Other Peripherals

Other peripherals you will need are standard on most computers: a modem, a CD-
ROM or DVD-ROM drive, and a sound card. Your system might come with a
modem—the most common type of which is DSL—that can allow you to transfer files
with speed across the Internet. Your system will probably have a CD-ROM or DVD-
ROM drive; simply choose the type that benefits you the most. The sound card sends
sound output to a set of speakers. There are many manufacturers of, and many op-
tions for, these cards. Again, choose a sound card that meets your requirements.

Last, you will want to consider several other peripherals if you have the extra
funds.

Scanner

A scanner works like a copy machine; it converts your flat document or image into
a digital image that can be manipulated in the computer, as described in Chapter 3.
This can be very useful for creating game art, Web sites, and logos.

Digital Camera

The next item is a digital camera. Digital cameras work like standard cameras, but
instead of using film, they produce digital images, as a scanner does. The major dif-
ference is that a scanner requires flat images that have already been created on
paper, while you can use a digital camera to take a picture of anything. Digital cam-
eras come in many different sizes and are generally judged by the number of
megapixels they can create. The megapixel size isn’t the only measure of a good
camera, but it does give you an idea of its potential quality. A camera with a
megapixel count of three or above is good enough to take quality pictures. Today,
you can purchase many cameras for less than a few hundred dollars.

Modem

Over the last few years, there has been an explosion in the use of cheap DSL Inter-
net access. These DSL modems and lines have taken over from the 56 K modem
speeds, which seem very inadequate into today’s video, music, and downloading
Internet experience. DSL stands for digital subscriber line and has been around for
a number of years. It gives better speed access than the 56 K PSTN (standard tele-
phone) line modems, and because the actual line is split in two, you can still receive

and make outgoing telephone calls when using the Internet. Due to growing compe-
tition in the marketplace and the number of people using the service, the prices
have continued to drop, and the monthly fee for DSL is much cheaper than a tele-
phone call to use the Internet. The Internet is such an invaluable resource, especially
to game developers, that paying for high-speed access is a worthwhile investment.
Some of the large downloads you will be making are images, game demos, sound
files, development tools, and animation files.

Backup Devices

The next item is rapidly becoming an affordable necessity. That’s because the prices
of recordable CD-ROM drives and media are now very low, and nearly all systems
now come with them as a standard item. There are a number of different types of
recordable drives: a CD-Recordable (CD-R) drive that can write to a given CD only
once, and a CD-Rewriteable (CD-RW) drive that can write (and erase) the media
many times. After you start creating content for your games, you will need a way to
back it up. A CD-R or CD-RW drive is perfect for this. Working in the same way as
CD-R and CD-RW is the DVD writable format, which allows users to place much
more than the 700 MB of a CD-R disk onto its media; in fact, it can store around 4.7
GB of data. Unfortunately, this is where it becomes slightly more complex than the
CD-R format, as a number of manufacturers were in competition to create their own
formats. Initially, these formats were split into two groups: “+” and “–.” So you
could purchase a DVD-R, DVD-RW drive, or a DVD+R, DVD+RW drive. You also
had to make sure you purchased the correct format media, as a “+” disc wouldn’t
work in a “–” drive. Fortunately, the market decided that it was too confusing and
came up with a solution: multiformat drive support. When considering a DVD
writer, many will support both the “+” and “–” formats. One area in which you
might find a problem is that some multiformat drives will support both formats on
single recordable discs, but may only support one format on rewritable media.

One area of further development in the basic DVD drive arena is the concept of
dual layer, the capability to write information to two different layers on the disc.
This doubled the capacity of the standard discs to 8.55 GB. Again, a special drive and
media are required to support this type of device.

A new format war is currently happening between two new DVD formats: BD
(Blu Ray Disc) and HD DVD (High Definition). HD can hold 15 GB of data per layer,
and Blu Ray can contain 25 GB per layer. Currently, the cost of a writer and media
is prohibitively expensive, but as the formats become more established the cost will
reduce considerably—and there are already talks of multiformat supported drives. It
is very unlikely that your game will require such space for backup, but it will allow
you to back up multiple projects and other files to one disc if required.

Besides CD, DVD, and the high-definition writable drives, you have several other
options for backing up and storing your content. Drives such as the Iomega Zip® drive
can store data to around 70 GB per Zip disk, and other options for tape backup drives

6 Awesome Game Creation: No Programming Required

Chapter 1 Introduction to Game Development 7

can hold several gigabytes of data. A popular storage device is the external hard disk
drive; for less than a couple hundred dollars, you can plug in a USB-based drive, back
up, and then take the drive with you. This is still using standard hard disk technology,
so unlike the CD or Zip formats that can easily be protected on the move, a hard drive
is still susceptible to being dropped or knocked.

Some computers may still contain a floppy disk drive, but these only hold 1.44
MB of data, and are now being phased out of most PCs.

Graphic Tablets

Graphic tablets are a hardware device that contains a board and a pen, and allows
artists to draw more naturally on the computer. The user moves the pen over the
board, and can replicate drawing on paper on to the computer screen. Over the last
few years, these once expensive devices have become relatively cheap, and although
far from a necessity, they can be useful for people who prefer drawing with a pen,
rather than the mouse. The less expensive graphic tablets are good for basic sketch-
ing, but may lack the fine control an artist needs.

Network

A network is another very important item that allows multiple computers to com-
municate with each other. While this sounds like an expensive proposition and a
complex undertaking, it is a very achievable goal. You can purchase a good SOHO
(Small Office Home Office) network system for under $100. It comes in a kit with
everything you need, dramatically extending your computing capabilities. One ben-
efit of a home network is being able to share peripherals and resources. You can
have one scanner, printer, or other device on the network, and have it be available
from multiple computers. This can be useful because most computers (especially
older PCs) can only be connected to a limited number of devices. In addition, having
many devices installed on a system tends to slow down the system’s boot-up and re-
sponse times. Having a network also lets you easily back up data on multiple PCs.
During development of a project, having a network is almost essential, because mul-
tiple team members can simultaneously update code and resources.

Ethernet Network

Ethernet was the most common home-networking system and the easiest to hook
multiple computers into. A typical system for two computers uses two cards, called
Ethernet cards, and a special cable called a crossover cable. If you have three or more
computers, you need a hub. You plug all the computers into the hub, and it routes, or
directs, the traffic. The software portion of a network can range from simply finding
the other computers on the network and accessing the data on their drives, to setting
up special software that operates peripherals and adds security, chatting, and other
advanced functions.

Wireless Network

The most popular type of network today is the wireless network. The popularity of
the wireless network came about when people began moving to DSL Internet con-
nections and didn’t want to put Ethernet cables all around their house. A wireless
network allows you to share information between computers without physically
connecting them. The biggest problem with wireless networks is that they do require
a little more technical knowledge to get them up and running, and more importantly,
if not set up correctly are more susceptible to computer hackers. Much wireless
equipment that connects to the Internet is not locked down by default and many
users forget to configure it, which means anyone in close proximity may be able to
find your network and try to access it.

A Good Chair and Desk

One last suggestion is to buy is a good chair and desk. You will be sitting for long
periods of time, so this will prove to be an invaluable investment.

Tips for Buying Equipment

Now that you have some idea about the type of hardware you’ll need to purchase,
here are a few common sense tips to keep in mind:

• If you are not paying by cash, use a credit card. You should use a credit
card, especially when buying online. With a credit card, you have the credit card
company and usually more rights as a consumer. Many countries have less risk
to the buyer if you pay by credit card; for example, if you purchase online and
the company goes bankrupt before it ships your goods, you could lose your
money. If you are using a credit card, in many cases it allows you to claim your
money back. Always ensure you are purchasing from a reputable company be-
fore entering your credit card details online. Check with your credit card com-
pany Web site for more information on your rights as a consumer.

• Don’t try to cut costs. Avoid the so-called “budget” computers unless you really
know what you are getting into. In some cases, these systems may not include
components that meet your needs (such as a larger hard drive and a quality
monitor). Expect to pay about $1,500–$2,500 for a computer with all the key
features. Depending on your experience, it may be a good idea to get an extended
warranty, although many new systems come with three-year warranties. (After
three years, your system will probably be behind the times and need replacing.)

• Protect everything. Buy a recordable CD-ROM drive or a Zip drive. Try to
back up data daily to a Zip drive (or to another computer on your network), and
monthly to a CD-ROM. You can never be too safe. If you want to protect from
power surges or power cuts, buy a battery-operated surge protector or UPS (un-
interruptible power supply). For about $100, you can get a UPS that will protect
several components, including your computer, monitor, and key equipment. The
UPS will also allow you plenty of time to save your work and shut down your

8 Awesome Game Creation: No Programming Required

Chapter 1 Introduction to Game Development 9

computer if the power goes out. You should also get a surge protector, which are
easy to use; you just plug them in and plug your computer into them. They will
protect your computer from power spikes and shutdowns. A surge protector will
actually blow a fuse or circuit if a surge of electricity from lightning or bad wiring
hits it, which keeps your computer’s innards safe. Of course, the best protection
is to turn off your computer and unplug it during thunderstorms.

• Research. Above all, learn about computers. If possible, try the applications
you expect to run on a few systems first. See how those systems handle massive
graphic files and huge levels. And remember, most people are very biased about
their own systems, so be careful when you ask others for their opinions. No
matter how many opinions you get, you’ll need to make up your own mind.

CHAPTER SUMMARY

In this chapter, you learned about the basic components you will need to create a
development studio. Once you have assembled your game development studio and
have it up and running (whether it is an off-the-shelf special or the latest and great-
est system money can buy), you will have made a huge step toward becoming a
game developer. The next step is to learn about the history of computer games, and
then the basic building blocks of a game.

This page intentionally left blank

C H A P T E R

2 THE HISTORY OF GAME
DEVELOPMENT

11

In This Chapter

• Silicon Circuits
• Spacewar
• Assembly Language
• A Computer on a Chip
• Advances in Graphics
• It’s a Polygon World
• Making Programming Languages Easier
• Game Consoles Shape the Future
• The Future of Game Development
• Game Genres

12 Awesome Game Creation: No Programming Required

In this chapter, we’ll look at the history of computer game development. Under-
standing the history of something helps you appreciate where you are and what
you are working with. We’ll look at how the computer gaming industry began

and how the industry has evolved into what it is today.
The game and interactive developer has come a long way from the days when

one had to memorize complicated codes and numbers to work on a game. Basically,
you had to be a programmer, and the focus was on the code, not the art. Currently,
anyone can make a game 2D and 3D. The doors have been opened for great artists
to contribute to a game, and even for the lowliest newcomers to try their hands at
game design and development. Let’s look at how far we have come.

SILICON CIRCUITS

In 1959, Jack St. Kirby at Texas Instruments, and Robert Noyce and Jean Hoerni at
Fairchild Semiconductor Corporation independently devised a way to shrink much
of the redundant and sluggish elements on an electronic circuit board and place
them all onto a tiny square of silicon. It was called the integrated circuit; you know
it as the microchip.

The year 1959 laid the path that led to the computer as we know it today, but
there were a number of hurdles to jump before there was a PC on every desk. When
the microchip appeared, it was hampered by high prices and very small stock, much
like when any new technology debuts. Did this stop the advent and evolution of
computer games? Of course not. The computer had already been invented. “How,”
you may ask, “did they do it?”

Before the microprocessor, everything was “solid-state.” This refers to a circuit
board full of electrical components that provide a system of computing power and
temporary memory. The capacitor played the lead to this troupe. A capacitor could
hold electric charges, negative or positive, for a variety of purposes. It was, in a room-
sized nutshell, the world’s first RAM. Indeed, it was on a “solid-state digital computer”
that the first computer game would be written.

SPACEWAR

In November 1960, Digital Equipment Corporation (DEC) debuted the first of a
widely successful computer line, the Programmed Data Processor (PDP). The first
PDP—PDP-1—showed up at The Hingham Institute in Cambridge, Massachusetts,
where J. Martin Graetz and his colleagues awaited it. Everything the group had read
about the PDP-1 told them it would be the world’s first useful computer, the world’s
first “toy computer,” as Graetz put it in a 1981 issue of Creative Computing magazine.

In Graetz’s words, “The PDP-1 would be faster than the Tixo, more compact,
and available.” (The Tixo, a nickname for TX-0, was an earlier computer, also at
Hingham.) He adds, “It was the first computer that did not require one to have an
Electronics Engineering degree and the patience of Buddha to start it up in the

Chapter 2 The History of Game Development 13

morning; you could turn it on any time by flipping one switch, and when you were
finished you could turn it off. We had never seen anything like that before.”

It was in the Institute’s “kludge room,” next to the Tixo, that the PDP-1 resided.
Graetz, a published author, along with Stephen R. “Slug” Russell, an artificial intel-
ligence specialist, and Wayne Witanen, a mathematician, had all experimented with
coding on the Tixo for months, showing off such things as “Bouncing Ball,” which
was advanced for the late 1950s. When they sat around the PDP-1, they transferred
Tixo code and rewrote it for the PDP to get a feel for the new “toy.”

They wrote and rewrote, trying new experiments. They tried various ideas. A
particular favorite was lines intersecting one another, or the “Minskytron.” Soon
enough, two spaceships appeared, a sun, and then a star field—images fueled by a
recent, healthy dose of 1950s pulp science fiction in the form of E.E. “Doc” Smith’s
Lensman novels. They added features such as a way to rotate the ships, a thrust, and
torpedoes. The result was Spacewar. On the PDP’s so-called “Precision CRT Type 40”
monitor, two spaceships drifted against a backdrop of silent stars. In the middle, a
larger star grew and shrank, tugging the ships toward it, as seen in Figure 2.1.

FIGURE 2.1 A screen from the original
Spacewar on the PDP-1.

In Spacewar, players flipped console switches to control their spacecraft—one
for clockwise rotation, another for counterclockwise, one to shoot “torpedoes,” and
the last for thrust. The game looked very much like the arcade game Asteroids;
white outlines and dots made up the figures against a “black” background.

(This graphics style would come to be known as “vector graphics.”) The PDP-1
also allowed two users to operate the computer simultaneously. That’s right, the
world’s first death match!

Immediately, Institute members and students from nearby MIT took a liking to
Spacewar. And as more computers showed up on campuses around the country,
Spacewar was often copied. You can still find Spacewar on the Internet. It has been
ported (or re-coded) to other computer languages, such as Java, and can be played
in your Web browser.

14 Awesome Game Creation: No Programming Required

Soon after Spacewar, new and different games started to appear. Adventure, the
world’s first computer text adventure, was created shortly thereafter, as were Lunar
Lander, Hammurabi (the first simulated (sim) world), and many others. Spacewar
had made a single, clear point: computer games were fun and cool.

ASSEMBLY LANGUAGE

As cool as Spacewar was, it was difficult to program at least by today’s standards.
The programmers had to write the game in a proprietary code only the PDP-1 could
understand. Indeed, this language could be called a form of assembly language.

Machine language speaks directly to the computer hardware and tells it what to do. Assembly
language is a level above this in ease of use, and above Assembly are the high-level languages
such as C++, Java, VB, .Net, and Python (see Figure 2.2).

As new programming languages appear, the rules for what is and isn’t a high-level
programming language are redefined. You may come across languages such as FORTRAN,
C, and Pascal; in certain circles, these are still used and are considered some of the earlier
high-level languages.

FIGURE 2.2 The hierarchy of
computer languages.

At the most basic levels, computers can only process a low-level code called
machine language. All computers understand machine language, but do humans?
Forget about it. It consists entirely of numbers.

Assembly language is one step toward what are known as “human-readable”
languages. Instead of numbers, it uses labels, or codes, that tell the processor to
perform different functions. Assembly language is “readable” in the sense that the
different codes have a structure and format people can understand. Well, at least
that’s the way the theory goes.

Here is an example of assembler code:

.$13e3 [26 61] rol $61

.$13e5 [26 62] rol $62

.$13e7 [26 63] rol $63

Chapter 2 The History of Game Development 15

.$13e9 [26 52] rol $52

.$13eb [26 53] rol $53

.$13ed [26 54] rol $54

.$13ef [a5 54] lda $54

Assembly language was, and is, difficult to master. It’s about the closest a pro-
grammer can come to understanding a processor’s native tongue. Master it, and you
can speak to your processor. But remember: your processor can only understand
one particular dialect. Maybe you’ve learned the assembly language for an 80x86 or
Pentium processor, and now you want to write assembly language for a 6502
processor. You’ll have to learn another dialect.

Spacewar was written in assembly language (many early games were) and it
remained a staple of game programming for nearly 20 years. If someone wanted to
port Spacewar to another processor, he had to rewrite it in that processor’s assembly
language. This is still true today. However, it became especially significant in the
early 1970s, when another invention changed everything.

Later in this book, we’ll cover The Games Factory 2 (TGF2) and Game Maker. Using these pro-
grams, you can create a drag-and-drop game in minutes that is technically far beyond Space-
war, with textures, sounds, and much more (see Figure 2.3). You’ll see that when you can drag
and drop to create a game instead of hand coding everything, your creativity can really take off.

FIGURE 2.3 A game that is similar to Spacewar and technically superior, due to
modern tools.

A COMPUTER ON A CHIP

In the late 1960s, science writers in various trade and consumer science magazines
theorized about a so-called “computer-on-a-chip.” The microchip was still fresh in
many scientists’ minds, and many wondered about that next step. Everyone con-
cluded that integrated circuits weren’t where they needed to be. Certainly, many
more experiments would have to be conducted before the “computer on a chip”
could become a reality. It would take years! People weren’t waiting and holding
their breath.

By the late 1960s, Intel had invented a so-called “MOS technology” (metal oxide
semiconductor), which used the inherent properties of silicon to create gates that
insulated conducting channels from nonconducting ones. This, theorized Ted Hoff,
Stanley Mazor, and Federico Faggin, would make a single-chip CPU possible.

Suddenly, it wasn’t theory anymore. In 1971, Intel officially announced the first
microprocessor, the Intel 4004, a single chip as powerful as ENIAC, the giant first
electronic computer that filled an entire room. The 4004 was more of a technological
curiosity than anything else; however, it did spur development of other microproces-
sors. Rockwell introduced the 6502 microprocessor series in the mid-1970s, which
would power the Atari 2600 and the Commodore 64. General Instruments developed
the 1610, which Mattel used in the Intellivision. And, of course, Intel developed the
8088, and later, the 80x86 family (80186, 80286, 80386, 80486, and Pentium).
Motorola achieved great things with its 68000 and PowerPC® series of chips.

Throughout the life span of each processor, games were developed for it—some
simple, some bad, some ingenious. Each tried to squeeze just a little more out of
each processor. That squeezing continues today.

But at some point, the microprocessor itself, while certainly remaining at the
forefront of developers’ minds, became a little less important. The speed was there,
and it continued to accelerate as new and better processors came out. Then, many
developers turned their attention to graphics. The question was, “How do we make
better pictures?”

ADVANCES IN GRAPHICS

It’s a perpetual battle: gamers want better graphics. They see the games in the arcade
and they want to bring all that color and explosive sound home. Developers want to
give consumers all that and more, because they like the same graphics gamers do. In
the middle lies the hardware, pulled at from both ends. Developers had to forge a
compromise.

The first compromise was vector graphics, which consist of light stretched into
lines or squeezed into points. Remember the original Asteroids? Tempest? Battlezone?
All vector. In its earliest days, colored gels were physically placed on the screen to color
the light.

However, vector graphics didn’t appear outside of the arcade very often. The
world’s only vector video game console, the Vectrex, is now a highly sought-after
collector’s item. But for the millions of people who owned Atari 2600s, Apple IIes,

16 Awesome Game Creation: No Programming Required

Chapter 2 The History of Game Development 17

Spectrum 48Ks, and Commodore 64s, the developer/processor/gamer compromise
was sprites.

A sprite is a graphic image that can move within a larger image. Remember
Pac-Man®? Pac was a sprite, as were the ghosts and the dots. Even the maze walls
were sprites. Each sprite could be animated to move about a game board or “world,”
or stay in one place, acting as a border or barrier. Usually, the character or machine
you controlled in a game (Pac) was a sprite. It could be decoration. It could collide
and react to other sprites, as we’ll see later when we look at TGF2.

By the time the first round of home computer systems debuted, the ability to
draw sprites on the screen was available in just about every computer language.
Some processors were even created with them in mind. As such, sprites ruled games
for more than a decade.

However, sprites had one inherent flaw: they were 2D flat, without depth. You
could paint a sprite anyway you wanted, but it was still flat 2D. The advent of 3D
would make games so much better.

IT’S A POLYGON WORLD

In 1984, a new game made its way to the arcade. It never progressed much beyond
it as a mere few hundred machines were produced, but it paved the way for Quake,
Kingpin, and all those death matches you’ve fragged around in.

The game was I, Robot from Atari. It was somewhat based on the Isaac Asimov
story of the same name. In I, Robot, you guide a robot around a “world,” looking for
and walking onto red squares. Once in contact with the red, the robot lasers a fore-
boding red eye at the other end of the world. Touch all the red, the eye dies. After a
small fly-through-space-shoot-objects game, you reach another world with more
red, and another eye. Yeah, it’s simple, but fun. What is more important is that I,
Robot was the first game to use polygons.

You’ve probably heard of polygons; they’re the latest buzzword in game adver-
tising. “Each world consists of 40 bazillion polygons, all rendered on-the-fly!” Poly-
gons are the key to 3D games and those more “realistic” worlds developers want to
create and gamers want to play in.

In 1984, I, Robot was the impetus to develop 3D worlds. For a long time, such
amazing stuff would stay in the arcade in games like Hard Drivin’ and Virtua
Fighter. The processors in home computers couldn’t handle all the necessary com-
putations to draw polygons and what they represented in three-dimensional graph-
ics. However, it was only a matter of time before this would change.

MAKING PROGRAMMING LANGUAGES EASIER

In the meantime, many programmers tried to get away from the opaque complexity
of assembly language. Some programmers used other languages, but by and large,
assembly language was the most powerful choice. However, for all its power, it was
a pain. You couldn’t port a game to a different processor easily. And it was a bit of a

memory hog. Or, at least, assembly language programming handled precious mem-
ory resources inefficiently.

In answer to these and other problems, Dennis Ritchie and Brian Kernighan at
Bell Labs introduced a “flexible” programming language, C, in the late 1970s. They
called it a “high-level” programming language and it quickly became very popular. It
took up less memory, was much easier to learn, and was more “human-readable.”

“Human-readable” is not a difficult concept to grasp. Remember our assembly
example? Well, some programmers wanted to get beyond those cryptic codes to
something humans could “read.”

Here’s an example of things not being “human readable” from the early days of
word processing programs. In WordStar for DOS, if you wanted to boldface or itali-
cize text, you had to insert a marker before and after that text. For bold, you pressed
CONTROL-P and then CONTROL-B, typed the text, and then pressed CONTROL-P,
CONTROL-B again. For italics, you pressed CONTROL-P, CONTROL-Y (yes, “Y”)
before and after the text. Here’s how it looked onscreen:

The last three words here are ^B^Ybold and italic^Y^B.

Here’s how it printed out:

The last three words here are bold and italic.

This is also very similar to HTML, or HyperText Markup Language, which is
what Web browsers use to display a site’s pages.

<FONT COLOR=“#000000” FACE=“Times New Roman,Times,Times New-
Roman”> The last three words here are <I>bold and italic</I>

These commands tell the Web browser what font (style of letter) to use, and the
color of the font. And you can see the and <I> commands for bold and italic
before and after the last three words.

The same point applies to programming languages. Assembly language required
programmers to remember and use arcane codes. However, with the newest tools
for making games, you can “point and click” to get the effects you want.

In many respects, the push toward “human-readable” languages parallels the
push toward WYSIWYG (What You See Is What You Get) interfaces. From codes in
word processors came buttons that quickly and easily formatted the words in the
document and showed text onscreen exactly as it would appear in print.

Home computers were not as plentiful or prevalent as they are now when C first
debuted. It found success, but only with tinkerers, hobbyist programmers, and some
business folk. It never gained the popularity of its more human-readable second-
generation version (called C++), which Bell Labs debuted in the late 1980s.

C++ revolutionized programming and game development in two distinct ways.
First, it took advantage of a newly created programming structure called “Object-
Oriented Programming,” (OOP). OOP, in a nutshell, takes functions, and the data
those functions operate on, and places them in separate, independent structures that
float inside a larger house program. This structure is the “object.” Once an object is
created, the main program can call the object to perform its function. The data cre-
ated is then served up to the main program, or even to other objects, which have

18 Awesome Game Creation: No Programming Required

Chapter 2 The History of Game Development 19

their own specific functions. Objects are portable; they can be moved to, and used
in, any other C++ program.

By the time C++ came about, computers, especially IBM clones, had become
affordable. Consequently, hobbyists and even professional programmers spread C++
objects and code throughout online bulletin boards, and later, the Internet. Any
programmer who knew C++ could use these objects. Programmers didn’t have to
reinvent the wheel every time they wrote a new program. Do you need a routine
that creates sounds? If an object for this exists on the Web, it’s easy: download,
modify a bit, and presto.

C++’s portability exploded beyond anything developers imagined, and brought
on the second revolution in game programming. Developers created whole 3D engines
for games like Doom, Quake, and Unreal, which they would then sell to other devel-
opers to use in other projects. Can’t afford to buy a 3D engine? That’s cool, because
free 3D engines started to appear on the Web along with code for sound cards, objects
for polygon calculation, and so much more—all of it nearly plug-and-play.

The ease of use and portability of C++ revolutionized game development, and
better hardware support took it to the next level. Sound, calculations, sprite and
polygon rendering, player control, collision detection; these are just a few of the
things that, just a few years ago, you could only do painfully, in assembly language
that would run on only one processor.

GAME CONSOLES SHAPE THE FUTURE

Back in the 1970s, when Atari and others debuted their game consoles, processors
were expensive, so consoles such as the 2600 and Intellivision had to rely on less
processor power to do all the necessary tasks. In 1984, Nintendo was creating its
new video game console: the Family Computer (or Famicom), which later became
the Nintendo Entertainment System (NES) in the United States. By this time, chips
were more affordable and easier to come by. Therefore, when it created the Fami-
con, Nintendo gave it several processors, each with a specific task.

The breakdown went like this: the main CPU, the 6502, controlled the larger
functions, such as math calculations, floating-point instructions, and system man-
agement. Another chip controlled the creation and administration of how graphics
appeared on the screen, and what sprites would do when they collided with one
another. Yet another chip managed, created, and played sounds. This whole system
created a looser, more efficient structure, allowing programs to harness the power of
each processor individually. The first Famicom games appeared in Japan in 1985, a
year when Atari’s 2600 was still king in America. But if you’ve ever seen a 2600 and
Nintendo game side by side, you know that NES games blow 2600 games to
smithereens.

A few computers of that day also used separate processors. The Commodore 64
had separate video, audio, and main processing chips. But Nintendo really showed
the advantages of this type of system. The word was out: this was the way to better

games. Commodore’s Amiga series and Atari’s ST series took the model to an ex-
treme by including amazing graphics and audio processors, even while they had
mediocre CPUs.

While game console makers flocked to multiprocessor systems, PC manufacturers
approached the idea with more caution. For a long time, IBM and the clone-makers
thought their customers didn’t want graphics. Computers used for businesses didn’t
need high-powered graphics or polygons or full-on surround-sound stereo. What
businesses needed was a “real” computer like a PC, right?

Some third-party manufacturers thought otherwise. Graphics card manufactur-
ers, like Creative, created cards with better video processors, and included their own
RAM. The cards took on many time-intensive tasks, and the main CPU became free
to do other things. CGA, the first PC graphics standard, turned to EGA, and then to
VGA and SuperVGA. Soon, “graphics accelerator cards” like the 3Dfx and ATI series
appeared. These cards assisted the video card and gave enhanced performance to
graphics-intensive applications (games!). They rendered polygons into the tens of
thousands and applied textures for a “real-life” look.

The same push for improvement happened in the sound world, too, although
the battle ended early. Two cards, the Ad-Lib and the Sound Blaster®, appeared in
the early 1990s. By the middle of the decade, the Sound Blaster was an unofficial
standard. Today, it comes in nearly every new PC and creates and plays sound
unimagined a decade ago, full stereo music and effects, sounds that even rival real
life. The screeches in Grand Theft Auto sound as if they’re outside your door.

For game developers, cards made programming even easier. Each card came with
drivers and libraries that could be inserted into new games. A new game could look
and sound fantastic right out of the box, with no need to rewrite basic sound and
graphics routines. Flat, 2D games with tinny sound gave way to fully rendered 3D
worlds filled with music and sounds around every darkened corner. In Unreal, the
growls fall from the platforms above. In Quake 3: Arena, you can actually hear the
sound of someone getting fragged two rooms away. Quick! Run! Frag the fragger!

THE FUTURE OF GAME DEVELOPMENT

It may seem like we’ve come to the end of game development’s road of progress—
but this is by no means a dead end. There will always be room for advancement and
improvement. Some developers believe easier programming and game development
tools make for worse games. This is not true. Sure, there are many more games out
there because they are so easy to crank out, and that ease of creation has caused
some poorly done games. But better games are also appearing, because real artists
can work on a game and create a great game, not a degraded version of it. Game
makers can also focus more on the production values of the game, and not on the
technical details.

The typewriter didn’t create bad writing, just more of it, both good and bad. In
any artistic endeavor, it’s the output that is to be judged, not the tools that made it.

20 Awesome Game Creation: No Programming Required

Chapter 2 The History of Game Development 21

Previously, it was necessary to learn the specific language of a processor before
trying to write a game for it. Now, with tools like TGF2 or FPS Creator, game makers
can create games in a matter of hours. Easier programming tools afford professionals
a broader range of talent to pull from, and give amateur developers stronger tools to
hone their skills.

Games and game development are becoming more popular due to the increasing
ease of entry into the game development field (you no longer have to be a program-
mer). There is a demand for artists, animators, and designers. As a result, there are
larger and more diverse teams working on games.

GAME GENRES

To design and develop computer games, you’ll find that, as in most professions, you
will need a common vocabulary to communicate with all the people involved in the
life of a game title. Among the most important terms is “genre.” Genres in computer
games, as in movies and books, help the designers form a unified vision; help busi-
nesspersons sell the games, and help the audience know what they are getting.

The concept of the genre in computer games starts simply, but gets rather com-
plex. The field of game development has more forces and influences at work on its
product in the computer field than in any other medium. In printed fiction, genres
started simple, like the thriller, and then branched off into subgenres, such as the
“legal thriller” or “psychological thriller.” Having subgenres branch off main genres
is simple to understand for everyone involved, from the writer to the reader. How-
ever, in computer games, many factors create many genre hybrids and combina-
tions. Things are moving so fast that there is barely time to develop a consensus on
how genres should be divided and labeled.

In the following sections, we will look at the many genres, subgenres, and hy-
brids of computer games. You will need to know the genre of your game before you
design it, but chances are, if you have an idea for a game, it already fits into one of the
genres discussed next. Genre is important at this point, because it will help determine
the amount of art, technology, time, and money you will need for your game. And if
you plan to get your game published, you will need to be able to quickly and clearly
position your title in the publisher’s mind by comparing it to other games, and dis-
cussing your game in terms of its genre.

Maze Games

Maze games have been around almost longer than any other genre. These are the
very familiar games like Pac-Man and Ms. Pac-Man. In maze games, you simply run
around a maze, usually eating or gathering something, while being chased by some-
thing. Maze games started in 2D with an overhead view of the maze. You can easily
make maze games with The Games Factory 2.

Many people don’t realize that from a design point of view, the modern high-
tech full-blown 3D games are simply a case of the player being brought into the
maze. Players still chase, are chased, gather power, and die in a maze.

Board Games

When a traditional board game like Monopoly, Cluedo, or Sorry is recreated on the
computer, it still keeps its original genre classification of “board game.” The game
usually looks much like the original game, with no innovation in game play, no
original use of computer technology other than to make the game function as it does
in real life, and usually no artistic improvements on the original game board and
pieces. Initially, the challenge of programming enough artificial intelligence for the
computer to play the game was enough to keep developers busy, so new innova-
tions in art and game play had to wait.

More recently, board games in the computer world have been moving away
from straight copies of their 2D ancestors to newer 3D versions. These newer games
sport a 3D look, as the pieces move and have animated cut scenes at highlights or
low points (victory and defeat points) of the game. Still, they are not usually inno-
vative; they are simply more lavish productions. Some players and designers argue
that this takes away from the game itself, as the animation and videos in many cases
slow the game.

Figures 2.4 and 2.5 are pictures of two board games converted to the PC using
previous versions of The Games Factory 2 software.

22 Awesome Game Creation: No Programming Required

FIGURE 2.4 Reversi board game.

Card Games

Computer card games like Solitaire, Poker, Hearts, and Strip Poker are a huge genre.
And, like board games, these titles have so far seen little innovation in most ways.

Chapter 2 The History of Game Development 23

In some respects, many people who play card games are not after fancy 3D or
effects, but are looking for a challenging game they can play now and again. A com-
plex story with video sequences is not what the usual card game player is looking
for. Figure 2.6 shows a card game made with The Games Factory 2.

FIGURE 2.5 Solitaire board game.

FIGURE 2.6 Blackjack card game.

Battle Card Games

Battle card games came about with the Magic The Gathering craze, which spawned
such card games as Spellfire, Legends of the Five Rings, and Pokémon. Battle card
games play very much like traditional card games, only with pretty pictures and an
emphasis on being collectible. Naturally, the decks are open-ended; if users buy
more cards, they become more powerful. Their move to the computer has been
much like traditional card games’ move to the computer, with little real innovation.

Quiz Games

Quiz games are big, especially online, and TGF2 makes them easy to create. The
logic behind these so-called “multiple-choice games” is easy: all the games have to
do is display a question and three or four answers. The hard part is researching and
organizing all the content, questions, and answers. Figure 2.7 shows a typical quiz
game interface.

24 Awesome Game Creation: No Programming Required

FIGURE 2.7 A typical quiz game interface.

Puzzle Games

Puzzle games include Tetris, Dr. Mario, and others. Usually, there are pieces falling
from above, which players have to line up before they hit bottom. The player must
fit them all together in the most efficient manner, to leave no open spaces between
the pieces. The pieces become more complex and fall faster as the game progresses.

Chapter 2 The History of Game Development 25

Shoot ‘em Ups

Space Invaders, Asteroids, Sinistar, Space Battle, and the original Spacewar are ex-
amples of this genre (later in the book you will make your own shoot ‘em up game).
These are the 2D games where you are in a ship in space and you shoot things be-
fore they hit you—aliens, missiles, and such. An example of a shoot ‘em up game
can be seen in Figure 2.8.

FIGURE 2.8 A shoot ‘em up game made in TGF2.

Side Scrollers

Side scrollers are what made id software big. Remember Commander Keen in the
“Invasion of the Vorticons?” The original Duke Nukem’, Prince of Persia 1, and Zeb
are also examples. Zeb was made with the original version of The Games Factory.
Side scrollers usually have the hero running along platforms, jumping from one to
the next, while trying not to fall into lava or get hit by projectiles. A typical side-
scroller interface is shown in Figure 2.9.

Fighting Games

There are many fighting games; examples include Street Fighter 2, Samurai Show-
down, Martial Champion, Virtua Fighter, Killer Instinct, Battle Arena Toshinden,

Smash Brothers, and Kung Fu (see Figure 2.10). Fighting games started as flat 2D
interfaces and now feature full 3D arenas and animated characters. The focus in a
fighting game is the almost endless fighting moves and special moves you can use
against your opponent.

26 Awesome Game Creation: No Programming Required

FIGURE 2.9 Jack in the Forest side-scrolling game.

FIGURE 2.10 The Kung Fu game is a fighting game made with the original
Games Factory software.

Chapter 2 The History of Game Development 27

Racing Games

Racing games center on the concept of driving fast around different tracks. Wipeout,
Destruction Derby, Mario Kart, and South Park Derby, to name a few, are all racing
games. Some 2D racing games have a scrolling road and the sprite of the car moving
over the surface. One of the most popular 2D racing car games is Micro Machines,
where you race mini cars over interesting backgrounds such as a table and outside.

You can see an example racing car game made with The Games Factory in Figure
2.11, and a 3D racing game called RalliSport Challenge by Microsoft Games in Fig-
ure 2.12.

FIGURE 2.11 Racing line game.

FIGURE 2.12 3D racing game called RalliSport Challenge.

Flight Sims

A flight simulator (sim) attempts to simulate real flying conditions by giving you
control over such things as fuel, wind speed, and other instruments, and control
over the flaps and wings of your craft. A sim will respond with the same limits as a
real plane, as opposed to a simpler flying game, where you can’t control much. Wing
Commander, X-Wing, and Microsoft Flight Simulator are all flight sims. A screen
shot from a flight sim is shown in Figure 2.13.

28 Awesome Game Creation: No Programming Required

FIGURE 2.13 Microsoft Flight Simulator X.

Turn-Based Strategy Games

In games such as Breach, Paladin, Empire, Civilization, Stellar Conflict, and Masters
of Orion, players take turns making moves. These games require a great deal of
strategic thought and planning, much like chess.

Real-Time Strategy Games

Command and Conquer 3, Age of Empires, Supreme Commander, and Caesar 4 are
a few popular real-time strategy games. In these games, you don’t have forever to
take your turn before the next person moves. Faster players can make many moves
in a short period of time. These games are also a bit like sims, since you are usually
overseeing a large battle or war, and the building of towns and outposts. Resource
management is important such as in Command and Conquer, where you have to

Chapter 2 The History of Game Development 29

harvest (mine) ore called tiberium to be able to build more structures and soldiers.
Two of this author’s all-time favorite strategy games are CivCity Rome and Strong-
hold shown in Figures 2.14 and 2.15, respectively.

FIGURE 2.14 A popular real-time strategy game, CivCity Rome.

FIGURE 2.15 Castle building strategy game—Stronghold.

Sims

Sim City, Sim Earth, Sim Ant, and the most popular of the simulation games—The
Sims. In these games, you run a simulation of a town, world, ant colony, or a group
of people, making decisions and managing resources. These are often called “God
games,” because you are playing the part of God in the game world.

In the discussion that follows, the terms first person and third person refer to the point of
view of the player. Just as in literature, where you can write in first person (“I shot the rocket”)
or third person (“she shot the rocket”), there are points of view in gaming as well.

First-Person Shooter (FPS) 3D Games

These games include Dark Messiah, Half Life 2, Halo, Doom 3, Quake, Far Cry, and
Elder Scrolls IV Oblivion. The focus in these games is on technology and atmo-
sphere. These games attempt to put you into the action, as you are literally looking
out of the eyes of the character, seeing and hearing what the character sees or hears.
As shown in Figure 2.16, the point of view is from a person on the street.

30 Awesome Game Creation: No Programming Required

FIGURE 2.16 Screen shot from Halo 2, a first-person 3D game.

First-Person 3D Vehicle-Based Games

These games are very much like the first-person shooter games, except that they put
you in a vehicle, such as a tank, ship, or giant robot. This genre is more similar to an
FPS shooter game than a racing game, because you are not simply driving as fast as
you can to cross a finish line. Your goals are more similar to the ones in an FPS game—

Chapter 2 The History of Game Development 31

kill or be killed. In most cases, the vehicle-based games are part of an FPS game. For
example, in Battlefield 2142 you look out from your character in first-person mode,
but also have the ability to jump into a plane or tank to attack the enemy.

Third-Person 3D Games

Tomb Raider, Dark Vengeance, Zelda, and Fable are all third-person games. Al-
though there are games in which you can switch from first- to third-person perspec-
tive, most are designed primarily to be one or the other. Tomb Raider in first person
is not as much fun, since it is designed around seeing Lara Croft jump, roll, and tum-
ble. In first person, you would not see these acrobatics. Figure 2.17 shows a third-
person game. Notice how you can see the spell effects you cast (the protection circle)
when in third-person mode. Likewise, when playing a first-person shooter, like
Quake 3 Arena, you depend on speed and accuracy in battle to win, which is the
point of the game. If you were able to play Quake 3 in third-person mode, you
would die an awful lot since you would not be able to run, aim, shoot, and run some
more as quickly.

FIGURE 2.17 Screen shot from Fable in third-person mode.

RPGs (Role-Playing Games)

Ultima, Neverwinter Nights, and Dungeon Siege are all RPGs. These games emulate
the traditional pen-and-paper games in which you play characters that have many
significant attributes, such as health, intelligence, strength, and areas of knowledge
and skill. RPGs are like a simulation of an adventure.

Adventure Games

Broken Sword, CSI: Dark Motives, Sherlock Holmes and the Case of the Missing
Earring, and Runaway 2: the Dream of the Turtle are all adventure games. In an ad-
venture game, you walk around and try to fulfill a quest or unravel a mystery. You
typically collect information and items. Battle is light and not the focus of this game
type. The game is usually played using the mouse to point and click.

Full-Motion Video Games (FMVs)

FMV, or full-motion video, games include MYST, RIVEN, and . . . well, no other
FMV game is worth mentioning. These games require a lot of art and animation or
video production, and little of anything else. There is simply no room for effects,
because FMV is a limiting genre at present. In an FMV, you mostly watch a movie
and then select what portion of the movie to watch next, much like a computerized
version of the “choose your own adventure” books.

Educational and Edutainment Games

Some games or interactive products fall into this genre. Whether a game fits into this
category depends mostly on its purpose, rather than on its content or use of technol-
ogy. A first-person game would be an edutainment title if its intention were to edu-
cate and entertain, as would a quiz game. These genres are instructional and
informative. The edutainment variety attempts to make learning fun, while the ed-
ucational variety is straightforward learning. An example of an educational game
can be seen in Figure 2.18.

32 Awesome Game Creation: No Programming Required

FIGURE 2.18 Magic Maths educational game.

Chapter 2 The History of Game Development 33

Sports Games

Sports is a huge-selling genre all by itself, but also another genre label that doesn’t
completely convey the technology, game play, interface, or other aspects of the
game. In fiction, a thriller that takes place at a football game may be called a “sports
thriller.” An inspirational nonfiction book with a sports theme may be called “self-
help/sports.” But in games, people often don’t say “quiz game/sports” or “quiz
game/football” or “third-person football simulation”—everything is lumped under
“sports.” You will find most popular sports are covered in the sports genre, including
football, American football, basketball, ice hockey, and horse riding.

Screen Savers/Desktop Toys

While not games, and not even very interactive for that matter, these products are
generally entertaining, so they are usually lumped in with games and interactive
products. These are fairly popular products you can make with The Games Factory 2,
like the screen saver in Figure 2.19, which was made for downloading a trial version
and purchasing the full version for a small fee.

FIGURE 2.19 Micro Animals Fish screensaver.

Genre Madness

Even with all the genres just discussed, many games cross over and combine the
genres. Generally, a good game in one genre will have elements of other genres,
such as puzzle solving in a 3D game. Breakouts into new genres often occur where
technology permits. For example, many fighting games started out as side scrollers
for the 2D platform and evolved into 3D shooters or 3D games. Another example of
a game traversing genres is Grand Theft Auto. In the first version, the game was a
top-down 2D game, where the player could control a person and jump into cars and
other vehicles. In the second version, the game became 3D, allowing the player to
drive in a 3D world. Later releases brought the ability to play arcade machines and
billiards within the game.

CHAPTER SUMMARY

When designing your title, keep genre in mind. It is the first step in clearly commu-
nicating your vision to all involved. Once you have a clear idea of your game (“it’s a
first-person adventure game with shades of military simulation”), you can describe
it in visual terms on paper, and then break it down into the elements that will com-
prise the design document. In the next chapter, we’ll look at the elements of design.

34 Awesome Game Creation: No Programming Required

C H A P T E R

3 GRAPHICS: THE BASIC
BUILDING BLOCKS

OF A GAME

35

In This Chapter

• Sights
• Basic Elements of an Image
• Manipulating Images
• Advanced Image Manipulation

36 Awesome Game Creation: No Programming Required

To create games, you will need to learn, and perhaps even master, the fundamen-
tal elements that make up a game—sights, sounds, and interactivity. Although
interactivity (the ability to interact with a computer to play a game) is important,

the basics of this interactivity depend on the game type and the application you are
using to develop the game. You will learn more about interactivity in the tutorials later
in the book, as you make several different types of games, using various tools. This
chapter discusses the core building blocks that exist in virtually every game’s sights
and sounds.

This simple approach will help you break down and understand a game at its
most fundamental level. You can apply this knowledge to many areas beyond game
development as well, since it is the core of graphic design, Web layout, and almost
all interactive computing.

SIGHTS

When talking about sights, we are obviously talking about what you see on the screen
during game play. In any major production, from a Web site to a game, the layout of
the screens and the graphic images to make them are very important. In a large devel-
opment team, a number of people—including a designer, producer, art director, and
others—usually work on them. In a one- or two-person development effort, you will
need to wear several hats and perform all of these roles. Your 2D art assets need to
look good, and fit in with the audience, technology, and atmosphere for which you
are designing. We’ll talk about this again later when we look at marketing a game.

Creating the assets you will use to make interface elements requires the use of
many software tools and techniques. These assets are often first sketched on paper
or mocked up on the computer. Some of the tools you can use are 2D paint pro-
grams that work only with flat images, 3D programs that allow you to build and ren-
der objects that realistically recreate a 3D environment or object, and even digital
photographs and scans. To create the images, you will need to have an understand-
ing of the concepts of the images, and a grasp of the tools you will be using.

The 2D art assets you will create include, but are not limited to:

Menu screens. Look at the toolbar in your word processor, browser, or your
favorite game, and you will see art that was created by an artist.

Credit screens. These screens often contain art such as logos, images, and even
fonts or special letters unique to the product, people, and company they
represent.

Logos for companies, products, and services. Logos can be simple letters,
2D masterpieces, or fully rendered 3D scenes. Look on the Web and you will
see logos that range from clip art to actual pieces of art.

User interfaces. These are broken down into background images, buttons,
cursors, and other art objects a user must click or interact with.

In-game assets. These include the textures on the walls, the floors, and the
characters. Even the 3D models and objects have 2D art applied to them.

Chapter 3 Graphics: The Basic Building Blocks of a Game 37

Early computers did not display graphics; they were limited to alphanumeric
characters, such as letters, punctuation marks, and numbers. Surprisingly, games
were still made on these primitive machines. When computers started including
graphics cards, games started their move toward the amazing graphics we see today.
It can be argued that games have pushed the development of the computer as
gamers demanded (and were willing to pay for) faster chips, better graphics cards,
and better sound. However, even as the technology advanced, it was common for
the artist on any given project to primarily be a programmer. This was because it was
still very difficult to get decent art into a computer format, and an understanding of
technology was necessary to do so. Today, we can almost ignore the technology we
are working with.

Let’s look at the core technology a computer artist deals with every day. In com-
puter graphics today, there are two basic types of art: 2D and 3D. All 2D, or two-
dimensional, art is a flat image with no depth; 3D, or three-dimensional, art shows
depth, as illustrated in Figure 3.1.

FIGURE 3.1 A square is 2D, while a cube is 3D.

The three dimensions in 3D art are described in the Cartesian coordinate system,
using x, y, and z coordinates. This may be one of the most surprising aspects of game
development; you can actually use some of the math topics you learned in school!
In fact, algebra, geometry, and physics all play a role in game making. Simply stated,
in the Cartesian coordinate system, x represents the distance along a horizontal line
(or axis), y represents the distance along a vertical line, and z represents the distance
backward and forward (see Figures 3.2, 3.3, and 3.4).

38 Awesome Game Creation: No Programming Required

BASIC ELEMENTS OF AN IMAGE

To properly understand 2D images, you must understand a few things about the
basic elements that compose those images, as discussed next.

Pixel

We’ll start with the most fundamental of fundamentals, the most basic element of
an image—the pixel, or picture element. A pixel is a colored dot on the screen. A
computer image is made up of pixels arranged in rows and columns. See Figure 3.5
for an illustration of a pixel. No matter how big and fancy a computer image is or
what has been done to it, it’s all just a bunch of pixels.

FIGURE 3.2 The Cartesian coordinate system. The x, y, and z axis.

FIGURE 3.3 A cube and the xyz value of its
location in space.

FIGURE 3.4 Another cube in a different
xyz position.

Chapter 3 Graphics: The Basic Building Blocks of a Game 39

Once an image has been created with a particular number of pixels, the maxi-
mum detail is set and cannot be increased. The image can be enlarged and the num-
ber of pixels can be increased by a mathematical process called interpolation, as
illustrated in Figures 3.6 and 3.7. However, this does not increase the detail; it sim-
ply adds extra pixels to smooth the transition between the original pixels.

FIGURE 3.5 A pixel is the smallest unit of a computer image—simply colored dots.

FIGURE 3.6 An area of the image before
enlarging.

FIGURE 3.7 The same area enlarged with
pixels interpolated.

Resolution

Resolution is the number of pixels displayed (width × height) in an image. A typical
computer monitor displays 75 to 90 dpi (dots per inch, which refers to the number
of pixels per inch in an image). A printed image usually needs to be 300 dpi or more
to look good in print. Often, when computer people receive an image from a person
who is used to working in print, they are surprised when the one-inch icon they re-
quested takes up a huge number of bytes, but the image is still one inch by one inch.
The reason for the enormous size is that a print person is used to using, and saving,
images at a higher dpi. Some of the most common screen resolutions are 800 × 600,
1024 × 768, 1152 × 864, and 1280 × 1024. An 800 × 600 resolution means that the
screen is 800 pixels wide (horizontal) and 600 pixels high (vertical). See the exam-
ples in Figures 3.8, 3.9, and 3. 10.

40 Awesome Game Creation: No Programming Required

FIGURE 3.8 The Windows desktop at 800 × 600 dots per inch.

Aspect Ratio

Until recently, most computer monitors displayed in an aspect ration of 4:3, also
known as 1.33:1 format. If you take a standard computer monitor size of 800 × 600
and divide its height by its width, you get 1.33. The popularity of widescreen televi-
sion sets has begun to revolutionize the computer monitor market and now a 16:9

Chapter 3 Graphics: The Basic Building Blocks of a Game 41

FIGURE 3.9 The Windows desktop at 1024 × 768 dots per inch.

FIGURE 3.10 The Windows desktop at 1280 × 1024 dots per inch.

ratio has started to appear. This means that a large number of display resolutions
and monitor sizes are available for computer users.

When working with widescreen aspect ratio, ensure any graphics will look cor-
rect on a 4:3-based monitor. A wide screen monitor will stretch any images across
the monitor. This can mean that you are creating an image that may not look correct
on a standard monitor and aspect ratio (see Figure 3.11).

42 Awesome Game Creation: No Programming Required

FIGURE 3.11 Two images created in two different ratios.

Colors

When working with most interactive content, you need to understand how color
works in the computer. In some situations, such as games and Web sites, you will need
precise control over your colors to achieve the effects you want. Colors are usually
specified as RGB values, and artists may sometimes give you the specific value to use
for a color in an image. An RGB value (also known as the indexed color value) is the
mixture of Red, Green, and Blue to make other colors, just as in art class when you
mixed red and yellow paint to make orange.

The first number represents Red, the second represents Green, and the third
represents Blue. These values range from 0 to 255. For example, 255,0,0 means you
have all Red and no Green or Blue; Black would be 0,0,0 (no colors at all); and
white would be 255,255,255 (all colors at their highest intensity). In Figures 3.12
through 3.16, you can see the RGB values of the color, and even though the images
are in black and white, you can see the position of the marker in the color palette.

Chapter 3 Graphics: The Basic Building Blocks of a Game 43

FIGURE 3.12 The RGB color palette for black. FIGURE 3.13 The RGB color palette for white.

FIGURE 3.14 The RGB color palette for red. FIGURE 3.15 The RGB color palette for yellow.

You will also hear color referred to as CMYK. CMYK is a mode used by traditional printing
processes and stands for Cyan, Magenta, Yellow, and Black. You’ll almost certainly never
use CMYK color in game and computer content creation—you’ll always deal in RGB or
indexed color.

Number of Colors

A computer video card can display a certain number of colors at a time—16 or 256
at the low end, or even thousands, or millions at the high end (see Figures 3.17,
3.18, 3.19, and 3.20). Color depth describes how many colors your screen can display
at once, in terms of bits, and refers to the amount of memory used to represent a sin-
gle pixel. The most common values are 8-bit, 16-bit, 24-bit, and 32-bit color; the
more bits, the wider the range of displayable colors.

44 Awesome Game Creation: No Programming Required

FIGURE 3.16 The RGB color palette for orange.

FIGURE 3.17 An image in eight colors. See the
images located in the color figures folders on
the companion DVD to see a color version of
this image.

FIGURE 3.18 An image in 16 colors. See the
images located in the color figures folders on
the companion DVD to see a color version of
this image.ON THE DVD

Chapter 3 Graphics: The Basic Building Blocks of a Game 45

The interesting thing about these four images is that the colors used in the images
will determine the number of pixels required. Visibly there is no difference between
Figures 3.19 and 3.20, but there is about a 3.5 MB difference in file size.

True Color (24-bit color) can display about 16.8 million colors for each pixel on
the screen. The human eye cannot distinguish the difference between that many
colors. High Color (16-bit color) displays between 32,000 and 64,000 colors. How-
ever, this is still a very impressive range of colors, and enough for most work. The
256 Color setting is more limited. It stores its color information in a palette. Each
palette can be set to contain any of thousands or millions of different color values,
but the screen can’t show more than 256 different colors at once.

Very few games still use this more limited palette because, as with increased res-
olution, having more colors means more data must be pumped to the screen. There-
fore, if you can get away with only 256 colors, you can render (or draw) the game
pictures to the screen faster. Most games use thousands or millions of colors, as the
hardware permits.

The word render is used in games, especially real-time 3D games, because the computer and
software literally render or build an image instantly, based on where a user is in the 3D
world—hence the term interactive. In a movie, you watch a series of unchangeable frames
as the moviemaker created them. However, when you play a 3D game, you control how each
frame looks by where you choose to go in the world and what you do. Each frame of your
gaming experience is made for you “on the fly” or as your experience is happening.

MANIPULATING IMAGES

During the development of your project, you will have to manipulate images to get
them to fit your needs. The basics of image manipulation are similar to the text editing

FIGURE 3.19 An image in 256 colors. See the
images located in the color figures folders on
the companion DVD to see a color version of
this image.

FIGURE 3.20 An image in millions of colors. See
the images located in the color figures folders
on the companion DVD to see a color version of
this image.ON THE DVD

you may have done in your word processor. Commands such as Cut, Copy, and
Paste are common. We will also look at Skew, Rotate, Resize, Crop, and Flip.

Cut. If you cut an image, you remove it from the scene, as shown in Figure
3.21. But don’t worry, you can paste it back or undo your action.

Copy. Copy does not alter your image; it creates a copy in the memory of your
computer that you can paste somewhere else, as shown in Figure 3.21.

46 Awesome Game Creation: No Programming Required

FIGURE 3.21 Cutting and copying sections of an image. Copying does not affect
the image.

Paste. As mentioned previously, after cutting or copying an image, you can
paste it somewhere else, as shown in Figure 3.22.

FIGURE 3.22 Pasting a section of an image.

Chapter 3 Graphics: The Basic Building Blocks of a Game 47

Skew. Some image manipulation programs allow you to skew (slant, deform,
or distort) an image, as shown in Figure 3.23.

FIGURE 3.23 Skewing an image.

Rotate. Rotating is self-explanatory; you can free rotate an image or rotate it
precisely a certain amount, as shown in Figure 3.24.

FIGURE 3.24 Rotating an image.

Resize. Resizing an image is useful, but be careful. Any severe manipulation of
an image degrades it, and resizing can do a lot of damage. Caution: If you re-
duce an image and then enlarge it again, you will seriously degrade it. This
is because, in effect, you are enlarging a small image. The degradation takes
place when you reduce an image, and when you enlarge it (see Figures
3.25, 3.26, and 3.27).

Crop. Cropping cuts an image to a smaller area you define, as shown in Figures
3.28 and 3.29.

48 Awesome Game Creation: No Programming Required

FIGURE 3.25 A smaller image blown up; pixel rip.

FIGURE 3.26 An image reduced.

Chapter 3 Graphics: The Basic Building Blocks of a Game 49

FIGURE 3.27 The same image enlarged to its original size. Notice
what this has done.

FIGURE 3.28 Cropping an image. The crop outline.

FIGURE 3.29 The image cropped.
Everything outside the crop outline is
now gone.

ADVANCED IMAGE MANIPULATION

In the last section, we looked at some basic image editing operations, and only
scratched the surface of what you’ll need to do to create graphics for a game. Here
are some more advanced operations.

Sprites

A sprite is a graphic image that can move within a larger image. In your games,
these might be characters, buttons, and other items. Notice that the sprite image in
Figure 3.33 has a single color border around it, and in Figure 3.34, the surrounding
color part is not seen.

50 Awesome Game Creation: No Programming Required

FIGURE 3.30 The image. FIGURE 3.31 The image flipped horizontally.

FIGURE 3.32 The image flipped vertically.

Flip (horizontal and vertical). You can flip images horizontally and vertically
(see Figures 3.30, 3.31, and 3.32).

Chapter 3 Graphics: The Basic Building Blocks of a Game 51

FIGURE 3.33 A sprite image. Notice the solid color part
surrounding the image.

FIGURE 3.34 A sprite image in a game. Notice that the solid part is not
displayed; you can see the background.

Sprite animation is done just like cartoon animation. A series of images is played
in sequence to make it appear that a character is walking or a logo is spinning, for
instance. Figures 3.35 and 3.36 show examples of sprite frames.

Masking

A mask is a special image that is used to “mask” off portions of another image. A
mask works like a stencil—it lets you paste a nonrectangular image into another
image. When you paste a mask into another image, it overlays whatever was in the
image at the spot where the mask is pasted (see Figures 3.37, 3.38, and 3.39).

Color Masking

You can also use masking to specify that a specific color should be rendered as clear
or transparent. Game programmers usually choose something like an ugly green or
purple they most likely will not use anywhere else in the game art.

52 Awesome Game Creation: No Programming Required

FIGURE 3.35 A series of sprite images for a game animation.

FIGURE 3.36 A series of sprite images for a spinning graphic object.

Chapter 3 Graphics: The Basic Building Blocks of a Game 53

Palette or Positional Masking

The last kind of masking lets you use a specific position on the color palette to deter-
mine what color to render as clear or transparent. Remember, the computer sees
color numbers, not the colors themselves. In this kind of masking, the computer
looks at the position on the palette, not the color, to determine transparency. Usually,

FIGURE 3.37 An image of a card dealer. FIGURE 3.38 The mask for the card dealer image.

FIGURE 3.39 The mask and image combined in a scene.

the last color place on the palette is used. Whenever the color with that number is
called for, the computer will render it as clear, rather than using that color.

Opacity

You can also display images in games as opaque halfway between solid and clear
(like our ghost image). To determine opacity, the computer looks at each pixel in the
image and at the pixel directly under it. It then creates a new pixel that is a blended
value of the original pixels (see Figures 3.40 and 3.41).

54 Awesome Game Creation: No Programming Required

FIGURE 3.40 The masked card dealer image with opacity set at 50%.

FIGURE 3.41 A close-up detail of the image.

Chapter 3 Graphics: The Basic Building Blocks of a Game 55

Anti-Aliasing

Look closely at the computer-generated images in Figures 3.42, 3.43, and 3.44. See
those jagged edges on the letters? They look jagged, as if they are all a solid color.
However, by using various shades of a color and gradually blending the edge color
with the background color, the computer can make the transition smooth and fool
the eye from a distance. Yes, this is similar to opacity.

This technique, anti-aliasing, is one of the reasons why images with more colors
look better. With more colors, you can blend them more gradually. This is also the
reason why using a higher resolution (more pixels) makes an image look better—
the blending is smoother between pixels.

FIGURE 3.42 This image has no anti-aliasing. FIGURE 3.43 This image has anti-aliasing.

FIGURE 3.44 Here is a close-up of both of the image’s edges.

Graphic Formats

Graphic images are stored in many different formats, for many reasons. In business,
this may be for technical support, product design, and for competitive and security
reasons. However, the main reason is image quality and usefulness. Some image for-
mats produce very large files, because they retain a lot of image data, while some
formats can compress an image and strip out data for a smaller file size. Still other
formats degrade images (in an acceptable way) so they can be very small, for uses
such as Web sites. Figures 3.45 and 3.46 show two versions of an image. The degra-
dation is not that bad (see Figure 3.47), considering that the file size of the BMP
image is almost 20 times the file size of the JPG image.

56 Awesome Game Creation: No Programming Required

FIGURE 3.45 This 640 × 480 image is in BMP format and is 900K.

FIGURE 3.46 This 640 × 480 image is a compressed JPEG and is only 68K.

Chapter 3 Graphics: The Basic Building Blocks of a Game 57

CHAPTER SUMMARY

This chapter looked at the basic elements of images and how they are created. Now
that you are familiar with graphics, you are almost ready to start creating content for
a game. In the next chapter, you’ll learn how to create music and sound effects.

FIGURE 3.47 A close-up of the same area of both images.

This page intentionally left blank

C H A P T E R

4 SOUND AND MUSIC

59

In This Chapter

• Why Sound and Music Are Important
• Types of Sound
• Obtaining or Creating Sounds and Music
• Recording Sounds
• Creating Music
• ACID XPress
• Dance eJay 7

60 Awesome Game Creation: No Programming Required

Of the many components that go into making a video game, perhaps none
gets less attention than music and sound effects. Adding quality music and
sound effects is one of the best ways to add production value to your games.

A tremendous array of software and low-cost hardware is available to aid single de-
velopers or small teams in this process. Believable sound effects and music will
greatly enhance the game player’s emotional experience.

WHY SOUND AND MUSIC ARE IMPORTANT

There are many parallels between making a movie and developing a game. Holly-
wood has long realized the benefits of music and sound effects to the moviegoer.
Over the past decade, filmmakers have spent a tremendous amount of time and re-
sources on improving these aspects of a movie. During that time, we have seen the
use of surround sound in both theatrical and home movie releases.

The long and varied history of the movie industry offers a tremendous amount
of guidance. While you will find very little documentation on the creation of music
and sound effects for games, there is a great deal of information available for the
moviemaker, both professional and amateur. Many books have been written over
the years, and numerous resources are available at Web sites, not to mention in the
movies themselves, which can often provide inspiration and ideas.

As the music and sound of video games improves, the video game industry has
started to receive recognition for its work. Beginning with the 42nd Annual
Grammy Awards, the NARAS (National Academy of Recording Arts and Sciences)
approved three new award categories, including music written for “Other Visual
Media,” the term they are using to include the music from games.

TYPES OF SOUNDS

What you hear in a game can range from recorded (or sampled) sounds such as
voices and music; menu sounds like beeps and button clicks; and other effects, such
as explosions, weapons fire, footsteps, and a long list of other in-game sound effects,
both subtle and deafening.

Sound and music can be very important to a game, for atmospheric reasons
alone. With the lights off and the sound turned up, players can really become im-
mersed in a game. Sound and music can set the mood, and change it (think of the
Indiana Jones score or Darth Vader theme). Among the many cues it gives, sound can
clue players in about the threat of enemies. It greatly influences the level of satisfac-
tion they get from the game, and can deliver a strong message to players about the
quality of your game, and your company.

And sound is more immersive than graphics. Let’s say that again. Sound is more
immersive than graphics. While graphics will draw players into a scene, the sound
going on in the background and all around has a mental effect on a player that
graphics alone cannot achieve. This is probably because real-life sounds can be re-

Chapter 4 Sound and Music 61

produced on a computer much better than real-life visuals can. A dinosaur’s roar
can sound real on a computer, but a visual of a dinosaur doesn’t look nearly as real.

Visually, players are looking into another world through a tiny window, and can
feel safe from that world. But when they hear that world all around them, they re-
ally feel they are in it.

A good example of sound effectiveness is the movie Jaws. Who can forget the
sound that announces that the shark is coming? In gaming, the sounds in Trespasser
are incredible. They make the game a terribly tense and scary experience. One of the
authors of this book actually had to turn the sound off, to avoid scaring his dog! But
without the sound, the game is laughable. It looks just like that, a game. Puppet-like
raptors stumble about and float like balloons. The tension is gone.

What makes playing the game with and without sound such a different experi-
ence? If you pull out one by one the various sound effects, ambient noises, and
music that make the game scary, you’ll find out. The raptors’ footfalls top the list.
This shows in the “distraction factor.” With the sound off, you can actually play bet-
ter, because the footfalls or raptor screams won’t distract you.

Sound can reinforce a physical feeling and create a physical sensation. Have you
ever hit a rollover button with your speakers all the way up? You feel it roll, baby!
Sound can be important, even for menu buttons. In a menu, sound can convey a
solid feeling like steel switches moving, or a light feeling like paper pages turning
with a ruffle. This adds a lot to your production values. This is the same principle car
manufacturers use. The sensation you get when slamming a car door is important. If
the door gives a solid thunk and doesn’t rattle, the car must be safe and solid, right?

OBTAINING OR CREATING SOUNDS AND MUSIC

Sound is everywhere in our daily life, so it’s obvious why it would be so important
to a game player. Sound effects often take on meaning in a game. A dark alley with
a strange noise coming from behind an overflowing dumpster delivers a message of
fear more than the dark alley would by itself. People yelling loudly can draw our at-
tention to an area or make us want to flee in the opposite direction. You can also use
sound effects to establish a time and a place. For instance, hearing crickets in the
background or waves beating on a shore can add a great deal to a setting, without
visually displaying anything.

Sound effects can also convey actions, such as firing a gun or a car colliding with
a wall. It is this part of sound effects, the part that adds emotion or action to a scene,
in which game programmers are most interested.

You don’t have to come up with all the sounds yourself. Just as musicians buy
CDs with loops, you can buy sound effects libraries. These libraries include sounds
that will work directly, or with modification, with the vast majority of sound effects.

Creating unique sounds, or doing sounds yourself, is often a very simple process.
If you have a personal digital assistant (PDA) or a portable recorder of some sort, you
can often record the sounds yourself. For instance, if you have a game with animals,
a visit to a pet store or local zoo is often all you will need to add the appropriate

62 Awesome Game Creation: No Programming Required

noises. If you are creating a sports title, visiting a local sporting event will give you all
the crowd and background noises you would ever need.

A word of caution: If you visit local areas to record sounds, keep in mind that
you often need more than you think you do. For example, the sounds may not be
the quality you need, or after editing, you may only have a few usable minutes from
a 10-minute segment. Always try to get more material than you think you’ll need.

The other basic type of sound effect for a game is the effects that occur when some
type of action occurs. These sounds can take a great deal of time to produce and may
require a tremendous amount of specialized equipment. Fortunately, as you’ll see
next, with a little effort and common items you can use some very simple ideas to
record these types of sounds for your games.

RECORDING SOUNDS

It doesn’t really matter what type of device you use to record sounds; ultimately,
you have to get the data into the computer. For this setup, assume you are using a
tape recorder, a digital recorder, or a PDA. In this section, you’ll see how to connect
these devices to the sound or microphone inputs on the computer’s sound card, and
how to change the sounds into a digital form.

How to Record

The first step is creating the recordings. You’ll be creating several games in this book,
and with this in mind, you’ll need to create effects for a variety of sounds, such as gun-
shots, footsteps, and perhaps collision noises. These are actually quite easy to record.

The following table lists several types of actions you can easily record with com-
mon household items. You can use this list, or change it, so you can come up with
sounds for many types of games.

SOUND TYPE HOW TO RECORD

Car Crash Fill a box with scrap metal and chunks of wood. Shake vigorously.

Fire Take a piece of cellophane and crinkle it with your hands.

Door Slamming Place the recording device near the door hinges and slam the door. While
you’re at it, open and close the door slowly, if you need that type of noise.

Body Collisions Strike an item such as a pumpkin or watermelon with a piece of wood or
a rubber mallet. Try various methods to get just the right sound. Watch
out, though—this can be very messy! Another method is to wrap wet
towels around wood planks and then strike them together. Or drop the
planks a short distance to a concrete or hardwood surface.

→

Chapter 4 Sound and Music 63

SOUND TYPE HOW TO RECORD

Rain Record the sound of rain on a roof or metal sheet. Or if you don’t want to
wait for rain, simulate the effect. Cut the bottoms of five plastic cups into
different shapes, such as a square, star, or ellipse. Then tape the cups
together. Pour uncooked rice into the top of the cups. This will sound like
rain falling.

Thunder As with rain, record a thunderstorm, or simulate it, as follows. Make a simple
“thunder sheet” by getting a piece of sheet metal cut to approximately
18" × 50". Then, fit 1" × 2" boards on one end (to use as a handle) and cut
several holes in the other end. Hang the sheet by the holes from a ceiling or
beam. To simulate thunder, shake the end with the handle. This can take
some practice to master, so be patient if it doesn’t sound realistic at first.

Footsteps The best way is to record the real thing. For outdoor simulations, walk on a
gravel area. For indoor simulations, walk on a hardwood floor with a hard-
heeled shoe. If you don’t have a hardwood floor, build a 3" × 3" wooden
box and use it to step in place. You can then flip it over to record stepping
noises, or fill it with things like straw or newspaper to vary the sounds.

To simulate walking in snow, press a shoe on an old strawberry container,
a sofa cushion, or something similar. Doing this at an approximate
stepping rhythm will simulate footsteps very well.

You can also simulate animal footsteps. For a horse, strike together small
squares of wood, or the two halves of a coconut with all the pulp
removed. Or put sand in the box you made for human footsteps, and
strike the box with the coconut halves.

Machines If possible, record the actual machine noises. For instance, if you are
creating a car racing game, go to a race and record the sounds. Additional
sounds that work well in games include saws, drills, and hammers.

Gunshots Hit a leather seat with a thin wooden stick, such as a yardstick or ruler. For
different types of sounds, experiment by hitting other materials with the
wooden stick. If you want to record gunshots hitting another object, cut
plywood into thin strips and then break them. It will sound as if shots are
splintering the wood.

For ideas about experimentation, consider gunshots. As mentioned previously,
you can hit a leather seat with a thin wooden stick. Strike various objects, and use
sticks of varying strengths. Creating sound effects is very much trial and error, so
spend time finding several objects that sound good, and record all of them.

Using a PDA

The next step is to connect your recorder to the computer. If you are using a Pock-
etPC or Windows CE-based PDA, you can simply connect it to the computer and

transfer the recordings, which will already be in WAV format. If you are using this
method, skip the next section, “Using a Recording Device.”

Depending on the sound quality of your PDA, the sounds may or may not be of
value. If they are not good quality, you will probably have to use one of the methods
discussed in subsequent sections to record your sounds.

Using a Recording Device

If you are using a tape recorder, mini-disc recorder, or other recording device, you
will have to attach it to your computer’s sound card. Most sound cards have four
connectors: Line In, Line Out, Microphone, and a MIDI/Game Port. Figure 4.1 shows
the layout of a typical sound card.

64 Awesome Game Creation: No Programming Required

FIGURE 4.1 The layout of a typical sound card.

Most modern sound cards may not have a midi port or game port, as many devices
now use USB connections.

The following list explains the various connectors:

MIDI/Game Port: The port most commonly used to connect a game paddle or
joystick to the computer. This port also lets you connect a MIDI (Musical
Instrument Digital Interface) device, such as a keyboard, to the computer.

Line In: A connector that lets you connect a sound source to the computer. Ex-
amples include CD players, tape recorders, and other recording devices.

Line Out: A connector that lets you connect the computer to anything that
accepts sound input. Used most commonly for speakers or headphones.

Chapter 4 Sound and Music 65

Microphone: A connector that lets you connect a microphone to record your
own sound files. If necessary, you can also connect a recording device to this
port.

After you have located the Line In or Mic (microphone) connection, attach your
device to the computer. Depending on the device, you may need different types of
cables and connectors. The majority of sound cards use 1/8" (miniplug) jacks for Mic
and Line In.

Using Your Sound Card’s Mixer Panel

After connecting the device, open your sound card’s mixer panel. The type of sound
card and software you have will determine if you can access this from the system
tray or from the Sound and Audio option in the Control Panel. The icon on the
system tray will look something like Figure 4.2. Once you double left-click on it or
access the option through the Control Panel, you will get a standard sound card
mixer panel as in Figure 4.3.

The Sound and Audio option is available in the Control Panel for Windows XP users. For
Vista, you will need to access the Control Panel and then the option Hardware and Sound,
which looks very different from Windows XP.

FIGURE 4.2 The sound control icon shown in the
system tray.

FIGURE 4.3 The mixer panel allows you to choose options related to the sound card.

When you first open the mixer, you will see all the possible playback volumes.
Set the volumes as follows.

1. If the Wave Balance (the second slider from the left in Figure 4.3) is
checked, click the Mute box to uncheck it.

2. Make sure the Wave Balance slider and the Play Control Balance slider (the
leftmost one in Figure 4.3) are both at least halfway up.

3. Next, set the sound card’s recording devices.
4. Choose Options | Properties.
5. In the box labeled “Adjust volume for,” select Recording. Each of the devices

from which your sound card can record will be listed in the window.
6. Click OK. This will display the Recording Controls window.
7. Make sure the volume of the category you plan to use is halfway up. For

instance, if you are using the Microphone, ensure Microphone is halfway up.
Figure 4.4 shows the recording control as it should appear.

66 Awesome Game Creation: No Programming Required

FIGURE 4.4 Microphone with the correct settings.

Using Windows Sound Recorder

A simple way to record sounds for your games is to use the built-in Windows sound
recorder software and a microphone. The quality of the sound will depend on the
quality of your microphone, and whether you can filter out any other noise in your
environment. This is a good way to create simple sounds to give you an idea of how
your final game might be before you record better or more professional sound. In
computer game creating, developers usually put “markers” in the game. A marker
can be a simple sound or a graphic, and in a big game development represents voice
recordings or graphics that have yet to be created.

Chapter 4 Sound and Music 67

So you can use Windows’ sound recorder as an easy and inexpensive (as the
only additional equipment required is a microphone) way to get sound into your
game, or as a temporary measure if you plan to create or buy better sounds later.

1. Click Start | All programs | Accessories | Entertainment | Sound Recorder, or if
you are using Windows Vista, Start | Programs | Accessories | Sound Recorder.

2. You will now see the Sound Recorder dialog box as shown in Figure 4.5. If
you are using Windows Vista, it will look slightly different but works gener-
ally in the same way.

FIGURE 4.5 Windows XP Sound Recorder program.

3. Click on the red button (or the Start recording button in Vista) and it will
begin to record the sound. Speak into the microphone or make a noise.

4. To stop recording, click on the black square or the “Stop recording” button
(Vista).

5. In Windows XP you will need to do File | Save As to save it in a folder,
whereas Vista will automatically ask you for a location to save the file once
you stop recording.

CREATING MUSIC

When you start creating music for a game, you usually begin with a basic under-
standing of the type of music you need. For instance, if you are creating music for a
wrestling game, classical music is probably not going to be part of the piece. You may
need to do some research. Discuss the requirements with someone, or find a way to
listen to existing music that fits your needs. For a wrestling game, you might watch
wrestling on television or attend a wrestling match to get a good understanding of
the kind of music users would expect.

If you are writing music for a game that reenacts the Civil War, you might watch
movies about the Civil War, or talk with music historians about the types of instru-
ments or music popular during that time period.

It’s important to understand that you’re not looking to simply copy the music,
but to discover what makes music appropriate for the time or era. Keep an open
mind. You might base your music on what you’ve seen and heard, or may come up
with unique ideas.

There are a number of programs on the market you can consider using. ACID
and eJay, for example, use sound loops, which you can place onto the application
and arrange them any way you choose. Both programs include samples you can use
in your musical creations, and you can download clips from several Web sites. The
companion DVD contains three packages you can use to try some of the looping pro-
grams. In the Demos folder is ACID XPress, the free version of ACID from Sony, and
includes a 10-track version. Also included is a demo of the Pro version of ACID, for
those who want to check out the features of a professional and powerful looping
product. The full version costs around $400 and includes over 1000 professional
loops, so if you’re serious about making music, check out the demo first to see how
comfortable you are with it. Sony also has a cheaper product, ACID Music Studio,
which is priced at $70 and allows for live recording and effects processing. Check out
www.sonycreativesoftware.com/products/acidfamily.asp for more information about the
product range and which product is right for you. Also included on the companion
DVD is a demo of Dance eJay 7, used primarily for making dance music and has a
cost of around $40. Other programs in the eJay range provide loops for hip-hop and
techno-based music if you are looking for that type of sound for your games.

Using Loops

ACID and eJay afford you the capability to create music from loops, much like main-
stream music is produced today. In the past 20 years, the majority of the music
industry has used loops or samples in one way or another. This has drastically altered
the music landscape, changing the way both amateur and professional producers cre-
ate their music. A quick glance at many modern albums makes it clear they use loops.

The use of samples in many forms of music has brought about an entire indus-
try that produces music especially for this purpose. Thousands of CDs are available
that contain samples you can use for almost any purpose, in standard CD Audio for-
mat and in the file formats used by many leading music programs, including ACID
and eJay.

Many of these CDs require that you pay for using their samples. There are two
basic methods. The first is a royalty-based system, in which the CDs themselves may
be free. However, you pay a royalty for every time the sample is used. In the second
method, you pay an up-front fee, which gives you a royalty-free license that allows
you to do almost anything with the loops from that point on. However, with either
method, you usually cannot distribute the materials as a new collection of loops.

The Internet offers a third way to obtain samples. Many Web sites offer fee-based
downloads, while others allow you to download their loops for free. Do a search on
Google, or go to the relevant product Web sites you might want to use—for example,
Ejay.com or Acidplanet.com.

68 Awesome Game Creation: No Programming Required

ON THE DVD

ON THE DVD

www.sonycreativesoftware.com/products/acidfamily.asp

Chapter 4 Sound and Music 69

ACID XPRESS

In this part of the chapter, you are going to install the XPress version of ACID, walk
through the registration process, and then take a quick tour of the program. You will
also go through a simple creation to give you an idea of how to begin making your
songs.

ACID or eJay are not discussed in great depth, as they are considered secondary products
within this book. The key aim of the book is to get you to make your own awesome games,
so that is where you will spend most of your time learning. Both ACID and eJay come with
extensive help material, and the walkthroughs and the examples here should be enough to
get you in a position where you can begin making your own songs.

Before you begin, make sure your PC meets the requirements for the software.

These minimum requirements are for the full version of ACID, so some requirements may be
less than specified. Additionally, your PC must meet and where possible exceed the minimum
operating system requirements to ensure a reasonable user experience of the software.

• Microsoft Windows 2000 or XP 800 MHz processor (1 GHz if using video)
• 200 MB hard-disk space for program installation
• 600 MB hard-disk space for optional Sony Sound Series Loops & Samples refer-

ence library installation
• 256 MB RAM
• Windows-compatible sound card CD-ROM drive (for installation from a CD

only)
• Supported CD-recordable drive (for CD burning only)
• Microsoft DirectX 8.1 or later
• Internet Explorer 5.1 or later

Installing ACID XPress

First, you need to install the ACID XPress software.

1. Locate the file acidxpress50a.exe in the Demos file on the companion DVD,
and double left-click on it to launch.

2. You will then see a dialog box advising you where it will install the software as
shown in Figure 4.6. Click Next to accept this default path, or click Change.

3. The software will begin to extract files in a temporary location and then
begin the installation dialogs.

4. A Welcome dialog will appear, as shown in Figure 4.7. To continue, click
Next; to cancel the current process, click Cancel.

5. Now you will see the License Agreement dialog as shown in Figure 4.8. Read
the end-user agreement, and then select the “I have read the End User License
agreement and the…” radio button. This will allow you to click Next.

ON THE DVD

6. You will verify the installation path and where the plug-ins will be installed.
If you are happy with those locations, click Next.

7. You will now see a Ready to Install message. Tick the “Install shortcut on
the desktop” checkmark button, and then click Install.

8. The program will begin to install.
9. Once it has completed, you will see a message advising you that the installa-

tion was successful. Click Finish to complete the installation.

70 Awesome Game Creation: No Programming Required

FIGURE 4.6 The default path dialog box.

FIGURE 4.7 The Welcome dialog for ACID XPress.

Chapter 4 Sound and Music 71

Running ACID XPress for the First Time

When you run the ACID XPress software for the first time, you will be asked to reg-
ister the software before starting to use it (Figure 4.9).

FIGURE 4.8 The end-user license agreement.

FIGURE 4.9 The Registration dialog that first
appears when you run Xpress.

1. Ensure Register Online is selected, and then click Next.
2. Another box appears as shown in Figure 4.10. You will need to enter your

details.

72 Awesome Game Creation: No Programming Required

FIGURE 4.10 Complete the dialog box with your details.

3. You will also need to tick the “By providing this registration information…”
box before you can click Finish.

4. The registration program will now access the Internet, and after it success-
fully sends your information it will reply with a success message as shown in
Figure 4.11. Click OK to continue.

FIGURE 4.11 The registration was successful.

Chapter 4 Sound and Music 73

5. You will now see the ACID XPress and a Show Me How dialog box in the
middle of the screen as shown in Figure 4.12. This how-to box is very useful
for a quick tour of the program and accessing information to help you get
started as a new user.

6. You can either click on one of the options, or click Close.

FIGURE 4.12 The ACID XPress window and the Show Me How dialog.

Tour of ACID XPress

The ACID XPress software can be broken down into a number of windows, identi-
fied in Figure 4.13.

1: Track Header: Where you place all your media files you will put into your
song. Once it is here, you are able to place it onto the timeline. You can im-
port a number of different formats, but some are not available in the Xpress
version even though they are listed. For this simple example, you only need
to import WAV and MIDI formatted files.

2: Time Display: Tells you exactly where the cursor is within your song on the
timeline. The time on the left is the actual song play time, and on the right
is measured in measures.beats.ticks.

3: Time Line: Where you’ll do most of the work to create your music. The
timeline has a number of rows where the different imported tracks will be
painted or drawn onto the timeline to tell ACID to play that loop. Each
square on the timeline is equal to a number of musical beats, as shown by
the number at various intervals across the top of the timeline. How much
you zoom in or out on the timeline will depend on what level of beats you
will see. Also, the size of the loop you import will determine if it will fill the
whole square or just part of it. If you import a sample but don’t paint
enough of it onto the timeline, the entire track will not play.

4: Transport toolbar: The standard play and stop controls of any digital music
player. You can listen to your songs at any point by clicking play. The song
will not by default loop the music you have created.

5: The Explorer: A Windows Explorer tab that allows you to search for media
files to use in your creations. You are able to drag any supported items from

74 Awesome Game Creation: No Programming Required

FIGURE 4.13 The different areas of the screen.

Chapter 4 Sound and Music 75

this window to the timeline. You can also access that particular track prop-
erty by clicking on the tab next to Explorer.

6: Mixer: Allows you to keep an eye on the sound levels and finely tune them
if required. For example, if it is too loud or too quiet, you can quickly and
easily apply it to the whole song.

A Simple ACID Creation

You will now run through a simple creation in ACID XPress to get an idea of how to
begin to put your songs together. There is extensive help documentation with the prod-
uct, so look there when you need more information on making more complex songs.

1. The ACID program is open and has a pre-loaded song already displayed.
Press the play button on the transport toolbar to listen to it and get a basic
understanding of how it is put together.

2. You’ll now remove this song by creating a new song. Click the File | New op-
tion. A New Project dialog box will appear, as shown in Figure 4.14.

FIGURE 4.14 The New Project dialog.

3. Enter the information that will identify this project; type anything you wish
in the Title, Artist, and Comments boxes, and then click OK.

4. You will notice that you have a blank track listing, so you can either add
your tracks by right-clicking on the track header or by using the Explorer
toolbar. For this sample, use the Explorer toolbar to add two sound files.

Browse the companion DVD and locate the Samples folder.

5. You will see the sound files displayed in the right-hand pane of the Explorer
window. Double left-click on the items SMARTBOM.WAV and COOL1.MID
to add them to the track header as shown in Figure 4.15.

76 Awesome Game Creation: No Programming Required

FIGURE 4.15 The two selected sound items.

6. Ensure the COOL1 item is selected (it will be highlighted). On the timeline,
notice that the cursor has changed to a pencil icon. Starting from the very
first box on that row, hold down the left mouse button, and drag it across
about 34 boxes. You will now see the frequency of that item in the timeline
in Figure 4.16.

FIGURE 4.16 The file shown on the timeline.

7. Press the play button to listen to the song so far. You will notice that it plays
a simple tune. In reality, you might only have a short file, and you might
place these at various points in the timeline to create a song, unlike in this
example where we have one sample with different levels and sounds in it.

ON THE DVD

Chapter 4 Sound and Music 77

8. Notice the blue loop bar above the timeline. When the loop button is selected
in the transport toolbar, it will continuously play between the blue area. You
will amend this very soon, once you have added your next loop into the
timeline.

9. Click on the SMARTBOM track to highlight it. Click on various boxes within
the time line. In Figure 4.17, there are two gaps between each. If you make
a mistake, you can drag and drop any of the media files on the timeline by
holding down the left mouse button and moving it to the required location.

FIGURE 4.17 The second loop placed at a two-gap interval.

10. When you play the song, notice that the SMARTBOM sound is too loud.
You can adjust the volume for this item only by moving the sound slider; in
this case, change it to –16.4 dB as shown in Figure 4.18.

FIGURE 4.18 The sound slider.

11. Currently, it is looping a small part of the whole tune, which isn’t very use-
ful, as you want to listen to the whole song before deciding what to do next
with it. To change the area, move the mouse cursor to the end of the blue

bar, where a left and right arrow will appear. Hold down the left mouse
button and drag it; this will allow you to extend the loop area.

Now that this simple tune is complete, it is time to export it to a file. This is gen-
erally how these types of programs work; you import different loops and then create
a whole new loop or tune from it.

12. Click File | Render As. Notice that a number of formats are available to select
from; in this case, we are going to use the default of WMA. Type in a file-
name. Click on the Template drop-down box, select 48 Kbps, and then save
in a folder of your choice.

Not all formats are available in the Xpress version; for example, the WAV format.
Another limitation of the Xpress version is that you can only save at 48 Kbps; the lower

the Kbps, the lower the quality. This also means that it is more compact for placing on the
Internet for users to download and play.

The program will begin to render the file into a single WMA formatted file. After
doing so, it will display the completed Export dialog as shown in Figure 4.19.

78 Awesome Game Creation: No Programming Required

FIGURE 4.19 The Export dialog.

You will now be able to click Open to play it, or click on the Open Folder to open
the location in which it was saved. We saved it in a Windows Media Player format,
so to listen to it you will need the player from Microsoft. You can also find the exam-
ple exported file, test.wma, in the Samples folder on the companion DVD.

Do not save in MP3 format if you intend to distribute music with your games, as there may
be an additional cost in doing so. If you make commercial software and want to use MP3
files, you will need in most cases to purchase a distributable license. It is better in most cases
to save in a license-free format, as you won’t notice any difference in the quality. You can
find out more about MP3 license costs at http://mp3licensing.com/.

ON THE DVD

http://mp3licensing.com/

Chapter 4 Sound and Music 79

DANCE EJAY 7

eJay is similar in concept to ACID XPress and Pro, whereby you place sound loops
onto a timeline and create a song or another loop from it. The minimum and recom-
mended system requirements are:

Minimum specs:

• Pentium 3, 800 MHz or higher
• 256 MB RAM
• Windows 98, ME, 2000, XP
• 1.4 GB free hard disk space
• 4x CD-ROM
• CD-WRITER (for Audio CD Burning feature)
• DirectX 9.0-compatible graphics card with 32 MB of video memory (16-bit

color, 1024 × 768, 32 MB)
• DirectX 9.0 compatible sound card (16 bit)
• DirectX 9.0c
• Web browser

Recommended specs:

• Pentium 4, 1.8 GHz
• 512 MB RAM
• Windows 98, ME, 2000, XP
• 1.4 GB free hard disk space (for Install)
• 2.0 GB free hard disk space (for OS Cache)
• 4x CD-ROM
• DirectX 9.0-compatible graphics card with 64 MB of video memory (16-bit

color, 1024 × 768, 64 MB)
• DirectX 9.0-compatible sound card (16 bit)
• DirectX 9.0c
• Web browser

The graphics card must be compatible with Direct X 9.0c.

Installing eJay 7

The companion DVD includes a demo version of eJay, DanceeJay7Demo.exe, in the
Demos folder.

1. Browse to the Demos folder and double left-click on DanceeJay7Demo.exe
to begin the installation.

2. Select the language to use for the installation; the default selection is English.
Click Next.

3. The Welcome dialog will now appear as shown in Figure 4.20, Click Next to
continue.

ON THE DVD

4. A license agreement dialog appears (Figure 4.21). Read the license terms
and select the “I accept the terms of the license agreement” (if you agree
with them). You will then be able to click Next.

80 Awesome Game Creation: No Programming Required

FIGURE 4.20 The eJay Welcome dialog box.

FIGURE 4.21 The License Agreement dialog box.

Chapter 4 Sound and Music 81

5. You will now see the default installation path as shown in Figure 4.22. If
you are happy with this path, click Next; otherwise, click Change and select
a new path.

FIGURE 4.22 The default installation path.

6. You will then be asked if you wish to create shortcuts for the program; the
default is to Install Shortcuts. Click Next to continue with the installation.

7. The program is now ready to install, so click Install to begin the installation.
If you wish to quit the installation, you still have the option of selecting
Cancel.

8. Files will begin to be copied to the local hard disk.
9. A dialog box will appear asking if you wish to register with Empire Interac-

tive, the makers of eJay. Select either of the options to proceed.
10. The Installation complete dialog box will appear. Click Finish, and a Readme

file will appear giving you the latest information about the installation file.

Running eJay for the First Time

You can run the eJay program from the desktop icon, or from Start | All programs |
Dance eJay 7 Demo | Dance eJay 7 Demo. When the program starts, a dialog box
will appear as shown in Figure 4.23, telling you how many days you have before the
trial software expires. You can click on the link to purchase the software, or if you
have days remaining, click Finish.

1. Click Finish.
2. The eJay main menu will start and display various options as shown in Fig-

ure 4.24.

You will now have a number of different options available from the main menu
shown in Figure 4.24:

Help & Tutorials: Loads an HTML help page, which provides information on
how to use the product.

82 Awesome Game Creation: No Programming Required

FIGURE 4.23 Dialog box showing how many days remain of the trial
version.

FIGURE 4.24 The eJay main menu.

Chapter 4 Sound and Music 83

Song Arranger: Where you will create your music from the loop files.
File Manager: Allows the user to load and save files, and search folders for rel-

evant files.
CD Burning: Only available in the full version of the software, but allows you

to burn any created songs to a CD.
Config & Options: Setup and configure various options for the eJay program.
Web Link: Takes you to the www.ejay.com Web site, and will confirm which

language site you wish to view.
Exit to Desktop: Closes the eJay program and returns you to the desktop.

Tour of eJay

Clicking the menu option Song Arranger from Figure 4.24 will bring you to the
main music creation screen as shown in Figure 4.25.

FIGURE 4.25 The main screen in eJay.

You will need to click OK to close the message about the demo version.
Figure 4.25 shows the most important aspects of the Song Arranger:

www.ejay.com

1: Song Name: Identifies the name of the song, which will also appear in the
File Manager, so you must name the song appropriately so you can locate it
later.

2: Song Timer: Shows the length of time the song has been playing for since
you clicked Play—the entire length of the song etc., in minutes, seconds,
and hundredths of seconds.

3: Sound Levels: Shows a visual cue to the overall sound in the left and right
speakers.

4: Toolbar: Menu options in the main menu are also accessible here; these are
main menu, file manager, CD burner, Web link, config/options, and help/tu-
torials. The icon attached to the end of the toolbar is a redo/undo button for
applying or undoing anything you did on the track placement area.

5: Track Controls: Displays the different track numbers you can apply loops to,
and allows you to control the volume of each track. You can also change the
volume through the left and right speakers for each track.

6: Track Area: Where you place your loops. Each block is equal to four beats;
this is the timing of eJay.

7: Three buttons: Pan performance curve, volume performance curve, and
sound clip archive. Pan allows you to draw a line across a track to match the
left or right side of the speaker. Volume performance changes the volume of
the track for its lifetime. The sound clip archive allows you to access the
large archive of loops that are provided with the full product, and in this
case, the loops provided with the demo to place them on the track area.

8: Music Controls: The standard controls for playing, stopping, and rewinding
the song.

9: Effect bar: Consists of the Sample studio, master effects, and the sound clip
editor. The sample studio allows you to create or edit samples, which are ac-
cessed via the file manager. Master effects allows you to apply a sound effect
to a sample, which can change a sample’s sound and create a completely dif-
ferent sound. You can apply up to four sound filters to a sample. The sound
clip editor allows you to change the properties of the sound currently on the
track area.

A Simple eJay Creation

You are now going to create a simple song using the included loops within the pro-
gram. It will show how the basic creation aspect of the program is handled, and will
allow you to experiment with the program to explore it further.

1. In front of you will be the sound arranger screen ready for you to create your
first music masterpiece. If there are tracks on it already, you can listen to it by
pressing the play button. Right-click on the track area and select Clear Every-
thing to remove the tracks so you can start from a blank window.

2. Click on the sound clip archive button to bring up the sound archive as
shown in Figure 4.26.

84 Awesome Game Creation: No Programming Required

Chapter 4 Sound and Music 85

FIGURE 4.26 The sound clip archive.

3. Select Hard Lead Lines, and then select Garfueled with a single left-click of
the mouse. Drag the song while holding the left mouse button, and place it
at row Track 1 in position 001.

4. Left-click on the sound track you added at position 001, hold down the
mouse button, and drag the copied item at position 005 on track 1.

5. Now navigate to “Hi hat drum loops,” select “Actatak hats,” and place on
Track 2 from positions 001 to 023. This will now look like Figure 4.27.

6. Now, add another sample. Click the “Sound clip archive” button, and then
select the Pads folder (you will need to scroll down to find this folder). Then,
select Palendra Low, place it on track 3 in position 009, and drag and drop it
again on track 3 position 013.

Now you are going to add some vocals to the song. You should do this with care
in any music you are making for games, as it may not work right within a game con-
text. Look at similar games in the same genre to see how they handle music.

7. Find the folder female vocals, select “in the distance,” and place it at line 04
and position 009.

8. Still within the female vocals folder, select and drop “ha aaa 1,” and place it
at line 05, position 011.

9. Using the white bar, scroll across to the right until you can see positions
017–027.

10. Under the hard bass lines folder, drag and drop “nerquit” and place it on
track 04 and position 017.

11. Find the Pads folder, drag and drop “Palladium,” and place it on track 05
and position 017.

12. Navigate to the female vocals folder, and drop “on the rooftops” onto track
04 and position 021.

13. Finally, go to the female minor folder, and drop “under it all lolo 2” to track
04 and position 023.

You just completed your simple creation, so press the play button to listen to it.
This simple process is the same one you use to begin to create your game music. There
are many more features to eJay you can use to apply different sounds and effects, so
take the time to look through them all.

Make sure you save your creations on a regular basis to ensure you have backups in case of
a computer crash.

Exporting Your Songs

If you want to export your song into a format you can import into your game cre-
ation software, you need to access the File Manager editor.

1. Click on the File Manager option in toolbar. This is the second icon on the
top right, which looks like two folders stacked onto each other.

2. You will now see the File Manager window as shown in Figure 4.28.
3. Click on the Export option. You will then be asked if you want to export;

click Yes to export.

86 Awesome Game Creation: No Programming Required

FIGURE 4.27 The two loops you have placed so far.

Chapter 4 Sound and Music 87

4. The song will be exported and, depending on the size of the song, may take
a while. A dialog box will tell you the song has exported successfully. Click
OK.

FIGURE 4.28 The File Manager window.

You can find the example song and its exported WAV file in the EJAYFILES
folder on the DVD provided with this book.

CHAPTER SUMMARY

It’s easy to see why music and sound effects are so important to the development of
a game. They can add so much to the experience of a game player by setting a mood
or location. Well thought-out music and sound effects go hand in hand with great
graphics on which so many developers prefer to focus.

In this chapter, you used two of the best tools available for game developers:
ACID, with its easy-to-use interface to create a simple song; and eJay, to record a
larger song. In the next chapter, you’ll look at the elements required for designing a
game.

ON THE DVD

This page intentionally left blank

C H A P T E R

5 ELEMENTS OF
DESIGNING A GAME

89

In This Chapter

• Introduction
• Game Elements
• Game Market
• Technical Information and Associated Risks
• Required Resources and Scheduling

90 Awesome Game Creation: No Programming Required

So far, you have looked at the most fundamental parts of game design and de-
velopment: equipment, the building blocks of a game (sights and sounds), and
the genres, or classifications, of games. Now you are ready to look at the stage

of game design in which you actually start designing the game—where you start to
keep track of your resources, explore your limits, form your ideas, and put it all
down on paper. This chapter will help you generate a design document in the early
stages of developing your game. You’ll also look at the game treatment and game
proposal, which can be important parts of getting your game published. If you are a
small group of people working together over the Internet or a one-person developer
looking to only make games for fun, some of the bigger concepts (getting published
and checking sales data) are not necessarily relevant to you at this stage. This infor-
mation will be of benefit if you ever decide to make programs that will be published.

INTRODUCTION

All too often, people start generating design documents and jump right into develop-
ment. While recording your ideas and other information, and prototyping and testing
as you go, can be invaluable, an unbridled jump into development can be a waste of
time and can physically and mentally lock you into a tight spot. It is far harder to
change the course of something that has momentum than to set it rolling on the right
path to begin with. Planning is important and cannot be stressed enough.

Not planning can be disastrous if you are putting a lot of time, talent, and money
on the line; dashed hopes can throw a small team or business under. Don’t jump right
into this stage of breaking out the specific elements of your game, or you may develop
yourself into a corner. Building the proper groundwork is essential. Otherwise, you
may design and develop a game no one wants, you can’t legally use, or represents
wasted time and money.

The actual elements of a computer game are no secret; they are just mysterious
to most people because they think of the design document as something you just
dash off. They think that having enough pages to impress any reader is sufficient.
They have trouble filling these pages as they struggle through each item, trying to fill
in the blanks. The truth is, only after you have decided on your game idea, genre,
and the overall feasibility of the game idea will you be ready to tackle this phase. The
elements of your game should flow on paper, once you know what your game is.

Design documents are not fill-in-the-blank forms. If you approach them this way, you will
be frustrated, and your game will not be as good as it could have been had it been planned
up front. Design documents are the result of your game idea. They are not game ideas wait-
ing to happen; they are guidelines for the areas you should develop in your game. But as
you’ll see, they are not the end-all.

Chapter 5 Elements of Designing a Game 91

There are three phases of game design: predevelopment, development, and
post-development. We are most concerned with predevelopment at this point. Dur-
ing predevelopment, you should be defining your limits and strengths, researching
the feasibility of your game idea, and, of course, defining and refining it.

Before you develop a game, you must determine if your audience will like that
game. As mentioned previously, you have to design for an audience, whether it is
for one person or a million. And you have to know who these people are, which
computer systems they like or dislike, and other factors explored here.

Along with what type of computer system you design for, your audience will
determine how complex your game will be, how long it will take to play, and its
content. You should design with the best technology in mind, but obviously, you are
limited by the technology you are familiar with and have access to. The latter part of
this book discusses just that.

In designing a game, you should include only what you need. This is important,
because many designers throw in all the elements they can think of, in a predeter-
mined order. What the proper parts of a game are is not at issue here; what will make a
game successful is. Remember, any bold and conclusive statements you’ve heard
about what a game has to be are wrong. The truth is that a game must be fun for the
intended audience. What a game should be, or contain, continues to evolve and is
never set in stone.

GAME ELEMENTS

Simply listing the elements of a game is easy, but where’s the fun in that? Anyone
can just list game elements and attempt to fill in the blanks, but it takes more than
that to design a game worth developing. Remember, with the tools on the market
today, anyone can make a game, but few can make a game worth playing.

Element One: Game Type

You looked at game genres previously in detail; now is the time to fill in the blanks.
Write down your game type from the following list. You need to at least know this
bit of information.

The book Game Architecture and Design defines genres in their truest sense, and
breaks them down into the following seven types:

Action: Lots of frantic button pushing
Adventure: The story matters
Strategy: Nontrivial choices
Simulation: Optimization exercises
Puzzle: Hard analytical thinking
Toys: Software you just have fun with
Educational: Learning by doing

92 Awesome Game Creation: No Programming Required

This is a good start for your design decisions and will greatly simplify other deci-
sions. The basic genre you develop will determine the focus on technology, art, con-
tent, and research. It will even determine the approximate size of your team,
budget, and other resources.

As you decide about your game’s main genre, you should also make notes about
the other genres or game types you hope to incorporate into it. Keep in mind that
adding, or layering, genres on your game increases everything—time, money and
resources needed, and the complexity of the project. After you have a good idea of
the type of game you want to develop, depending on your strengths and weak-
nesses, you are ready to move on to the next step.

Element Two: Game Idea and Game Treatment

You are now ready to write your game idea down, but not the treatment. The idea
and the treatment are two very different things, and people often confuse the two.

Game idea: A game idea is just that, an idea. You should write it first, to convey
your game idea to others.

Game treatment: A game treatment is written after substantial research, design,
and development has been done. It serves primarily as a selling document to
pique the interest of publishers, investors, and department heads in larger
companies. This is a concise document for an already well-formed game proj-
ect. In other words, while the game idea represents the sum total of what you
plan for the game, the game treatment is a distillation of a much larger body
of work and only touches on the highlights of the project.

Initially, you should write a rough draft of your game idea that presents as much
information as possible about the game, clearly and concisely. It should spell out the
general resources (time, talent, and cash flow) the game will require, and why you
think it is such a great idea. You can then use this document to discuss and research
the feasibility of the game.

As the game project gears up, you’ll need to line up resources and (possibly)
team members, determine needs, develop budgets and schedules, and define the
game to a great degree. The original idea will change, evolve, and grow more solid.
This will generate a mountain of useful information.

At the end of this stage, you’ll write the game treatment, which will explain the
exciting game development effort you have underway.

The treatment generally contains the (proposed) title, the genre, the feel of the
game play, the overall look of the game, features you plan for the game, and any
marketing information that will back up the feasibility of the title. Money, budgets,
and dollar amounts should wait until after the publisher is interested in your game.

As a selling document, the treatment should open with the most marketable
feature of you or your game development effort. If you are a top-selling developer,
or if you developed a technological wonder or an artistic masterpiece, present those
facts first.

Chapter 5 Elements of Designing a Game 93

Be careful. This document is deceptive to many because of its brevity, but writing it concisely
and effectively requires a great deal of industry knowledge and writing skill. You are at-
tempting, in as few words as possible, to get a publisher or investor to invest in your idea.
This document is the equivalent of the query letters writers send out to get book and article
publishing deals, and the cover letters that accompany business proposals. These are all sell-
ing documents and contain the same basic elements.

Even if you are making a game on a small scale, you should still get in the habit
of writing down your ideas and documenting the development of your title. This
focus will benefit your title, and the practice will clarify your thoughts and clear the
way for new ideas to bubble up.

Element Three: Technology

This element consists of the game platform and the technology needed to play the
game.

You should know the system requirements for your final game. Will it require a
CD-ROM drive, a special video card or peripheral, a certain amount of RAM, or
other special resources? What operating systems, drivers, or special software will the
user need? These are all considerations the publisher will want to hear about.

Element Four: Audience

Several questions are important here.

• Who did you develop the game for, and why?
• Did you get audience input?
• What were their suggestions?

Keep in mind the previous sections of this book, dealing with game design and
the audience.

Element Five: Team

You need a team, even if you are the only one working on your game. Here are
some questions to ask.

• What team members will you need, and what jobs need to be done?
• Who are your team members, and where will you get them?
• What are their strengths and weaknesses?
• How will you manage them, and do you have any experience managing people?

Element Six: The Design Document

So, what should a design document contain? The design document comes from
having a good game idea, along with the breakdown of the elements needed to develop

that idea into a game. Upcoming developers always want to see a design document,
and with good reason, because it represents a complete game, along with the ele-
ments it requires. It is what the developer aspires to create.

Looking at an existing design document can be very useful as a guide. However,
remember that it is for someone else’s title and most likely will not be a perfect fit for
your game. Like the game treatment, a design document is a product of your game;
it should come after you flesh the game out, not at the start. If you are doing a 3D
Shooter that is action-oriented, you don’t need a huge backstory. In fact, that may
be a detriment to the document from a development and selling point of view.

Appendix A, “Design Document: First-Person Shooter,” includes a sample de-
sign document, but is not the “fill-in-the-blank” form most of you were hoping to
find. However, reading and adapting it should serve as a guide for defining your
game. Take note of the elements of this design document, but realize that your own
game may have none, more, or all of the elements listed in that document.

Sample Design Document Outline

If you’d like to follow along with an actual design document, Appendix A contains
the complete version of a design document for a 3D shooter. You can also use this as
a basic template for creating your own design documents.

You can find the design document template, in Microsoft Word format, on the
root of the companion DVD; the file is called “Design.doc.”

What Is a Design Document?

A design document is often overlooked in the rush and excitement of a game idea.
After all, if you have a unique idea that could conceivably be a great game, why
would you want to waste your time working on something that doesn’t really get
you any closer to the end product?

Many times, even relatively large development teams don’t spend the time to
create a fully functional design document. Most game developers will try to stay
away from unnecessary work, but the long hours spent creating a thorough design
document will actually save countless hours later down the development road. You
might be lucky enough to create a very good quality game without a design docu-
ment, but the key word in this is “lucky.” Most often, a game that begins without a
properly developed design document will be delayed for months, or may not even
be finished.

Creating a design document is similar to creating a movie script. In it, you will
write details of an exact story (if you have one—for example, racing games would
probably not have a story), an overview of the characters or opponents you intend
to create, detailed descriptions of every level, and so on.

If this is the first time you’ve ever considered creating a design document, you
should be aware of a few things.

First, the design document is not chiseled in stone. It can and should evolve as
the game does, but shouldn’t be drastically altered. The design document will serve

94 Awesome Game Creation: No Programming Required

ON THE DVD

Chapter 5 Elements of Designing a Game 95

as a sort of road map to how the project will develop and should be as complete as
possible. That being said, you should change it when necessary; for example, to in-
clude a new character or plot change. Design documents are team oriented, and
therefore should include as many contributions as possible from the individuals who
make up the team.

Sometimes, one person is the main author of a design document. If this is you,
be careful not to be offended if someone suggests that you change something in the
document. Input from others is important to the process, and can give you invalu-
able information.

Appendix A should serve as a good guide to creating a design document. Feel
free to change what you see there for any projects you are working on. Remember
that creating a design document is not an exact science; not all games are alike, nor
are all design documents.

Also, proofread carefully! You would be surprised at the number of simple
spelling errors that appear in most design documents. While everyone misses a word
now and then, you should try your best to keep grammar and spelling mistakes to a
minimum. This may not seem important to you, but again, you don’t know who
might end up reading your document.

Importance to Team Members

A design document is important to all team members for a number of reasons. For
a potential publisher, it details the game and provides a vision of what you hope to
accomplish. For a development team, its purpose is rather simple; it sets out the re-
sponsibilities of everyone involved.

Depending on the team member, a design document will mean different things.
Producers will use it to make their estimates, while programmers may look at it as a
series of instructions for carrying out their part of the project. Artists will use the de-
sign document to help them visualize the characters they need to create. Designers
often use it to scope out important elements, such as the mood for a level. Audio
personnel need to have a basis for developing sound effects and music. The design
document may be the only place they can truly acquire the appropriate knowledge.

While the design document is very important, it doesn’t take the place of meetings among the
members of the development team. Having team members share thoughts at regular inter-
vals is very important. These meetings don’t have to be formal. They can be in person or over
some electronic medium, such as a discussion board. Like most things, it’s not important how
they occur, just that they actually do.

Things to Include

Now that you have a basic understanding of design documents, let’s look at the
components or ideas that make them up. Many teams will include information such
as legalities, target audience, and market analysis for a game in their design docu-
ment. While this can work, it would make more sense to include those types of

“business-related” materials in a game proposal to a publisher, something you’ll
look at in more detail later in this chapter. It’s counterproductive to have team
members scrolling through pages of information they really don’t need to review.

Game Overview (Storyline)
This may be the most important piece of the entire design document. Without a solid
story or game overview, the later steps will be much more difficult to create. Be thor-
ough with the game overview. If you leave something out, go back and fix it imme-
diately. Sometimes the smallest details can make a big difference in a large project.

Because you don’t know exactly who will read your design document, make
sure to include as many details as possible, just as you would if you were creating a
good storybook. Many teams place background information (information that tells
how the situation shown in the game came about) in its own category, but because
it relates to the story, you can put it in the game overview section. However, some
genres, such as a sports simulation, wouldn’t need a background section.

Levels
The next item to address is the levels that make up a game. If you do a thorough job
in the preceding step, this one is very easy. You compile a list of levels, in the order
in which a player will encounter them in your game, adding any details you feel are
necessary. Some optional materials to include about the levels include ideas such as
the layout, and a general description of the placement of enemies. Try to create a
mood for a level at this time. If you do, a designer or artist can simply browse this
information to get a feel for what he or she needs to create.

Creating a set of maps for the levels can be helpful to the members of the team,
especially the programmers and level designers. These maps can be very detailed
pictures, but more likely will be a set of simple lines, circles, and squares that form a
rough layout of the levels. You can see an example of this in Figure 5.1.

96 Awesome Game Creation: No Programming Required

FIGURE 5.1 A level with a map.

Chapter 5 Elements of Designing a Game 97

Heroes and Enemies
The next section of the design document deals with the characters in your game.
Like the level section, the character section should almost fall into place if you cre-
ated a detailed game overview.

There are two basic types of characters in most games: a hero, and enemies. You
can include details of the hero, such as background information or rough sketches.
These will help team members understand what they’re trying to accomplish. For
every hero, you should also include a list and description of animations that apply to
that character. Depending on their role in the story, you can also include descriptive
ideas of their intelligence level and strength, and basic information about how they
react to the rest of the characters. Again, this information will be beneficial to the
team when they are working on those characters.

After you finish with the heroes, create a section for enemies. This could include
anything (human or not) that will attack a player. For instance, in an FPS, you
might include a dinosaur; in a space combat game, you could include an asteroid.
Follow the same basic procedures you did in fleshing out the heroes, making sure to
include similar details and sketches where appropriate.

Finally, you need to include information about the types of weapons the charac-
ters will have access to. Include detailed descriptions of every weapon either type of
character can access. Sketches can be valuable for everyone on the team. Also, create
a list that details the damage each weapon will cause, along with the type and quantity
of ammunition for each weapon (see Figure 5.2).

FIGURE 5.2 List of weapons and damages.

Notice that the sketches in Figure 5.2 are simplistic. You can make the sketches
as detailed or as simple as you wish. Often, it’s more important to get them drawn
than to worry about how great they look. You can always go back and clean them
up later.

Menu Navigation
Another very important element is creating a list that details the game’s menu nav-
igation. It helps you keep track of how parts of the game link to other parts, and is
particularly important to the programmers. You should create the main menu and a
simple illustration of how the screens will link together. You don’t need anything
fancy, but all the menus should be included. For example, you could use something
like Figure 5.3 to display information about the opening screen of a racing game.

98 Awesome Game Creation: No Programming Required

FIGURE 5.3 A fictitious racing game opening screen.

User Interface
The user interface goes hand in hand with the menu navigation system. For conve-
nience, you could place them under the same category, because they deal with
many of the same ideas. The information for this category can be text-based infor-
mation about what you plan to do, but ideally, some type of sketch works best. Like

Chapter 5 Elements of Designing a Game 99

most of the design document, this section doesn’t have to be fancy, but details are
important (see Figure 5.4).

FIGURE 5.4 A user interface example.

Music and Sound Effects
This section is important to the audio personnel on the team, and to the program-
mers who will use their sounds in the game. You can discuss the tools you plan to
employ, the types of sound effects, and possibly detail the music you have in mind
for the levels you listed earlier in the process.

In the first draft of the design document, the most important details to include
here are the audio formats and sound API (application programming interface) you
plan to use, along with what types of music and sound effects. For instance, you
should decide if you are going to use MIDI, WAV, or MP3 files for the music, and if
you’ll need things like explosions or footsteps for sound effects. You should also list the
genres of music you’re planning, such as rock or pop. This keeps the programmers and
audio personnel informed, so they are not surprised two months into the project.

Single or Multiplayer
The next step focuses on the game play itself. If you worked hard on the game
overview, you may have already covered this, and this section will be much easier. If
not, start by determining if the game will be single player, multiplayer, or both. For ex-
ample, if you are planning an FPS clone like Quake, you might decide that it is single
player only. If you are doing a sports game like basketball, you’ll probably want to
have multiple player support. Sometimes, the information in this area of the docu-
ment appears in other areas, but you shouldn’t worry about duplication of ideas. This
is especially true on a first draft, as you can always change the document later.

If you’re designing a single player game, you can probably describe the game
experience in a few sentences and perhaps break down some of its key elements. For
example, if it’s a Quake clone, you could begin by setting up the location of the
game. Next, you could detail the types of enemies players will face, and the route to
complete the game, such as players have to finish 10 levels before the game is over.
You could also list how the game ends, and what happens if a player doesn’t finish a
given level on time. You might also include a projection of how long players will
take to finish the game, and how a player wins the game.

Obviously, a multiplayer game is more difficult to design, and it’s harder to cre-
ate the design document.

A multiplayer game description starts the same way as a description of a single
player game. Take a few sentences to describe the basics of the game play. The de-
sign document for the basketball game mentioned earlier could start by mentioning
the type of game it is—for example, a street ball game, a college game, or an NBA or
international rules game. You might also decide what types of options the game will
include, such as franchise mode for a professional game, or what types of parks
you’ll include for a street ball game.

Now is also a good time to decide how many players will be able to play simul-
taneously, and how you plan to implement the client-server or peer-to-peer system.
For instance, do you plan to use something like DirectPlay or another API, and how
many players do you plan to allow to play against one another? In the basketball
example, you need to decide how many people can play on a team. You don’t need
to have complete technical details, but at the least, you should discuss the client-
server vs. peer-to-peer system issue. Optimally, in this section you will also discuss
potential pitfalls that are common in multiplayer games.

Miscellaneous and Appendix
The final area of the design document should discuss miscellaneous information that
may be specific to a certain type of genre, or doesn’t fit neatly into another category.
You can name this category anything that works well for you. For example, suppose
you decide to do a basketball street game and you want to include information
about the way the basketball players will dress, so you can keep track of players
from both teams. For example, you could have one team play in white shirts and
another in red shirts. If you have comments to make about several different topics,

100 Awesome Game Creation: No Programming Required

Chapter 5 Elements of Designing a Game 101

split the discussion up, to keep everything easy to read and follow. The appendices
are a good place to put items such as sketches or concept drawings. This way, you
can refer the reader to an appendix instead of cluttering up your text.

Wrapping It Up
After the design document is finished and everyone on the team has had a chance to
read it and suggest changes, you should print a copy for everyone. Keep the original
in a safe place, where it will not be altered unless the necessary parties agree. For ex-
ample, if you leave the document on a server where everyone can access it, team
members may decide to alter it on their own, which would ultimately defeat the
document’s entire purpose.

Element Seven: The Game Proposal

The game proposal is a much more formal document. Its general purpose is to be used
to approach a publisher for possible funding for your project. If you plan to develop
the project with your own money, a game proposal is probably unnecessary. A game
proposal takes the design document to a higher level and involves several issues that
should not appear in a design document. For example, it should include information
such as technical specifications, and marketing, financial, and legal issues. After the de-
sign document has been thoroughly digested by the lead programmers or the senior
members of the team, it should be included with the game proposal. A game proposal
will not be broken down in detail here, but for a quick overview, refer to Figure 5.5.

FIGURE 5.5 Basic parts of a game proposal.

GAME MARKET

The game market is a good place to begin. You can determine a market simply by
looking at titles that are similar to the one you are developing. By looking at sales
figures, you can figure out how large a market a particular style or genre has, and

your potential for sales. An excellent source of game market data is popular online
Web stores or game Web sites. You can also search certain organizations that keep
track of software sales in various countries, which are more accurate, including
ELSPA (www.elspa.com) or NPD Group (www.npd.com). You may need to be a regis-
tered organization and pay a subscription of thousands of dollars to get actual sales
figures, so if you are an indi developer or one person making smaller games, this
isn’t a viable option. Table 5.1 shows an example of the data easily available on the
Internet. If you are planning a game to run on multiple platforms, you should try to
break this information down among them.

Table 5.1 Example of a PC Chart Available on the Internet for One Month in 2007

GAME NAME

Command & Conquer 3: TiberiumWars

The Sims 2

The Sims 2 Seasons Expansion Pack

Football Manager 2007

World of Warcraft: The Burning Crusade

The Sims 2 University

The Elder Scrolls IV: Shivering Isles Expansion Pack

S.T.A.L.K.E.R Shadow of Cherbobyl

The Sims 2 Pets Expansion Pack

The Complete Collection of the Sims

Medieval II: Total War

Age of Empires III

Battlefield 2142

ArmA: Armed Assault

Neverwinter Nights 2

TECHNICAL INFORMATION AND ASSOCIATED RISKS

The most important things to list in this area are the team members’ development ex-
periences in developing a game similar to the one you are working on. For instance,
if the lead programmer developed 3D engines in the past, mention this experience. If
this is your team’s first 3D engine, you should convey this as well. If you are using
third-party software, such as a code library or sound effects, list them as well.

There are technical risks in any project, so try to provide a workaround if you
encounter one. For example, you could purchase a 3D engine from company XYZ if
the engine you are working on does not pan out.

102 Awesome Game Creation: No Programming Required

www.elspa.com
www.npd.com

Chapter 5 Elements of Designing a Game 103

REQUIRED RESOURCES AND SCHEDULING

The final area to include is required resources and scheduling information. The sched-
ule should include an estimate of the project’s length, along with specific milestones
that occur along the way, such as an alpha or beta product. The required resources
should include all financial estimates, such as the cost of employees, hardware, and
software.

CHAPTER SUMMARY

In this chapter, you looked at the main parts of good game design, and how to
document that design. Nailing down your game type and the elements that go into
creating your game is just the start. You then saw how to bring these decisions into
your design document, and looked at the importance of the game treatment and
game proposal.

There are no set rules for game design and development. Still, with the material
from this chapter, you shouldn’t have a problem creating a functional game treat-
ment, design document, and game proposal for yourself or for a team.

Two of the greatest things about game development are that the genres are flex-
ible and the technology is powerful. There are no barriers to entry. In fact, it is in-
credibly easy to get started in game development. It is all about knowing what tools
and resources you have at your disposal and where you want to go with your ideas.
In the next chapter, you’ll use some of those ideas and begin to make a 2D game.

This page intentionally left blank

C H A P T E R

6 INTRODUCTION TO
GAME MAKER

105

In This Chapter

• Installation
• System Requirements
• Game Maker Interface
• Resource Explorer
• Menus and Toolbar

106 Awesome Game Creation: No Programming Required

This chapter introduces you to Game Maker. The program’s name is indicative
of its ease of use; with the Game Maker, you can make computer games with-
out writing a single line of code. Using easy-to-learn drag-and-drop actions,

you can quickly make professional-looking 2D games. The games can contain any
number of elements, including backgrounds, animated graphics, and music and
sound effects. After mastering the drag-and-drop actions, you can move on to the
simple built-in programming language that lets you add advanced functionality to
any game. To top it all off, Game Maker is free of charge for the lite version and al-
lows you to create standalone games you can distribute freely. For a small fee, you
can upgrade to the professional version, which will remove some of the restrictions
on the lite version.

You’ll find Game Maker in the Demos folder on the companion DVD. You can
also get it from the Web site www.yoyogames.com.

INSTALLATION

Game Maker is easy to install.

1. Put the companion DVD in your DVD drive.
2. In Windows Explorer or My Computer, open the Demos folder.
3. In the Demos folder, run gmaker.exe. This starts the installation process. You

will see a screen similar to Figure 6.1.

FIGURE 6.1 The Game Maker Welcome dialog.

4. Click Next to display the Information screen. This provides useful informa-
tion about the product, what type of computer it should be installed on, and
where to get more information if required.

ON THE DVD

ON THE DVD

www.yoyogames.com

Chapter 6 Introduction to Game Maker 107

5. Click Next to display the license agreement (Figure 6.2). Be sure to read it
before proceeding.

FIGURE 6.2 The Game Maker License Agreement screen.

6. Ensure the “I agree to the above terms and conditions” radio button is
selected, and then click Next.

7. You will now see the Directory dialog box. This shows where the default
installation of the program occurs (Figure 6.3).

FIGURE 6.3 Default installation path of Game Maker.

108 Awesome Game Creation: No Programming Required

8. Click Next to accept the default installation path, or click the … button to
change the path. In this example, the default path is fine, so click Next to
continue.

9. If the folder does not exist on your computer, a message box will appear. Click
Yes.

10. You will now see a confirmation dialog box, which is ready to install the
product onto your computer, as shown in Figure 6.4. If you are happy with
the details, click Start; if you want to change the details, click back. In this
example, click Start.

FIGURE 6.4 The Confirmation dialog.

11. Files will begin to be copied across, and once complete, the Installation –
End dialog box will appear.

12. In this final dialog, you can click on the View Readme dialog to display an
information page with details about the product and where to obtain help. If
you click Exit, it will launch the Game Maker program automatically be-
cause the Launch Game Maker 7.0 box is ticked. For now, you don’t want
to launch it, so untick the box, and click Exit.

Notice that there is a new desktop icon for the Game Maker program, and it also
appears in the Start All Programs | Game Maker 7 menu. You can see the desktop
icon in Figure 6.5.

Chapter 6 Introduction to Game Maker 109

SYSTEM REQUIREMENTS

Before you begin learning the Game Maker program, it is important to know the
system requirements for the program, to ensure your kit setup is optimized for run-
ning the program.

• Pentium PC or higher
• Windows ME, 2000, XP or Vista (or higher)
• 10 MB of hard disk space
• 65000 colors (16-bit)
• 800 × 600 screen resolution
• 32 MB 3D graphics card (DX compatible 8.0)
• Sound card

GAME MAKER INTERFACE

Start Game Maker by double left-clicking on the icon on the desktop, as shown in
Figure 6.5. A dialog box appears, telling you the current version and the advantages
of using the professional version (Figure 6.6).

FIGURE 6.5 Game Maker desktop icon.

FIGURE 6.6 The starting dialog for the Game Maker program.

On the left side of the dialog box are a number of options:

Purchase Online: This will take you to a page to purchase the upgrade serial
code.

Enter Activation Code: After purchasing your license, you will receive an ac-
tivation code. You will need to select this item and fill in the relevant details
before you can start to use all the features in the program.

Go to Upgrade Webpage: This takes you to a Web page, which will provide
you with further purchasing details and help. You will need to register on
the YoYo Games site before you are able to see this information.

Don’t Upgrade Now: This allows you to continue to use the lite version.

Click Don’t Upgrade Now to start the program.
Game Maker is very easy to work with because everything has been designed with

simplicity in mind. In Figure 6.7, you can see the various elements that make up the
Game Maker Integrated Development Environment (IDE).

110 Awesome Game Creation: No Programming Required

FIGURE 6.7 The Game Maker interface.

RESOURCE EXPLORER

In the upper left is the Resource Explorer. This displays the various resources that
can make up a game project: Sprites, Sounds, Backgrounds, Scripts, Objects, and

Chapter 6 Introduction to Game Maker 111

Rooms. Along with the resources, you’ll see Game Information and Game Options.
You’ll also see a standard type of menu and toolbar at the top of the screen.

The Resource Explorer gives a tree-like view of all the resources in your game.
Here’s how it works:

1. To open a resource, right-click it.
2. If a resource has a + next to it, you can click the + to expand the tree view

and see the resources inside it.
3. If a resource has a – next to it, you can click the – to collapse the tree view

and hide the resources inside it.

Figure 6.8 shows resources with the + sign. You can click the + to expand the
view of these resources. Figure 6.9 shows the Resource Explorer after the user clicks
on the + sign for Sprites.

You will only be able to expand the folders when there is content in them. This is either con-
tent you created, or if you have just loaded a file that contains sprites, for example.

FIGURE 6.8 The unexpanded Resource Explorer.

FIGURE 6.9 The Resource Explorer with items expanded.

MENUS AND TOOLBAR

The menus and toolbar appear at the top of the IDE. The following sections explain
what you’ll find there.

File Menu

The File menu includes the usual options.

New: Creates a new game project.
Open: Opens an existing game file.
Save: Saves an existing project with its current name. The first time you save a

project, it will prompt you for a name.
Save As: Saves a project, but prompts you for a name first.
Create Executable: Creates a standalone game that can be run like any standard

Windows program.
Publish Your Game: Connects to the Yoyo Games Web site so you can upload

your finished version to the Web.
Merge Game: Allows you to combine a number of games, so you can get access

to all its resources.
Advanced Mode: Shows all available resource and menu options. This is use-

ful if you want to make the interface less cluttered and easier to use.
Preferences: Lets you set various preferences for Game Maker.
Exit: Exits the program.

Figure 6.10 shows the File menu options.

112 Awesome Game Creation: No Programming Required

FIGURE 6.10 File menu options.

Chapter 6 Introduction to Game Maker 113

Edit Menu

The Edit menu contains commands that affect a currently selected resource, such as a
sprite, object, or room. The commands available depend on the currently selected item.

Create resource: Lets you create a selected resource in the selected resource
group.

Duplicate: Makes a copy of the current resource and adds it after the currently
selected item.

Create group: If resources are combined, they are called a group. Adds a group
into the project.

Delete: Deletes the current resource.
Rename: Lets you rename the current resource.
Properties: Lets you edit the properties of the current resource.
Find Resource: You can search for a particular resource. This is useful if your

game contains many resources.
Expand Resource Tree: You can do this by clicking on the + sign, or using this

menu option. It will open the folder and display its contents.
Collapse Resource Tree: You can do this by clicking on the – sign, or using

this menu option. It will collapse the folder and hide its contents.
Show Object Information: This will display information for the selected re-

source. This will include its movement, if it’s a sprite, etc.

Figure 6.11 shows the Edit menu options.

FIGURE 6.11 Edit menu options.

Resources Menu

The Resource menu lets you add resources to your game. You can add a new resource
of any type from this menu.

Create Sprite: Create a sprite object.
Create Sound: Add a sound to your resources.
Create Background: Add or create a background image to your games.
Create Path: You might want to create a path for your enemies to follow.
Create Script: Explanation in sentence case with no end punctuation.
Create Font: Add a font to your creation. You will need to specify the font’s

size and type.
Create Time Line: If you want to create some actions at a particular moment,

you can use the Time Line.
Create Object: Create an object with specific events and actions.
Create Room: A room can be thought of as a level in your game.
Change Game Information: Contains information about your game, which

the user will be able to see.
Change Global Game Settings: This will change settings that apply to the

whole game, including screen resolution and author information. Some op-
tions are only available in the Pro version.

Select Extension Packages: Only available in the Pro version. Allows the user
to add more functionality to Game Maker.

Figure 6.12 shows the Resources menu options.

114 Awesome Game Creation: No Programming Required

FIGURE 6.12 Resources menu options.

Chapter 6 Introduction to Game Maker 115

Scripts Menu

The Scripts menu option allows you to import code from an outside file. Scripts are
small pieces of program code used for advanced features. They are not covered in
this book.

Figure 6.13 shows the Scripts menu options.

FIGURE 6.13 Scripts menu options.

Run Menu

You will use the Run menu option to test your creations.

Run Normally: This will run the game normally as if a user was playing it.
Run in Debug Mode: This is a special mode, and allows you to access infor-

mation about the game, pause it, etc. This is good for testing your game and
finding any bugs.

Figure 6.14 shows the Run menu options.

FIGURE 6.14 Run menu options.

Window Menu

The Window menu contains the usual commands to manage the different windows.

Cascade: Displays all windows so they are partially visible.
Arrange Icons: Arranges all the windows when they are minimized as icons.
Close All: Closes all open windows.

Figure 6.15 shows the Window menu options.

116 Awesome Game Creation: No Programming Required

FIGURE 6.15 Window
menu options.

Help Menu

The Help menu lets you access the help information for Game Maker. The options
are self-explanatory (Figure 6.16).

FIGURE 6.16 Help menu options.

CHAPTER SUMMARY

This chapter walked you through the installation of Game Maker and looked at some
of the basics of the IDE. In the next chapter, you’ll look at Game Maker in more
detail, and create your first game.

C H A P T E R

7 YOUR FIRST GAME
MAKER PROJECT

117

In This Chapter

• Game Maker Basics
• Creating a Simple Program
• Save and Run

118 Awesome Game Creation: No Programming Required

Before you start using Game Maker, you need to learn about a few of the ideas
behind the program, which will help tremendously when you create a game.

GAME MAKER BASICS

Games created with Game Maker take place in one or more rooms, which correspond
to the levels you see in a game. For instance, a Racing Car type of game would have
a room with a road, player-controlled car, and the computer-controlled cars (see
Figure 7.1 for an example). Game Maker is only 2D, so the rooms are flat. However,
you can give a 3D appearance to a room by designing the graphics appropriately.

FIGURE 7.1 A room for the racing car game included with Game Maker 7.0.

Objects

All rooms contain objects, which include anything used in the room. For instance,
the objects in the previously mentioned racing car game would include items play-

Chapter 7 Your First Game Maker Project 119

ers control, such as the car; stationery objects, such as a health meter; and computer-
controlled objects, such as the other cars.

Sprites

For objects to appear on the screen, they must have an associated image. In Game
Maker, you’ll use sprites for this purpose. Sprites generally are composed of many
separate images. Figure 7.2 is an example of a sprite made up of several sprites.

FIGURE 7.2 Sprites made up of several images.

Events

As sprites move around the room, things happen to them. For example, they can
collide with walls and other objects. These encounters are called events. Events also
include user actions, such as when a player clicks on an object. These events allow
us to create games in Game Maker.

When an event occurs, you as the developer can establish what happens. For in-
stance, if two objects collide, you can make them rebound. You can also create an
object for which you can set its speed and direction, or even have it play music.

120 Awesome Game Creation: No Programming Required

CREATING A SIMPLE PROGRAM

You’ll now create a simple program that will show you some of the elements in-
volved in creating a game for Game Maker. Start Game Maker. You’ll see a screen
like the one in Figure 7.3.

The program you’ll create in this chapter is available on the companion DVD. Find the
first.gmk file in the GMFILES\Game 1 folder. You can open it and look through it, or follow
along by creating the project yourself.

FIGURE 7.3 Game Maker displays an empty project when it first opens.

Next, you’ll create the objects that will make up your project. Here’s how.

1. Right-click on Sprites in the Resource Explorer. You’ll see a menu like the
one in Figure 7.4.

ON THE DVD

Chapter 7 Your First Game Maker Project 121

2. Select Create Sprite from the menu. You’ll see the Sprite Properties window,
which looks like Figure 7.5.

3. Click the Load Sprite button. You’ll see an Open dialog box, as shown in
Figure 7.6.

4. From this window, choose the GMFILES\Game 1\Player ship folder. Select
playership_10.png from the list of files. This will display the file in the Sprite
Properties window. Click OK to close the window.

5. Right-click the Objects resource, and then choose Create Object from the
pop-up menu. This displays the Object Properties window (Figure 7.7).

6. Click the <no sprite> button beneath the Object Properties window label.
This lets you select a sprite for the object, so you can use it in the project.

7. Select <sprite0> in the pop-up menu that appears.

If you delete a sprite and then create a new one, the number system will increment by one.
For example, if you open Game Maker, create a sprite, and then delete it, the next sprite you
create will be sprite1.

FIGURE 7.4 Right-clicking a resource allows you to add it to the project.

ON THE DVD

122 Awesome Game Creation: No Programming Required

FIGURE 7.5 The Sprite Properties window allows you to create or alter a sprite.

FIGURE 7.6 This box allows you to select the sprite you need for your project.

Chapter 7 Your First Game Maker Project 123

8. In the Object Properties window, click Add Event. This will display the
Event Selector dialog box as shown in Figure 7.8. This allows you to program
an event. An event is when “something happens”; in this case, we want to
check when the player is pressing the left or right arrow keys.

FIGURE 7.7 The properties for the object.

FIGURE 7.8 The Event Selector.

9. Click Keyboard, and a selection of key presses will appear, as shown in
Figure 7.9.

124 Awesome Game Creation: No Programming Required

FIGURE 7.9 The different key
presses you can program.

10. Select the <Left> option.
11. Locate the toolbar at the far right. In the first row of the toolbar is an icon

with red arrows pointing in every direction. Drag this icon onto the window
immediately to its left. When you let go of the button, a dialog box will ap-
pear. Click on the left pointing arrow and type the speed as 8 (Figure 7.10).

12. Click OK, which will return you to the Object Properties window.
13. Do the same process again, but this time select the event of the <Right> key

press, and configure the movement to the right at a speed of 8.
14. We’ll now set the bounce action that will occur if the object attempts to

move outside the game area. Click Add Event, and then select Other | Inter-
sect Boundary.

15. Drag the object with red arrows pointing in all directions into the Actions
box to the left of it.

16. Click Square in the middle of the Move Fixed dialog and ensure the speed is
set to 0. Click OK.

17. Click OK again to close the Object Properties dialog box.

Now that you’ve created an object and given it properties, you’ll create a room
and put the spaceship object in it. Here’s how.

Chapter 7 Your First Game Maker Project 125

18. From the Resource Explorer (remember, it’s at the upper left), right-click on
Rooms and then select Create Room from the pop-up menu. You’ll see the
Room Properties window, as in Figure 7.11.

FIGURE 7.10 This window lets you give
an object a direction when the game
first opens.

FIGURE 7.11 The Room Properties window lets you set up a room for your project.

19. Now, you’ll set up the background for the room. Click Backgrounds. In the
new window, click Background Color and then choose a light-blue color.
Click Objects to return to the previous window.

20. At the bottom of the window, is an object selection box. Notice that the box
currently has Object0 selected, which is the object you created earlier. In
games with more objects, you will have to select the one you want as the
active object.

21. Click once at the bottom area of the grid to place the spaceship. If the space-
ship isn’t fully on the screen, right-click on the object you placed to delete it.
Keep trying until your spaceship is displayed similar to Figure 7.12.

22. Click the Green tick graphic to save your graphic to the room.

126 Awesome Game Creation: No Programming Required

FIGURE 7.12 Spaceship on the room grid.

SAVE AND RUN

Congratulations! You’ve finished your first Game Maker program! It’s a very simple
spaceship you can move left and right of the screen. You also coded it so it does not
disappear off screen. Although it’s a simple game, creating it taught you much more
about Game Maker—which will make future game development much easier.

Chapter 7 Your First Game Maker Project 127

It’s time to save and run the game. Here’s how.

1. On the File menu, choose Save. Give the file a name, and click Save. Game
Maker will automatically add the extension gmd to the name you choose.

2. On the toolbar, click the green triangle, below the Run menu item. Your game
will start running. You’ll see a screen like Figure 7.13.

FIGURE 7.13 Running the game.

CHAPTER SUMMARY

Now that you have successfully developed a simple program, you have a good basis
for future work. In this chapter, you learned about a variety of very important items,
such as the resources that make up a project (rooms and objects), and how to put
together a basic project. In the next chapter, you’ll create a space shooter using
Game Maker.

This page intentionally left blank

C H A P T E R

8 2D SPACE SHOOTER—
END OF THE EARTH

129

In This Chapter

• Setting Up the Game
• Programming Objects
• Adding Sound Using a Script
• Adding a Help File
• Creating an Executable File

130 Awesome Game Creation: No Programming Required

This chapter expands on what you learned when creating your first Game
Maker project in the previous chapter. Here, you’ll add quite a few additional
steps and create an exciting game:

• A menu screen
• A game screen
• A ship that fires bullets at a pre-determined time
• A space backdrop
• Two buttons that will allow navigation through the game
• The playing of music
• The creation of asteroids
• A scoring system
• A health and lives system

You can see an example of the final game in Figure 8.1.

FIGURE 8.1 The game you’ll create in this chapter.

The story behind the game:

The year is 2171 and Earth is on a collision course with a number of asteroids.
You have been dispatched as Earth’s last hope to destroy the asteroids and save
it from total destruction.

Can you save the planet in time?

The game is a simple asteroids type game, where you will fly a ship left and right
on the screen, trying to navigate past floating asteroids. You will be able to shoot,
but you have to time each shot perfectly, as you cannot shoot every second. The

Chapter 8 2D Space Shooter—End of the Earth 131

aim of the game is to destroy as many of the asteroids as you can before losing
three lives and ending the game.

The game is separated into two screens: the menu screen where you can select
to play the game or quit, and the screen where you play the game.

SETTING UP THE GAME

To begin, start the Game Maker software. This will create a new project automati-
cally, and should look something like Figure 8.2.

FIGURE 8.2 Upon opening, Game Maker automatically creates a new project.

Sprites

You won’t need to design any of the graphics used in this chapter, as they have been
made by a graphic artist for this particular game. This saves time and allows you to
concentrate on learning the product and how to make games. You will use a number
of sprites in this game, including the ice asteroids, the player’s ship, a bullet, an inter-
face bar, and other items.

Making the First Sprite

1. To add a sprite, click Create Sprite from the Resources menu as shown in
Figure 8.3. This opens the Sprite Properties menu, as shown in Figure 8.4.

132 Awesome Game Creation: No Programming Required

2. Click Load Sprite. An Open File dialog box will appear, as shown in Figure
8.5.

3. Navigate GMFILES\Game 2\items\icerock folder on the companion DVD.
This folder contains all the images for your ice asteroid. There are 48 images,
which allow for the object to be animated, and in the game, the ice asteroid
will rotate as it’s moving through space.

4. Click the icerock_01.png file, and then click Open. This will import the
graphic image into the Game Maker Sprite Properties window. You will
now see the ice asteroid as shown in Figure 8.6.

FIGURE 8.3 The Create Sprite option from the
Resources menu.

FIGURE 8.4 You’ll see the Sprite Properties window when you click Create Sprite.

ON THE DVD

Chapter 8 2D Space Shooter—End of the Earth 133

5. The ice asteroid contains 48 images to represent its spinning animation, and
currently you have only imported a single image. Click Edit Sprite to enter
the Sprite Editor as shown in Figure 8.7.

6. Click Add Sprite From File, which will display the Open dialog again. This
time, you will be able to select multiple images, so pick from icerock_02.png
to icerock_48.png. Single left-click on icerock_02.png, hold down the Shift
key, and click icerock_48.png.

FIGURE 8.5 An Open File dialog box allows you to add graphic images to your project.

FIGURE 8.6 The image in Game Maker.

7. Click Open, and after a couple of seconds, you will then see all the anima-
tions inserted into the Sprite Editor as shown in Figure 8.8.

8. To save these animations within the sprite, click the green tick icon.

134 Awesome Game Creation: No Programming Required

FIGURE 8.7 The Sprite Editor with your single sprite displayed in the dialog window.

FIGURE 8.8 All the animations for your ice asteroid now imported.

Chapter 8 2D Space Shooter—End of the Earth 135

9. You will now be back at the Sprite Properties window, and now it’s time to
change the name of the sprite (currently called sprite0) to something more
appropriate. Highlight the sprite0 text and type Ice_asteroid. Click OK to
close the Sprite dialog.

Making the Rest of the Sprites

You now need to insert a few more sprites. Figures 8.9 through 8.13 show the prop-
erties for each sprite so you can compare them when you import them. See Table 8.1
for more information on what you need to import.

Table 8.1 Sprites You Need to Import for Your Game

SPRITE NAME GRAPHIC FILE NAME AND LOCATION

Play_btn DVD\GMFILES\Game 2\buttons\buttonplay_1.png

Quit_btn DVD\GMFILES\Game 2\buttons\buttonquit.png

Player_ship DVD\GMFILES\Game 2\items\ship\shipcentral.png

Bullet DVD\GMFILES\Game 2\bullet\shot1_01.png

Lives DVD\GMFILES\Game 2\Lives\livesbutton.gif

FIGURE 8.9 The Play button properties and image.

To create the other sprites, use Table 8.1 as a reference. Follow the steps you used
earlier to create the ice asteroid and make the following changes where required:

• Create the sprites using the file location in Table 8.1.
• Rename each sprite entry to that in Table 8.1.
• For the Player_ship, you will need to import all three images; image 0 will be the

ship flying straight ahead, image 1 will be it flying to the left, and image 2 will
be it flying to the right.

ON THE DVD

• For the bullet, you only need to import one image, shot1_01. Notice that there
are many images for this object; you can if you want get an animated bullet, but
for this game it is not required.

There are more images for the game in the GMFILES\Game 2 folder for you to extend the
game if you feel like it.

136 Awesome Game Creation: No Programming Required

FIGURE 8.10 The Quit button properties and image.

FIGURE 8.11 The player’s ship properties and its animation frames.

Chapter 8 2D Space Shooter—End of the Earth 137

After completing all the imports, you will be able to see the list of items in the
left-hand windowpane of Game Maker. This list of items should match up with Fig-
ure 8.14; if it does not, go back, and make sure you imported all the images.

Sounds

It’s now time to add the music that will play in the game. The game consists of two
screens (called rooms in Game Maker); the first where the player clicks a button to
start the game, and the second is the game.

FIGURE 8.12 The bullet properties and image.

FIGURE 8.13 The lives properties and image.

Music will play in both rooms.

The music file in this game is from The Games Factory 2 library of files. Many thanks to Click-
team for this resource.

You could add more sounds to the game if you wish to expand it further.

1. Choose Create Sound from the Resources menu, as shown in Figure 8.15.

138 Awesome Game Creation: No Programming Required

FIGURE 8.14 All the sprites imported
into Game Maker.

FIGURE 8.15 The Create Sound option from the
Resources menu.

Chapter 8 2D Space Shooter—End of the Earth 139

2. In the window that appears, click the “Load sound” button. This displays an
Open dialog box that lets you choose a sound file for the music you will play.

3. Select the path DVD\GMFILES\Game 2\Music, select the Lastday.wav file,
and click Open.

4. The music file will now load as shown in Figure 8.16. You can click on the
green arrow button to play the music and listen to it to check the file.

FIGURE 8.16 The Sound
Properties dialog with
the wav file loaded.

5. Rename the sound element to “Music.”
6. Click OK to close the dialog.

Backgrounds

Now you need to add two backgrounds, the first for the main menu and the second
for the background image for the game.

1. Choose Create Background from the Resources menu.
2. In the Background Properties dialog as shown in Figure 8.17, click the “Load

background” button.
3. The Open dialog box will appear, browse to the location DVD\GMFILES\

Game 2\Backgrounds, select Background1.png, and click Open. Change the
name of the object to “Main_Menu,” and then click OK to close the Properties
dialog.

ON THE DVD

ON THE DVD

4. Follow the same process for the second background image you need to import.
You’ll find it in the same folder; the name is “Background2.png” and should
appear as “Game_Screen” in the Properties window.

Creating Objects

Now that you have your sprites and background, you need to turn your sprites into
objects, with which Game Maker can then interact. This creates many possibilities,
including making objects move (either on their own or using the mouse or key-
board), or you can test for collisions or many other different options.

1. Choose the Create Object option from the Resources menu option. This
brings up an Object Properties window that looks like Figure 8.18.

140 Awesome Game Creation: No Programming Required

FIGURE 8.17 The Background Properties dialog.

FIGURE 8.18 The Object Properties window.

Chapter 8 2D Space Shooter—End of the Earth 141

2. Notice that the object’s current name is object0, and under sprite it is <no
sprite>. You will add the play button as an object, so enter the name Press_
Play; under sprite, click on the drop-down box and select the Play_btn sprite
as shown in Figure 8.19.

FIGURE 8.19 The Object Properties window with sprite selection enabled.

3. You’ll come back into the Object Properties dialog to program your objects,
but for now, click OK.

4. What you just did is assign an object called Press_Play to the sprite Play_btn,
so you will be able to program this object and it will directly affect the selected
sprite within the game.

You now need to do the same process for the rest of the sprites, and add two ob-
jects that won’t have sprites assigned to them. See Table 8.2 for details of the addi-
tional items to add in the object section.

Table 8.2 Additional Objects to Add to Game Maker

NAME SPRITE

Press_Quit Quit_btn

Ice Ice_asteroid

Player Player_shup

Bullets Bullets

Health <no sprite>

Lives <no sprite>

Your Game Maker windowpane will now look like Figure 8.20.

142 Awesome Game Creation: No Programming Required

FIGURE 8.20 The current
state of the left-hand pane
in Game Maker.

Rooms

You will place your sprites/objects in rooms, where you will set out your game
graphically. For this game, you need two rooms—Main and Game. This gives you a
description of what each of the two rooms is going to be doing. In a bigger game,
you could call them by level names or number them.

1. Select Create Room from the Resources menu option.
2. A blank room will now appear on screen, in a grid, as shown in Figure 8.21.
3. By default, each room is named Room, and a number will be put on the

end. The first room you will create will be Room0, then Room1, and so on.
Create the two rooms, and ensure you are on Room0.

4. Now, change the names of both rooms to the more appropriate names,
Main and Game. Click on the Settings tab for Room0 and change the name
to Main.

5. While on this tab, you also need to change the screen size to 800 × 600.
Type 800 in the width, and 600 in the height section. The grid will resize
automatically.

6. You can see these changes in Figure 8.22.

Chapter 8 2D Space Shooter—End of the Earth 143

FIGURE 8.21 Blank room in Game Maker.

FIGURE 8.22 The Settings tab for Room0.

7. Click on the green tick to save the room details and then make the name
change to “Room1” to Game and change its screen size to 800 × 600.

8. You now have your two rooms, but you have no items on the screen. So, it’s
time to place the images that will make up the scene, and the other objects
that handle health and lives.

9. Make sure the Main room is currently displayed, and then click on the
Backgrounds tab.

10. You will notice there is a box that reads <no background>; this is where you
can select the objects that are stored in the program for the backgrounds
you added earlier.

11. On the Main room, you need to drop the background first and then the two
buttons, so click on the drop-down box, and select Main_Menu. This will
automatically place this object on the screen as shown in Figure 8.23.

144 Awesome Game Creation: No Programming Required

FIGURE 8.23 The Main_Menu background selected and displayed in the Room Main.

In Figure 8.23, the grid option for the actual picture for the book is turned off so it looks good
in print. Although you don’t need the grid for the background image that covers the whole
room area, you would use the grid for placing the other objects, as it allows for more accurate
placement of those objects. The grid is a large number of small boxes across the whole room.
If you wish to turn it off and on, you can use the “Toggle the showing of the grid” option in
the menu bar.

Chapter 8 2D Space Shooter—End of the Earth 145

12. You now need to add the two buttons in a specific location, so click on the
Objects tab. At the bottom left of the Objects tab you will see a drop-down
menu and some instructions on how to place an object onscreen. Click on
the drop-down and select the Press_Play object.

13. This object will appear on the top of the objects frame ready for you to place
on the room. Left-click anywhere on the room to add the object.

14. You can now carefully place the object. Hold down the Ctrl key and left-
click on the room; this will allow precise movement of the object. Place it
over the “Play” text.

15. Now select the drop-down box again and choose Press_Quit. Again, left-
click on the Room, and then use the Ctrl key to place it over the “Quit” text.

16. Left-click on the green arrow to save the information.
17. You now need to place the background and the objects for the Game room.
18. Double left-click on the Game room in the left-hand windowpane.
19. The blank room will now appear.
20. Click on the Backgrounds tab, and then from the drop-down menu (where

it says “<no background>”), select Game_Screen.
21. Click on the Objects tab.
22. Now you’ll place five ice asteroids on the screen, so click on the drop-down

box and select Ice. Then, place the objects at random positions on the screen
(see Figure 8.24 for an idea of where you should place them). Remember, you
may need to hold down the Ctrl key to move the items into a better position.

FIGURE 8.24 The Ice objects spread around the Game room.

23. Now you need to place the space ship, so click on the drop-down box, select
Player, and then single left-click on the room. Use Ctrl and the mouse to
position it at the bottom center of the screen, just above the interface bar as
shown in Figure 8.25.

146 Awesome Game Creation: No Programming Required

FIGURE 8.25 The placement of the player’s ship in the room.

24. There are two items left to add to the room, and these are placeholder items:
the Health and Lives items. You will drawn these within the eventing, as
they require special treatment; for example, reducing the health bar and re-
moving lives is covered within the event system.

25. From the drop-down box, select Health, and then place this on the left-hand
side of the control panel, in the location X160 and Y576. This will appear as
a blue circle and a question mark.

26. From the drop-down box, select Lives, and then place this on the right-hand
side of the control panel, in the location X544, Y576. Your interface bar will
now look like Figure 8.26.

FIGURE 8.26 The interface bar with the health and lives markers.

Chapter 8 2D Space Shooter—End of the Earth 147

You have now placed all the room objects and can move on to creating the
events to your game so it is playable.

PROGRAMMING OBJECTS

Now that all the resources are in place, you need to tell Game Maker what to do with
it all; otherwise, nothing will happen. You do this by going back into the objects and
applying events and actions that will detail what is “happening,” and then “what to
do about it.” For example, an event might be “User presses a key” and the action
would be “Move left.”

When creating your events, it is easier if you start on a particular room and then
work through them. If you become stuck on the events and actions for a certain
room, you can move on to the next and come back to it later.

Navigation Buttons

The first task is to program the events for the Main room, which has two buttons:
play and quit. When the player clicks on one of the buttons it will either jump to the
Game room or quit the application. You also need to consider a couple of other
events; for example, you want the button to animate when the player moves the
mouse over it, as this shows the player that it is clickable.

The Play Button in the Menu Room

The first event you’ll create is when the player presses the left mouse button on the
play graphic; the action will be to go to the next room

1. Double left-click on the Press_Play object to access the Properties sheet.
2. Click the Add Event button; this will display the Event Options box.
3. In the Event Selector dialog, select Mouse | Left button. You will now see

the single event. The action will be to move to another room, so you need to
access the Room actions, which are stored under the Main1 tab. Ensure you
are in the Main1 tab, and then you will see a set of six buttons under the
Rooms heading. You need the icon second from the left, which shows an
arrow pointing to the right—this represents moving forward a frame. If you
hold your mouse over the icon, a small text tip help will appear telling you
what it is.

4. Left-click, hold down the left mouse button, drag the Next Room icon, and
drop it onto the blank actions area.

5. A Next Room dialog box appears, which has a drop-down box for a transi-
tion. This means you can add a special effect that will help the movement
from one room to another. Click on the drop-down box and select “Fade out
and in” as shown in Figure 8.27.

6. Click OK to save the action to the event.
7. If you run the program, you will find that you can click on the play button

and it will move to the next screen. Now, create two events that handle the
animation of the button. To do this, you need an event that will check if the
mouse cursor is over the play button, and when it is not. You need two
checks because there are two states to the button—on and off—and by
checking when the mouse isn’t over the button, you can turn the effect off.
First, you’ll add the event for when the mouse moves over the play button.

8. Click on the Add Event button, and select Mouse from the Event Selector.
Then, select Mouse Enter from the pop-up menu.

9. As you are working on a new event, the actions box will now be blank,
ready for you to program it.

10. Within Game Maker are a number of key variables you can set on and off,
and they will directly affect what happens in your game. One of those vari-
ables is “visible”; when it is true, an object will appear, and when it is set to
false, it will be invisible. For the two events you are adding, you will use both
to hide and show the button. Setting the variable in the action is a powerful
way to handle certain actions that are not covered by the drag-and-drop
event system.

148 Awesome Game Creation: No Programming Required

FIGURE 8.27 The Next Room Properties box with a transition applied.

Chapter 8 2D Space Shooter—End of the Earth 149

There are a number of pre-defined variables available in Game Maker; consult the help doc-
umentation for more information.

11. The Variables options are available in the Control tab; click on it and you
will see three possible options. You need to select the square with VAR in it;
this is the Set Variable option.

12. The Set Variable dialog box will appear.
13. Type in the variable name “visible” and the value as false as shown in Figure

8.28. Click OK. Setting it to false will make the button visible when it is over
the button area.

FIGURE 8.28 The Set Variable dialog box.

14. Using the same process, you need to add an event for the mouse leaving the
play button and set its visible variable to true.

15. Click on the Add Event button, and select Mouse | Mouse Leave. Then, en-
sure you select the Control tab, and drag and drop the Set Variable into the
Action windowpane.

16. Type the variable name “visible” and set its value to “true.” Click OK to save.
17. Test it now and you will see how it appears and disappears as you move the

mouse over it, and away from it.

The Quit Button in the Menu Room

You now need to do a similar process for the Quit button, but rather than move to
the next room, we need to quit the application.

1. If the Object Properties for Press_Play is still open, click OK to close it.
2. Double left-click the Press_Quit button in the Objects folder.

3. Click the Add Event button, and select “Mouse | Left button” in the Event
selector and pop-up menu.

4. Click on the Main2 tab, and then drag and drop the End Game button (the
second object under the game heading).

5. Click on Add Event, and select Mouse | Mouse Enter. Go to the Control tab,
drag the Set Variable item, type in the variable name “visible,” and then set
its value to “false.” Click OK.

6. Click on Add Event, and then select Mouse | Mouse Leave. Go to the Con-
trol tab, drag the Set Variable item, type in the variable name “visible,” and
set its value to “true.” Click OK.

7. Click OK to close the Object Properties window.

Spaceship Events

Now you have the game moving from the main menu to the game level, so you can
start to program the elements that make up your game. If you run the game now,
you will notice you cannot move the spaceship, and both the ship and the ice aster-
oids are acting very strange (they are moving very quickly on the spot). This is
because the program is automatically looping the animations at a default speed;
once you begin to program the events to handle the movement, it will play correctly.
As you are going to program the movement of the spaceship, you can also create the
events and actions for the other things the spaceship will be involved in:

• Setting up the correct animations
• Setting up a variable to handle the weapon
• Collision with the ice asteroids
• Controlling its movement using the left and right arrow keys
• Pressing the space bar to fire the weapon
• Checking the ship’s health
• Checking if the ship is trying to leave the screen
• What to do at the start of the room

On Ship Creation

First, you need to create an event that will run some actions at the very start of the
ship’s creation. This means that before the game starts, you can set up certain aspects
of the object upon loading. The first is to set the sprite to a certain animation frame;
in this case, we want it of the ship facing forward.

1. Double left-click on the Player object; the Object Properties window will
appear.

2. Click on the Add Event button and then select the Create button.
3. You have your event, so now you need to add the action. You need to access

the sprite object, so click on the Main1 tab, and then drag the first object
under the sprite heading (looks like a red PacMan type character). The
object is called “change sprite.”

150 Awesome Game Creation: No Programming Required

Chapter 8 2D Space Shooter—End of the Earth 151

4. A Change Sprite dialog box will appear. The first item is the sprite this is as-
sociated to; at the moment, this is “No sprite,” so you need to change this to
the Player_ship sprite. The subimage is the image you want to display. If you
remember, there were three animation frames for the ship: 0 for the forward
facing image, 1 for moving left, and 2 for moving right. So, you can leave
this as 0, and change the speed of the object to 0, as it won’t be moving at
the start of its creation. The dialog should now look like Figure 8.29.

FIGURE 8.29 The Change Sprite dialog
configuration.

You need to create another action as part of the “Create” event. This next action
may not make much sense on its own, but when combined with some actions and
events from other objects it should all become clear. You need to set up a variable
called “gunshot” that will handle the frequency of the bullets fired from the ship’s
guns. You could just create a simple event that when the player presses the space
bar, the gun is fired. However, doing this makes the ship fire many bullets very
quickly, which makes the game too easy to play. Therefore, to make it harder and
give the player more of a challenge you will create an interval, so the gun fires
slower. For this, you are going to need a variable to keep track of a number; when
this number is set to 1, the gun will be able to fire, and when it is set to 0, it won’t.
For now, you just need to say that at the very start of its creation the gun will be able
to be fired; later in the player events, you will handle what to do with the variable.

5. Still under the Create event for the Player object, click the Control tab, and
then drag and drop the Set Variable object onto the action area (the Set
Variable object is the first button under the Variables heading).

6. When the Set Variable dialog box appears, type “gunshot” in the variable
box, enter 1 in the value box, and then click OK. Your event and action
should appear as shown in Figure 8.30.

Room Start

Very similar to the Create event, the room start will configure the selected object
when the room is first encountered. You would use the room start to configure
particular variables and settings; in this case, you will be setting the health and the
lives to the correct level. The lives will be set to 3 and the health to 100.

Setting the Health

1. Click on Add Event, and then select “Other | Room start.”
2. Click on the Score tab, and then drag and drop the Set Health object to the

action box (the Set Health object is the first icon under the Health heading).
3. A dialog box will appear; enter the number 100, and click OK.

Setting the Lives

1. Still on the “Room start” event and the Score tab, drag and drop the Set
Lives object to the action box. The Set Lives object is the first object under
the Lives heading.

2. A dialog box will appear; type in the number of lives, which in this case is 3,
and then click OK.

3. Your event and its actions will look like Figure 8.31.

Spaceship Movement

Now it’s time to program the events so you can control the movement of the space-
ship to the left and right. You also need to add a movement event that checks for no
movement. When making your own game, you can spot possible problems if you

152 Awesome Game Creation: No Programming Required

FIGURE 8.30 The Create event and its actions for the player object.

Chapter 8 2D Space Shooter—End of the Earth 153

think logically about what you are doing. In the next set of events you will check for
the pressing of the left mouse button and then change the left animation. You will
also check for the pressing of the right mouse button and play the right animation.
That will work fine, but because the program does as it is told, it won’t set the ani-
mation back to forward pointing once you press the left or right arrow keys. There-
fore, when you run the game you will notice that after you have pressed left or
right, if you remove your fingers from the keyboard, the ship will be pointing in one
of those directions, which will not appear correct. Notice that when you take your
fingers off the arrow keys, the ship continues to move in the direction in which you
directed it. This means we need to add a third event to take into account when there
is no button being pressed, where we will set the animation to forward facing and
stop the ship from moving. These kinds of playability issues become much clearer
when you begin to test your game and are not a big problem on the whole. You pro-
gram your basic engine and the movements, test it, and tweak it where necessary.

Left Movement of the Spaceship

Start with moving the space ship to the left.

1. Click on the Add Event button and then choose Key Press | <Left>.
2. The first action is to move the object to the left at a particular speed, so en-

sure that the Move tab is selected and then drag and drop the Move Fixed
object onto the blank action area. The Move Fixed object is the first icon
under the Move heading.

3. The Move Fixed dialog box will then appear. Click on the left arrow in the
directions section and change the speed to 8. It will now be configured as
shown in Figure 8.32.

FIGURE 8.31 Setting up the lives and score.

In your own games you may have to enter different speeds to see which number best suits
your game. It may involve some trial and error, but it is very easy to test and see if it is ap-
propriate to the type of game you are making.

4. Click on the OK button in the Move Fixed dialog.

You now need to tell the program to play the left animation of the ship so it tilts
to the left when the player presses the left arrow. This is very similar to the code that
you used when you set the animation to forward when you created the Create
event.

1. Click on the Main1 tab and then drag and drop the Change Sprite object (re-
member, this is the first icon in the sprite section).

2. In the dialog box, click on the drop-down box and pick Player_ship. Then
type in the number 1 for the subimage (0 is forward facing, 1 is left, and 2 is
right) and replace the speed option with 0. Click OK to save the action. Your
event and action will look like Figure 8.33.

154 Awesome Game Creation: No Programming Required

FIGURE 8.32 The configured Move Fixed dialog.

Chapter 8 2D Space Shooter—End of the Earth 155

If you run the program now and then press the left arrow key, the ship will go
flying off to the left and leave the screen. This is working, but obviously you still
have work to do to make it a perfect game.

Right Movement of the Spaceship

Now you need to do a very similar process, but for the movement to the right:

1. Click on the Add Event button and then choose Key Press | <Right>.
2. Ensure that the Move tab is selected and drag and drop the Move Fixed

object onto the action area (the Move Fixed object is the first icon under the
Move heading).

3. The Move Fixed dialog box will appear. Click on the right arrow in the direc-
tions section and change the speed to 8. It will now be configured as shown
in Figure 8.34.

4. Click on the Main1 tab and then drag and drop the Change Sprite object.
5. In the dialog box, click on the drop-down box and select Player_ship. Then

type in the number 2 for the subimage option and then set speed to 0. Click
OK to save the action. Your event and action will look like Figure 8.35.

If you run the game now, you can make the ship move to the left and to the
right.

No Movement of the Spaceship

To make the game work correctly, you need to stop the movement of the ship and
place its animation state into looking forward when the player takes his fingers off
the left or right arrow key. For this we can use the No Key event.

FIGURE 8.33 The left button actions.

1. Click on the Add Event button, and select Keyboard | <no key>.
2. Select the Move tab and drag the Move Fixed icon to the actions box.
3. Ensure that the square box in the middle of the directions is selected. This

represents no movement, and if you don’t change this, the ship will con-
tinue to move even when no key is being pressed. Leave the speed as 0 and
click OK.

4. Now, to change the sprite to forward facing, click on the Main1 tab and drag
the Change Sprite option. When the dialog box appears, change the sprite to
Player_ship. The subimage should stay at 0, and the speed should be set to 0.

156 Awesome Game Creation: No Programming Required

FIGURE 8.34 The movement setting to the right.

FIGURE 8.35 The events for the right action.

Chapter 8 2D Space Shooter—End of the Earth 157

5. Click OK.
6. Run the game now and test that you can move the ship to the left and the

right and that when you are not pressing any of the arrow keys, the ship
moves back to the forward position and does not move on the screen.

Stopping the Ship from Leaving the Screen

In many games you will want to stop a character or spaceship from leaving the
screen. At the moment you can move the spaceship to the left- or right-hand side of
the screen and make it disappear out of the window. Though you can still bring it
back by using the opposite key, you should, where possible, stop the player from
doing things that are not supposed to happen. Even though you could let the player
move the ship off the screen, it detracts from the overall polish of the game and is
very quick to prevent.

To stop the player’s ship from leaving the screen, you can call upon an event
that will check if the ship is about to leave the edge of the screen and then apply a
stop movement to it.

1. Still within the Player_ship Properties dialog, click Add Event. Then choose
Other | Intersect boundary.

2. Drag and drop the Move Fixed object from the Move tab onto the actions
box.

3. Click the center square box, leave the speed at 0, and click OK. You can see
the event and action in Figure 8.36.

FIGURE 8.36 The intersect boundary and its action.

Ship Collision with Ice Asteroids

You need to check for the spaceship being hit by the asteroids so that you can reduce
the amount of health that is left. To do this you can use the collision option. This will
check if the object has collided with a specified object, which in this case is the aster-
oids. When an asteroid hits the ship, subtract 20 points off the health score.

1. Still on the Player_ship Object Properties, click Add Event and then select
Collision | Ice so that event will run the action whenever the player’s ship
hits (collides with) an ice asteroid.

2. Click on the Score tab. Drag and drop the Set health option to the action
box. Type “-20” into the box (without the quotation marks) and then click
the relative button before clicking OK.

If you do not click the relative checkbox, when the program collides with an asteroid, it will
set the health to –20 rather than 20 off the total.

No More Health

You have told the program to reduce the health by 20 every time the ship is hit by
an asteroid, and though you haven’t programmed the asteroid’s movement yet, you
can see that you need to create an event and actions to reset the lives and health.
When there is no health left, youwould need to reduce the lives by 1 and reset the
health back to 100.

First, create the event: On the Player_ship Object Properties window click Add
Event. Then click Other | no more health.

Removing a Life

The first action to create under this event is to remove a single life. Later on, you will
program what happens when there are no lives left, but for now you need to create
the conditions that will continue to reduce the lives every time there is no health
left.

1. Ensure that the Score tab is selected and then drag and drop the Set lives
icon to the action box (first icon under the lives heading).

2. In the dialog box that appears, type in “–1.” Very much like the configura-
tion with the setting of the health, you need to click the relative box. Ensure
it is selected and then click OK.

Resetting the Health Back to 100

Once you have removed a life, you need to set the health back to 100 so that the
process can start all over again. If you do not set it back to 100, then when the ship
is hit, nothing else will happen.

158 Awesome Game Creation: No Programming Required

Chapter 8 2D Space Shooter—End of the Earth 159

1. Ensure that the Score tab is selected and then drag and drop the Set health
icon to the action box.

2. In the dialog box that appears, type in “100” and then click OK.

You can see the event and its actions in Figure 8.37.

FIGURE 8.37 The lives and health actions for the collision event.

Firing the Gun

You now need to set up the event and actions for firing the gun, which is controlled
by pressing the spacebar. You can create a single action event for this process, but
the gun will fire many bullets quickly. You want to restrict the firing of the gun to
make the game a little harder for the player so that all asteroids are not destroyed
before they even get close to the spaceship. You may need to consider fine-tuning
your game in these ways so that the player doesn’t have an unfair advantage; other-
wise, the game might be too easy and the player will get bored of it very quickly.

The actions for this process are slightly more complex than some of the previous
code we have completed, as we are going to create a code block. A code block allows
you to create an additional check within the actions and only run the code if that
action is true. You have already set up a variable called gunshot. You may remember
creating this variable in the Create event earlier on. Check to see if this equals 1, run
the code that fires a bullet, and then create a timer to prevent the gun from firing
until the timer has completed.

Start by creating the event:

1. First you need to check for the spacebar being pressed. Click Add Event and
select Keyboard | <Space>.

2. Now, create the code that will check to see if the gunshot variable is set to 1.
In the Create event at the very start of the game it will be set to 1, which
means the player will be able to press the spacebar once and fire the gun.
Once the player has fired the gun, the variable is set to 0 until a predeter-
mined time has passed and the counter is reset.

3. The first action to create is to check if the gunshot variable you set up earlier
is equal to 1.

4. Click on the Control tab and drag and drop the Test Variable item onto the
action area (the middle object under the Variables heading).

5. In the dialog box that appears, type in the variable name as “gunshot” and
the value as “1” and then click OK to close the dialog.

6. You now have your test. If it is true, any actions under it will run, but for
this to work you need to create a code block that will indent the code.

7. Still on the Control tab, select the Start Block object (the first object under
the Other heading; it resembles an up-pointing arrow).

8. Next, you need to place the actions that will fire a bullet. To do this, create
another version (copy) of the bullet, called an instance.

9. Click on the Main1 tab and drag the Create instance object onto the action
box.

10. A dialog box will appear. In the drop-down box, select the Bullets object.
For the X coordinate box type in “76” and for the Y coordinate box type in
“16.” Click the Relative box. This will place the bullet at the front of the
spaceship. You can see the options for the dialog box in Figure 8.38. Click
OK to close the dialog box.

If you do not click the relative box it will place the bullet at X76, Y16, using the top-left
corner of the screen as the starting point.

160 Awesome Game Creation: No Programming Required

FIGURE 8.38 The Create Instance settings.

Chapter 8 2D Space Shooter—End of the Earth 161

11. The next action is to set an alarm, which is effectively a timer. By assigning
a timer you can wait for a particular passage of time and then tell the pro-
gram that the bullet can be fired again. For this event, only set the alarm. In
a later event you will create what happens when the time has elapsed.

12. Click on the tab Main2 and select the Set Alarm object (the first object in the
Timing group that looks like a clock).

13. A dialog box will appear asking for the number of steps required. 30 steps
equals 1 second, so you want to fire slightly less than a second, so type in “25”
and leave the alarm number as “Alarm 0.” Click OK to close the dialog box.

The drop-down box in Alarm No allows you to create multiple alarms if you require them.

Now that you have fired the bullet and set a timer, you want to change the vari-
able gunshot to 0 so that this group won’t run again until you change the variable
back to 1.

14. Ensure that the Control tab is selected and drag the Set Variable option to
the action box.

15. Type in the variable name “gunshot” and set the value to 0. Click OK to
close the dialog box.

16. Now that you have finished your code group, you need to close it, so drag
the End Block object (the down-pointing arrow) from the Control tab to the
action box.

You can see all the actions in the Figure 8.39.

FIGURE 8.39 The actions for pressing the spacebar.

Creating an Alarm

The last event for the player_ship is to create a timer (alarm) and tell it to set the
variable gunshot to 1. The program will automatically handle when this event is run
based on the setting of the alarm in the <space> event, which is configured to 25
steps.

A good way to get the right timing for your game is to play it and make slight amendments
to the property in the relevant dialog. In this example you could try increasing the number
of steps and seeing if you prefer that setting. Alternatively, you could reduce it and see how
this affects the game play.

1. Click Add Event and then select Alarm and Alarm 0 from the pop-up dialog.
2. Now you need to set the variable gunshot to “1” to allow the spaceship to

shoot a bullet when the player presses the keyboard. By specifying Alarm 0,
you are effectively telling the timer to do something once this alarm has
been reached. You have configured the timer to 25 steps, and this event will
run when the 25 steps have been reached.

3. Ensure that the Control tab is selected and then drag Set variable to the
action box.

4. When the Set Variable box appears, type the name of the variable to be
“gunshot” and the value to “1.”

5. Click OK. You will now see the relevant event and actions shown in Figure
8.40.

162 Awesome Game Creation: No Programming Required

FIGURE 8.40 Actions for the alarm event.

Chapter 8 2D Space Shooter—End of the Earth 163

Bullet Events

If you run the game so far, when you press the spacebar it will fire a bullet, but it
will paste it directly at the top of the spaceship, and it will not move. You now need
to program the bullets so that as soon as they are created they move in an upward
direction and when they collide with the ice, they are destroyed.

You need two events to complete the programming under the bullet object.

Creating Bullet Movement

You need to create a Create event that will identify any bullets that have been cre-
ated, and the action will give the bullets direction and speed.

1. Double left-click on the Bullets object.
2. Click Add Event and select Create.
3. Drag and drop the Move Fixed object from the Move tab onto the action

box.
4. When the dialog box appears, click on the up-pointing arrow, type the

speed as 8, and then click OK to close the dialog.

Bullet Collision with Ice

Now you need to destroy the bullet once it hits the Ice object. It is very important to
destroy items you don’t need anymore. If you didn’t destroy the bullet, it would
continue up the screen and hit other Ice objects, and the Ice would be destroyed. In
some games that may be preferable, but it would make this game too easy, and there
would be very little challenge for the player.

1. Still on the Bullet Object Properties, click Add Event. Select Collision and
then from the drop-down menu click on the Ice object.

2. Click on the Main1 tab and drag and drop the Destroy object onto the action
box (the destroy object looks like a recycle bin).

3. Leave the dialog box that appears set to the default of Self and click OK.
4. Click OK to close the Object Properties dialog box.

If you run the game now, you will be able to move the ship and fire the bullets,
which will move upward. The bullets will be destroyed when they hit the Ice object,
but the Ice object will remain intact, so it’s now time to work on this object’s events
and actions.

Ice Events

The next step is to create the events and actions for the Ice object. The Ice object will
be moving on screen and trying to hit our spaceship. It can be destroyed when it hits
the spaceship, when it is hit by a bullet, or if it goes too far off screen.

Create Ice

First, you need to place a Create event that will run the actions when the item has
been created. Then set a movement and speed for the Ice object to make it fly across
the screen.

1. Double left-click on the Ice object in the left-hand window of Game Maker.
2. Click Add Event and select Create.
3. Drag and drop Move Fixed onto the blank action area.
4. When the Move Fixed dialog appears, select the bottom three arrows that

are pointing in a downward direction and set the speed to 4.
5. Click OK to place the action.

Collision with Player

You have already programmed what happens to the player’s ship when the ice hits
it, but now you need to tell Game Maker what happens to the Ice object. In this
game you want to destroy the ice, but if you only did that, it wouldn’t be long before
there was no ice left on the screen, because at the moment you are not creating any
more Ice objects. The create instance action is very useful, as you can use it to place
a new Ice object on screen when one is destroyed. Therefore, in this game it is a
never-ending process, and the ice will never run out.

1. Still on the Ice Object Properties, click Add Event.

Destroy the Ice

2. Select Collision and then Player.
3. Click on the Main1 tab and then drag the Destroy Instance object onto the

action box.
4. Do not change the default setting for the Destroy Instance dialog. Click OK.

Create a New Ice Asteroid

Now you need to create a new Ice object, which will be off the top of the game
screen so it won’t just appear in the middle of the screen. Once it is created above
the screen, the movement actions in the Create event you created will handle the
movement of the object.

1. Still on the Player event, ensure that the Main1 tab is selected.
2. Drag and drop the Create Instance object onto the action box.
3. In the dialog box that appears select the Ice object and set its X coordinate to

400 and its Y coordinate to –20.
4. Click OK to close the dialog box.

164 Awesome Game Creation: No Programming Required

Chapter 8 2D Space Shooter—End of the Earth 165

Collision with Bullets

If the player hits the ice with a bullet, you need to do three corresponding actions.
First destroy the ice. You don’t need to worry about destroying the bullet, as you
did that in the Bullet Object Properties. You need to add 20 to the score and, finally,
create a new Ice object to replace the one you destroyed.

First, create the Bullet Collision event.

1. Still in the Ice Object Properties, click Add Event and select Collision. From
the pop-up menu choose Bullets.

Destroy the Ice

Now you need to destroy the Ice object.

2. Click on the Main1 tab, select the Destroy Instance object, and place it on
the actions box.

3. Leave at “Applies to Self and click OK.

Set the Score

Now it’s time to add 20 to the score, and you will need to select the relative box to
ensure that it adds 20 rather than sets it to 20.

1. Make sure the Bullets event is still selected.
2. Click on the Score tab.
3. Drag Set Score onto the action box.
4. In the Set Score dialog box, type in “20,” click the Relative box, and then

click OK.

Create Another Ice Object

Now that we have destroyed the Ice object and added to the score, we should create
the new instance ready to fly toward the player’s ship.

1. Ensure that the Bullets event is selected and then click on the Main1 tab.
2. Select Create Instance and drop it onto the actions box.
3. In the dialog box, click on the object drop-down box and choose Ice. Then

type “400” for the X coordinate and “–20” for the Y coordinate.
4. Click OK to close the Create Instance dialog box.

You can see the three actions for the Bullet event in Figure 8.41.

Moving Outside the Screen

When the ice asteroid does not get hit by a bullet or hit by the spaceship, it will fly
off the bottom of the screen. If this was to continue, all the objects that are off the

screen would still exist in the game, and the game would take up more and more
memory as it continued. You need to destroy the ice asteroids that are no longer on
the screen. First, you need to create an event that checks to see if the items are out-
side the room.

1. Ensure that the Ice Object Properties are displayed and then click Add
Event. Select Other | Outside room.

Destroy the Ice

We need to destroy the Ice object.

2. Click on the Main1 tab and select the Destroy Instance object and place it on
the actions box.

3. Leave at Applies to Self and click OK.

Create Another Ice object

Now that we have destroyed the Ice object, we should create the new instance ready
for it to fly toward the player’s ship.

1. Ensure that the Outside Room event is selected and click on the Main1 tab.
2. Select Create Instance and drop it onto the actions box.
3. In the dialog box, click on the object drop-down box and choose Ice. Then

type “400” for the X coordinate and “–20” for the Y coordinate.
4. Click OK to close the Create Instance dialog box.
5. Click OK on the Ice Object Properties sheet, as you have completed all of the

events for this object.

166 Awesome Game Creation: No Programming Required

FIGURE 8.41 The three actions for the bullet event.

Chapter 8 2D Space Shooter—End of the Earth 167

Health Events

There is only one health event and action, and this is to draw the health bar on
screen. Once it is drawn, reducing the player’s health will automatically update the
health bar.

1. Double left-click on the Health object in the object’s folder to display its
Property dialog box.

2. Click Add Event and select Draw.
3. Click the Score tab and drag and drop the Draw Health bar.
4. A dialog box will appear that at first sight may seem a little complicated.

Type in the settings in Table 8.3.

Table 8.3 The Draw Health Settings

TYPE AMOUNT

x1 160

y1 576

x2 260

y2 586

Back color Black

Bar color Green to red

X1 and Y1 represent the starting coordinates of the bar’s location, while the X2
and Y2 coordinates represent the bottom-right position of the bar.

5. Click OK to close the dialog box.

Life Events

The final set of events to create are for the Lives object. First you need to create an
event that will keep track of how many lives the player has, and when it reaches
zero it will restart the game. Then you need to draw the Lives object. This will take
the Lives sprite and place it in the location we specified in the room.

1. Double left-click on the Lives object in the objects folder to open up its
properties.

No More Lives

2. Click Add Event and select Other | No more lives.
3. Select the Main2 tab and drag and drop Restart Game to the action box.

Draw

1. Click Add Event and select Draw.
2. Select the Score tab and then drag and drop Draw Life Images onto the

action box.
3. Leave the X and Y coordinates at 0 and then from the Image drop-down

box select Lives.
4. Click the Relative box and then click OK button to close the Properties

dialog.

You have now completed all of the events and actions for the game. If you run
the game, you will notice that you nearly have a fully working game, but you need
to add some music to make the game stand out. This is done via a small bit of code,
which is discussed next.

ADDING SOUND USING A SCRIPT

You can use more traditional programming with Game Maker, and though it’s not
the scope of this book to go into this, we will do it for playing music, as it will make it
very quick and straightforward. Learning the coding aspects takes longer than using
the event system, but because some aspects of the event system are not as powerful
as scripting, you will probably find yourself trying it once you have become more
proficient at the events. It is more complex but it adds a new level of power to your
game.

The scripting language is called GML, which stands for Game Maker Language.

There are a number of different places you can create a script, for example, in the
Scripts folder, and then you can call it by an event. We are going to add a script to
the Main room, so that as soon as the game starts, it will play our music.

1. Expand the Rooms folder and then double left-click on Main to open its
Properties box.

2. Click on the Settings tab in the Main Room Properties window.
3. Click the Creation Code button.
4. A new window will open called Room Creation Code. This is where you can

type any code that you want to execute in this room.
5. Type in “sound_loop(Music).” This will play the sound file Music that we

added at the start and then loop it.

There is a particular command to play sounds using scripts within Game Maker, and you
can apply a number of settings to it. If you are interested, you can find more information
about GML in the product’s help files.

168 Awesome Game Creation: No Programming Required

Chapter 8 2D Space Shooter—End of the Earth 169

6. Click on the green arrow in the Room creation code to close the dialog and
save the script.

7. Click on the green arrow in the Room Properties dialog box to close it.

If you now run your game, you will have sound that starts in the first screen and
continues into the game level. It will loop continuously.

ADDING A HELP FILE

When you create a game, or any computer program, you should always provide a
help file. This file can be part of the game or a separate text file, Adobe Acrobat file,
or Windows Help file. Game Maker provides a built-in help system the player can
access at any time by pressing the F1 key.

You can access the blank help file by double left-clicking the Game Information
option in the left-hand window of the Game Maker application. You can see the
blank help window in Figure 8.42.

FIGURE 8.42 The Game Maker help system.

Type in the information about your game. This should include:

• The basic premise of the game
• The game controls
• Any copyright information
• The location of any additional information about the product
• Support and patch information, including Web sites

Type in your game information and then click on the green arrow to save it. You
can see an example of a completed help file in Figure 8.43.

170 Awesome Game Creation: No Programming Required

FIGURE 8.43 An example of a completed help file.

CREATING AN EXECUTABLE FILE

When you have completed your game, the next step is to create a Windows exe-
cutable file. This step allows you to distribute your game so that anyone can play it
without the need for the Game Maker software.

Chapter 8 2D Space Shooter—End of the Earth 171

1. Click File | Create Executable.
2. It will ask for the name of the executable and where you want to save it. Se-

lect a location and type in a filename. Then click Save.

As you are using the lite version, when the executable is launched, a short ban-
ner will be displayed that advertises the Game Maker software. To remove that from
your executables, you will need to upgrade to the Pro version.

CHAPTER SUMMARY

In this chapter you made an exciting space shoot ‘em-up game called End of the
Earth, and you learned a lot about how to use the Game Maker software. You
learned how to add different types of events and actions to your game, and how
to add sound using a simple script. You should now be confident enough to begin
making your own games using the software. You have learned as much about the
product as possible without going into its scripting capabilities. We recommend that
you continue to make small changes to this game and add a few more features. The
next chapter will look at another event-based system called The Games Factory 2,
which takes the eventing to a very high level, allowing you to make exciting and
powerful 2D games.

This page intentionally left blank

C H A P T E R

9 INTRODUCTION TO THE
GAMES FACTORY 2

173

In This Chapter

• About TGF2
• TGF2 Requirements
• Installation of TGF2
• Starting TGF2 for the First Time
• A Quick Introduction to TGF2

174 Awesome Game Creation: No Programming Required

In the following chapters you will be making a number of games step-by-step
using one of the most powerful and simple to use 2D game-making programs,
called The Games Factory 2.

The Games Factory 2 software is also called TGF2 for short and is called this throughout this
book.

Many of the ideas and techniques you will learn in the games you create for
TGF2 in this book will help you make more complex programs using the same
process. Once you are comfortable with TGF2, you will be able to use it to produce
games and interactive applications with ease. TGF2 also contains state-of-the-art
animation tools, movement functions, and game bases routines that make it easy to
produce your own games with no programming.

You can also make slide shows, interactive tests, presentations, and screensavers with TGF2.

Start by installing TGF2 and getting familiar with its major functions. The trial
version of the product (TGF2Demo.exe) is available on the DVD provided with this
book. You will find it in the folder called Demos.

ABOUT TGF2

The introduction to this chapter stated that TGF2 is a tool used to create games with-
out the need for programming. It achieves this by using an event-based system
whereby the “programmer” uses the mouse to select a number of conditions and
actions by using the mouse. This is all done using a graphical interface and does not
require the need for the programmer to learn key words or programming terms.
This means the basic concept of making programs in TGF2 is the same regardless of
what you are trying to make. This allows you to stop programming in it for a few
months and not have any problems picking it back up again and starting again
where you left off. The reason for this is that the program is based on the concept of
editors, and once you understand how to use them, it’s very easy to remember how
to begin putting your game together. This is unique in the game and programming
world, as most programs require either the user to type in text or a combination of
text and event-based programming. This can cause the programmer headaches if he
doesn’t have a great memory for remembering the text that has to be typed in to get
something to work.

You may be thinking that the exclusion of typing in lots of text (traditional pro-
gramming) would mean TGF2 is not very powerful. TGF2 is a program with a long
heritage, and previous versions of it (under other names) have been in existence for
over a decade. This means the program has become very powerful and very logical to
use, as over the years it has been refined and developed. This makes the development
of many 2D programs easy without any programming knowledge.

ON THE DVD

Chapter 9 Introduction to The Games Factory 2 175

You can find more information, downloads, and tutorials for TGF2 at the
maker’s Web site: www.clickteam.com.

TGF2 REQUIREMENTS

Tables 9.1 and 9.2 list the basic minimum requirements for installing and running
TGF2 as well as the recommended requirements. Where possible you should ensure
you meet or exceed the recommended requirements, as this will lead to a better
development experience when working on more complex and resource-hungry
games. TGF2 runs on most PC-based configurations and even works on older oper-
ating systems as well as the latest from Microsoft, including Windows Vista™.

Table 9.1 Minimum System Requirements for Installing and Running TGF2

MINIMUM REQUIREMENTS

Operating system: Windows 95 with IE 4.0, Windows 98, Windows NT 4.0 with Service pack 3 or
above, Windows 2000, Windows XP, Windows Vista

Pentium Processor

32 MB RAM with Windows 9x, 64 MB with Windows NT, 128 MB with 2000 and Windows XP,
512 MB with Vista

CD-ROM drive

Graphics card with 8 MB or more (or minimum OS requirements)

Sound card (optional but recommended)

50-100 MB free hard disk space

Table 9.2 Recommended System Requirements for Installing and Running TGF2

RECOMMENDED REQUIREMENTS

Operating system: Windows 98, Windows 2000, Windows XP, Windows Vista

Pentium 4 Processor

64 MB RAM with Windows 98, 256 MB RAM with Windows 2000 or XP, and 1 GB RAM with
Windows Vista

CD-ROM Drive

Graphics card with 32 MB RAM

Sound card

200-500 MB free hard disk space

www.clickteam.com

176 Awesome Game Creation: No Programming Required

INSTALLATION OF TGF2

This section will guide you through the installation of the trial version of TGF2 that
is provided on the DVD with this book. The TGF2 software is located on the DVD in
the folder called Demos. Find this folder and then double left-click on the file
TGF2Demo.exe.

1. The first screen you will see is the “Welcome” dialog shown in Figure 9.1.
This dialog box gives some details about TGF2 and asks you to ensure that
you are not running any other Windows programs before proceeding with
the installation.

FIGURE 9.1 TGF2 Welcome dialog box.

2. Click Next button to continue with the installation.
3. The next dialog box, shown in Figure 9.2, provides detailed information

about the demo version of the software and what’s possible in this version.
4. Read through the information and then click Next.
5. You will now see the License dialog box shown in Figure 9.3. This provides

details on what restrictions are placed on using the software and other legal
details. To continue, you need to select the I agree with the above terms and
conditions radio button, so select that radio button and click Next.

6. Now you will be asked where you want to install the TGF2 files, as shown in
Figure 9.4. The default location is C:\Program Files\The Games Factory 2.
You can either use this path or change it by clicking on the button with the
ellipsis within it. Once you have a location you are happy with, click the
Next button.

ON THE DVD

Chapter 9 Introduction to The Games Factory 2 177

7. You may be advised that the destination folder does not exist and asked if
you want to create it, as shown in Figure 9.5. Click Yes to continue.

8. You will now receive a final confirmation message, as shown in Figure 9.6,
advising you that the program is ready to copy files to your machine. Click
on Start to begin the installation of TGF2.

FIGURE 9.2 The Information dialog box.

FIGURE 9.3 The license dialog box.

178 Awesome Game Creation: No Programming Required

FIGURE 9.4 The default installation path.

FIGURE 9.5 Destination folder does not exist message.

FIGURE 9.6 Confirmation dialog.

Chapter 9 Introduction to The Games Factory 2 179

9. Once the files have been installed, the final installation dialog box will
appear, advising you of the installation success, as shown in Figure 9.7.

FIGURE 9.7 The final installation dialog box.

10. From this dialog box you can view the latest product information and visit
the support forums. Click on the links to access the relevant Web pages.

STARTING TGF2 FOR THE FIRST TIME

When you double left-click on the TGF2 icon on the desktop or access it through the
Start button, you will be presented with the Demo Version dialog box shown in Fig-
ure 9.8. This details what options are missing from the trial version.

The demo version allows you to create games in the TGF2 native format, which
can be opened in the full version if you decide to purchase it. You can click on the
link on the bottom left to visit the Clickteam Web site at www.clickteam.com or click
Continue to load the program.

Once you have clicked Continue, the TGF2 window appears with a tutorial help
file, as shown in Figure 9.9. This tutorial provides an excellent introduction to the
product, and you should consider looking at it after you have read through this
chapter. You can close it by clicking on the red cross in the right-hand corner of the
window. If you need to open it again later, select Help | Tutorial from the text menu.

www.clickteam.com

A QUICK INTRODUCTION TO TGF2

TGF2 centers around three editing screens that allow you to control the main parts
of your game:

• The Storyboard Editor lets you specify the order of the levels in the game.
• The Frame Editor lets you specify which characters, backgrounds, and objects to

put in your level.
• The Event Editor lets you assign the actions and responses that will make your

game come alive.

180 Awesome Game Creation: No Programming Required

FIGURE 9.8 The Demo Version information box.

FIGURE 9.9 The TGF2 program with ChocoBreak tutorial.

Chapter 9 Introduction to The Games Factory 2 181

You can easily move from one editor screen to the next by clicking the editor icons
from the toolbar at the top of the screen. If you are unsure which icon allows you to
navigate to which editor, leave your mouse over the icon, and a handy tip message will
appear. You can see the icons that allow you to move to the main editors in Figure 9.10.

FIGURE 9.10 Storyboard Editor,
Frame Editor, and Event Editor.

Storyboard Editor

Most games are composed of several levels. This screen lets you add levels to your
game, copy levels, and change the order of the levels. This is also where you decide
on the size of your playing area, add and edit professional-looking fades to each
level, and assign a password to enter each level. You can see a single-level frame
shown in the Storyboard Editor in Figure 9.11.

In TGF2 each separate level or screen is called a frame.

FIGURE 9.11 Storyboard Editor.

When you create a new application in TGF2, it will create a single frame (level) automatically.

The Frame Editor

The Frame Editor shown in Figure 9.12 is the initial “blank page” for each of your
levels. The Frame Editor is where you enter the backdrop objects and the main char-
acters of your game. The white area is where any items are automatically displayed
within your games window, and the gray area is out of frame, which allows you to
position items that can come into play at a particular moment.

This screen also allows you to access the various libraries that come bundled
with the trial and the full version and drop them onto your game. It lets you create
your own animated objects, text, and other object types. You could consider the
frame editor to be the place you set your scene for your game and prepare and con-
figure any items you have added ready for programming in the Event Editor.

182 Awesome Game Creation: No Programming Required

FIGURE 9.12 The Frame Editor, where you place all your items.

Event Editor

This is where you begin to build the logic of your game and make it come to life. You
create the interactivity here by assigning conditions and actions. When you are ex-
perienced with TGF2, you’ll spend a lot of your time here. This is the editor where
you will program your game.

Chapter 9 Introduction to The Games Factory 2 183

As shown in Figure 9.13, the Event Editor is set up like a spreadsheet (you can
only see the top “spreadsheet row” in the figure example). By filling in the rows and
columns, you can assign relationships to each object in your game. This setup makes
game building easy, since you can see what happens in your game. Examples of the
game play elements you can build here include aliens colliding with a spaceship, the
main character collecting a power-up or getting hit by a missile, setting a time limit,
and assigning a sound event. You can create an explosion, destroy an object, add to
the score, subtract a life, or specify complicated events such as changing the direction
of a character or a randomly moving object.

FIGURE 9.13 The blank Event Editor.

That was a quick tour of TGF2. You saw that a game is built in TGF2 in three
stages. First you lay out the flow of your game in the Storyboard Editor. Then you lay
out each level and their objects in the Frame Editor. Finally, you use the Event Editor
to assign relationships and behaviors to your objects.

For the next chapter, you will need to have TGF2 installed and running, if pos-
sible, as you will be digging deeper into it.

CHAPTER SUMMARY

This chapter covered how to install TGF2 and introduced the three main editing
screens in which you’ll spend most of your time. In the next chapter, you will get to
look at a game within the different editors to see how it is made.

This page intentionally left blank

C H A P T E R

10 BEHIND THE SCENES
OF THE GAMES FACTORY 2

185

In This Chapter

• About Alien Wars
• Loading Alien Wars
• Alien Wars: The Storyboard Editor
• Alien Wars: The Frame Editor
• Alien Wars: The Event Editor

186 Awesome Game Creation: No Programming Required

The next two chapters will take you through the step-by-step process used to
construct a very basic shoot-‘em-up game with TGF2. This retro-creation
called Alien Wars, shown in Figure 10.1, is our own version of Space Invaders™.

You will see that with TGF2, you can create a game that does a lot more than what
the original Space Invaders could, and it’s very easy to create.

FIGURE 10.1 The Alien Wars game.

Retro gaming is very popular. People still love to play Pac Man, Asteroids, Space Invaders,
and other older games. Many can be found online in the form of Java applets or Flash that
can be played in Web browsers.

ABOUT ALIEN WARS

Before going through the various editors and options available to your game in TGF2,
you need to give a little background. The story behind the game goes as follows:

The Earth forces have been fighting the robot invaders for over 10

years. No side is winning the war, but losses are high on both sides. The

Earth commanders have given you their latest spaceship hardware, hoping

to sway the battle and turn the tide against the invading robots.

Can you handle the new Falcon 29 spaceship? Will you survive the

robot attackers? It’s time to find out.

Alien Wars will show you the basics of creating games with TGF2. It will show
you many of the features and procedures needed to make any game with TGF2.
There are a small number of screens and editors you can work in, these will be the
same for any game you make with the program.

Chapter 10 Behind the Scenes of The Games Factory 2 187

Even though Alien Wars is a simple game, it will introduce you to many inter-
esting and useful techniques, including:

• Moving between screens
• Creating levels
• Keeping the score
• Creating fade-in effects
• Playing animations
• Creating and using a high score table

The game is split into three frames: the games menu loader, the game itself where
the player will fight the enemy spaceships, and the frame that displays any high scores
that the player obtains.

LOADING ALIEN WARS

The DVD for this book includes the finished Alien Wars game. The game is quite large,
and it is recommended that you copy any files from the DVD onto your PC if you want
to open up the code to take a look at it. You need to copy the files to a local hard disk
if you want to make any changes, because the DVD is a read-only format, and you
cannot save to it. This chapter only reviews the code, but it will still be faster loading
the file if it is read from your hard disk, so copy the file alienwars.mfa from the \TGF-
FILES\Alien Wars folder on the DVD to a location on your PC.

1. Start TGF2 and click File | Open from the menu.
2. Navigate to the location where you have placed the alienwars.mfa file and

single left-click on it.
3. In the right-hand corner is a small picture. This is the first screen that is dis-

played in the game file, as shown in Figure 10.2.
4. Click Open.

FIGURE 10.2 Opening the alienwars.mfa file. Notice the
thumbnail of this game in the lower right-hand corner.

ON THE DVD

188 Awesome Game Creation: No Programming Required

ALIEN WARS: THE STORYBOARD EDITOR

Now that Alien Wars has loaded, click on the Storyboard icon in the toolbar and you
will see the Storyboard Editor screen, as shown in Figure 10.3.

FIGURE 10.3 The Alien Wars game as shown in the Storyboard Editor.

Starting from the top of the Editor screen we will now look at the features of the
Storyboard Editor, shown in Figure 10.4. First, look at the number column, which in
this example has three boxes with information contained on that row. These are frame
numbers, and frames are the levels or separate screens in our game. Clicking on the
number will take you directly to that frame and display it in the Frame Editor.

Next to each of these numbers is a small thumbnail picture of the frame of the
game. In a large game this can be useful to help you remember which screen does
what, so you don’t need to click on different frames to find the right one.

Next to the thumbnail images are the comments for that frame, the title of the
frame, and the password. To change these, simply left-click the text you want to
change. You can edit or add a title or password.

Chapter 10 Behind the Scenes of The Games Factory 2 189

Underneath the comments are several buttons shown in Figures 10.5–10.7.
These buttons denote a multimedia frame, which is what all your frames are by de-
fault. You can ignore these buttons, as they have no current function in TGF2.

The next button allows you to add a fade-in transition to your frame by using
the icon in Figure 10.5. You can add a fade-out transition to your level using the
icon in Figure 10.6. If you create a fade-in or fade-out transition, it will appear
between the number rows and is then selectable and can be changed or removed
if needed.

FIGURE 10.4 Close-up of the Storyboard Editor window.

FIGURE 10.5 The fade-in transition button.

The play area can be much larger than the screen size, allowing you to create large
scrolling games. You can click on the monitor to access a drop-down box or click on
the screen size numbers and type in an exact size. The drop-down screen sizes are
shown in Figure 10.7.

190 Awesome Game Creation: No Programming Required

FIGURE 10.6 The fade-out transition button.

FIGURE 10.7 The screen size options.

Chapter 10 Behind the Scenes of The Games Factory 2 191

ALIEN WARS: THE FRAME EDITOR

Most of the work needed is on the second frame, so click on the number 2 in the
Storyboard Editor or double left-click the text “game” in the Workspace toolbar in
the left-hand window pane to view the Frame Editor for frame 2.

When you load frame 2 of the game you will see various items displayed on the
screen as shown in Figure 10.8.

FIGURE 10.8 The second frame for the Alien Wars game.

If you were creating a new frame with no content, it would be displayed as a blank white box
surrounded by a gray background.

On the left-hand side of the Frame Editor is a group of items displayed top-
down. These are the game items that are used within this frame. The next chapter
will show you how these items appear in the game. You can drag items from this
toolbar onto the screen, but you should do this with care, as it will create an exact
duplicate of any items that may be on the frame already. If you programmed for one
type of item to move in a certain direction or act in a certain way, all other objects of
the same type will mirror these behaviors.

In the middle of the frame is a space scene. This is what will be displayed when
the user plays the game. The gray around it is outside the play area and is used to
place items that won’t initially appear in the game or that you will make move into
the play area while the game is running.

When there are many objects in a level, not all will fit inside the window, so
there is a scroll bar on the bottom-right corner to allow you to move around the
Frame Editor area.

When you move your mouse over any of the objects in the frame, a handy hint
appears telling you the name of the item. This is very useful for identifying the name
of the object. You may need to use this function when switching between the Frame
Editor and the Event Editor.

Try dragging a few objects from the level panel and placing them on the screen.
As you do so, notice that the properties window on the left-hand side is then filled
with information. You would use the Object properties window to configure certain
aspects of your objects, for example, their movement, visibility, size, and location on
the screen. Make sure not to save the program, as you are just getting used to the
various options. If you left-click on anobject on the frame, you will be able to move
it pixel by pixel for perfect placement using the arrow keys. You can also right-click
on the object and access a pop-up menu that provides additional features and prop-
erties. You can see this pop-up menu in Figure 10.9.

192 Awesome Game Creation: No Programming Required

FIGURE 10.9 The pop-up menu displayed when you right-click on an object.

Now that you have had a look at some of the items that make up your game, it
is a good idea to familiarize yourself with how it plays, as this will ensure that you
understand how it all fits together. There are two ways of playing the game. You can
either tell TGF2 to play the current frame (frame 2) or play the whole game from the

Chapter 10 Behind the Scenes of The Games Factory 2 193

start. So that you experience the whole game, run the whole program. You can see
the Run Application and Run Frame icons in the toolbar in Figure 10.10.

FIGURE 10.10 The Run Application
and Run Frame buttons.

Click on the Run Application button and play the game. The controls for the game
are the left and right arrow keys (cursor keys) and the space bar to fire the spaceship’s
weapon. When you have completed playing, you can click on the red cross in the
upper-right corner of the game window.

ALIEN WARS: THE EVENT EDITOR

To get to the Event Editor, click on the icon in the toolbar as shown in the previous
chapter. You will see a screen that looks like Figure 10.11. The Event Editor is where
you will specify what happens in your game. Some of the things you will be doing
for this game include:

• Checking for the mouse clicking over a button
• Telling the program to move between frames
• Creating the code to shoot the spaceship bullet when the spacebar is pressed
• Adding sound

The first time you call up the Event Editor it will consist of one horizontal line. It
looks like a spreadsheet before you have entered any information. Figure 10.11
shows the Alien Wars game with a number of events that have already been entered.
You will have different sets of events for each of the three frames of the game, as each
set of events corresponds to that particular frame. Figure 10.11 shows the code for
the first frame.

At the top of the Event Editor is a row of icons that represent the possible actions
that can happen in your game. A blank game has seven icons that always appear by
default. Any icons displayed after this are the objects (graphics, etc.) that have been
added to the game. Figure 10.12 shows the objects in this game.

To the right of these event lines are a number of boxes, some of which are blank
and some of which contain a tick graphic. Each box lines up with an object icon at
the top of the screen, and when the event is true, it runs that action for that partic-
ular object.

The Object Icons

The first seven icons denote system objects and will appear in every game you cre-
ate, regardless of if there are any events or objects within it. The following list shows
them in order as shown in Figure 10.12

Special Conditions. Performs special functions such as enabling and disabling
groups, accessing the clipboard, or accessing text or number variables.

Sound. Plays music or sample files and allows you to pause, play, stop or select
a specific channel on which to play the sound.

Storyboard Controls. Allows you to handle the restarting of the game, ending
of the game, and moving between the frames in your game.

Timer. Sets up a timer.
Create New Objects. Allows you to place or create a new object on the screen

at certain times or as the result of certain events.

194 Awesome Game Creation: No Programming Required

FIGURE 10.11 The Alien Wars Event Editor for the first frame.

FIGURE 10.12 Objects in the Event Editor.

Chapter 10 Behind the Scenes of The Games Factory 2 195

Mouse Pointer and Keyboard. Lets you control how the player interacts with
the mouse and keyboard and read certain key presses or mouse movements.

Player 1. Allows you to change the score and lives of the player.

As previously mentioned, the icons shown after the initial seven are objects that
have been added to the actual game. The options for these objects vary depending
on what the object does. Objects are covered in detail in Chapter 14.

The Events

In the events in this frame, each line is given a number. The first line in this game is
a comment line, which is used to document certain aspects of your game. In this
case it is a simple version control note. You could also put a copyright notice or a
helpful note to explain a difficult bit of code.

Most of the events, which are shown in gray, are readable, and you can get an
idea of what they do. Event line two shows the event Start of Frame. This line and
its actions run when the frame is first loaded. Once it has loaded, it will never run
this line again until the frame is restarted. Line eight checks for when the mouse
pointer is over a specific object, in this case when it is over the Play button.

You can see what actions will run when an event is true by moving your mouse
to an action box, which contains a tick graphic, and it will appear, as shown in Fig-
ure 10.13.

FIGURE 10.13 The actions that are contained in the event.

Each line is called an event, but within each event you can place multiple con-
ditions. A condition is what you want to check for within your game. For example:

• Object is moving
• Object is not moving
• Sound is playing
• Mouse enters a certain area on the screen
• Player has lost all his lives
• Score reaches 100

The conditions can get quite complex, but it is important to remember that if
one of the conditions is not true, the event will not run, and the program will con-
tinue to the next. Once it has finished reading all the events, it will start back from
the top and begin the whole process again. Once the condition is true, the program
will run the actions. These actions are run in the order in which they were placed,
not in the order in which the objects appear in the Event Editor. Actions are what
you want to happen in your game:

• Add to score
• Play a song
• End the game
• Place a message on the screen

Adding to the Event Editor

When you enter events into the Event Editor for the first time, you have the single
blank event line. You might want to create a number of possible things . Ensure that
you have TGF2 open and click on the New button or click on File | New to create a
new application. You need to be in the blank Event Editor for the first frame that has
been created by default. Double left-click on the text “Frame 1” in the Workspace
toolbar and then click on the Event Editor icon. You are now ready to follow the
examples, which give you a quick overview of how to add events, conditions, and
actions to your code.

A Comment Line

Comment lines are a great way of putting small bits of information into your game.
This allows you to put in your copyright messages or put in notes about a particular
bit of code. The second option is very useful if you are working on a difficult bit of
code and want to understand why you did something a particular way when you
come back to the code after a break.

To add a comment line you will need to:

1. Right-click on the event line number (in a new application or frame that has
no events it will be 1).

2. Select Insert | A comment. The comment box will appear as shown in Figure
10.14.

196 Awesome Game Creation: No Programming Required

Chapter 10 Behind the Scenes of The Games Factory 2 197

3. Type in the comment, and if you want, you can change the font, color, and
background color.

4. Click OK to close the dialog box and save its contents to the Event Editor.

A Single Condition

If you are adding a single condition to the Event Editor, you can click on the “New
condition” text. This is very useful when you are adding an event to the last line of
the events. In other words, the New condition option exists at the end of the code.
You may want to insert an event in the middle of some already created code, if so
you would use the “Add a new Event” option

Using the New Condition Option

If you want to add an event to the very last line of your code (or if there are no events
yet it will be the first line of the program):

1. Left-click on the New Condition.

A New Condition dialog box will appear and show a number of icons, as shown
in Figure 10.15. These icons represent the seven default objects and any additional
objects that you have added to your game. Each of these objects has a set of condi-
tions from which you can select. Remember, a condition is a “check” that the com-
puter will make to see if something has happened. Now create a Start of Frame
condition that will run once when the program runs.

FIGURE 10.14 The enter a comment box.

The Start of Frame condition is a Storyboard condition, so right-click on the
Storyboard icon (it looks like a horse and a chessboard), and you will see a pop-up
menu appear. These are the options that this object has to create conditions on.
Figure 10.16 shows this pop-up menu.

198 Awesome Game Creation: No Programming Required

FIGURE 10.15 The New Condition
dialog box.

FIGURE 10.16 The Storyboard icon’s
conditions.

Chapter 10 Behind the Scenes of The Games Factory 2 199

Each object has a set of conditions. Some are similar. Some objects have a lot and others may
only have one condition. If an object doesn’t have the condition you are looking for, think
about another way of achieving what you are trying to do, because you might be selecting the
wrong object.

2. Select Start of Frame.

You now have your first condition in a event.

Add Another Condition

If you want to create an event with a number of conditions within it, you cannot
click on New Condition, as this will create a separate event.

If you still have a single event and a single condition on your screen, right-click
on the Start of Frame text, which should be in event line number 2 if you added a
comment line. (If you do not still have an event and a condition on your screen, fol-
low the details in the last section to do this.)

1. From the pop-up menu, select Insert.
2. The New Condition dialog box will appear, allowing you to pick another

condition.
3. Select any object and add any condition.

Create a Code Group

Code groups are very useful for putting a selection of code that does a particular job.
This makes your code easier to read, but you can also enable and disable code groups
at any time.

To add a group:

1. Right-click on any event number and select Insert | A group of events.
2. A group dialog box will appear as shown in Figure 10.17.

• Type in the title of the group.
• You can type in a password if you want to protect the group and prevent some-

one from opening the group if you distribute your code.
• By default, the group is active when the program or frame is running, but if you

want it only to run at a specific time, you can unselect this box and enable the
group through an action.

• Once you are done, click OK. Your group is now be created and looks something
like Figure 10.18.

Adding an Action

To add an action you need to move to the right of the event line to which you want
to add the action. Consider what action you want to implement, and in all cases it
will be specific to a particular object or contained within the seven system objects.
For example,

Consider for a moment that you have created a bat-and-ball game in which the
ball hits a number of bricks and the player has a bat and tries to keep the ball
in play. You have just created a condition that checks for when the ball hits
the bat. When you run the game, nothing happens when the ball hits the
bat, as you haven’t created the action. Therefore, the action you want to
apply is to make the ball bounce. As you are going to tell the ball to bounce,
you move directly under the ball object and apply a bounce to it. This is how
you will apply all of your actions in TGF2 using the same logic.

To add an action, move to the correct event line and then move under the object
to which you want to apply the action. Right-click on the white box to reveal a pop-
up menu. An example of the actions under the Storyboard Control object is shown
in Figure 10.19.

200 Awesome Game Creation: No Programming Required

FIGURE 10.18 An example group.

FIGURE 10.17 A blank code group ready to be created.

Chapter 10 Behind the Scenes of The Games Factory 2 201

Select any action from the pop-up menu, and this will place a tick graphic in the
box. This tells you there is an action within this location. If you want to add a second
action to the same event line and the same object, you can right-click again and
select the action.

CHAPTER SUMMARY

This chapter looked at the game you will be making in the next chapter. You will
build your game frame by frame, and by the end, you should have a pretty good idea
of how to use TGF2 and how to program in the Event Editor.

FIGURE 10.19 The Actions menu available to the Storyboard Control’s system object.

This page intentionally left blank

C H A P T E R

11 ALIEN WARS

203

In This Chapter

• Library
• Initial Setup
• Event Programming

204 Awesome Game Creation: No Programming Required

In this chapter you will be creating the space shoot-‘em-up game discussed in
Chapter 10. You will need to create your game file, set up your frames and the
objects on screen, and then program the game to react to the player’s key presses.

LIBRARY

The Library toolbar is a useful way of adding objects and items already created onto
your blank frames. So you don’t have to spend a lot of time drawing the spaceships
and backgrounds, this has already been done for you. Before you start, you need to
connect to a library file that contains all of your objects. The Library toolbar is in the
bottom part of the TGF2 screen as shown in Figure 11.1.

FIGURE 11.1 The blank Library toolbar.

If you do not see the toolbar, you need to display it by selecting View | Toolbars |
Library Window.

You now need to connect this Library window to the library file that has already
been created for you. To do this:

1. Right-click on the left windowpane, and a pop-up menu will appear. Select
New.

2. A Browse for Folder dialog box allows you to search for the folder that con-
tains the library. Navigate to the DVD provided with this book.

3. Navigate to the TGFFILES\Alien Wars\Lib folder and then click OK.
4. You can now type the name of your library folder, so in the left window-

pane where you see the words New Library type “Alien Wars.”
5. Clicking on the words Alien Wars in the left-hand pane will reveal the library

file in the right-hand window, as shown in Figure 11.2.

FIGURE 11.2 The Alien Wars library file.

ON THE DVD

Chapter 11 Alien Wars 205

6. Double left-click on alienlib to reveal the frame folders you will be using to
set up your frames.

INITIAL SETUP

Begin with creating your game file, creating the frames that will represent your
screens within the program.

First, you need to create a TGF2 file:

1. Click on New or select File | New.
2. Your TGF2 game file will have been created as shown in Figure 11.3.

FIGURE 11.3 Your blank game file ready to be configured.

Notice that the Storyboard Editor shows that the only frame is set to a size of
640 × 480. The game you are about to create works on a 800 × 600 screen resolution.
TGF2 has a frame resolution and an application resolution, and changing the appli-
cation resolution changes the size of the current frame and any additional ones you
create.

3. Single left-click on Application 1 in the Workspace toolbar.
4. This reveals the application properties information in the Properties toolbar,

as shown in Figure 11.4.

206 Awesome Game Creation: No Programming Required

5. At the top of the Properties window in Figure 11.4 are a number of tabs.
Click on the Windows tab. This is the one that looks like a monitor.

6. The first item in the Properties window is now the Size item, and it is set to
640 × 480. Click on the box, and an arrow will appear. Click on this arrow
and select 800 × 600 from the drop-down menu.

7. A dialog box asks if you want to modify the frames to the same as the newly
set application size, as shown in Figure 11.5. Click Yes to agree to this.

8. You can see the changed settings in the Properties Application window in
Figure 11.6.

FIGURE 11.4 The Properties window
displaying application information.

FIGURE 11.5 Changing all frames to the application size.

In some cases when you click on a dialog box the Properties window will become blank. To
display the correct information click on the object you are interested in. For example, if you
were viewing the Application Properties, click on the application name in the Workspace
toolbar.

Chapter 11 Alien Wars 207

Creating and Renaming Frames

You have three frames in your game, and by default the program only has one, so
you need to create two more.

1. Right-click on the application name and select New Frame as shown in
Figure 11.7.

FIGURE 11.6 The changed Application window size.

FIGURE 11.7 The Rename option using the
right mouse click.

2. This creates a second frame called Frame 2.
3. Right-click on the application name again and select New Frame. This creates

a third frame called Frame 3.

You now have all three frames in place and are ready to rename them so they
are easier to identify. This identification is not such a problem in a small game like
this, but some games could run to a couple of hundred frames, and at this point it
can get very confusing as to what each frame does. It is good to get into the habit of
giving your frames proper names, as this will be very helpful in larger projects.

4. Right-click on Frame 1 text and select Rename from the pop-up menu. Type
“menu” into the selected text box.

5. Right-click on Frame 2, select Rename, and then type “game.”
6. Once more, right-click on Frame 3, and select Rename, and then type

“highscores.”

You have renamed your frames, but it is also good practice to rename your
application. This name is particularly important because when you run your game
in a window, the application name is the name that will appear in the top bar of the
window.

7. Right-click on Application 1 in the Workspace toolbar.
8. Select Rename and type “Alien Wars.”

Your Workspace toolbar should now look like Figure 11.8.

208 Awesome Game Creation: No Programming Required

FIGURE 11.8 The current state of the Workspace toolbar.

Main Menu Frame Setup

You now need to place all the objects you are going to use in your game for the main
menu frame. To do this you need to ensure that you are on the correct frame and
that you have the correct objects for the frame ready to drop into place.

Chapter 11 Alien Wars 209

1. In the Library toolbar, double left-click on the library file alienlib.
2. You will now see the names of the frames you are going to use in our game,

as shown in Figure 11.9. This library file is an exact replica of the frames you
have and contains the objects for each frame that you need to place.

FIGURE 11.9 Each frame in the library contains all the objects you
need to create the game.

3. Double left-click on Menu in the Library toolbar to display all the available
objects as shown in Figure 11.10.

FIGURE 11.10 The library objects for the main menu.

You are now ready to drag and drop items from the library onto the frame, but
you need to ensure that you are on the frame editor for the correct frame, which in
this case is the recently renamed frame Main.

4. Click on the number 1 in the Storyboard Editor to access the blank main frame.

You now have the blank frame in front of you, ready for you to begin placing
items onto the screen as shown in Figure 11.11. The box that has been highlighted
tells you which frame you are on so you can make sure you are changing the correct
blank frame.

Setting Up the Scene

It’s time to create the scene for the main frame by dragging objects from the Library
toolbar and placing them in particular positions.

1. Left-click and then hold the left mouse button on the object called Space_
background and drag it onto the blank frame.

2. It doesn’t matter where you dropped it because you are going to precisely
place it using the object’s properties. Once you have dropped it onto the
frame, single left-click on it to display its properties in the Properties window.

3. Click on the Size/Position tab to display the object’s current position.
4. Change the X position to 0 and the Y position to 301. This places the item in

the middle of the screen.

The graphic is a dark color, and the background of the frame is currently white.
You need to change this so that it fits in with the rest of the game, which, as it’s a
space game, is based on black.

210 Awesome Game Creation: No Programming Required

FIGURE 11.11 The blank Main frame ready for dropping the objects onto it.

Chapter 11 Alien Wars 211

5. To change the frame background color, click on Main in the Workspace
toolbar to access the frame’s properties.

6. On the first tab displayed the Background color option is currently config-
ured as white. Click on the box to display the color picker as shown in Fig-
ure 11.12.

FIGURE 11.12 The color picker, where you
can select a background color.

7. Select black from the color picker.

You now need to place all the other items on the screen, using the same process.
Use the details in Table 11.1 to position them.

Table 11.1 Objects for the Main Frame

OBJECT NAME X Y

Station –225 42

Btn_Play –260 475

Btn_Quit –260 534

Title 824 47

Robot 823 121

Your completed screen will look something like Figure 11.13, which is zoomed
out so that you can see where the items are located.

If you click on the Run Frame button or press the F7 button, the frame’s objects
will snap into place automatically. This is because all items have had a movement
applied to them already. You will learn more about movements in Chapter 14.

The Game’s Frame Setup

You now need to place all of the objects you are going to use in your game for the
game frame. Make sure you are on the correct frame:

1. Double left-click on Game in the Workspace toolbar to display a blank
frame.

2. You can confirm you are on the correct frame by checking the text in the
Frame Name box on the Button toolbar.

Changing the Library Folder

You need to change the library file location, as currently it is pointing to objects in
the first frame.

212 Awesome Game Creation: No Programming Required

FIGURE 11.13 The setup of the Main frame.

Chapter 11 Alien Wars 213

1. In the Library toolbar are objects that you dragged onto the frame for the
Main frame and a yellow folder graphic with an up-pointing arrow. Double
left-click on the yellow folder.

2. You can now see the three frame folders. Double left-click on the game
folder in the Library toolbar to display the contents of the game folder as
shown in Figure 11.14.

FIGURE 11.14 The game library items.

Setting Up the Scene

It’s time to create the scene for the game frame. Again, you need to drag objects
from the Library toolbar and place them in particular positions.

1. Left-click and hold the left mouse button on the object called Backdrop and
drag it onto the blank frame.

2. Once you have dropped it onto the frame, left-click on it to display its prop-
erties in the Properties window.

3. Click on the Size/Position tab to display the object’s current position.
4. Change the X position to 0 and the Y position to 0. This places the item in

the precise position on the screen.

Now place all of the other items onto the frame following the coordinates given
in Table 11.2.

Table 11.2 Game Frame Object Positions

OBJECT NAME X Y

Space_base –33 143

Player 325 462

Enemy 51 –261

Back_Info 496 4

Level 516 27

Score 575 27

Shoot_p 320 –79

Shoot_e 363 –80

Your completed screen will look something like Figure 11.15, which is zoomed
out so you can see where the items are located.

214 Awesome Game Creation: No Programming Required

FIGURE 11.15 The game frame with objects all placed in their correct positions.

If you click on the Run Frame button or press F7, you will notice that a space
station is spinning on the screen, and you can control the spaceship using the arrow
keys (cursor keys).

Highscores Frame Setup

You now need to set up the scene for the final frame, in which the player will see
the highscores table.

Let’s ensure that you are on the correct frame:

1. Double left-click on Highscores in the Workspace toolbar to display a blank
frame.

2. You can confirm you are on the correct frame by checking the text in the
Frame Name box on the Button toolbar.

Chapter 11 Alien Wars 215

Changing the Library Folder

You need to change the library file location, as currently it is pointing to objects in
the second frame.

1. Double left-click on the yellow folder with the up-pointing arrow in the
Library toolbar.

2. You can now see the three frame folders. Double left-click on the highscores
folder in the Library toolbar to display the contents of the game folder, as
shown in Figure 11.16.

FIGURE 11.16 The highscores library items.

Setting Up the Scene

It’s time to create the scene for the highscores frame. Again, you need to drag objects
from the Library toolbar and place them in particular positions.

1. Left-click and hold the left mouse button on the object called Space_Back-
ground and drag it onto the blank frame.

2. Once you have dropped it on to the frame, left-click on it to display its prop-
erties in the Properties window.

3. Click on the Size/Position tab to display the object’s current position.
4. Change the X position to 0 and the Y position to 301. This will place the item

in the precise position on the screen.
5. Change the frame background by clicking on Highscores in the Workspace

toolbar to access the frame’s properties.
6. On the first tab click on the white box next to Background color.
7. Select black from the color picker.

Now place all the other items onto the frame according to the coordinates given
in Table 11.3.

Table 11.3 The Highscores Frame Object Positions

OBJECT NAME X Y

Station –225 42

Robot 823 121

Title 824 47

Hi-Score 211 457

Your completed screen will look something like Figure 11.17, which is zoomed
out so you can see where the items are located.

216 Awesome Game Creation: No Programming Required

FIGURE 11.17 The highscores frame with objects all placed in their correct positions.

If you click on the Run Frame button or press F7, you will see a space station
spinning on screen, and you can control the spaceship using the arrow keys (cursor
keys).

Chapter 11 Alien Wars 217

EVENT PROGRAMMING

In this section you will begin to program the events that bring together all three
frames and the objects within them.

You will work on each frame separately, which makes it a lot easier to get some-
thing working quickly. The major benefit of the frame system is that you can pick
and choose the sections you want to work on and leave the difficult bits till later. As
this is a simple game, you will work on the frames in order.

Programming the Main Frame

The main frame is the first screen the player is introduced to, and its main goal is to
direct the player to the areas he wants to go to in the game. In Alien Wars the player
can either click on a button to play the game or quit. More complicated games may
have a number of different paths the player can choose from. Placing a menu screen
in your game makes this process a lot easier.

Before you start, you need to make sure you are on the correct frame:

1. Double left-click on Main in the Workspace toolbar.
2. You will see the main frame and its objects all in place.

To begin coding you need to be in the Event Editor, so click on the Event Editor
button on the toolbar.

3. You will now see a blank Event Editor, ready for you to begin coding.

Main Frame Components

In the main frame you want to achieve several things:

• Create a comment to explain the game’s name and version number.
• Start playing some music.
• Make some objects fade into the screen.
• Program the buttons to react when the player moves the mouse over them.
• Program the game to either quit or move to the game frame when these buttons

are clicked.

Creating the Note Event

The first bit of event program to do actually isn’t coding at all. You need to add a
message to the start of the game, detailing the game’s name and the version num-
ber. In your own games you could enter more information if required.

1. Right-click on event number 1 and select Insert | A comment.
2. The comment dialog box appears.
3. Type “Alien Wars” in the text box and while still in the text box, press the

return key twice to create a little more space.
4. Type “Version 1.0.”

5. You need to amend the font to make it stand out a little more, so click on
Choose Font, select the font style Bold, and change the text Size to 12. The
font dialog box will be configured as shown in Figure 11.18.

218 Awesome Game Creation: No Programming Required

FIGURE 11.18 The Font dialog box.

6. Click OK to save the information to the Comment dialog box.

You can make your comments stand out even more by changing the back-
ground color. Some developers create colored comments to highlight certain aspects
of their game so that if they come back to it after a long time they will be able to un-
derstand it better. In this example you are just going to change the background color
so that it looks nice on the Event Editor.

7. Click on the Set Back Color button.
8. In the Color dialog box that appears, select any color you like. In the version of

the game on the DVD the second row, second to last color was selected, as
shown in Figure 11.19.

9. Click OK button to save this information to the Comment dialog.

Finally, this text will look better if it is centered on the screen. Currently it is set
to the left.

10. Click on the Centered radio button.
11. Click OK to save the comment information to the Event Editor. You should

now have the results shown in Figure 11.20.

ON THE DVD

Chapter 11 Alien Wars 219

Start of Frame Event

At the very start of the frame you want to play some music and set the transparency
of an object to make it invisible. These actions are already in a Start of Frame event,
so as the frame loads this is the first event it will run. You could consider the start of
frame event as an initializing event, where you configure everything before the pro-
gram appears.

You want to play some music at the very beginning of the game to create atmo-
sphere and make the whole game experience more positive for the player.

Start with adding the following event:

1. Click on New Condition.
2. In the New Condition dialog box right-click on the Storyboard Controls icon

(the horse and chessboard icon).
3. From the pop-up menu select Start of Frame.
4. You will now have a new event on event line 2, and it will read “Start of

Frame.”

FIGURE 11.19 The Color picker
with the color selected.

FIGURE 11.20 The comment displayed in the Event Editor.

This event will occur only at the start of the frame. After the program has run this
event, it won’t run it again, so it’s a good event for doing one-off initializations or
configuring of your game. The first action is to play the game song at the very start of
the frame, and it will continue to play after the Start of Frame event has finished.

5. Move to the right of the Start of Frame event, until you are directly under
the Sound object (the icon looks like a speaker).

6. Right-click on the blank action box to display the actions available for this
object and then select the Sound option to reveal all options that relate to
this menu, as shown in Figure 11.21.

220 Awesome Game Creation: No Programming Required

FIGURE 11.21 Actions for the Sound object samples menu.

7. As you can see in Figure 11.21, many options are available. Select Stop any
sample playing.

You might be wondering why you should stop the music before you have even
started playing any. This is to prevent any future issues with sounds overlapping. This
is not so much of a problem in this game, but you can configure sounds to play over
frames and to play when the user clicks on something. If you do not stop any samples
first, you could end up with the same sound repeating itself over and over again. This
can make the sound appear very messy, so from a point of view of safe programming
it is always sensible to use common sense event programming. These safeguards are

Chapter 11 Alien Wars 221

not necessary for every game you create, but it is good practice and will save you
some time fixing programming bugs and problems in your game later on.

Now you can program the music to play:

8. Still on event line 2 and still under the Sound icon, right-click on the box,
which now contains a tick graphic.

9. From the options that appear, select Samples | Play sample.
10. A Play Sample dialog box will now appear.
11. Click on the Browse button opposite From a file option. This brings up the

Open dialog window. Navigate to the DVD provided with this book to the
folder TGFFILES\Alien Wars\Sounds, as shown in Figure 11.22.

FIGURE 11.22 The Play Sample dialog box.

12. Select the file The Last Day.wav. You can click on the Play button if you
want to hear the sound before you insert it into the TGF2 file. This is very
useful if you have lots of sound files and want to confirm what it sounds like
before adding it.

13. When The Last Day.wav file is selected, click the Open button. This saves
the information to the Event Editor.

Before going any further, run the frame by pressing the F7 key. You will hear
the music playing, and all of the objects will appear from off the screen and snap
into position. Now it’s time to add a little fade-in effect for the background, as it will
make the screen a little more animated and give it more of a professional feel.

Still using the Start of Frame event, you will be changing the transparency of the
Space_background object.

ON THE DVD

14. Move to the right of the Start of Frame event until you are directly under
the Space_background object.

15. Right-click on the blank action box and from the large list of items on the
pop-up menu choose Visibility | Set semi-transparency.

16. The Expression Evaluator will ask you to enter a number from 0 to 128 as
shown in Figure 11.23. Click OK to save the information to the Event Editor.

222 Awesome Game Creation: No Programming Required

FIGURE 11.23 The dialog box to enter the transparency setting.

In TGF2 transparency for an object works on a scale between 0 and 128, 128
means the object is totally invisible, and 0 means the object is fully visible. In
between these two numbers are varying states of transparency.

You have now completed the Start of Frame event, and you can see its corre-
sponding actions in Figure 11.24.

FIGURE 11.24 The actions for the Start of Frame event.

Chapter 11 Alien Wars 223

If you run the game now, you will notice that the background has disappeared.
This is only a temporary problem, as you will be programming it to appear over a
period of time.

Comment Line

Before starting more events, create another comment line to separate the code and
make it easier to read and to describe what the code below it is doing.

1. Right-click on event line number 3.
2. Select Insert | A Comment and in the comment box type “Music.” Then click

OK.

Music Is Not Playing

The next event to create will determine if the music has stopped playing. If it has,
you will want to start the music again.

1. Click on New Condition on event line 4.
2. Right-click on the Speaker object and then from the menu choose Samples |

Is a specific sample not playing.
3. A dialog box will appear as shown in Figure 11.25.

FIGURE 11.25 A browse dialog box.

4. The great thing about any sound files already added is that they will appear
in the dialog box automatically, as shown in Figure 11.25, so you don’t need
to browse the DVD for them. Left-click on The Last Day and then click OK
to save the information to the Event Editor.

Now that you have added the event, you need to create an action where the
sound plays. This is the same process you followed for the Start of Frame event.

5. On the event line 4 move across until you are under the Sound object and
right-click on Samples | Play Sample.

6. In the dialog box that appears, left-click on The Last Day and then click OK.

Comment Line

You need to add a comment line for the next bit of coding, which will set the trans-
parency back to 0.

1. Right-click on event line 5 and select Insert | A comment.
2. In the Edit box type “Transparency” and then click OK.

Setting the Transparency to 0

You will create an event that will check to see if the transparency of your Space_
background object is at 0. If it isn’t, the action will remove 8 from the object’s trans-
parency level. Remember, you set the Space_background object’s transparency to
128. An object is invisible at 128 and visible at 0. Once the object reaches 0, you do
not need to run this event any more, as it will be fully visible to the player.

The way to check the current value of the object’s transparency against a num-
ber (in this case 0) is to use the compare two general values option. This allows you
to do math comparisons on two different numbers.

1. Click on New Condition on event line 6.
2. Select the Special object, which looks like a computer monitor. Then choose

Compare two general values.
3. The Expression Evaluator will appear, requiring you to enter two numbers

and select a comparison option.
4. Select the first box, which contains the number 0, and as you want to get

the current value of the Space_background object, do this by clicking on the
Retrieve data from object button.

5. From the New Expression dialog box that appears, you need to select the
object you want to get the information from. Right-click on the Space_back-
ground object. Then select Animation | Get semi transparency ratio.

6. It will now read :

SemiTrans(“Space_background”)

7. In the drop-down box select Greater, as you only want this event to work
when the transparency is above 0.

8. You can leave the final box as 0. The Expression Evaluator is now config-
ured as shown in Figure 11.26. Click OK to save the event.

224 Awesome Game Creation: No Programming Required

Chapter 11 Alien Wars 225

For the action, you need to reset the transparency of Space_background to a new
number. The aim is to get the current transparency, remove eight from it, and then
place the result back into the object so that it is the right amount. To do this you use
a standard technique, which is getting the current value, removing a number, and
then resetting the result to the value. The following example shows how it works.

• Transparency of Space_background = Starting value 128
• Current Transparency value (128) – 8 = Current Transparency value
• Current Transparency value (120) – 8 = Current Transparency value
• Current Transparency value (112) – 8 = Current Transparency value

Using this method makes the transparency value decrease in value over time,
that time being defined by the event frequency.

Now you can add the action to decrease the transparency value of the Space_
background.

1. Moving across from event line 6, make sure you are directly under the
Space_background object.

2. Right-click on the action box and select Visibility | Set semi-transparency.
3. In the Expression Evaluator dialog box, click the Retrieve data from an object

button.
4. Right-click the Space_background object from the New Expression dialog

box and then from the pop-up choose Animation | Get semi-transparency
ratio.

5. The line will be in the Expression Evaluator, but this is just the current
value, so you need to type in “-8” at the end of the expression and then click
OK. You can see the expression in Figure 11.27.

FIGURE 11.26 Comparing the transparency of an object.

The speed at which the object appears is controlled by the speed of the game. By
default, the game is set to run at 50 frames per second, so this is 50 times a second.
This means the transparency effect will run and be over in less than half a second. If
you want to change the time it takes to run the fade-in effect on the background,
you can change the number 8. If you change it to a higher number, it will complete
the fade quicker, and if you lower the number it will take longer.

You can see the current events and the newly added condition and action in
Figure 11.28.

226 Awesome Game Creation: No Programming Required

FIGURE 11.27 The Expression Evaluator with the current value minus 8.

FIGURE 11.28 Current progress in the game.

Add Comment

You need to add a single comment line to show where your next bit of code is going
to be placed, and this comment shows where your button events will be.

1. Right-click on event line number 7 and select Insert | A comment.
2. In the Edit box type “Buttons” and then click OK.

Chapter 11 Alien Wars 227

Button Effects

If you run the game, you will notice that the animations appear and the background
fades in. You can move the mouse around the screen, but moving over the buttons
has no effect. When possible, you should design your game interface so that it is easy
for the players to navigate around, but also provide them with graphical feedback to
show them what they can and can’t click on. This game has two buttons on the
main frame that will take the user to the game frame or exit the program. These
buttons need to be animated so that they light up when the mouse is over them.
This is a very simple yet effective way of making your program a better experience
for the player.

Each image has two animation frames. The first frame is of a normal button, and
second frame is the button in a highlighted state. When the user moves the mouse
over the object, the relevant animation frame will change. Don’t worry too much
about animations yet, as they will be covered in more detail in Chapter 15.

First, you need to add the event condition for when the mouse is over the
Btn_Play object:

1. Click on New Condition on event line 8.
2. When the dialog box appears, right-click on The mouse pointer and key-

board object, as this controls all aspects of input from those devices.
3. From the pop-up menu choose The mouse, as you want to check the mouse

over this object. Then select Check for mouse pointer over an object.
4. You will then be asked which object to check that the mouse pointer is over.

Choose the Btn_Play object.

The event is now added, so now you need to add the action, which is changing
the animation frame to the frame that is highlighted.

5. Move to the right of this event until you are directly under the Btn_Play
object.

6. Right-click on the blank action box and then select Animation | Change |
Animation Frame.

7. The Expression Evaluator advises you that the first frame is equal to 0, so
you need frame 1. Type in the number 1 and click OK.

If you run the frame now and move your mouse over the Play button, it will be-
come highlighted. TGF2’s Event Editor now knows how to turn the animation on,
but when you move the mouse off the object, it stays on, so you need to turn the an-
imation off when the mouse isn’t over the object.

As TGF2 is drag and drop, you can quickly drag and drop items from one event to other
events and actions of the same object type to another object. This can really speed up your
development time as you copy the original and make a small change to the copied events and
actions. For now, while you are getting used to make conditions and events, continue to add
them in the standard way.

The next event to check for is when the mouse isn’t over the Btn_Play object.
You can do this in TGF2 by using the Negate option. This allows you to create your
event condition and then negate it, which means it will be the opposite of what the
condition says.

8. Click on New Condition on event line 9.
9. When the dialog box appears, right-click on The mouse pointer and key-

board object and then choose The mouse. Then select Check for mouse
pointer over an object.

10. When you are asked which object to check that the mouse pointer is over,
choose the Btn_Play object.

You have your event, but it will be true when the mouse is over the object,
which is what the previous event already does. You need to change this so that it
will be true when the mouse isn’t over this object.

11. Right-click on the condition text Mouse pointer is over.. on event line 9,
and from the pop-up menu select Negate.

A red cross now appears at the start of the condition to show that the condition
has been negated.

Next, you need to add an action that will change the animation frame to 0.

12. Move to the right of this event until you are directly under the Btn_Play
object.

13. Right-click on the blank action box and then select Animation | Change |
Animation Frame.

14. The Expression Evaluator appears and advises you that the first frame is
equal to 0. This default is exactly what you need, so click OK.

The events and actions for the Btn_play object are shown in Figure 11.29.

228 Awesome Game Creation: No Programming Required

FIGURE 11.29 The mouse over event and the negated option.

If you run the program now, when you move the mouse over the Play button it
will become highlighted, and when you move away from it, it will become dehigh-
lighted. You now need to follow the same procedure for the Quit button.

15. Click on New Condition on event line 10.
16. When the dialog box appears, right-click on The mouse pointer and key-

board object and choose The mouse. Then select Check for mouse pointer
over an object.

Chapter 11 Alien Wars 229

17. When you are asked which object to check that the mouse pointer is over,
choose the Btn_Quit object.

18. Move to the right of this event until you are directly under the Btn_Quit
object.

19. Right-click on the blank action box and select Animation | Change | Anima-
tion Frame.

20. In the Expression Evaluator, change this to “1” and then click OK.

Now for the second event to negate the quit button.

21. Click on New Condition on event line 11.
22. When the dialog box appears, right-click on The mouse pointer and keyboard

object, choose The mouse, and select Check for mouse pointer over an object.
23. When you are asked which object to check that the mouse pointer is over,

choose the Btn_Quit object.
24. Right-click on Mouse pointer is over.. on event line 11 and from the pop-up

menu select Negate.
25. Move to the right of this event until you are directly under the Btn_Quit

object.
26. Right-click on the blank action box and select Animation | Change | Anima-

tion Frame.
27. The Expression Evaluator appears and the default setting that appears is

already set to “0” so click OK.

Run the program, and now both buttons should work perfectly. If not, review
what you have done and make sure the actions are under the correct object.

Add Comment

Add a comment for the final two events for this frame to identify when a user has
clicked on either of the two buttons.

1. Right-click on event line number 12 and select Insert | A comment.
2. In the Edit box type “User Clicks” and then OK.

User Clicks

You need to program what happens when the user clicks on the Play or Quit button.
For the conditions, you will be using the mouse pointer and keyboard object, and for
the actions, you will play a sound and either move to the game frame or quit the
program. The handling of the frame navigation is done by the Storyboard Controls
object.

Create the first event, which will be the player clicking on the Play button.

1. Click on New Condition on event line 13. Select The mouse pointer and key-
board object from the dialog box. Then select The Mouse from the pop-up
menu and then User clicks on an object. A dialog box will appear as shown in
Figure 11.30.

2. Leave the defaults as left mouse button and single click and then click OK.
3. Another dialog box asks which object you want to check for the mouse being

clicked on. In this example it is the Btn_Play object, so select that and click
OK to save the condition.

You now need to add the two actions for this event. The first is to play a sound,
and the second is to change to a different frame.

4. Move to the right of event line 13 until you are directly under the Sound
object.

5. Right-click on the blank action box and select Samples | Play sample. In the
Play Sample dialog box, click the Browse button opposite From a file.

6. Navigate to your DVD and select the TGFFILES\Alien Wars\Sounds folder.
Open the Laser3.wav file. The sound has been added to the TGF2 program
and you should be back at the Event Editor.

Next, you need to add the action that will take the player to the game frame.

7. Still on event line 13, move across to the Storyboard Controls action box,
right-click on it, and select Next Frame.

You have completed the event for clicking the Play button, but you now need to
do something similar for the quit button.

8. Click on New Condition on event line 14. Select The mouse pointer and
keyboard object from the dialog box. Select The Mouse from the pop-up
menu and then User clicks on an object. In the dialog box that appears, click
OK to keep the default settings.

9. In the next dialog box, which asks for the object that you want to check for
the mouse being clicked on, select the Btn_Quit object and click OK to save
the condition.

230 Awesome Game Creation: No Programming Required

FIGURE 11.30 The condition settings
available for clicking on an object.

ON THE DVD

Chapter 11 Alien Wars 231

The two actions that are required are to play a sound and to quit the application.

10. Move to the right of event line 14 until you are directly under the Sound
object. Right-click on the blank action box and select Samples | Play sample.
The sound Laser3 is already listed in the Play Sample dialog. Left-click on it
and click OK.

11. Move to the Storyboard Controls object on event line 14, right-click on the
action box, and select End the application.

You can see all of the events and conditions in Figure 11.31.

FIGURE 11.31 All of the conditions for the menu frame.

You have completed all of the events required for the menu frame. Run the pro-
gram and make sure it works correctly. In the next part in this chapter you will
begin to make the game.

Programming the Game Frame

The game frame is the most complex of the three frames. Even with the features in-
cluded within the game, the actual amount of programming required is quite small
and requires fewer than 30 events. This is one of the great benefits of TGF2, and it
won’t be long before you are making your own games. Best of all, there are no long
amounts of text to type out like in traditional games development.

Game Frame Components

This is the busiest screen in the three frames, and this means there is a lot more to
program:

• Initializing the game, and setting the score value
• Checking the music and seeing if it is playing
• Stopping the ship from leaving the screen
• Making sure the player’s score and level is always on the topmost layer of the

screen
• Creating the enemy ships on screen
• Testing for the player pressing the space bar and checking if there is already a

bullet on screen
• Checking for the position of the bullets on screen and destroying them if they

are off screen
• Checking for collisions
• Creating more enemies and adding a level when no enemies are left
• Getting the enemy to shoot

Start of Frame

The Start of Frame condition is used to configure objects and your game before it
begins. For the game frame you will be using this event to set the correct animation
of the player’s spaceship so that it is pointing in the correct direction and to set up a
global value to store the score.

1. Click on New Condition on event line 1.
2. Select the Storyboard object and then from the pop-up menu choose Start

of Frame.

It’s time to create your first action, which will be to set up a global value and
change its starting value to 0. A global value is a number that can be accessed
through the whole game and is very useful when you want to take information
from one screen to another, for example, a score or lives number, which would need
to be carried over various frames.

Many slots can be used to store information. By default, there are 26 global
value slots, which are labeled A to Z. You can store information in any slot, so long
as you remember which slot you are working with. You can create more slots if they
are needed, but for this part of the game use slot “S” to store the score. The score can
be stored several ways. You could also use the Score object, which is a much simpler
process, but because the Score object uses images to display the score, these become
too large to fit in the game. You will be saving the score in the global value and then
displaying it in a text box so you can specify a font size and make it fit nicely in the
game. It is always sensible to set your global values to 0 at the start of the game to
ensure that no other number is currently stored in that value.

232 Awesome Game Creation: No Programming Required

Chapter 11 Alien Wars 233

Even though the score is displayed in a text box, you still need to update the
player’s score on the Player object. This will be needed to place the score into the
highscore table, as that object reads the player’s score action. This may seem a little
confusing, but as you work through it, the process will become much clearer.

If you want to see how the standard Score object works in TGF2, try the ChocoBreak tutor-
ial that is displayed automatically when TGF2 starts.

3. Right-click on the action box directly below the Special Conditions object on
the start of frame event line. From the pop-up menu, choose Change a
Global Value | Set.

4. In the first drop-down box in the Global value expression editor box that
appears are the slots to select from, as shown in Figure 11.32.

FIGURE 11.32 The available global values.

5. Select Global Value S. The number in the box below needs to be 0, which it
is, so click on OK to save.

Now you need to set the animation frame to the correct frame, which in this
case is Frame 1. You can view the animations for the spaceship by double left-
clicking on the object in the Frame Editor. You will learn more about the picture and
animation editor later on in this book. The player’s spaceship has a set of animations
for moving left, a set for moving right, and, very importantly, a single animation

where it is pointing forward. This final animation is necessary because otherwise,
when the player takes his fingers off the keys, the spaceship would be pointing left
or right, which wouldn’t look right for this type of game.

6. Move to the right of the first event line until you are directly under the
Player object and then right-click on the action box and select Animation |
Change | Animation Frame. When the Expression Evaluator appears, leave
it at 0 (as this represents the first frame) and click OK.

If you run the game now, you can move the spaceship left and right, and the
correct movements will play. This is because the program already has the correct
animations placed within it and it knows when to play the left and right animations
depending on the direction the ship is moving.

Music Not Playing

As you did for the main frame, you need to check if the music is playing, and, if not,
you need to tell it to play The Last Day.

1. Click on New Condition on event line 2.
2. Select the Sound object and then Samples | Is a specific sample not playing?
3. In the dialog box that appears, select the The Last Day sample and click OK.

Now you need to add the action, which will be to play the sample.

4. Move across to the right until you are under the Sound object and then
right-click the action box. Select Samples | Play Sample. In the dialog box
that appears, select The Last Day sound item and click OK. You can see the
current events in Figure 11.33.

234 Awesome Game Creation: No Programming Required

FIGURE 11.33 The two events created so far in our game frame.

Stopping the Ship from Leaving the Screen

The spaceship already has a movement applied to it. This is why when you play the
game you can already move the ship left and right. If you keep pressing the left or
right arrow keys you will notice that the spaceship leaves the screen. You need to
prevent this from happening, as the ship is supposed to be contained within the
game window.

Chapter 11 Alien Wars 235

In TGF2 you can check an object’s location on the screen, if it is moving out of
the frame, or even coming into the frame. You can tell TGF2 to stop the movement
of the object, which will create the desired effect of preventing it from leaving the
left or right side of the screen.

First, add a comment line to identify this part of the code:

1. Right-click on event line 3 and select Insert | A comment.
2. In the dialog box enter “Stop ship from leaving screen” and press OK.

Next you need to create an event that will test the position of the player’s ship
and test to see if it is leaving the screen.

3. Click on New Condition on event line 4.
4. In the New Condition dialog box, right-click on the Player object, and in the

pop-up select Position | Test position of player.
5. The Test Position of Player dialog box makes it easy to check the location of

an object on the screen. By selecting the arrows you can automatically
check for the location. The large arrow in the center checks to see if the ob-
ject is located in the frame, and the large arrow in the bottom left checks for
objects outside the frame. The four arrows pointing outward check for any
objects moving out of the frame from that side of the screen (e.g., left, right,
top, or bottom). The four arrows pointing inward check if the object is out-
side of the frame but moving into the frame.

6. As the player’s spaceship can only move left or right, you only need to test
its location moving left or right out of the frame. Select the left and right ar-
rows pointing outward as shown in Figure 11.34 and then click OK to save
the event.

FIGURE 11.34 Testing the location
of the player’s ship on the left and
right sides of the frame.

Now you need the action that changes the movement of the player’s ship to
stop. Once the player presses the opposite direction, the program will no longer run
this event or action, and then ship will move again.

7. Move across from event line 4 until you are directly under the Player object,
right-click, and select Movement | Stop. You can see the created comment
and event in Figure 11.35.

236 Awesome Game Creation: No Programming Required

FIGURE 11.35 Current events and event lines.

Run the game now, and you will not be able to move the ship out of the game’s
frame.

Display Always on Top

The score and level panel on the top-right corner displays important information
about how well the player is doing. Later on in the game when you start to create
enemy robots, these robots will appear over this display. In some games you might
be quite happy with this, but for this game the user should to be able to see the score
and level at all times. You can do this by telling TGF2 to always place these objects
on the very top of the screen. When you add an object to the screen, it picks up an
order number. This is how it will appear in front or behind another object. By using
this action, you don’t need to worry about when you added the object or the order
number that it has obtained. You will know that it will always appear on top. The
easiest event condition for this is the Always event, which will work for every loop
of the program. It is important not to use too many Always events, especially to
have too many actions, as this could slow down your game.

First, create the comment line:

1. Right-click on event 5 and then select Insert | A comment. Type the word
“Display” into the text box and click OK.

Now to add the Always event:

2. Click on New Condition on event line 6.
3. Select the Special object and then click on Always.

You need to create three actions for this event line: display the back_info, the
Score, and the Level objects to the top of the frame.

Chapter 11 Alien Wars 237

4. Move to the right of the Always event line, which is event line 6, until you
are directly under the back_info object, right-click, and select Order | Bring
to front and then do the same for the Score and Level objects. This creates
the events and conditions shown in Figure 11.36. If your conditions do not
match up or you do not have actions (ticks) under the correct objects, you
need to recheck your code.

FIGURE 11.36 Events and conditions for event lines 5 and 6.

Events one to four are not shown in Figure 11.36, as we have scrolled up the events to show
you the two you worked on with the relevant object images.

Creating Enemy Ships

The next few events involve placing enemy ships on the screen. When the scene was
set for the game a single ship was placed off the top of the frame. You will duplicate
this ship and place them in positions on the screen. Once all ships are destroyed, you
will need to create them all again, so that the player is playing in a never-ending loop.
In a game with many levels you would increase the difficulty of each of the waves.
For this game, just recreate the ships each time.

To do this you need to create a group. This group of code will be run once at the
very start of the game to create our initial wave and then will be enabled only when
all ships have been destroyed. A group is a great way of creating code and only ac-
cessing it when you need it.

First, create a comment line to separate the code:

1. Right-click on event number 7 and select Insert | A comment. Type in
“Create Enemy Ships” and click OK to save the event.

Now you need to add a group that will store all the events to create the enemy
ships.

2. Right-click on event number 8 and select Insert | A group of events. When
the Group Events dialog box appears, type “Level Placements” and then
click OK.

Within the group, you will create eight events. Some of the actions could go in
a single event, but as this is your first game, to make it easier to read you can sepa-
rate them.

The first event in this group adds to the level number. As the frame starts, the
level number is zero, and as this group is enabled to begin with, it will add 1 to make
level 1. As soon as this group has run, it will disable itself, so until all enemy ships
are destroyed it will not add any more level numbers. To store the level number, use
a global value called L.

3. Under the group Level Placements is a blank event line New Condition.
Click on New Condition in this group. This will be event line number 9.

4. Select the Special object and then Always.

Now that you have your event, set your global value. To do this use a simple cal-
culation, putting the current value of L (the global level value) and adding 1.

5. Select the Special Conditions object for event line 9 and then pick Change a
global value | Set. Click on the drop-down box in the Global Value dialog
box and select Global Value L.

6. In the Enter Expression box you need to get the current value and add one
to it. Click on the Retrieve data from an object button and then right-click
on the Special object. Find L in the Retrieve a global value dialog box that
appears (shown in Figure 11.37). Click OK to save the information into the
Expression Evaluator.

238 Awesome Game Creation: No Programming Required

FIGURE 11.37 Retrieving the L value.

7. The text “Global Value L” will be displayed in the Expression Evaluator. At
the end of it type “+1.” This will now look like Figure 11.38.

8. Click OK in the Expression Evaluator to save this information to the Event
Editor.

The next event to make will create an enemy robot at a particular position on
the screen. You need to do this five times. The process is as follows:

9. Click on New Condition on event line 10 and select the Special object.

Chapter 11 Alien Wars 239

You need to create an exact copy of the enemy that is off screen and then place
it on a location within the game frame. To do this, use the Create object.

10. Move across from the event line 10 you just created until you are under the
Create object. Right-click and select Create object. In the dialog box that
appears, you can select an object to create. Find the Enemy object as shown
in Figure 11.39 and then click OK.

FIGURE 11.38 The Global Value L and the addition of one level in the Expression Evaluator.

FIGURE 11.39 The Create Object selection box.

You will now be given the option of where you want to place this newly created
object. You can either place it in a particular position or at a certain distance from
another object. Place the object at a particular position.

11. Type in the X coordinate of 321 and the Y coordinate of 10, as shown in Fig-
ure 11.40.

240 Awesome Game Creation: No Programming Required

FIGURE 11.40 The coordinates for the Create Object action.

12. As you type in the coordinates, you will see a square with a cross in it, to
show you where the object will appear. Click on OK to save the information
to the Event Editor.

You need to create four additional events that have the “Only one action when
event loops” and then create action for the Enemy object. See Table 11.4 for the po-
sitions of the four enemy robots.

Table 11.4 The Four Additional Enemy Robot Positions

EVENT LINE NUMBER X POSITION Y POSITION

11 193 88

12 449 88

13 65 10

14 577 10

Chapter 11 Alien Wars 241

If you run the game now, it should look like Figure 11.41. If not, review your
code and the positions of each object you created.

FIGURE 11.41 The enemy robots on screen.

The enemy robots are also moving, because they have already had a path move-
ment applied to them and will keep moving along their path and back again until
they are destroyed.

The next event in the Level Placements group is to write the current level to our
text object Level in the top-right corner of the screen. Use the Always event again,
so it will happen every time the program loops. This would be a problem if this bit of
code was only in the Event Editor, but as it’s in a group, it will only run when the
group is enabled.

13. Click on New Condition on event line 15. Select the Special object and then
choose Always.

14. You need to write the contents of the Global Value L to the object Level, so
move across until you are under the Level object.

15. Right-click and select Change Alterable String. This option allows you to set
the text of the object. In the Expression Evaluator that appears, you need to
first put the level text in the box so that it is displayed and then add the cur-
rent level onto the end of it. Type “Level” (with quotes) and then a plus
sign. You now need to add the current value of the global value L, which
will be 1. There is a slight problem: The Global Value is a number and the

text box is a string (text). You have to convert it to the correct format and
convert the number to a piece of text so that it will be displayed. Click the
Str$ button, which will place the code Str$(>Enter number here<) into the
Expression Evaluator. The Enter number here is selected. Click Retrieve
data from an object, select the Special object, and choose Retrieve a global
value. From the dialog box that appears, select L and then click OK.

16. The text in the Expression Evaluator should now look like Figure 11.42. If it
does, click OK. If not, review the process of adding this action.

242 Awesome Game Creation: No Programming Required

FIGURE 11.42 The code for getting the current level number into a text object.

The final event in this group is to disable the group. This means all of the actions
in the group will only be run once. You will enable it again later on

17. Click on New Condition on event line number 16.
18. Select the Special object and then select Always.
19. Move across to the right of the event to the Special Condition object, right-

click, and select Group of events | Deactivate. A dialog box will appear, list-
ing all of the groups available. You have only added one, so this is already
selected. Click OK to save the action to the Event Editor.

You have now finished the code for the Level Placements group and you can see
the events in Figure 11.43.

Player Shooting

It’s time to create the event that will control the player’s spaceship weapon. You
could let the ship shoot many bullets, but to give the player a bit more of a chal-
lenge, create bullets one at a time. The player won’t be able to fire again until the
previous bullet has hit an enemy ship or moved off the frame. For this you need to
create a two-condition event. The first condition checks the number of bullets on
screen, and if this is less than one, the second condition checks to see if the user is

Chapter 11 Alien Wars 243

pressing the space bar. If both of these are true, the event will run the actions, which
will play a sound and then shoot a bullet from the spaceship.

First, create the comment line.

1. Ensure that the Level Placements group is expanded. This means you can
see all of the events within the group. If you closed the group, the event line
numbers would be different, so for the rest of this project leave it expanded.

2. Right-click on event line number 18 and select Insert | A comment. Then
type “Player Shoot” in the comment box. Click OK.

Now it’s time to add the two-condition event.

3. Click on New Condition text on event line 19.
4. Select the Shoot_p object and choose Pick or Count | Compare the number of

Shoot_p objects. This option allows you to compare the number of Shoot_p
bullets that are currently created.

5. You want to allow this event to run as long as there are no other bullets on
screen, so in the Expression Evaluator that appears, click on the drop-down
box and select Lower. Type “1” in the Enter expression to compare with box
and then click OK.

6. To add a second condition to the same event line, right-click on the condi-
tion you just added and select Insert. A dialog box will appear, allowing you
to create another condition. Select The mouse pointer and keyboard object
and then The keyboard | Upon pressing a key. Press the spacebar when
prompted to do so.

You have your two conditions, so now you need to add the actions. The first
action to create plays a sound when the bullet is fired.

FIGURE 11.43 The events for the Level Placements group.

7. Move to the right of the event until you are under the Sound object, right-
click, and select Samples | Play sample. In the dialog box, click on the Browse
button opposite the From a file option. Navigate to the TGFFILES\Alien
wars\Sounds folder and open the file Laser4.wav.

Now it’s time to add a second action on the same event line. To create a shoot-
ing bullet you can use a special action under most objects to fire an object from it.

8. Move across to the Player object, right-click, and select Shoot an object.
9. In the dialog box that appears, asking for the object that you want to shoot

from the player’s spaceship, select the Shoot_p object and click OK.
10. You now have a properties box asking for additional information about the

speed and direction of the bullet. Change the speed dialog to 40.
11. You can also configure which direction the bullet will move from the ship.

To specify the direction, select the Shoot in selected directions . . . radio
button. This launches the Direction dialog box, which has the arrow point-
ing upward, as shown in Figure 11.44.

244 Awesome Game Creation: No Programming Required

FIGURE 11.44 The Direction dialog box.

12. Click OK on the Direction dialog box.
13. The Shoot an Object dialog box will be configured as in Figure 11.45.

Position of Bullets

You only want the player to shoot one bullet at a time, and you have already created
the condition to allow that, but when a bullet is off the screen, it will still be counted
as a bullet. This will prevent the player from shooting any more bullets. You need to
create an event to check the position of the bullet and, if it is off the top of the
screen, will destroy it.

Chapter 11 Alien Wars 245

1. Click on New Condition on event line 20.
2. Select the Shoot_p object and from the pop-up menu choose Position | Compare

Y position to a value. Y coordinates go up and down, so a higher value is lower
on the frame and a lower value is toward the top of the frame. A negative value
would be off the frame but above it, so in the Expression Evaluator that appears
change the drop-down box to Lower and then enter “–32”and click OK.

3. Move to the right of this event until you are directly under the Shoot_p object
and select Destroy.

This destroys the object if it is before –32 on the Y coordinate. This will happen
quite quickly once the object has left the screen.

Collision Between the Enemy and the Bullet

If you were to run the game now you would notice the enemy robots moving, and
you would be able to fire the ship’s weapons by pressing the spacebar. The bullets
currently fly through the enemy and have no effect, so you need to check for a
collision between the robot and the bullet and then run a number of actions. These
actions include:

• Adding 20 to the global value 20
• Playing an exploding type sound
• Adding 20 to the internal TGF2 score object so that it can be transferred to the

highscore table later
• Destroying the robot
• Destroying the bullet
• Setting the score

Begin with the collision event between the robot player and the bullet.

1. Click on New Condition on event line 21.
2. Select the Shoot_p object and then from the pop-up select Collisions | With

another object. A dialog box will appear that requires you to select the second
object in the collision with the bullet; in this case it’s the Enemy, so select that
object and then click OK.

FIGURE 11.45 The Shoot an Object dialog box.

The condition has now been created, so you can create all of the required actions.
The first action is to add 20 to the global value, so for each robot destroyed the

player will get 20 points.

3. Right-click on the Special Conditions object and select Change a global
value | Add to. In the Expression Evaluator from the drop-down box select
Global Value S, type in the number 20 and then OK.

Now you can add the exploding sound.

4. Move to the Sound object, right-click, and select Samples | Play sample.
Click on the Browse button opposite From a file and then navigate to the
TGFFILES\Alien wars\Sounds folder and open the file EXPLOD03.wav.

You need to add 20 to the player’s score. This isn’t the score that is displayed but
the score that the system requires to put in the highscores table. This score is exactly
the same as the score that is displayed on screen.

5. Still on event line 21, move across until you are under the Player 1 object.
Right-click and select Score | Add to score. In the Expression Evaluator box
type in “20” and then click OK.

You can now destroy both the enemy ship and the bullet.

6. Move to the right of the event until you are under the Enemy object, right-
click, and select Destroy.

7. Move to the right until you are under the Shoot_p object, right-click, and
select Destroy.

The last thing to do on this event line is set the currently saved score to the Score
text object.

8. Move to the right and right-click on the Score object. Select Change alter-
able string. Type in

“Score “+

9. Click on the Str$ button and then click on Retrieve data from an object.
Choose the Special object, then Retrieve a global value, and from the dialog
box select Global Value S. Click OK in the dialog box. The Expression Eval-
uator will now read:

“Score “+Str$(Global Value S)

10. Click OK to save this information to the Event Editor.

If you run the game now, you will be able to shoot and destroy the enemy
robots, you will hear a sound when the bullets hit the robots, and finally the score
will increase. You can see the events you have added for this section of code in
Figure 11.46.

246 Awesome Game Creation: No Programming Required

Chapter 11 Alien Wars 247

Recreate the Enemy Robots

When no robots are left, you need to create them all again so that the game plays con-
tinuously. The main code for this has already been created, and the only action needed
is to enable the Level Placements group, which handles placing all of the objects.

For the event you need to compare the number of robots on screen. For this
program you need to see if it equals 1, so run the group. You might be wondering
why you are comparing the robots against 1 rather than 0. This is because a single
robot is placed offscreen that the player never gets to see, but TGF2 knows it is there.
Therefore, when the comparison is done you know there will be one left, but all
objects on the frame will have been destroyed.

Create a comment line first:

1. Right-click on event number 22 and select Insert | A comment. In the text
box type “Regenerate enemy.”

Compare the number of enemy robots on screen and see if it equals 1.

2. Click on New Condition on event line 23. Select the Enemy object and then
Pick or count | Compare to the number of enemy objects. In the Expression
Evaluator leave Equal, type in the number 1 and click OK.

Now you have your event, and when this is true, you want it to create a whole
new group of enemies. This can be done by enabling the group code, which also in-
crements the level number by one.

3. Move to the right of the event and right-click on the Special Conditions ob-
ject select Group of events | Activate. Then select the only group available—
(1) – Level Placements—and click OK.

Robot Firing

The next two events handle the firing of bullets from the enemy robots. The first
plays the firing animation for the robot every two seconds. This time is set manually,
so if you wanted to make the game easier you could increase the time, or you could
decrease it to make it animate more often. The second event knows when the firing
animation is playing and fires a bullet in the downward direction.

FIGURE 11.46 The Player Shoot code section.

First, create the event that will pick at random one of the enemy robots every
two seconds.

1. Click on New Condition on event line 24. Select the Timer object and then
Every. The Timer dialog box shows hours, minutes, seconds, and so on. You
want something to happen every two seconds, so use the slider so that the
seconds number changes to 2 or type in “2” as shown in Figure 11.47.

248 Awesome Game Creation: No Programming Required

FIGURE 11.47 The timer dialog box.

You need to add another condition to the same event, which will pick one of the
enemy robots at random.

2. Right-click on Every 02”-00 text and select Insert. Select the Enemy item
and then from the pop-up choose Pick or count | Pick enemy at random.

This picks any of the robots on screen at random every two seconds. You now
need to change the animation of the selected robot to a special animation called
Shooting Animation.

3. Move to the right of event line 24 until you are below the Enemy object.
Right-click the action box and select Animation | Change | Animation se-
quence. When the animation dialog box appears, select Shooting Animation
and click OK.

The next event requires three conditions. These conditions check which anima-
tion is playing and when animation frame 15 is playing, and then the action fires a
bullet down toward the player’s spaceship. This is needed because of the special
animation of the enemy robot throwing a bullet. In normal circumstances where
you are using just a spaceship, you wouldn’t need to create these conditions. You
would put the shooting action under the timer event created previously.

4. Click on New Condition on event line 25. Select the Enemy object and then
Animation | Which animation of enemy is playing. In the dialog box that ap-
pears, select Shooting Animation and then click OK.

Chapter 11 Alien Wars 249

The next condition on the same event compares the current animation frame of
the object and is true once it reaches 15. Objects are animated by frames and run
through each image to create the animation. In this case, animation 15 of the
Enemy object is when it is about to throw a bullet.

5. Right-click on the condition you just created and select Insert. Then select
the Special object and Compare two general values. In the Expression Eval-
uator box that appears, ensure that the first box is selected and then click
Retrieve data from an object button. Choose the Enemy object and from the
pop-up select Animation | Current Frame.

6. In the second box type “15” and then click OK.

You now need to add the final condition to this event, and for this you will just
be checking that there are fewer than two bullets on screen (in other words, one
bullet). The reading of all of the events is very quick, and it would be possible for
two bullets to be fired from the enemy very close together, as the events in this case
are read twice before the animation frame has moved onto animation frame 16. To
prevent this from happening, place this condition, which will restrict the running of
this event while there is one bullet on screen.

7. Right-click on the condition you just created and select Insert.
8. Select the Special object and then from the pop-up menu choose Compare

two general values. In the dialog box, ensure that the top entry area is
selected and then click on Retrieve data from an object and select the
Shoot_e object, followed by Count | Number of Objects.

9. Change the drop-down box to read “Lower” and then select the second
entry area and type in the number “2.” Your Compare two general values
box should now look like Figure 11.48.

FIGURE 11.48 The Compare two general values entry box.

Now it’s time to add the action to shoot the bullet.

10. Move to the right of this three-condition event until you are under the
Enemy object. Right-click on the action box and select Shoot an object.
From the dialog box, pick the Shoot_e object and click OK.

11. In the speed and direction dialog box type in the speed of 65 and click on
the Shoot in selected directions . . . radio button.

12. When the direction dialog appears, replace the up-pointing arrow with a
down-pointing one (there should only be a down-pointing arrow left on the
dialog). Click OK. Then click OK again to save the information to the Event
Editor.

You can see the event conditions in Figure 11.49.

250 Awesome Game Creation: No Programming Required

FIGURE 11.49 The events created under the Regenerate enemy comment.

Robot Animations

Once the shooting animation has completed, you need to put the enemy robot back
into its normal movement animation.

1. Click on New Condition on event line 26. Select the Enemy object and then
Animation | Has an animation finished? From the dialog box select the
Shooting Animation entry and click OK.

2. Move to the right of this event until you are directly under the Enemy object,
right-click, and select Animation | Change | Animation Sequence. Select
Walking from the dialog box and click OK.

You can see the event in Figure 11.50.

FIGURE 11.50 Checking that the animation has completed.

Chapter 11 Alien Wars 251

Collision Between Bullet and Spaceship

Our final event in this program is to finish the game when the player’s ship has been
hit with an enemy bullet. In some games you might create health or additional lives,
but for this game only allow the player a single life. When the player is hit, the game
automatically moves to the final highscores frame.

1. Click on New Condition on event line 27. Select the Shoot_e object and
then from the pop-up select Collisions | Another object. Select the Player ob-
ject from the dialog and click OK. Move to the right until you are directly
under the Storyboard Controls object, right-click, and select Next Frame.

You should have created the final event as shown in Figure 11.51.

FIGURE 11.51 Collision between enemy bullet and players ship.

You can see all of the events for the game frame in Figure 11.52.

FIGURE 11.52 The completed code for the game frame.

Programming the Highscores Frame

Before you begin work on this frame, ensure that you are looking at the correct frame:

1. Double left-click on the text “highscores” in the Workspace toolbar.
2. In the highscores frame, click on the Event Editor icon to see a blank Event

Editor ready for programming.

Highscores Frame Components

The highscores frame only requires us to program two simple events. The first checks
if any music is playing, and the second moves the player back to the main menu once
he is ready.

Music Is Not Playing

You need to create a condition the same way you did in the first frame to check to
see if The Last Day is not playing, and the corresponding action will be to start play-
ing it. This ensures that the music is playing continuously on these frames.

1. Click on New Condition on event line 1.
2. Select the Sound object and from the pop-up menu choose Samples | Is a

specific sample not playing.
3. When the sample dialog box appears, select The Last Day and click OK.
4. Move to the right of event line 1 until you are directly under the Sound ob-

ject, right-click on the empty action box, and select Samples | Play Sample.
5. The Play Sample dialog box will appear, and the sound you want is already

listed. Select The Last Day and click OK.

Going Back to the Start

When the player presses a key, you want to take him back to the start of the game.
It is very important to allow the user to easily navigate around the screens and en-
sure that there is a simple way of getting back to the main menu.

1. Click on New Condition, which is in event line 2.
2. Select The mouse pointer and keyboard object and then The keyboard |

Upon pressing a key.
3. When you are asked for a key, press the Escape key (shown as ESC on your

keyboard).
4. The event has been added.
5. Move across from this event until you are directly under the Storyboard

Controls icon, right-click on the action box and select Jump to Frame. This
displays a Choose a Storyboard Frame as shown in Figure 11.53.

252 Awesome Game Creation: No Programming Required

Chapter 11 Alien Wars 253

6. Select Frame 1—main and click OK to tell the Event Editor to jump to this
frame when the user presses any key.

Run the game and see if you can get a highscore.

CHAPTER SUMMARY

Congratulations. You have completed your first game in TGF2. We hope you have
learned a lot about actions, conditions, and events and begun to understand how to
use these in your games.

It will take a little time for you to remember where certain options are and
where the relevant actions are in the objects you are using, but over time this will
become second nature and you will find that TGF2 is very powerful.

Let’s make another game in TGF2 so you can get some more experience with
the Event Editor and learn some more skills.

FIGURE 11.53 The storyboard selection dialog box.

This page intentionally left blank

C H A P T E R

12 LITTER BUG

255

In This Chapter

• Introduction
• Library
• Initial Setup
• Event Programming

256 Awesome Game Creation: No Programming Required

In this chapter you will be creating your second TGF2 game, called Litter Bug. Lit-
ter Bug is a single-screen game where you control a robot and move him around
the game world using the arrow keys. This is a different type of game from Alien

Wars and provides insight into what types of games TGF2 can produce easily. You
will learn a lot of different game techniques that you can use in your own games
when you begin to make them.

INTRODUCTION

You are about to create a 2D single-level game called Litter Bug. The story behind
the game goes as follows:

You are Robot X2000, the ultimate cleaning device. You are employed

at the local spacemart and your job is to ensure the shop floor is kept

spotless. Unfortunately two people from a rival store have come to drop

litter and ensure you get fired from your job. Keep the floor clean and

ensure your boss is kept happy or you might just get fired!

The player controls the robot using the cursor keys (arrow keys) to move between
the two floors of the game.

The game has the following components:

• A menu screen
• A game screen
• A highscores screen
• A robot controlled by events
• A number of shop floor graphics
• Counters to keep track of rubbish
• Two nonplayer characters that move and drop litter

You can see an example of the completed game in Figure 12.1.

LIBRARY

A library file has already been created, which contains all of the graphic resources
you need to produce your game. You need to connect to the library so you can begin
the process of dragging and dropping these items into place.

1. Right-click on the left-hand pane of the Library toolbar and select New from
the pop-up menu.

If no Library toolbar is displayed at the bottom of the screen, select View | Toolbars | Library
Window to enable it.

Chapter 12 Litter Bug 257

2. Browse the DVD for the folder TGFFILES\Litter Bug\Lib, and then click OK.
3. Type in the name of the library entry as “Litterbug.”
4. Single left-click on Litterbug in the left-hand pane to reveal the litter_lib file

and then double left-click on the litter_bug file to display all three library
frames as shown in Figure 12.2.

FIGURE 12.1 Litter Bug game.

FIGURE 12.2 The Litter Bug library files.

ON THE DVD

258 Awesome Game Creation: No Programming Required

INITIAL SETUP

Now that the library file is in place, you need to start building up the basic scenes of
the program. The game has been split into three frames:

Menu. This is the first screen the players will see, and they will have two
choices to select from: start the game, which will take them to the Game
frame, or quit the game.

Game. This is where most of the work and programming will take place. You
will need to code many aspects of the game in this screen including keeping
the score, the enemy dropping the litter, and programming your own move-
ment engine rather than using the built-in movement types.

Highscore. Very little coding is required here—only one event. After a set pe-
riod of time, you will move from the Highscore frame to the Menu frame.

Creating a New File

Click on the New button or select File | New from the text menu. This creates a blank
application file with a single frame already created within it. You now need to create
the other two frames and rename them all to describe what they will do within the
game.

1. Right-click on Application 1 in the in the Workspace toolbar and select
Rename. then type in the word “Litter Bug” and press the Enter key to save
the information.

2. Right-click on Frame 1 in the Workspace toolbar. Select Rename and type in
“Menu.”

3. Right-click on Application 1 and select New Frame. Type in the name of the
frame to be “Game.”

4. Right-click on Application 1 and select New Frame for a second time and
then type in the name of that frame to be “Hiscore.”

Your Workspace toolbar will now look like Figure 12.3.

Game Window Size

By default, all games created by the TGF2 are set to a screen size of 600 × 800. You
need to amend this to be 800 × 600. 800 × 600 is one of the most common screen
sizes in use today and is a good window size for any games you might want to make.

1. Click on Litter Bug in the Workspace toolbar.
2. In the Properties window, click on the Window tab. This displays a number

of settings. Set the one called Size 640 × 480.
3. Click on the size, and a pop-up window will appear. Select 800 × 600.
4. Once you have clicked away from this property, a dialog box will appear

asking if you want to modify the size of the frames to the same size as the
application window. Click Yes.

5. All frames are now set to 800 × 600.

Chapter 12 Litter Bug 259

Menu Frame Scene Setup

Now you need to set the scene for the Menu frame. This frame only consists of three
items:

Background_Image. This is the main image of the menu screen that will
cover the whole frame.

Btn_Quit. A graphical image with the word “Quit” on it, which will become an
animated button to allow the user to quit the game.

Btn_Start. A graphical image with the word “Start” on it. This will provide the
user with a way to move to the next frame.

Library File for Menu

Before you begin placing these objects, you must ensure that you are looking at the
correct library folder that contains the menu items.

1. On the right-hand pane of the Library toolbar you should see three folders,
double left click on the “menu” text.

2. This will reveal the three items to be used in the game, as shown in Figure
12.4.

Placing the Items

Now that the screen is the correct size and you have added all of the frames, it’s time
to begin placing the graphics and objects in their correct locations.

FIGURE 12.3 The Workspace toolbar.

First, ensure that you are looking at the correct frame:

1. Double left-click on Menu on the Workspace toolbar. This displays a blank
frame in the Frame Editor.

Now you need to drag and drop items from the Library toolbar (Menu folder) to
the frame and position them in the correct locations.

2. Drag the item Background_Image from the Library toolbar and drop it onto
the blank frame.

3. To check its exact location, click on the graphic object on the frame to reveal
its properties sheet. Click on the Size/Position tab in the properties sheet.
Ensure that the Position entries for X and Y both are set to 0. If they are not,
left-click on the entry to edit it.

4. Drag and drop the item Btn_Quit onto the frame and place it at X position
498 and Y position 561.

Remember that to check an object’s position you need to single left-click on it once it is on the
frame. Click on the Size/Position tab and then amend the X,Y coordinates.

5. Drag and drop the item Btn_Start onto the frame and place it at X position
633 and Y position of 561.

You have now completed setting the scene for the Menu frame, and it will look
like Figure 12.5.

Game Frame Scene Setup

Now you need to set the scene for the Game frame. This frame consists of the most
items:

Counter_NLvl. This counts the number of objects on the level at any one time
so that it can change the Counter object to display how well or poorly the
player is doing.

Rubbish_Cleaned. This is the amount of rubbish the player has cleaned. This
information is placed into the String_Score text object.

260 Awesome Game Creation: No Programming Required

FIGURE 12.4 The Menu frame graphic items in the Library toolbar.

Chapter 12 Litter Bug 261

Layer object. In a game where objects can move in front of and behind other
objects it is sensible to tell the objects where they need to appear so that
they do not overlap incorrectly.

Clean_Fluid. This is attached to the back of the robot, and when it touches the
dirt, the dirt is removed.

Dirt (n). There are two dirt objects: one for the ground floor of the shop and
another for the second floor. These appear to be dropped by the Badguy1
and Badguy2 objects.

String_Score. This is a text item that keeps track of the score. The score increases
by one every time a piece of dirt has been cleaned.

Control_Panel. This is the panel at the bottom of the screen that separates the
game screen from the score and performance bar.

Counter. This counts the number of pieces of rubbish left on the floor. Once a
pre-defined number is met (in this case 40), the game will end.

Guardrail_(a). A number of guardrails are positioned around the screen to
give the impression of a ground floor and second floor.

FIGURE 12.5 The Menu frame with all of the objects placed.

Player. This is the player robot cleaning device. It is controlled with the arrow
keys.

Coll_player. This is used to prevent the player character from moving where it
shouldn’t and to prevent collisions with other objects.

Badguy (n). Two badguys drop litter around the store. These two graphics
have already had a movement applied to them. All you will need to do is get
them to respond to colliding with the player’s object.

Shelves (n). The many shelves in the game make it look more like a real shop.
they also provide some cover for the badguys to drop litter where you cannot
see it to make the game a little harder.

Background_Image. This is the background image to our game.
Movement_Map. This is a grid that will be used to prevent the player object

from moving anywhere except the designated blank spaces on the map.
Shadow. This provides a shadow effect to other objects on the screen. It is just

for graphical purposes.

Library File for the Game

Before you begin placing these objects you must ensure that you are looking at the
correct library folder that contains the game items.

1. Your Library toolbar is currently in the menu folder, so double left-click on
the yellow folder with the up-pointing arrow.

2. You can now see the three folders of objects that make up the game. Double
left-click on the Game folder. You will see a large list of objects in the Library
window, as shown in Figure 12.6.

262 Awesome Game Creation: No Programming Required

FIGURE 12.6 The objects for use in the game level.

Placing the Items

The Game frame contains the objects that need placing within our game, but this
will always be the case when creating your own games. It is common practice in
TGF2 to create a separate frame for each level of your game. This makes the design-
ing and setting up of the frame a lot easier than trying to place everything in one
place and then coding the Event Editor to move items into place when the player is
on the correct level. This game only has a single level, so a single game frame is per-
fect for what you need to do.

Chapter 12 Litter Bug 263

First, be sure you are on the correct frame:

1. Double left-click on Game in the Workspace toolbar.
2. You should now see a blank frame.

Now start with some of the background objects:

3. Drag and drop the object Movement_Map from the Library window to the
frame. Click anywhere on the colored part of the Movement_Map on the
frame to display its properties.

The white areas on the Movement_Map are transparency. This means TGF2 ignores them,
especially when you are trying to click on an object. To select an object with transparency,
you need to click anywhere that has a pixel drawn.

4. Click on the Size/Position tab in the Properties window and change the X
and Y coordinates to 0 and 0. Your screen will now look like Figure 12.7.

FIGURE 12.7 The movement map.

The movement map shows the places that our cleaner robot can move, and it
can only move on those areas that are transparent. You will program the actual
directions later on in this chapter, but using a hidden map can be very useful for
restricting movement of objects by code.

5. Drag and drop the Background_Image object onto the frame and place it at
X coordinate of 0 and Y coordinate of 0 (0,0).

6. Drag and drop the Shadow object and place it at (100,350).

To make the coordinates easier to read, some may be placed in brackets. The first number is
the X coordinate, and the second is the Y coordinate.

Placing the Shelves

You have several similar objects to place onto the screen. These shelves provide the
graphics that the badguys and the player can move in front of and behind. See Table
12.1 for the name of the object and its position on the frame. Place them using the
same process you used for the other objects.

Some of the same objects will be placed more than once.

Table 12.1 Shelf Objects and Locations

OBJECT NAME X COORDINATE Y COORDINATE

Shelves_1 300 406

Shelves_1 199 56

Shelves_1 500 56

Shelves_1 0 155

Shelves_1 400 157

Shelves_2 201 306

Shelves_3 400 306

Shelves_3 600 306

Shelves_3 500 406

Shelves_3 300 56

Shelves_3 601 56

Shelves_3 100 156

Shelves_3 599 156

Shelves_4 200 406

Shelves_4 100 56

Shelves_4 401 56

Shelves_4 301 157

Shelves_4 700 156

Shelves_5 101 306

264 Awesome Game Creation: No Programming Required

Chapter 12 Litter Bug 265

Your frame will now look like Figure 12.8.

FIGURE 12.8 The current layout of the Game frame.

Placing the Players

Now you shall place the player character, the two badguys who will drop the rubbish,
and a collision box to be used for checking the position of the player on the collision
map that you placed earlier. You can see all the positions in Table 12.2.

Table 12.2 Player and Badguy Positions

OBJECT NAME X COORDINATE Y COORDINATE

Coll_Player 426 428

Player 447 438

Badguy 1 221 461

Badguy 2 253 210

Placing the Off-Screen Objects

Some objects will be used in the game, some will appear on screen when required
(for example, the dirt), and others will stay off screen and be used in the game to
count the current score or be used in the Event Editor to program certain events.
You can see all of these objects’ positions in Table 12.3.

Table 12.3 Position of Off-Screen Objects

OBJECT NAME X COORDINATE Y COORDINATE

Dirt 1 932 179

Dirt 2 932 309

Clean_Fluid –49 154

Layer Object 324 –76

Rubbish_Cleaned 239 –51

Counter_NLvl 213 –51

Final Scene Objects

You now need to place the final objects on the scene. These items include the score-
board and the rails that go around the second floor. See Table 12.4 for the object
names and their positions.

Table 12.4 Positions of Final Game Frame Objects

OBJECT NAME X COORDINATE Y COORDINATE

Counter 200 543

Control_Panel 0 599

String_score 610 551

Guardrail_l 93 266

Guardrail_m 200 266

Guardrail_m 300 266

Guardrail_m 400 266

Guardrail_m 500 266

Guardrail_r 700 266

You have completed placing all of the objects for the game screen, as shown in
Figure 12.9.

266 Awesome Game Creation: No Programming Required

Chapter 12 Litter Bug 267

Highscore Frame Scene Setup

Now you need to set the scene for the Highscore frame. This frame consists of only
two items:

Background_Image. This is a background image that is used to decorate the
frame.

Hi-score. This is an object called highscore, which saves all of the top scores
into a table that has already been configured for font size, type, and color.

Library File for the Game

Before you begin placing these objects, you must ensure that you are looking at the
correct library folder that contains these two items.

1. Your Library toolbar is currently in the game folder, so double left-click on
the yellow folder with the up-pointing arrow.

2. You can now see the three folders of objects that make up the game. Double
left-click on the Highscore folder. This displays a large list of objects in the
library window as shown in Figure 12.10.

FIGURE 12.9 The completed positions of all of the Game frame objects.

Placing the Items

The Highscore frame contains only two objects that need placing within our frame.
Make sure you are on the correct frame:

1. Double left-click on Highscore in the Workspace toolbar.
2. You should now see a blank frame.

Drag both items and place them at their correct coordinates.

3. Drag and drop Background_Image onto the frame and place it at the coordi-
nates of (0,0).

4. Drag and drop Hi-score onto the frame and place it at the coordinates of
(503,639).

You have completed placing all of the objects required for the Highscore frame
and you can see the results in Figure 12.11.

268 Awesome Game Creation: No Programming Required

FIGURE 12.10 The objects for use in the Highscore level.

FIGURE 12.11 The Highscore frame with all objects in place.

Chapter 12 Litter Bug 269

EVENT PROGRAMMING

The scene is set for the three frames, and you are now ready to begin event pro-
gramming to make the program functional. Start off with the Menu and then move
onto the Game frame, which will take the longest, and, finally, finish with the High-
score frame. In your own games you can program your frames in whatever order
you decide and can leave the harder frames until last or complete them first.

Menu Programming

For the Menu programming frame you need to do the following:

• At the very start of the frame play and loop some music.
• Check for when the mouse is over either of the two buttons.
• Check for when the mouse isn’t over either of the two buttons.
• Check for when the user clicks on either of the two buttons

Game Name and Version Comment

Start off the programming by adding a simple comment line to detail the program
name and its current version number.

First, ensure you are on the correct frame.

1. Double left-click on Menu in the Workspace toolbar. You will now see the
Litter Bug menu screen.

2. Click on the Event Editor button, and you will be presented with a blank
Event Editor ready for programming.

Now, add our comment.

3. Right-click on event line 1 and then select Insert | A Comment. The Edit
Text dialog box will appear. Type the text “Litter Bug” and then press the
Enter key to move to the next line on the editor. Then type in the text
“Version 1.0.” Click on the Centered alignment button and then click OK.

You have now added your comment line as shown in Figure 12.12.

FIGURE 12.12 The product name and version comment.

Start of Frame

When the frame begins, you will play a sample song. As the song is short, loop it con-
tinuously so that it keeps playing. In your own games it would be better to use longer
songs, as a short one looped can get irritating for the player after a short while.

First, add a comment line to separate the code.

1. Right-click on event line 2 and select Insert | A comment. In the dialog box
type in “Start” and then click OK.

You now need to add a Start of Frame condition that will run as the frame is
loaded and create a single action to play a sample file that is located on the DVD.

2. Click on New Condition and then select the Storyboard Controls object. Then
from the pop-up menu choose Start of Frame.

3. Move across from this condition until you are under the Sound object.
Right-click the blank action box and select Samples | Play and Loop Samples.
When the Sound dialog box appears, click on the Browse button opposite
From a file. Browse to the DVD to the \Samples folder, select the file called Ac-
tion Point.wav, and click Open. You will now get a Expression Evaluator di-
alog which asks you to enter a number for the number of times you want
the tune to play for. Enter “0” as this will make the song play continuously,
then click on “OK”.

Your current code and action will look like Figure 12.13.

270 Awesome Game Creation: No Programming Required

FIGURE 12.13 The start of frame code and action.

When the Mouse Is Over an Object

Now you need to check when the mouse is over either the Btn_Start or the Btn_Quit
object. If it is, make the object visible. By default, both of these objects are visible in
the game when the frame starts, so the code will not work until you have completed
the next section of code.

First, create the comment line.

1. Right-click on event line 4 and select Insert | A Comment. Then type the
text “Mouse Pointer Is Over” and OK.

Now you need to create an event that checks when the mouse is over the
Btn_Quit object.

2. Click on New Condition on event line 5. Then select The mouse pointer and
keyboard object and from the pop-up menu choose The mouse | Check for

ON THE DVD

ON THE DVD

Chapter 12 Litter Bug 271

mouse pointer over an object. A dialog box appears that is the object you
want to check for the mouse being over. Select the Btn_Quit object, which
is the object that shows the text “Quit.” Then click OK.

3. Move to the right of this event until you are directly under the Btn_Quit ob-
ject. Right-click on the action box and select Visibility | Make object reappear.

You now need to create the same condition on a separate line for the Btn_Start
object and make the same action for the Btn_Start object.

4. Click on New Condition on event line 6. Select The mouse pointer and key-
board object and then The mouse | Check for mouse pointer over an object.
Then choose the Btn_Start object and click OK.

5. Now move to the right of this event line until you are directly under the
Btn_Start object. Right-click the action box and select Visibility | Make ob-
ject Reappear.

Mouse Pointer Is Not Over

You need to create an opposite effect of what you have just created. Otherwise, the
two buttons will always appear, as there is nothing telling them to be invisible when
the mouse isn’t over them.

First, create a comment line.

1. Right-click on event line 7 and select Insert | A comment. Then type “Mouse
Pointer Is Not Over” and click OK.

Follow the same process you did before to create the two events that check for
when the mouse is over the two objects. Once they are created, you can negate them.
This means that the opposite of the event is true, which in this case will mean when
the mouse is not over the objects. You also need to create the actions that will make
the object invisible.

2. Click on New Condition on event line 8 and select The mouse pointer and
keyboard object. Then select The mouse | Check for mouse pointer over an
object, choose the Btn_Quit object, and click OK.

3. Move to the right of this event line until you are directly under the
Btn_Quit object, right-click the action box, and select Visibility | Make object
Invisible.

Now you need to negate it.

4. Right-click on Condition in event line 8 and from the pop-up menu shown
in Figure 12.14, select Negate. This puts a red cross in front of the condition,
which tells you it is negated.

5. Click on New Condition on event line 9 and select The mouse pointer and
keyboard object. Then select The mouse | Check for mouse pointer over an
object, choose the Btn_Start object, and click OK.

6. Move to the right of this event line until you are directly under the Btn_
Start object, right-click the action box, and select Visibility | Make object
Invisible.

7. Right-click on Condition in event line 9 and from the pop-up menu select
Negate.

Your conditions should now look like Figure 12.15.

272 Awesome Game Creation: No Programming Required

FIGURE 12.14 The Condition pop-up menu.

FIGURE 12.15 The conditions created so far.

If you run the code, you will notice that the buttons are now hidden and only
appear when you move the mouse over either of the two buttons.

Chapter 12 Litter Bug 273

User Clicks

You now need to create two events to check for when the user presses the left
mouse button over either of the two buttons. Clicking on the Start button will take
the user to the Game frame, and clicking on the Quit button will exit the program.

First, create a comment line.

1. Right-click on event line 10 and select Insert | A Comment. In the comment
box type “User Clicks” and click OK.

Now you need to create the two events.

2. Click New Condition on event line 11 and select The mouse pointer and
keyboard object. Then choose The mouse | User clicks on an object. When
the dialog box appears, keep the defaults and click OK. You now need to se-
lect an object, so choose Btn_Quit and click OK.

3. Move to the right of this event until you are under the Storyboard Controls
object, right-click the blank action box, and choose End the application. This
will quit the program when the user clicks on this button.

4. Click on New Condition on event line 12, select The mouse pointer and key-
board object, and then pick The mouse | User clicks on an object. Click OK to
keep the defaults and then select the Btn_Start object. Click OK.

5. Move to the right of this event until you are under the Storyboard Controls
object, right-click and choose Next Frame.

If you run the program by clicking the Run Application button, you can test
both the frame movement and the quitting of the application buttons.

You have completed the code for this frame. The full code can be seen in Figure
12.16.

FIGURE 12.16 List of all the events in the first frame.

Game Frame Programming

The Game frame is where most of the event programming is done, and it can be split
into the following tasks that you need to complete:

• At the start of the frame, configure the counter that displays the amount of litter
on the floor.

• Configure the guardrails that will always appear in front of any objects.
• Configure the order of any objects to the front or back of other objects they

come into contact with or move past.
• Program the movement of the player character.
• Destroy the cleaning fluid once it gets to a certain animation frame, to prevent

too much from appearing on the screen.
• Check for collisions between the cleaning fluid and dirt and then destroy the dirt.
• Create a code group for the badguys so you can control how much dirt they

drop and how they react when colliding with the player.
• Sort out the scores and display them on the screen.

Before beginning the programming, you need to ensure that you are on the cor-
rect Event Editor screen.

1. Double left-click on Game in the Workspace toolbar.
2. Click on the Event Editor button and you should see a blank Event Editor.

Start of Frame

Begin with a comment line and then create a Start of Frame event, which is used to
control anything that needs to happen at the start of the frame once it’s loaded.
Then you can create an action to set the counter to 0.

1. Right-click on the number 1 on the Event Editor and select Insert | A com-
ment. Type “Start” in the comment box and click OK.

2. Click on New Condition on event line 2. Select Storyboard Controls and
from the pop-up menu choose Start of Frame.

3. Move across to the right of the event until you are under the Counter object,
right-click the action box, and select Set Counter. The Expression Evaluator
appears with a 0 already, which is what you want, so click OK.

Your current code should look like Figure 12.17.

Guard Rails

The guardrails are a graphic item whose only role is to improve the look of the
game. You want them to always appear in front of the robot and the badguy, which
will appear to walk behind them. This is just for graphic effect and is a good example
of small things you can include in your game to make it more professional looking
and give an overall higher-quality feel to your creations. You will also create some
actions for the cleaning fluid and the location from which it appears.

274 Awesome Game Creation: No Programming Required

Chapter 12 Litter Bug 275

First, create a comment for the event you are about to create.

1. Right-click on event number 3 and select Insert | A Comment. Type “Guard
Rails & Player” and click OK.

2. Click on New Condition on event line 4 and then select Special | Always.

The first two actions are for the Player object and the cleaning fluid. To do this, use
the shoot action, which shoots an object from the player. You would normally use this
action for shooting bullets, but it can be used in effects as well. You will destroy the
objects before they get too far later on in the program; otherwise, they would continue
in the direction specified.

3. Move to the right of the Always event until you are directly under the Player
object. Right-click and select Shoot an Object. A dialog box will appear. Use
the scroll bar to locate the Clean_Fluid object, single left-click on the object to
highlight it, and then click OK.

4. In the next dialog box that appears, type in “5” for the speed of the object
and then click on the Shoot I selected directions radio button.

5. Ensure that all directions are selected, as shown in Figure 12.18 and then
click OK. Click OK again to save the information to the action box.

FIGURE 12.17 The start comment and condition.

FIGURE 12.18 All directions selected.

Now you need to ensure that at all times (which is why you used the Always
event) the guardrails are set to the front. This prevents any objects from being placed
over them.

6. Move across from the Always condition until you are under the guardrail_l
object, right-click the action box, and select Order | Bring to Front.

7. Move under the guardrail_m object, right-click the action box, and select
Order | Bring to Front.

8. Finally, go under the guardrail_r object and in the blank action box select
Order | Bring to Front.

The four events should look like Figure 12.19.

276 Awesome Game Creation: No Programming Required

FIGURE 12.19 The events that have been created.

Order

Many of the objects in this game move in front of and behind other objects. This can
be handled two ways. You can use the Layer object or use the Layer toolbar. The
Layer object is very useful when you want to change objects based on their positions
on the frame, which is why you will be using it for this game. In TGF2 there is a con-
dition that checks the Y positions of selected objects. Once the event is true, you can
change the layer position, which changes if the object is in front of or behind other
objects.

You need to add a comment line first.

1. Right-click on event line 5 and select Insert | A comment. In the text box
that appears type “Order” and click OK.

Now to add the six events. These will be added first, as all the actions are the same.
The event tests if a particular object is overlapping another. These are:

• Player is overlapping the Shadow object.
• Badguy 1 is overlapping coll_player.
• Badguy 2 is overlapping coll_player.
• Coll_player is overlapping Group.Neutral.
• Badguy 1 is overlapping Group.Neutral.
• Badguy 2 is overlapping Group.Neutral.

Group.Neutral is a special feature in TGF2 that allows you to select a number of
objects into a single group and then create events and actions for that group. In this

Chapter 12 Litter Bug 277

case the group is called Neutral and is identified by an apple in TGF2. The objects in
this group are the shelves around the shop.

1. Click on New Condition on event line 6 and select the Player object. From
the pop-up menu choose Collisions | Overlapping another object. In the next
dialog box that appears, select the Shadow object and click OK.

The event is now created, so now you can create the other five events before
you create the actions.

2. Click on New Condition on event line 7, select the Badguy 1 object, and then
select Collisions | Overlapping another object. Select the Coll_player object
and click OK.

Follow this same process for the rest of the items as shown in Table 12.5.

Table 12.5 Events 7 to 11

OBJECT OVERLAPPING OBJECT

Badguy 2 Is overlapping Coll_Player

Coll_Player Is overlapping Group.Neutral

Badguy 1 Is overlapping Group.Neutral

Badguy 2 Is overlapping Group.Neutral

Once you have created all of these events, your code should look like Figure 12.20.

FIGURE 12.20 Events 5 to 11.

Now it’s time to add the action, and the action is the same for all six events.

3. On event line 6, move across until you are under the Layer object, right-
click the blank action box, and select Sort | By Y (Decreasing).

Do this for the other five events. Each Layer box against each event will now
contain the words “Decreasing Y Sort,” as shown in Figure 12.21.

278 Awesome Game Creation: No Programming Required

FIGURE 12.21 All six events containing the same action.

Movement

Do not use the default movement in this game. Instead, you will create your own.
You will learn about all the different built-in movement types in Chapter 14. Some-
times it is useful to create your own movements in a game, as this allows you to be
a little more unique and create it to fit in with a certain type of movement you are
trying to create. The default movement will serve many movement purposes except
when you are trying to make your games more unique. This game uses a screen map
that is tested with the red box. If movements overlap, the movement will stop. If
movements do not overlap, the red box will move in that particular direction by a
number of pixels. You need to check if the red box is overlapping or not, as well as
checking which direction key (arrow key) the player is pressing.

Create the comment box first.

1. Right-click on event line 12 and then select Insert | A comment. Type
“Movement” and then click OK.

For the first four events you need to create two conditions in each event. The
first is a negated condition checking if the red box (coll_player) is overlapping the
Movement_Map and repeating while the direction arrow is pressed. Add these four
events before you add the actions.

Chapter 12 Litter Bug 279

2. Click on New Condition on event line 13. Right-click on Coll_player and
then select Collisions | Overlapping another object from the pop-up menu.
From the next dialog box choose the Movement_Map object and click OK.
Right-click on the condition you have just created and select Negate from
the pop-up menu. A red X will now appear before the event.

3. Right-click again on the condition you have just added and select Insert.
Then from the pop-up menu select The mouse pointer and keyboard object
and The keyboard | Repeat while a key is pressed. When the dialog box
appears asking you to select a button, click the Right Arrow button. Your
event now looks like Figure 12.22.

FIGURE 12.22 The two-condition event.

4. You now need to create the next three events using the same process. See
Table 12.6 for details of what each event should contain.

Table 12.6 The Negated Events for Movement

OBJECT IS OVERLAPPING OBJECT

[Negated] Coll_player Is Overlapping Movement_Map

Repeat while Left Arrow is pressed

[Negated] Coll_Player Is Overlapping Movement_Map

Repeat while Up Arrow is pressed

[Negated] Coll_Player Is Overlapping Movement_Map

Repeat while Down Arrow is pressed

5. Your four events should now look like Figure 12.23.

You now need to add the actions for these four events, and all the actions take
place on the Coll_player object. You need to add two actions for each event. The first
action in each will get the object’s current position and then add or subtract a num-
ber from its position. If the player has pressed the up or down keys, this will add or

subtract the Y coordinate, and the left and right arrows will take off or add to the X
coordinate. The second action for each box sets the coll_player’s direction. The di-
rection of the coll_player is used to set the direction the Player object will look.
Therefore, when the red box is pointing right, it then knows the player has pressed
the right key on the keyboard and should display the Player animation pointing to
the right.

Now create the actions for event line 13.

6. From event line 13 move across to the right until you are directly under the
Coll_player object and right-click on the action box. From the pop-up menu
select Position | Set X Co-ordinate. The Expression Evaluator will then appear.
You want to get the current X position of Coll_player and then add four to it.
This makes it move to the right.

7. Click on Retrieve data from an object. When the dialog box appears, right-
click on the Coll_player object and choose Position | X Co-ordinate. This
places some text in the Expression Evaluator. Place the cursor at the end of
the expression and then type “+4” (without the quotes). Your code now
looks like the following:

X(“coll_player”)+4

8. Click on OK to save this action. Now you need to create the second action in
the same box, so right-click again on the Coll_player box for event line 13
and choose Direction | Select Direction. The Direction dialog box will appear,
and as you are editing the event, which is about pointing to the right, the
arrow is in the correct position, so click on OK. Your actions should look like
Figure 12.24.

280 Awesome Game Creation: No Programming Required

FIGURE 12.23 The four negated two-condition events.

Chapter 12 Litter Bug 281

You need to do very similar things for the other three events. See Table 12.7 for
details on how to configure them.

Table 12.7 The Actions for the Other Three Events

EVENT LINE WHAT THE ACTION SHOULD SAY

14 Set X position to X × 4

Set direction to Left

15 Set Y position to Y × 4

Set direction to Up

16 Set Y position to Y + 4

Set direction to Down

If you get stuck and can’t remember which options are required for both actions, see the pre-
vious example for the actions for event line 13.

Your events and actions should resemble Figure 12.25.

We have modified the image in Figure 12.25 to show you the actions for each event. Hold
your mouse over the action box to reveal the contents and confirm that they are correct.

You need to create another set of events to check for when the Coll_player is
overlapping, and if it is, to move the box away from the collision and set the direc-
tion. You might be wondering why you would need to move the box; if you didn’t,
it would always be overlapping the Movement_Map once after it first hit it. Until the

FIGURE 12.24 The two actions required for the first event of the movement section.

player changes direction, no more movement would happen. This would provide
the ability to stop the player from moving.

The event conditions are exactly the same as the ones you just created but with-
out the Negate option being used. Create the conditions for the first of the new
events now.

9. Click on New Condition on event line 17. Right-click on Coll_player and se-
lect Collisions | Overlapping another object from the pop-up menu. From
the next dialog box choose the Movement_Map object and click OK.

10. Right-click again on the condition you have just added and select Insert.
From the pop-up menu select The mouse pointer and keyboard object and
then The keyboard | Repeat while a key is pressed. When the dialog box ap-
pears asking you to select a button, click the Right Arrow button.

Now create the event conditions on event line 18.

11. Click on New Condition on event line 18. Right-click on Coll_player and select
Collisions | Overlapping another object. Choose the Movement_Map object
and click OK.

12. Right-click again on the condition you have just added and select Insert.
From the pop-up menu select The mouse pointer and keyboard object and
then The keyboard | Repeat while a key is pressed. When the dialog box ap-
pears asking you to select a button, press the Left Arrow button.

Now create the event conditions on event line 19.

13. Click on New Condition on event line 19. Right-click on Coll_player and
select Collisions | Overlapping another object. Choose the Movement_Map
object and click OK.

282 Awesome Game Creation: No Programming Required

FIGURE 12.25 Actions for all four events.

Chapter 12 Litter Bug 283

14. Right-click again on the condition you have just added and select Insert.
From the pop-up menu select The mouse pointer and keyboard object and
then The keyboard | Repeat while a key is pressed. When the dialog box ap-
pears asking you to select a button, press the Up Arrow button.

Now create the event conditions on event line 20.

15. Click on New Condition on event line 20. Right-click on Coll_player and
select Collisions | Overlapping another object. Choose the Movement_Map
object and click OK.

16. Right-click again on the condition you have just added and select Insert.
From the pop-up menu select The mouse pointer and keyboard object and
then The keyboard | Repeat while a key is pressed. When the dialog box ap-
pears asking you to select a button, press the Down Arrow button.

Your four new events should look like Figure 12.26.

FIGURE 12.26 The four new events on event lines 17–20.

Now you need to create the actions for each of the four events, and again it is
similar to the actions you already created for the previous four. There will be two
actions to each event, under the Coll_player object. The first of the two actions will
add or subtract from the box’s position on screen, and the second sets the direction
it is looking.

First, create the two actions for event line 17.

17. From event line 17 move across to the right until you are directly under the
Coll_player object and right-click on the action box. From the pop-up menu
select Position | Set X Co-ordinate. The Expression Evaluator will then appear.
Get the current X position of Coll_player and then subtract four to move to
the left slightly.

18. Click on Retrieve data from an object. When the dialog box appears, right-
click on the Coll_player object and choose Position | X Co-ordinate. This
places some text in the Expression Evaluator. Place the cursor at the end of
the expression and type “-4” (without the quotes). Your code now looks like
the following:

X(“coll_player”)-4

19. Click OK to save this action. Now you need to create the second action in
the same box, so right-click again on the Coll_player box for event line 17
and choose Direction | Select Direction. The Direction dialog box will appear,
and as you are editing the event, which is about pointing to the right, the
arrow is in the correct position, so click OK. You can see the actions for this
event in Figure 12.27.

284 Awesome Game Creation: No Programming Required

FIGURE 12.27 Actions for event line 17.

You need to do very similar things for the other three events. See Table 12.8 for
details on how to configure them.

Table 12.8 The Actions for the Other Three Events

EVENT LINE WHAT THE ACTION SHOULD SAY

18 Set X position to X + 4

Set direction to Left

19 Set Y position to Y + 4

Set direction to Up

20 Set Y position to Y –4

Set direction to Down

Chapter 12 Litter Bug 285

You can see all of the events in Figure 12.28.

FIGURE 12.28 The eight movement events.

If you run the game now, you can try to move the robot Player object but it will
seem as if nothing is happening. Actually you are moving the coll_player object, but
it is transparent so you cannot see it. Later in the game you need to tell the Player
object to move with the transparent box to complete the robot’s movement. You’ll
have the chance to do this a little later in this chapter.

You can also see that the cleaning fluid is moving outward from the player,
because the whole animation is playing. This animation and the speed of the object
make it move halfway across the screen. Next, you will destroy it once it gets to a
certain animation frame so that it will only appear for a short time.

Cleaning Fluid

You want to destroy the Clean_Fluid object as soon as it gets to a particular anima-
tion frame because at this point it gets to animation frame 8 and then just glides
across the screen with the graphics that are in that last frame. If you destroy it at
frame 7 (you could pick another frame number if you wanted), it will only live for a
short period of time, just long enough to appear at the back of the robot.

Create a comment line first.

1. Right-click on event line 21 and select Insert | A Comment. In the edit box
type “Cleaning Fluid” and then click OK.

Now create the checking of which frame is playing.

2. Click on New condition on event line 22. Right-click on the Clean_Fluid ob-
ject and then Animation | Compare current frame of Clean_Fluid to a value.
In the Expression Evaluator leave the drop-down box at Equal and type “7”
in the expression area. Click OK.

3. Move across from this event until you are directly under the Clean_Fluid
object, right-click the action box, and select Destroy.

You have now completed the event to destroy the cleaning fluid before it goes
swirling around the screen. You can see the event, comment, and action in Figure
12.29.

286 Awesome Game Creation: No Programming Required

FIGURE 12.29 Cleaning fluid event and action.

Collisions Between Cleaning Fluid and Dirt

The next set of events checks for when the cleaning fluid is overlapping the dirt ob-
jects, at which point you want to destroy the dirt and add 1 to the score.

First, create the comment line.

1. Right-click on event line 23, select Insert | A comment, type in “Collisions,”
and click OK.

Now create the two events before you add the actions.

2. Click on New Condition on line 24 and select the Clean_Fluid object followed
by Collisions | Overlapping another object. In the dialog box that appears, se-
lect Dirt 1 and click OK.

3. Click on New Condition on line 25 and select the Clean_Fluid object and
then Collisions | Overlapping another object. In the dialog box that appears,
select Dirt 2 and click OK.

Now add the two actions for each event. The first is to destroy the dirt object
that is being overlapped, and the second is to add to the score.

4. Move to the right of event line 24 until you are under the Dirt 1 object,
right-click and select Destroy.

Chapter 12 Litter Bug 287

5. On the same event line (24), move under the Rubbish_Cleaned object,
right-click, and select Add to counter. Type the number “1” in the expres-
sion box and click OK.

6. Move to the right of event line 25 until you are under the Dirt 2 object,
right-click, and select Destroy.

7. On the same event line (25), move under the Rubbish_Cleaned object,
right-click, and select Add to counter. Type the number “1” in the expres-
sion box and click OK.

Your events should look like Figure 12.30.

FIGURE 12.30 Collision events.

To separate the next bit of code, add a blank event line.

8. Right-click on event line 26 and select Insert | A comment. Don’t type any-
thing in the edit box. Click OK.

Computer Players Group

The next step is to create a group to store six events, which handle what will happen
when the badguys collide with the player object and when they throw rubbish onto
the floor. They are in a group because groups keep code tidy and make it easier to
understand and change. If you have problems with the computer players, it is easy
to locate the problem, as you will have stored all the code in a single group.

First, create the group, which is enabled at the start of the frame.

1. Right-click on event 27 and select Insert | Group of events. When the dialog
box appears, type “Computer Players” into the Title of the group and then
click OK.

You now have a group that is expanded. You can tell when it’s expanded as you
can see the New Condition text below it. You must ensure that the group stays
expanded throughout this next part of the code, as this dictates what line numbers
exist. When the group is expanded, the line numbers include the events in the
group. When it’s collapsed, it does not.

Create the first event in this group, whereby when the badguys collide with the
robot (player) and then reverse their movement.

2. Click on New Condition on line 28. This is the event line within the group.
Select the Special object and then Limit Conditions | Only one action when
event loops. The first condition has been added. You now need to add a sec-
ond condition to the same event.

3. Right-click on the condition you have just added, select Insert and then se-
lect Badguy 1 from the dialog box and Collisions | Another object. Select the
Player object and click OK.

4. Move across to the right of this event until you are under the Badguy 1 object,
right-click the action box, and select Movement | Reverse.

You need to create a similar set of conditions and the same action for Badguy 2.

5. Click on New Condition on line 29 and then on Limit Conditions | Only one
action when event loops.

6. Right-click on the condition you have just added and select Insert. Then select
Badguy 2 from the dialog box and select Collisions | Another object. Select the
Player object and click OK.

7. Move across to the right of this event until you are under the Badguy 2 ob-
ject, right-click the action box, and select Movement | Reverse.

You can see the two events in Figure 12.31.

288 Awesome Game Creation: No Programming Required

FIGURE 12.31 The first two events in our Computer Players group.

You now need to create four events, which contain four conditions each. Two of
the events are for Badguy 1 and the second two are for Badguy 2. The two events
are separated into left and right movements. These events handle how often and
when the badguys throw rubbish. The badguys only throw rubbish when they are
overlapping one of the shelves (using the neutral group), when they are facing left
or right, and only when a random number is equal to 0. This random number can be
increased to increase the litter drop time or decreased to increase the drop rate.

Chapter 12 Litter Bug 289

Create the first event of this group of four.

8. Click on New Condition on event line 30 in the Computer Players group
and then select Limit Conditions | Only one action when event loops.

9. Right-click on the condition you have just added and select the Badguy 1
object and Collisions | Overlapping another object. Then select the Group.
Neutral object.

10. Right-click on the condition you’ve just added and select Insert. Select
Badguy 1 and Direction | Compare Direction of Badguy 1. The next dialog
box is pointing to the right, which is what you require, so click OK.

11. Finally, right-click again on the last condition you have just added and
select Insert. Select the Special object and choose Compare two general
values. When the Expression Evaluator appears, type in “Random(30)” and
leave the second box as “0.” Click OK.

In the last condition TGF2 runs a random number from 0 to 30 during each loop
of the event. Only when this number is 0 will this event condition be true, and as long
as all the other conditions are true, it will run the actions. Your conditions should look
like Figure 12.32.

FIGURE 12.32 The four condition events.

Create the next event the same way but change the direction to left.

12. Click on New Condition on event line 31 in the Computer Players group and
select Limit Conditions | Only one action when event loops.

13. Right-click on the condition you have just added and select the Badguy 1
object and Collisions | Overlapping another object. Then select the Group.
Neutral object.

14. Right-click on the condition you’ve just added and select Insert. Select
Badguy 1 and Direction | Compare Direction of Badguy 1. The next dialog
box is pointing to the right. Change this so it is pointing to the left and then
click OK.

15. Finally, right-click again on the last condition you have just added and select
Insert. Select the Special object and choose Compare two general values.
When the Expression Evaluator appears, type in “Random(30),” and in the
second box leave this as “0.” Then click OK.

Finally, create two more events for the right and left, but replacing Badguy 1
with Badguy 2. Once you have done that, your events should look like Figure 12.33.

290 Awesome Game Creation: No Programming Required

FIGURE 12.33 All four events, two for Badguy 1 and two for Badguy 2.

You now need to create the actions for each of these events, where a sound will
be played to show the user that something has happened, and create some dirt (either
Dirt 1 or Dirt 2 depending on the badguy). Start with event line 30.

16. Move across from event line 30 until you are directly under the Sound ob-
ject. Right-click and select Samples | Play Sample.

17. Click on the Browse button opposite the From a file option. Browse to the
DVD, navigate to the Samples folder and open the file GLASS 3.wav.ON THE DVD

Chapter 12 Litter Bug 291

18. Still on event line 30 move across until you are under the Create New Objects
object. Right-click and select Create object. In the dialog box that appears,
select Dirt 1 and click OK. A Create Object dialog box should appears. Click on
the Relative to button, select Badguy 1, and click OK. Ensure that the X and Y
boxes are set to 0. You can see the configuration of the dialog box in Figure
12.34.

FIGURE 12.34 The Create Object location
box.

19. Click OK.

Follow the same process for event line 31.
You need to follow the same procedure for events 32 and 33, but this time for

the create action you need to select Badguy 2 and Dirt 2. Here’s the process for event
line 32:

20. Move across from event line 32 until you are directly under the Sound ob-
ject. Right-click and select Samples | Play Sample.

21. Select GLASS 3 from the samples box and click OK.
22. Still on event line 32 move across until you are under the Create New Ob-

jects object. Right-click and select Create object. In the dialog box appears,
select Dirt 2 and click OK. A Create Object dialog box should appear. Click
on the Relative to button, select Badguy 2, and click OK. Ensure that the X
and Y boxes are set to 0.

Follow the same process that you used for line 32 for event line 33.
You have completed this section of code, which handles the computer players.

Leave the group expanded until you have completed the rest of the code. Otherwise,
it will affect the event line numbering.

End Code

The final code for this frame involves tidying up the loose ends, getting the player to
move, setting the objects scores, and checking when the litter dropped is over 40.

First, create the comment line.

1. Right-click on event line number 35 and select Insert | A comment. In the
dialog box type “End Code” and click OK.

Now it’s time to create the first event of this last section. This sets the Player ob-
ject to the same direction and position as the Coll_player object. Then set the String_
score object to the current counter value of how many bits of rubbish have been
cleaned up.

2. Click on New Condition on event line 36. Select the Special object and then
the Always option.

3. Move to the right of this event until you are under the Player object, right-
click, and select Direction | Select Direction. In the direction box that ap-
pears, click on the Calculate Direction button (this appears as a button with
1+1 on it). This opens up the Expression Evaluator. Click on the Retrieve
data from an object button and then select the Coll_player and from the
pop-up menu select Animation | Current Direction value. It now says the
following in the Expression Evaluator:

Dir(“coll_player”)

4. Click OK button.
5. You need to add a second action on the same event line (36). Right-click on

the Player box where you just created an action and select Position | Select
Position. Click on the Relative to button, choose the Coll_player object, and
click OK. Type in the X position of 24 and Y of 10 and then click OK.

6. You now need to add another action on the same event line but in a differ-
ent action box. Move across until you are directly under the String_score
object. Right-click and select Order | Bring to front.

7. Finally, for this event you need to add one more action to the String_score
object, so right-click on the action box and select Change Alterable String.
The Expression Evaluator should appear. As you are placing a number
within a string object, you need to convert it, so click on the Str$ button.
This enters part of the information into the box. Click on Retrieve data from
an object while the “>Enter number here<” is selected. Right-click on the
Rubbish_Cleaned object. From the pop-up menu, select Current Value. This
places the following in the Expression Evaluator:

Str$(value(“Rubbish_Cleaned”))

292 Awesome Game Creation: No Programming Required

Chapter 12 Litter Bug 293

8. Click OK. The events and actions should look like Figure 12.35. The actions
have been placed in the picture also, so you can compare them against your
own code.

FIGURE 12.35 The events and actions you just created.

The next event will again be an Always event, with the actions calculating the
total number of dirt items that are in play on the frame. Remember, there are two
dirt objects: Dirt 1 for Badguy 1 and Dirt 2 for Badguy 2. You can work out the total
by just adding up the total number of objects on the frame.

9. Click on New Condition on event line 37. Select Special | Always.

The first action for event line 37 is to set the total number of Dirt objects in the
Counter object. This is the bar that counts up in the bottom middle of the game
screen. The more dirt there is on screen, the higher the counter goes.

10. Move to the right of event line 37 until you are directly under the Counter
object. Select Set counter, and the Expression Evaluator will appear. Click on
Retrieve data from an object and select the Dirt 1 object, followed by Count
| Number of objects. This enters an expression, but you want to add the ob-
jects from Dirt 2, so at the end of the text type a plus sign and again click on
Retrieve data from an object. Select Dirt 2 and Count | Number of objects.
Your Expression Evaluator should now show the following expression:

Nobjects(“dirt 1”)+Nobjects(“dirt 2”)

11. Click OK to save the information to the action box.

Now you need to follow the same process for the Counter_NLvl. This is the
counter that is checked to see if it has reached 40 in another event. If it has, the game
will end. This counter keeps track of how the player is doing, so the game can be
stopped when the player cannot clean the floor quickly enough.

12. Move across event line 37 until you are under the Counter_NLvl object.
Right-click and select Set counter, and the Expression Evaluator will appear.
Click on Retrieve data from an object and select the Dirt 1 object and then

Count | Number of objects. Add a plus sign at the end of this expression and
again click on Retrieve data from an object. Select Dirt 2 and Count | Number
of objects. Your Expression Evaluator should now show the following
expression:

Nobjects(“dirt 1”)+Nobjects(“dirt 2”)

13. Click OK to save the information to the action box.

Now it’s time to add the last event of this frame. This event checks the
Counter_NLvl object to see if it is greater than 40. If so, it sets the score collected in
the Rubbish_Cleaned counter and the game moves to the Next Frame.

14. Click on New Condition on event line 38. Right-click on the Counter_NLvl
object and select Compare the counter to a value. The Expression Evaluator
now appears. Change the Comparison Method box to Greater and enter 40
in the Edit box. Click OK.

15. Move to the right of this event until you are under the Player 1 object (the
icon looks like a joystick). Select Score | Set Score. When the Expression
Evaluator appears, click on Retrieve data from an object and then find the
Rubbish_cleaned object. From the pop-up menu choose Current value. The
Expression Evaluator now has the following in it:

value(“Rubbish_Cleaned”)

16. Click OK.
17. Move under the Storyboard Controls object, right-click, and select Next

Frame.

Congratulations. You have completed the events for the Game frame.

Highscore Programming

You only need one event and one action for the final frame. This checks for when
the timer is greater than 10 seconds. When it is, go to the Menu frame.

First, make sure you are working on the Highscore Event Editor.

1. Double left-click on Highscore in the Workspace toolbar. You will see the
Frame Editor and the objects placed on screen. Click on the Event Editor
button to display the blank Event Editor frame.

Now you can create the event.

2. Click on New Condition on event line 1. Select the Timer object and then Is
the timer greater than a certain value. When the Timer dialog box appears,
change the seconds slider so that it reads 10 seconds and then click OK.

294 Awesome Game Creation: No Programming Required

Chapter 12 Litter Bug 295

3. Move to the right of this event until you are under the Storyboard Controls
object, right-click, and select Jump to Frame. You will see the dialog box
shown in Figure 12.36, which lists all the frames to which you can jump.
You want to jump to Frame 1, which is already highlighted, so click OK.

FIGURE 12.36 The dialog box to
select a frame to jump to.

You have now completed the game. Run the whole application and see how it
works and think about how you could improve on it, by either making changes to
the actual game or making harder levels whereby the badguys drop more litter.

You can see the completed game executable (litterbug.exe) located on the DVD
in the TGFFILES\Litter bug. The full code to this game can also be found in the same
folder and is called litterbug.mfa.

CHAPTER SUMMARY

In this chapter you created a whole new game in TGF2, starting with creating the
frames, placing the graphics, and then finally creating the game. We hope you have
gained a lot of knowledge of how to structure your own games and now feel pretty
confident in how to use TGF2.

ON THE DVD

This page intentionally left blank

C H A P T E R

13 ADVANCED GAME
OVERVIEW

297

In This Chapter

• Advanced Games

298 Awesome Game Creation: No Programming Required

This chapter looks at two games that are already made and takes a quick tour
around them to show you how complex they can get and give you an idea of
what you can do with the TGF2 program if you want to.

ADVANCED GAMES

When using various tools, it is a useful exercise to visit the relevant Web sites and
download different game examples and games of various genres. This gives you a
good overall feel of what the product is capable of. This also gives you an opportu-
nity to think about the types of games you would like to create and the features they
might include.

Black Jack

Card games are more complex games to create in TGF2 and Game Maker than other
types of games. The reason for this is that the programmer has to think more about
the rules and logic of the game, rather than moving and shooting objects using some
of the built-in features of the engines. You also have to take into account the computer-
controlled player and its ability to play the game.

Blackjack is one of a number of popular card games. In Black Jack you play
against a dealer, and whoever gets closest to 21 is the winner. The kings, queens,
and jacks are all counted as 10 each, and the ace can be counted as a 1 or 11. If you
go over 21, this is considered a bust, and you lose all the money you bet.

Frames

The Black Jack game has been split into two frames, as can be seen in Figure 13.1. The
first frame is the standard menu screen, which introduces the player to the game. This
is essential for providing an easy to understand start screen before leading the player
into the game. The second frame is the game itself. You could also create a third frame
to display the highest amounts of money the players have gained. The screen size has
been set to 800 × 600 for this game.

Application Properties

By clicking on Black-jack in the Workspace toolbar, you can access the application
properties. Here you can set how the application will be displayed. You can see the
properties for the application in Figure 13.2.

In the Window tab the No Maximize box and the No Thick frame are selected.
This prevents the user from making the game fill the whole screen. First, by remov-
ing the option to maximize the screen (the square box in the top-right corner of the
game window) and, second, by selecting the No Thick frame, this prevents the user
from dragging the window to a different size. Another option that has been removed
is the Menu bar. This provides quick access to text menu options at the top of the
game window. It is very useful in certain types of games and particularly in applica-
tions, but it is not needed for many games.

Chapter 13 Advanced Game Overview 299

FIGURE 13.1 The two frames needed for this game.

FIGURE 13.2 The application properties for
the Black Jack game.

300 Awesome Game Creation: No Programming Required

Where possible, you should disable anything you don’t want the user to be able
to use. This reduces the amount of support emails and problems caused by not turn-
ing them off. For example, if you do not switch off the Menu bar, you need to ensure
that the contents of the Menu bar all work and are useful to the game.

Files

You can find the completed game on the DVD, located in the TGFFILES\Black Jack
folder. The file is called BlackJack.exe. For the game to work correctly, you need to
copy the whole Black Jack folder to a writable drive because the game writes infor-
mation back to the array files to store information about the cards and the files con-
taining various information. Otherwise, as the DVD is read-only, the game will not
work as expected.

You can find the source code to this game in the TGFFILES\Black Jack\ folder.
The file is called BlackJack.mfa.

You need to open the BlackJack.mfa file in TGF2 to follow the following examples.

Menu Frame

The menu frame allows the user to quit or play the game by clicking on one of two
buttons. You can see the screenshot of the Black Jack menu frame in Figure 13.3.

FIGURE 13.3 The contents of the Black Jack menu frame.

ON THE DVD

Chapter 13 Advanced Game Overview 301

The frame consists of a few objects including:

• An image for the frame
• Two buttons for the user to click on
• An array

You have dealt with a number of items before, but this is the first time you have
seen an array in a TGF2 game. An array is a special type of object that you can use in
TGF2 to load, save, and store text or numbers at runtime. By clicking on the object,
you can reveal the object’s properties as shown in Figure 13.4.

FIGURE 13.4 The array properties.

You can see that the array has dimensions. This is like a grid in which it can store
information. When it is set to 10, 1, 1, it means that it will store everything in the X
dimension from either 0 to 10 or 1 to 10. Whether it starts from a 0 or 1 depends on
another option discussed below called Base 1 Index. In this array file, next to Type of
array it states Number array. This means it is going to store numbers. Arrays can only
store numbers or letters and cannot do both at one time. If you want to store infor-
mation in an array and want to store both types you can create two array objects, one
for each type of information. Note that the Base 1 Index option is selected. This
means the X dimension will be referenced starting from the number 1. You can refer-
ence the array through the Event Editor, and when you want to access an entry in
the array, you have to specify the X dimension number. If you were using the other
dimensions, you would also specify that particular number as well.

For more information on arrays please consult the product help files.

Menu Event Editor

There are seven events for this first frame, mainly because it doesn’t have to do
much work. Most of the code, much like the games you’ve already made, is stored
in the Game frame. You can see the events in Figure 13.5.

302 Awesome Game Creation: No Programming Required

FIGURE 13.5 The events for this frame.

You should be comfortable with all of the event conditions in this frame, as they
are very similar to the ones in the previous games. Most of the code is used to create
a fading and appearing effect when the player moves the mouse over either of the
two buttons.

In Figure 13.6 the array has been given the value 10 to (1). This (1) is the di-
mension (position) in the X array, so in the 10 slots available to the array (from 1 to
10) the number 10 has been placed into slot 1. This number is used for the starting
number of chips the player has and saves this amount to an array file. This array file
changes the amount throughout the game to hold how many chips the player has,
so it is important to reset it at the start of a new game so the player does not get an
unfair advantage when starting again. If you want to save information to an array
file, you first write the changes to the array and then save it to a file.

Game Frame

The game frame is the busier of the two frames, and can be seen in Figure 13.7. On
the game frame you can see many different objects and items. Here is a quick run-
down of what some of them do:

• The banker, with a number of animations for talking and looking upset if he
loses money.

Chapter 13 Advanced Game Overview 303

• A number of other graphic objects.
• Three active graphic objects for increasing, decreasing, and accepting stakes.

These objects have a transparency added.
• A speech bubble with Yes or No buttons that are used to allow the player to an-

swer questions the banker asks. For example “Do you want another card?”
• A File object, which the program uses to save and load files. These files are

needed for storing information about the game.
• A text box placed over the speech bubble. This is a blank text box but is loaded

with the correct information from a list box as the game continues.

FIGURE 13.6 The writing and saving to an array file.

FIGURE 13.7 The game frame for Black Jack.

• Two list boxes, which load the questions and card numbers when the frame starts.
• Lots of counters to keep track of the cards in play, how many cards have been

dealt, and the money on the table.
• Two arrays: one to keep track of the cards for the bank and one to keep track of

the cards for the player.

Game Event Editor

Most of the code for this game section is stored in various groups. Two groups are
enabled at the start of the frame, but the rest of the groups are disabled until they are
required by the program code to run. You can see all of the groups in Figure 13.8.

304 Awesome Game Creation: No Programming Required

FIGURE 13.8 The groups in use in the program.

Some of these groups handle:

INI. This initializes the game and loads and deletes any of the files required by
the game.

YES/NO. These are events to handle the display of the Yes and No buttons that
are displayed in the banker’s speech bubble.

First. This handles the first round of cards
Calculate the Player’s hand. This works out the total value of the player’s

hand.
Calculate the Bank hand. This group works out the value of the bank’s hand.
First round check. This checks the first round of cards and provides options

depending on card that has been dealt.
Stake. This handles the money being put into the stake by using the + or

– buttons.
Insurance against Black Jack. The player is offered insurance against the

banker getting black jack,

Chapter 13 Advanced Game Overview 305

Black Jack for CPU. This is the code that runs when the CPU has black jack. It
will also check to see if the player took out insurance against the computer
getting black jack.

Double Stake. This allows the player to double his stake if he thinks has a
good hand.

Other cards for player. This handles the other cards for the player and takes
into account doubling the stake.

Other cards for CPU. This handles the other cards for the CPU. If the current
score is under 17, the computer continues to get cards. If the computer has
over 17, it will stick.

End of normal game: who win? This compares the scores once all the cards
have been dealt, works out the winner, and, if needed, adds money to the
player’s chips.

Alterable Variables and Flags

The game extensively uses alterable variables and flags. Alterable variables are good
for storing, retrieving, adding, and comparing information, while flags are useful as
checks in your game, as you can turn them on or off and compare their states. Every
object can have a flag or alterable values assigned to it. You can see some examples
of alterable variables and flags in use in Figure 13.9.

FIGURE 13.9 Flags and alterable variables being used in Black Jack.

Loops

In Figure 13.10 you can see a selection of events that contain the words “on loop.”
A loop is something that repeats over and over until it reaches a pre-defined limit.
This loop runs a set of actions repeatedly, which can greatly speed up your games or
make repetitive processes much easier to handle without needing to repeat the code
multiple times.

306 Awesome Game Creation: No Programming Required

FIGURE 13.10 Loops are used extensively in the Black Jack game.

Dragons

Dragons is a side scrolling game where you play the part of a dragon. You must try to
survive the traps in the game’s caverns and hallways and locate the treasure. You
control the dragon using the arrow keys and use the space bar to shoot fire to try and
destroy the spiked balls. You can see a screenshot from the game in Figure 13.11.

Files

You can find the completed game on the DVD, located in the TGFFILES\Dragons
folder. The file is called Dragons.exe. You can find the source code to this game in
the TGFFILES\Dragons\ folder in a file called Dragons.mfa.

You need to open the Dragons.mfa file in TGF2 to follow the following examples.

ON THE DVD

Chapter 13 Advanced Game Overview 307

Frames

The Dragons game has been split into three frames, which can be seen in Figure
13.12. The first frame is the menu screen, which introduces the player to the game.
The second frame is where all the hard work is done and the user can play the game.
The third frame is a highscore frame where the player can see the scores when he
has completed the game.

Application Properties

The most important application properties of Dragons can be seen in Figure 13.13.
You can access this by clicking on the word “Dragon” in the Workspace properties
toolbar and then clicking on the Window tab. Notice that this game doesn’t have a
heading or a Menu bar selected. A No Minimize box and No thick frame have not
been selected because this game displays across the whole screen. This is known as
full screen and is common in professional and independent games that need to hide
the desktop and only display the game. To make the game fill the whole screen you
need to tick Change resolution mode. You can still display the menu in this case, but
it doesn’t look very professional and should be removed unless it is necessary.

Notice that frames one and two are 800 × 600, but the second frame is set to
3,000 × 1,125. This is because it will scroll to the right and scroll a small amount up
and down to allow the dragon to move around the screen.

FIGURE 13.11 A game screenshot of Dragons in action.

Menu Frame

The menu frame allows the user to either quit or play the game. When the frame
starts, there is a dragon noise and then music. You can see a screenshot of the menu
screen in Figure 13.14.

308 Awesome Game Creation: No Programming Required

FIGURE 13.12 The three frames needed for this game.

FIGURE 13.13 The application
properties for Dragons.

Chapter 13 Advanced Game Overview 309

The frame consists of three objects:

• The background image
• A button for starting the game
• A button for quitting the game

The menu frame is very straightforward and very similar to the two games you
have already created in TGF2. You can see a screenshot of the events and conditions
used in this frame in Figure 13.15.

FIGURE 13.14 The Dragon menu frame.

FIGURE 13.15 The Event Editor code for the menu frame.

Game Frame

The game frame is the busiest frame of the three and can be seen in Figure 13.16.
The game frame contains many items, including:

• A dragon with flying animations already created.
• An object called Collide_player, which is used the same way as the red box object

in Litter Bug to handle movement and collisions of the object. This object has been
given an Eight Direction movement. This means the movement of the box is han-
dled by TGF2’s own movement engine, unlike in Litter Bug, where you wrote
your own. The dragon is told to follow precisely this red box around the screen.

• An object called GUI, which contains the health and fire bars.
• Several arch objects that the dragon will fly behind and in front of.
• Several attack zones that are used to check when the player has entered them so

that the spikey ball can then go flying into the dragon.
• Several backdrop objects to improve the overall look and feel of the scene.
• Several objects assigned to making fire effects on the screen.
• A collisions map, which is the same concept as that used in Litter Bug, where

the player cannot move into the colored areas on the grid.
• Two counters for fire and health.
• Several enemy objects that reduce the player’s health if they hit the dragon.
• A clock, which is a simple active object with several animation frames counting

down.

310 Awesome Game Creation: No Programming Required

FIGURE 13.16 Part of the game frame with many items on screen.

Chapter 13 Advanced Game Overview 311

Game Event Editor

This game has some code stored in groups, but also has some code in object behav-
iors. This will be discussed shortly, but when looking at the number of events, you
might wonder where code for some of the program is, as there doesn’t seem to be
much for the amount of things happening in the game. Most of the code in the
Event Editor for this frame is not within groups, but there are still four groups:

Display. How to handle displaying the life and backgrounds. This handles the
layers in the game and what objects can appear in front of others. It also
handles the collision between the dragon’s red movement box and the
background grid. You can see some code from this group in Figure 13.17.

Enemy Sphere. This handles the sound effects when the red collision box hits
the Group.bad qualifier group. It also handles the reduction of the dragon’s
health.

End. This handles the destruction of certain objects at the end of the game to
remove them from the screen. If time has run out, it will display a time-out
box on screen. This then calls the final group called After End.

After End. This group will take the player to the high score screen or restart
the game.

FIGURE 13.17 Some of the code in the Display group.

Alterable Variables and Flags

This game also uses alterable variables and flags extensively in the game. Some of
these events can be seen in Figure 13.18. These save a number to the alterable
value, which is then read back in an Always event to set the speed of the dragon.
This action can be seen in event line 10.

312 Awesome Game Creation: No Programming Required

FIGURE 13.18 The alterable values used in Dragons.

Behaviors

If you look at the Event Editor code, there doesn’t seem to be enough code in the
Game Editor to handle everything that happens. This is because some code is placed
within the objects themselves. This is called behaviors and is very useful for program-
ming an object to react a certain way in a game. You could place this code at the event
level, but there are a couple of benefits of placing code directly into the object:

• If you copy an object into another game, the behaviors are copied with it to the
new program. This means you can create objects that do specific tasks and not
worry about reprogramming it every time you want to use that object in another
game.

• If you want to change how an object reacts in the game, you can change the
code in the object rather than having to look through lots of code in the main
game Event Editor. This can be a good way of keeping your code clean.

Chapter 13 Advanced Game Overview 313

To ensure that you can recognize an object with behaviors attached, the letter B
appears on the bottom-left corner of the object’s icon in the Event Editor as shown
in Figure 13.19.

FIGURE 13.19 Behaviors attached to an object.

To access the object behavior, you need to be on the Frame Editor. Select an object
that you want to either add or view the current behaviors for. In this example, the
Events tab of the Properties of object Enemy 1 has been selected. You can see that this
object has a qualifier set and a behavior labeled #1, as shown in Figure 13.20.

FIGURE 13.20 The Events tab for
the Enemy 1 object.

If you click on the dotted lines next to Behavior #1, a little Edit button will appear.
If you click on this, you will enter the object Behavior Event List. You can see an ex-
ample of the code in the Object Behavior settings in Figure 13.21. It looks exactly like
code in the normal Event Editor, and it is.

Highscore Frame

The highscore frame consists of only three objects:

• A backdrop object that covers the whole frame, which is for decoration only
• An active object that is a picture of the highscore table, which covers the back-

ground image
• A highscore object that displays any scores in the active object area.

The frame can be seen in Figure 13.22.

Highscore Event Editor

The Highscore Event Editor only has two event lines. The first is to check when the
timer, which starts at the beginning of the frame, equals 1 second. If it does, then
play a specific sample and loop it, so it continues playing until the frame is exited.
The second event checks to see when the timer equals a time greater than 10 sec-
onds, at which point it restarts the application. This means it automatically starts
from the menu frame. You can see the two events in Figure 13.23.

314 Awesome Game Creation: No Programming Required

FIGURE 13.21 The behavior code in the object.

Chapter 13 Advanced Game Overview 315

FIGURE 13.22 The highscore frame.

FIGURE 13.23 The two events in the Highscore frame.

CHAPTER SUMMARY

In this chapter we looked at two advanced games that use several features in the
Event Editor to make games even more powerful. It may take a little more practice
and a few simpler games under your belt before you begin to use some of these
more powerful features, but it is important for you to know that they exist, as they
add a lot of power to your game making arsenal.

Take a look at the code and see if you understand what it is doing and how it
does it. This should give you some ideas of the types of things you could add to your
own games.

In the next chapter you will be looking at how to use built-in movements.

This page intentionally left blank

C H A P T E R

14 ADVANCED CONTROL
OF OBJECTS

317

In This Chapter

• Using Objects in Your Games
• Active Objects
• Backdrop and Quick Backdrop Objects
• Hi-Score Object
• Text Objects
• Lives Object
• Score Object
• Movement
• Multiple Movements

318 Awesome Game Creation: No Programming Required

You may have noticed that in the previous chapters, you were never called
upon to assign movement types or create new objects. All we have done is use
an already created set of game items that you placed on the frame. The next

few chapters will cover ways to create and manage your own game assets. We will
start by looking at active objects and their movement, text objects, hi-score objects,
and backdrop objects—the mainstays of TGF2 games.

USING OBJECTS IN YOUR GAMES

TGF2 comes with a selection of objects. When creating the games in this book you
dragged these objects and placed them onto the frame. You may have been unaware
that these were all created from a basic template of objects and then configured
before they were placed into the library file from which you took them. TGF2 comes
with a set of about 36 built-in objects that you can use in your creations. Common
objects that you have already used, possibly without realizing it, are the active, text,
hi-score, and backdrop objects.

To use an object in your games, you first have to place it on the frame. To do this
you right-click the Frame Editor and select Insert Object or from the menu, “Insert |
New Object.” You then see a list of objects to choose from, which are categorized for
easier selection as shown in Figure 14.1.

FIGURE 14.1 The selection of objects available in the TGF2 trial version.

Chapter 14 Advanced Control of Objects 319

Once you have placed an object onto the frame, you can configure its properties
and assign it a movement type id.

Various objects exist for various tasks. For example, if you want to create a button,
you would use a button object, or if you want video to be played in your creation, you
would select the QuickTime object that would allow you to play Apple QuickTime
video files.

Let’s now delve into the common objects that you will use on a regular basis in
your game creating.

ACTIVE OBJECTS

Active objects are used mainly as the main characters of your games and will be the
most common object used in your programs. In the games you created in earlier
chapters, the objects had behaviors and movement already applied to them, so all
you had to do was drag and drop them onto the frame, but when you create your
own you can assign and configure the active object properties. For example, you can
configure it so the player can use the mouse or keyboard, or you can have the com-
puter control the objects for you. You can also make your active objects animated,
making them run, jump, or do whatever you decide.

Active objects are denoted by the icon of a running man in the Create new
object dialog box and as a green diamond in the Event Editor. The icons can be seen
in Figures 14.2 and 14.3.

FIGURE 14.2 The active object icon
in the Create new object dialog.

FIGURE 14.3 The active object as shown in
the Frame Editor.

320 Awesome Game Creation: No Programming Required

To place the active object on the frame, right-click on the frame, select Insert |
Object, and then click Active and click OK. Then left-click somewhere on the frame.

You can change the object’s properties by single left-clicking on it and accessing
the object’s Properties workspace on the left-hand side, as shown in Figure 14.4.
Don’t worry about the image of the object or animation just yet, as those will be
covered in the next chapter.

FIGURE 14.4 The active object Properties.

Every object you place on the frame can have a different set of properties.
Across the top of the Properties worksheet are a number of graphical tabs that pro-
vide access to different properties from size and position to movement. Some objects
have more or fewer tabs depending on the type of object.

If you hold your mouse cursor over any of the tabs, a little help text message will appear
telling you what each tab is.

The tabs available in this active object are:

Display options. This provides different options for how the object should
appear on the frame.

Size/Position. What is the object’s size and position on the frame? This tab is
used a lot to place an object at a specific location.

Movement. All objects are set to Static by default. You can specify a movement
type within this tab.

Runtime Options. How should the object react when the program is running?

Chapter 14 Advanced Control of Objects 321

Values. You have the ability to store data of both strings (text) and numbers that
are accessible to the whole application. This can be done for each object and is
very useful when you are accessing the same information over each frame.

Events. You can create specific events, which are stored in the selected object.
This means you can create code on how an object reacts in a certain instance
and then use these objects in other TGF2 programs and the code will still exist.

About. This is your author information and the help file link. This is very
handy if you don’t know what a particular option of the object does, as you
can click on this Help button and read the document.

You will have used the Size/Position tab when placing objects in a specific location
on the frames in previous chapters. the rest of tabs are pretty much self-explanatory
when you need to configure an object.

BACKDROP AND QUICK BACKDROP OBJECTS

Backdrop and quick backdrop objects perform a similar function—to provide a back-
ground to your games. You can think of it as setting the scene in the games, where
you will then place your game characters on top. A backdrop object is usually con-
structed by using the Picture Editor by importing or drawing an image. You could
also use one of the many backdrops provided on the CD-ROM of the full version of
the software. The Picture Editor is discussed in the next chapter. A quick backdrop
allows you to create a background image using a selection of colors and use a specific
shape to apply to it. You can see the icons for the backdrop and quick backdrop
objects in Figure 14.5.

FIGURE 14.5 The backdrop object icon.

The backdrop object has very few properties, but under the Settings tab you can
access the Picture Editor and then draw or load a picture. The quick backdrop has
more properties located in the Settings tab. First, you can amend the shape of the
object by selecting it as a rectangle, a line, or an ellipse. When selecting the line, you
can only select the color and its width, but using rectangle or ellipse opens up a new
set of options and you can create a “fill.” From here can select the following options:

None. This allows you to create a rectangle with a border that is configurable
with a color and size. The contents of the rectangle stay with the frame color
unless you change the width to a size that completely fills the shape.

Solid Color. This option fills the shape (rectangle or ellipse) with a single solid
color. You can change the color by clicking on the Color Settings property.

Gradient. This creates a background that changes from one color to another.
This is an easy way of creating a sky background, which changes color as it
goes further down the screen. If you have played old computer games, you
might recognize gradients, as they were very common in games in the 1980s.
To use the gradient you normally set the first color to the darkest color you
require and then set the second color to the lightest color you require. The
program then creates a shape using all of the colors in between to create a
background. You can set it to be a vertical or horizontal gradient by ticking
the Vertical Gradient button. You can see an example gradient running from
black to a light red in Figure 14.6.

Motif. This is the only option in the quick backdrop object that allows you to
access the Picture Editor. The motif type takes a single image and replicates it
a number of times in the backdrop area. You can see an example of the motif
in use in Figure 14.7, where a single image of a dragon has been selected, and
the motif has placed it multiple times over the object.

322 Awesome Game Creation: No Programming Required

FIGURE 14.6 The gradient setting used on the full size
of the frame.

FIGURE 14.7 The motif setting using a dragon image
on the full size of the frame.

Obstacle Type

Both the backdrop and the quick backdrop objects have an additional setting under
the Runtime tab. You can change how other objects interact with a backdrop object
by turning on or off the menu options in this tab under Obstacle Type. The options
are shown in Figure 14.8.

There are four options:

None. This option means the backdrop object will not be an obstacle to active
objects. You cannot detect a collision between the backdrop object and an
active object when this option is turned on.

Chapter 14 Advanced Control of Objects 323

Obstacle. This option means it is possible to detect a collision with an active
object. You must test for a collision with a backdrop object in the Event Ed-
itor and insert a stop action.

Platform. This option means the backdrop object acts as a platform for active
objects controlled by platform-type movement. This is not the same as the
Obstacle option. You cannot detect a collision between a backdrop object
and an active object that has been assigned a platform-type movement.

Ladder. This option treats the backdrop object as a ladder when an active object
is using a platform-type movement. If the active object has an animation se-
quence, the animation is automatically changed when the object climbs a
ladder. If the active object does not have an animation sequence, you can
change the animation via the Event Editor.

HI-SCORE OBJECT

We have used the hi-score object a number of times in our games, where it displays
the current top scores. These scores by default can contain a set of fake data for the
player to try to beat, and once the player has beaten one of those scores, the hi-score
object will also contain their score. The hi-score object icon is shown in Figure 14.9.

When you place the object on the frame, you are presented with the default
scoreboard, which contains 10 empty entries as shown in Figure 14.10.

If you left-click on the object you can access the object properties. Click on the
Settings tab to access the key properties of this object.

FIGURE 14.8 The obstacle options.

Some of the options for the hi-score table are:

Number of scores. How many scores do you want to display in the hi-scores
table? The default is 10, but this is particularly useful if you only want to dis-
play a small hi-score table in your game.

Length of names. What length of name can the player enter when he gets a
high score. If you are restricting the space that can be used for the hi-score
table, this is useful. Additionally, if you are making a retro game, then you
might be trying to replicate the three-character names that were used in
many older games.

Show name before score. By default, the name is displayed before the score,
but you can change that if required.

Hide at start. Do you want the hi-score table hidden at the beginning of the
frame. If so, you can tick this checkbox. You may want to do this if you
want to control when the hi-score table is displayed by using code to make
it reappear.

Check at start. If you want the hi-score table to check if the player has a top
score at the start of the frame (the default), leave this ticked. If, like in the
games we have made, you have a separate frame for the game and the
hi-score, leave this ticked.

Hide scores. This gives you the option of only displaying the names in the
hi-score table.

Edit content. If you want to create a scoreboard with a set of data (recom-
mended), you can click the Edit button to access a dialog box that allows
you to put in some fake data, as shown in Figure 14.11. This is a good way
to set a range of scores for the player to beat, so don’t make it too easy for
the player to reach the top score on his first try.

Name (Ini file to use). By default, the high scores are saved on the player’s
computer in a file called cncscore.ini in the Windows system directory. By
entering a filename you can save it in a different file.

324 Awesome Game Creation: No Programming Required

FIGURE 14.10 The default scoreboard.

FIGURE 14.9 The hi-
score object icon.

Chapter 14 Advanced Control of Objects 325

TEXT OBJECTS

Text objects are used to put text on the screen. You can use them for instructions,
comments, end of game displays, or just about anything that requires text. It is very
easy to make your own text once you have placed a text object on the frame from
the add object dialog.

There are three text-based objects in TGF2:

• Formatted text
• Static text
• String

You can see the object icons for all three of these objects in Figure 14.12.

FIGURE 14.11 The edit content dialog box for the hi-score
object.

FIGURE 14.12 The three text-based objects available in TGF2.

Available in all three objects is the ability to select fonts, styles, text sizes, and
text color, as well as the justification style you want to use. The formatted text object
allows you to access these features via the toolbar and the static text and string
object via the Object Properties worksheet as shown in Figures 14.13 and 14.14.

LIVES OBJECT

The lives object is for keeping track of a player’s lives in the game. The icon in the
Add Object dialog can be seen in Figure 14.15.

Once placed on the Frame Editor it appears as three hearts, as shown in Figure
14.16. This means the player has three lives, which is the default setting for the lives
object.

326 Awesome Game Creation: No Programming Required

FIGURE 14.13 The font options in the
toolbar.

FIGURE 14.14 The font options in the
Properties sheet.

FIGURE 14.15 The lives object
in the Add Object dialog box.

FIGURE 14.16 The lives object as displayed on the Frame Editor.

Chapter 14 Advanced Control of Objects 327

To use the lives object within the context of your game, you need to use the
Event Editor.

If you want to change the default number of lives from three to another number, you need to
click on the application name and then click on the Runtime Options tab for the application
properties. Under the Players heading you then have access to the initial number of lives option.

FIGURE 14.17 The Settings tab of the
lives object.

The Settings tab of the lives object can be seen in Figure 14.17 and has only
three key settings:

Player. Which player do these lives images apply to? If you are creating a game
with multiple players, for example, a two-player game, you can specify
which player these belong to.

Type. You can change the display of the lives object by selecting one of the three
options in the Type drop-down box. The default is Images, which displays a
heart graphic. You can also select text or numbers. You can also edit the
image option and replace it with your own lives images.

Image(s). This button allows you to access the Picture Editor and change the
look of the lives object.

SCORE OBJECT

The score object is used to keep track of the current player’s score in the game. You
can see the score object icon as shown in the Add New Object dialog box in Figure
14.18.

328 Awesome Game Creation: No Programming Required

FIGURE 14.18 The score object icon
in the Add New Object dialog.

Once you have added the icon to the desktop, it will automatically be displayed
as a graphic number 0. The Settings tab of the object Properties has the same set of
options as the lives object.

MOVEMENT

To change an object’s movement from the Frame Editor, left-click the object to dis-
play the object Properties and then click on the Movement tab in the Properties
workspace. You will then see the current movement options for this active object, as
shown in Figure 14.19.

FIGURE 14.19 The Movement tab in
the object Properties sheet.

Chapter 14 Advanced Control of Objects 329

Nearly every type of object in TGF2 can be assigned a movement, and though
we are discussing it within the context of applying it to an active object, the process
and options are the same for any other object.

Notice that the movement type of the object is currently set to Static. This is the
default setting of all objects when they are created from the Insert | New Object
menu. By clicking on Static, you reveal all of the available movement types, as
shown in Figure 14.20.

More movement types are available in the full version after the latest patch has been installed.

FIGURE 14.20 The available movement
types in the trial version.

There are three computer-controlled options: Bouncing Ball, Path Movement,
and Pinball Movement. There are four types of movement that can be used by the
player of the game when controlling what is happening on the screen: Mouse Con-
trolled, Eight Directions, Race Car, and Platform.

We will now go through each of these movement types so you have a better un-
derstanding of what they do and how you apply them to objects.

Bouncing Ball

This movement option, as shown in Figure 14.21, is normally used to produce an
object that bounces around the screen like a ball. However, by changing several
parameters and using the Event Editor, you can use this movement to control the
movement of a host of aliens or other enemies that chase the player around. You can
see the other key settings of the Movement tab for the Bouncing Ball in Figure 14.22.

Initial Direction

Initial direction defines which direction the object moves when the game first starts.
The numbers relate to a direction, for example, 8 is up and 0 is to the right. You can
click on the numbers to reveal a direction chart, where you can remove or add ticks
to tell TGF2 which directions the object is able to move. You can see the Initial Di-
rection dialog in Figure 14.23.

Speed. Speed controls the speed of all the other types of movement.
Ball Deceleration. When this option is set to zero, a ball keeps bouncing for-

ever. Increasing this value gradually slows your object down until it grinds
to a halt.

Moving at start. The object moves automatically when the game starts. If you
untick this option, you need to start the object moving via the Event Editor.

of Angles. Number of angles lets you set the bounce angle for the object.
It can be 32, 16, or 8. The fewer angles selected, the fewer the directions the
ball will bounce.

Bounce Randomizer. This option makes objects bounce in more random di-
rections. As this number increases, so does the randomness.

Bounce Security. This option jiggles objects to keep them from getting stuck in
corners, but as a result, the rebound effects are made slightly more random.

Bouncing Ball is covered in a little more detail later.

330 Awesome Game Creation: No Programming Required

FIGURE 14.21 The Bouncing Ball icon.

FIGURE 14.22 The Movement tab for
the Bouncing Ball movement.

Chapter 14 Advanced Control of Objects 331

Path Movement

The Path Movement option shown in Figure 14.24 sets your object moving on a pre-
determined path, which you define. For example, you can create a patrolling guard
who walks a set distance and then turns around or who walks in a preset path around
a corridor. This lets you control many parameters and script some neat effects, such as
the looping and speed that an object will move with on different sections of its path.

FIGURE 14.23 The Initial Direction dialog.

FIGURE 14.24 The Path Movement icon.

To access the options for the Path Movement, click Edit.

Path Editor

As shown in Figure 14.25, six buttons let you define the movement of an object, plus
the speed bar, which changes the speed at which the object moves along its path. A
path-type movement is entered using your mouse to define the path.

FIGURE 14.25 The Path Editor option buttons.

New Line. This function adds a single line to the object’s movement.

If you already have a movement defined, New Line is added at the end of it by default, unless
you insert it somewhere else by choosing the insertion point with the mouse.

Tape Mouse. This function allows you to set a very complex path movement.
By holding down the left mouse button and dragging the mouse pointer
around the screen, you set the movement you want.

Pause. This function stops your object at its current position for a length of
time that you define in seconds.

Loop the Movement. This function repeats a movement that you specify,
over and over.

Each time the loop repeats, this function repositions the object back to its original starting
position, so make sure the path finishes at the object’s starting point, or the object will jump
around the screen.

Reverse at End. This function reverses an object’s movement and sends it
backward along the original path. This function is good for a guard patrolling
the grounds.

Reposition Object at End. This function puts your object back at its original
starting position when it has completed the movement.

Try Movement. This function lets you try the movement before deciding
upon it.

Editing a Path. Once you have added a movement to your object, you can edit
it very easily in the Frame Editor. To do this, select the object, choose the
Movement tab in the Object Properties toolbar, and then click Edit. This
opens the Path Editor again. You can select individual points of the move-
ment, or entire sections, by dragging a box around them. You can manipu-
late these selected pieces by either deleting them or using the Cut (CTRL-X),
Copy (CTRL-C), and Paste (CTRL-V) keys. You can also simply drag one of
the selected areas using the left mouse button.

Each box created on the path movement is called a node.

Configuring Node properties. After you’ve selected a point or area, you can
add a condition to it by right-clicking on any node in the path. This lets you
insert a condition at that spot, such as Set a Pause, Tape Mouse, and New Line.
You can see the popup menu when you right-click a node in Figure 14.26.

332 Awesome Game Creation: No Programming Required

Chapter 14 Advanced Control of Objects 333

Pinball Movement

This allows you to create a movement similar to the bouncing ball movement, but
the ball reacts as if it were in a pinball machine. You can see the icon for this move-
ment in Figure 14.27 and the properties in Figure 14.28.

FIGURE 14.26 The node pop-up dialog.

FIGURE 14.27 The icon for the Pinball
movement.

FIGURE 14.28 The Properties sheet
for the Pinball movement.

Gravity. This option selects the effect of gravity. A high setting makes your ob-
ject fall rapidly, allowing only short bounces.

Deceleration. Deceleration sets the rate at which your character object slows
down.

Move at Start. When check marked, the Move at Start option causes the ob-
ject to move in one of the directions you have chosen when the game starts.
When this option is unchecked, the object remains stationary until told to
move via the Event Editor.

Initial Speed. This is the initial starting speed of the object.
Initial Direction. This option allows you to choose one or more directions for

your object to move when the game begins. If you choose more than one di-
rection, TGF2 chooses one of the specified directions at random.

Mouse Controlled

The first type of player-controlled movement is Mouse Controlled. This makes the
object exactly follow the movement of the mouse. The icon for this object can be seen
in Figure 14.29. To edit the area where the mouse can move, click on the Edit box.
The object will be surrounded by a box that represents the object’s limits of move-
ment, as shown in Figure 14.30.

334 Awesome Game Creation: No Programming Required

FIGURE 14.29 The Mouse Controlled icon.

FIGURE 14.30 The Mouse Movement area
control box.

You can stretch or shrink the area by grabbing the sizing handles with your
mouse and dragging them around.

This box takes its position from the object, not from the screen. This means that if you move
the object to a new position on the Frame Editor screen, you may need to edit this box again.

Try Movement

Try Movement tests your object’s movement on the screen. To stop the object and
return to the Mouse Controlled dialog, press the Escape key.

Chapter 14 Advanced Control of Objects 335

Eight Direction Movements

This movement control, whose icon is shown in Figure 14.31, provides you with the
classic eight directions that are used by a joystick. You can also use the cursor keys
to control movement. There are several basic controls. Speed, acceleration, and
deceleration have been described previously. The Possible Directions option allows
you to select or deselect the number of directions in which your object can move.
See Figure 14.32 for the Movement Direction dialog Properties sheet and Figure
14.33 for the Directions and Initial Directions dialog.

FIGURE 14.31 The Eight Directions icon.

FIGURE 14.32 The Movement Direction
Properties sheet.

To select or deselect a direction, click the relevant box (either Direction or Initial
Direction). Having an arrow pointing to that box shows its possible directions. In
Figure 14.33, the object could move in eight directions. You can click on the button
in the bottom-left side of the Direction dialog to remove all directions so you can
place one or more directions manually. If you click on the icon on the bottom-right
side of the Direction dialog, it selects all directions.

FIGURE 14.33 Direction and Initial
Direction have the same dialog.

Race Car

Figure 14.34 shows the icon for the Race Car movement, and Figure 14.35 shows its
Properties sheet. This movement type simulates a bird’s-eye view of a car’s movement.
There are controls for steering, braking, and accelerating, which users can activate by
pressing a key or using a joystick. You can see the keys that can be used for this move-
ment in Table 14.1.

Table 14.1 Keys Used for Race Car Movement

ACTION KEYBOARD

Accelerate Up arrow

Brake Down arrow

Turn left Left arrow

Turn right Right arrow

336 Awesome Game Creation: No Programming Required

FIGURE 14.34 The Race Car icon.

FIGURE 14.35 The Race Car Properties
sheet.

In addition to the speed, acceleration, and deceleration settings are three more
options:

Enable Reverse. This option gives your object the ability to go backward. With
it turned off, the object can only move forward.

Chapter 14 Advanced Control of Objects 337

of Angles. This allows you to decide how many different directions the ob-
ject can move. Selecting four only gives you left, right, up, and down; select-
ing 32 gives you the smoothest possible direction changes.

You can easily create all the different animation tracks needed for each direction by using the
animation tool available in the Picture Editor. We will discuss this in the next chapter.

Rotating Speed. Rotating Speed sets the rate at which the object turns. A high
value allows tight corners to be turned, while a low value reduces the cor-
nering ability.

Platform Movement

This movement icon in Figure 14.36 and its Properties sheet in Figure 14.37 are used
to define platform-game-type movement. This means characters walk along a set of
platforms and climb ladders or jump between floors, viewed from the side, as in
games such as Commander Keen and Zeb. Movement is controlled by the cursor keys
or the joystick. In addition to the usual acceleration, deceleration, and speed con-
trols are a number of controls for jumping. You can make platforms and ladders out
of backdrop objects.

FIGURE 14.36 The Platform Movement icon.

FIGURE 14.37 The Platform Movement
Properties sheet.

You must still test for a collision with a backdrop platform object; otherwise, your active
object will fall through the platform as if it weren’t there. You can do this through the Event
Editor.

Initial Direction. This option allows you to choose one or more directions for
your object to move when the game begins. If you choose more than one di-
rection, TGF2 will choose one of the specified directions at random.

Try Movement. You can test out the movement on screen, without the need
to leave the movement editing screen.

Speed. This option sets the maximum speed at which your object can move.
Acceleration. Acceleration sets the rate at which your object speeds up to its

maximum speed.
Deceleration. Deceleration sets the rate at which your character object slows

down.
Moving at Start. When check marked, the Moving at Start option causes the

object to move in one of the directions you have chosen when the game
starts. When this option is unchecked, the object remains stationary until
another object collides with it.

Gravity. This option selects the effect of gravity. A high setting makes your ob-
ject fall rapidly, allowing only short jumps.

Strength. Jump Strength selects the jumping power of your character. Chang-
ing the gravity also affects this parameter.

Jump Controls. Jump Controls are used to change the control system for
jumps, as follows.
No Jump. This option turns jumping off for an object.
Up Left/Right Arrow. This option makes the object jump when the up arrow
key is pressed at the same time as either the left arrow or right arrow key.
Button 1. Button 1 uses fire button one, or the Shift key, to control the jump.
Button 2. Button 2 uses the second fire button, or the Control key, to activate
a jump.

MULTIPLE MOVEMENTS

In all of the movement types you may have noticed that the very first option in the
Properties sheets, which we didn’t cover, is just displayed as Movement #1. This is
the default first movement assigned to that movement type. In TGF2 you can assign
multiple movement types to a single object, so you could create three movements
for your character, the first being Platform, the second being Race Car, and the third
being Mouse Controlled. Of course, this is unlikely in most cases, but when making
games it does give you a lot of flexibility to control the objects in your game. An
example of this might be that you create a side scrolling game in which the player
controls the character using the Platform Movement. Perhaps at a certain stage you
switch off the Platform Movement and assign a Path Movement to move the player’s
character to a specific position to allow for your game to tell a story. By doing this

338 Awesome Game Creation: No Programming Required

Chapter 14 Advanced Control of Objects 339

you can prevent the player from moving the character, and you can tell this part of
the story. Perhaps in this case another computer-controlled player appears and says
something to the game player’s character. You can then switch back to the Platform
Movement and allow the player to continue with the game.

To access the multiple movements, click on Movement #1 and you will see a + -
button. Click on this to display the movement dialog as shown in Figure 14.38.

FIGURE 14.38 The multiple movement dialog.

From here you can create new movements and go back into the properties of
the object and select the movement number and change the movement type. You
can also rename the movement to something more appropriate.

CHAPTER SUMMARY

In this chapter, we looked at the basis for all TGF2 games, the active objects, back-
drops, text, hi-score, lives, and score objects. These are the most common active ob-
jects in TGF2 and the ones you will be working with the most. In the next chapter,
we will look at asset creation using the Picture Editor. These tools will round out
your ability to make your own games and productions with TGF2.

This page intentionally left blank

C H A P T E R

15 WORKING WITH PICTURES
AND ANIMATIONS IN TGF2

341

In This Chapter

• The Picture Editor
• The Animation Tool

342 Awesome Game Creation: No Programming Required

In our final dealings with TGF2, we will look at how to create and manipulate as-
sets for your games. Some of the most useful tools for the game developer that
come with TGF2 are in the Picture Editor. This editor makes it easy to import and

deal with your game assets. They include animation functions that previously re-
quired you to work manually in another application such as Photoshop, including
copying, rotating, and other tedious operations.

THE PICTURE EDITOR

The Picture Editor lets you create your own animation, background objects, icons,
and quick backdrop objects. Because many of the features are identical for all these
types of objects, they are summarized in this chapter.

FIGURE 15.1 The TGF2 Picture Editor.

You can see the Picture Editor in Figure 15.1, as well as the other components
that make up the editor, which include:

• Tools
• Tool Properties sheet
• Drawing Area
• Color Palette
• Animation Editor

Chapter 15 Working with Pictures and Animations in TGF2 343

Tools

The drawing tools are located at the upper left of the Picture Editor window. They
include the most commonly used features of the digital artist in other paint packages.
We will now look at the various tools that make up the Picture Editor’s toolbox, start-
ing from the top left and working to the right.

Clear

This option clears the image window so you can start from scratch. If you acciden-
tally clear work that you wanted to save, you can undo the Clear command by click-
ing on the Cancel button and re-editing the image or using the Hot Key combination
Ctrl+Z. You can see the icon for the clear option in Figure 15.2.

Import

This tool allows you to load an image from disk; the associated icon is shown in Fig-
ure 15.3. As the picture and animation aspects work hand in hand, you can import
multiple pictures at a time to save time. The import supports

• PNG
• JPEG
• GIF
• FLC
• BMP
• PCX

FIGURE 15.2 The
Clear Image option.

FIGURE 15.3 The
Import option icon.

To use the import option you need to select the file you want to import (if
you want to import multiple files, select the first one of its type). An Import Options
dialog box appears, providing you with different options to configure your import
selection, as shown in Figure 15.4.

Some of the import features are discussed in a bit more detail later in this chapter.

344 Awesome Game Creation: No Programming Required

Export

Export allows you to save any file you have been working on into a standalone file.
When you create a picture from scratch in TGF2’s Picture Editor, you can only access
it through TGF2. By using the Export option you can save the file and its animations
to an external file(s) that can then be accessible by another paint package. The Export
option allows you to save the files as PNG, BMP, or JPG files. The Export icon can be
seen in Figure 15.5.

When you click on the export button you will be given a simple dialog to select
if you want to export a single file or an animation with a number of frames, as
shown in Figure 15.6.

FIGURE 15.4 The Import Option dialog.

FIGURE 15.5 The Export
option icon.

FIGURE 15.6 The Export Image(s) dialog.

Chapter 15 Working with Pictures and Animations in TGF2 345

Options

Options allow you to configure how the right mouse button is utilized in the Picture
Editor. It is common for the right mouse button to be assigned to a second color so you
can use two colors at one time without needing to swap between them. This is partic-
ularly helpful when you are doing fine art and might be using two similar colors at one
time. You can also configure the right mouse button to select the color of the pixel
where the mouse cursor is situated. You can also configure the background display
where there is no image, which by default is gray and white. The icon for the Options
can be seen in Figure 15.7, and the Options dialog box can be seen in Figure 15.8.

FIGURE 15.7 The Options
icon.

FIGURE 15.8 The Options dialog.

Cut, Copy, Paste, and Delete

Once you have selected a block on the canvas, you can cut and copy it using the fol-
lowing commands from various buttons, as shown in Figure 15.9.

FIGURE 15.9 The cut, copy, paste, and
delete icons.

Cut. The original area is cut out and replaced with a block of whatever the
transparency color currently is. A copy of that area is placed in the Windows
clipboard.

Copy. The area is copied to the Windows clipboard. The original area remains
unchanged.

Paste. Pastes the contents of the Windows clipboard. After you have cut an
area, you can copy it onto the image using this command. The pasted area is
in a rectangular block. Drag this block where you want it and then click on
it to fix it in place.

Delete. Deletes the contents of the selected area.

Undo and Redo

The Undo tool lets you undo the last step you performed. This is very handy if you
make a mistake. If you change your mind when you have undone something, you
can click the Redo icon to change it back. You can see the Undo and Redo icons in
Figure 15.10.

346 Awesome Game Creation: No Programming Required

FIGURE 15.10 The Undo and Redo icons.

Flip Horizontally

This tool reverses your image from left to right, just like a mirror.

Flip Vertically

This tool turns the whole image upside down. The icons for both images can be seen
in Figure 15.11.

FIGURE 15.11 The Flip Vertically and Flip Horizontally icons.

Crop

Crop removes any available blank space on the canvas. If you have a large canvas,
and only a small part of it has any image on it, the Picture Editor tries to remove as
much of the blank space as it can using straight lines. The Crop icon can be seen in
Figure 15.12.

FIGURE 15.12 The Crop icon.

Chapter 15 Working with Pictures and Animations in TGF2 347

Transparency

Transparency allows you to display the transparent color but also allows you to
change it quickly by clicking on the color palette. You can then hide the transparent
color again by unticking the box. The Transparency button and its properties box
can be seen in Figures 15.13 and 15.14.

FIGURE 15.13 The
Transparency icon.

FIGURE 15.14 The
Transparency
properties box.

FIGURE 15.15 The Zoom Control.

Zoom Control

The Zoom Control, as shown in Figure 15.15, allows you to zoom in closer or zoom
out of the current image. If it is to the left, it is zoomed out to the maximum canvas
size. The farther it is to the right, the higher the zoom magnification is.

The Selection Tool

This tool lets you define a rectangular block, which you can then cut or copy. To
choose a block, move the mouse to where you want the top-left corner of your
block to be and then drag a box down around the area you want. If you make a mis-
take, click once on another part of your image and try again. You can see the Selec-
tion tool in Figure 15.16.

Color Picker

The Color Picker allows you to click anywhere on the canvas and change the current
pen color to the selected color. This is very useful when you want to pick a pen color
that is already in use on the canvas rather than trying to guess exactly what the
color is. You can see the Color Picker icon in Figure 15.17.

The Pen Tool

The Pen tool lets you either draw one pixel at a time or draw a freehand line by hold-
ing down the left mouse button and dragging over the canvas. You can see the Pen
icon in Figure 15.18.

The Line Tool

The Line tool lets you draw perfect straight lines. Click the point where you want the
line to start and hold down the mouse button. As you move the mouse, it “drags” a
line behind it. When you reach the place where you want the line to end, let go of
the mouse button, and you will have drawn a line between the two points. You can
see the Line tool icon in Figure 15.19.

348 Awesome Game Creation: No Programming Required

FIGURE 15.16 The
Selection tool icon.

FIGURE 15.17 The
Color Picker icon.

FIGURE 15.18 The
Pen tool icon.

FIGURE 15.19 The
Line tool icon.

The Rectangle and Filled Rectangle Tools

These tools and their properties boxes, let you draw rectangles and squares more eas-
ily than by trying to construct them out of four separate lines. After selecting the icon
you want, place the pointer where you want the top-left corner, press and hold down
the mouse button, and then drag the rectangle to the shape you want. The Rectangle
tool produces an unfilled (clear) rectangle. You can select one of the alternative op-
tions in the properties box to either produce a solid rectangle or a solid rectangle with
a different border color. You can see the Rectangle icon and its properties in Figures
15.20 and 15.21.

Chapter 15 Working with Pictures and Animations in TGF2 349

The Ellipse and Filled Ellipse Tools

These tools and their properties sheets let you create ellipses and circles, both filled and
empty. Select the place where you want to start the top-left side of the ellipse. Holding
down the mouse button, move the pointer away from place you first began the ellipse.
You can see the Ellipse icon and its properties sheet in Figures 15.22 and 15.23.

FIGURE 15.20 The
Rectangle tool icon.

FIGURE 15.21 The
Rectangle tool
properties.

FIGURE 15.22 The Ellipse
button icon case.

FIGURE 15.23 The Ellipse
properties window.

FIGURE 15.24 The
Polygon button icon.

FIGURE 15.25 The
properties sheet for
the Polygon tool.

Polygon Tool

It is very simple to create a polygon shape using this tool. You can draw a number of
lines that connect to each other. You can see the Polygon tool icon in Figure 15.24
and its properties sheet in Figure 15.25.

Shape Tool

The Shape tool allows you to draw a shape, and it will completely enclose it, so if
you begin to draw a circle but take your finger off the left mouse button while draw-
ing it, the program completely closes the shape. This allows you to fill the item with
a color if required. You can see the Shape tool icon in Figure 15.26 and its properties
sheet in Figure 15.27.

350 Awesome Game Creation: No Programming Required

FIGURE 15.26 The Shape
tool icon.

FIGURE 15.27 The
Shape tool properties
sheet.

FIGURE 15.28 The Fill tool
icon.

FIGURE 15.29 The
Fill tool properties
sheet.

The Fill Tool

The Fill tool fills an area on the canvas with a solid block of color. The area to be
filled should be completely enclosed. If there is a gap of even one pixel, the color will
“leak” out into other areas of your frame. In Figures 15.28 and 15.29 you can see
the Fill icon and its properties sheet.

The Spray Tool

This works the same way a spray can works. It applies a spray of paint onto the
canvas. You can change the size of the paint pixel and the pressure that’s applied.
You can see the icon for the Spray tool in Figure 15.30 and its properties sheet in
Figure 15.31.

Chapter 15 Working with Pictures and Animations in TGF2 351

The Text Tool

This allows you to place a piece of text, either a single letter or words, on the canvas.
You can apply basic formatting to the text including bold, italic, and underline. It is
also possible to select a specific font for the text. You can see the icon for the Text
tool in Figure 15.32 and its properties sheet in Figure 15.33.

FIGURE 15.30 The Spray
tool icon.

FIGURE 15.31 The
Spray tool properties
sheet.

FIGURE 15.32 The Text
tool icon.

FIGURE 15.33 The
Text tool properties
sheet.

Eraser Tool

This tool allows you to delete a part of your picture, basically rubbing it out. You can
amend the eraser size for when you need to delete a large amount of the image or
area on the canvas or you can make the eraser very small for more precise deletions.
You can see the Eraser tool icon in Figure 15.34.

Size

This allows you to change the size of the image on the canvas. Its icon can be seen in
Figure 15.35. There are also three additional options to stretch the image, to resam-
ple it, and make it proportional to the canvas size. This properties sheet can be seen
in Figure 15.36.

Rotate

This tool lets you rotate the whole image with fine control. When you select this
function, you can enter a specific angle by which to rotate the image on the property
sheet. Once you have clicked OK, the image is turned by the angle you specified. The
icon for the Rotate option and its properties can be seen in Figures 15.37 and 15.38.

352 Awesome Game Creation: No Programming Required

FIGURE 15.34 The Eraser
icon.

FIGURE 15.35 The Size
icon.

FIGURE 15.36 The
Size properties
sheet.

FIGURE 15.37 The Rotate
icon.

FIGURE 15.38 The
Rotate properties
sheet.

View Hot Spot

The Hot Spot is an invisible handle, or anchor, that you can use to drag images
around on the screen. It is also used as a reference for an object’s X, Y coordinates.
Each image can have its own separate Hot Spot. As a default, when you create a new
active object, the Hot Spot is automatically positioned at the top-left corner of the
image, but you can move it anywhere you like.

You can view the Hot Spot by selecting the View Hot Spot icon. Try to position
it centrally if your object is going to have several different directions; otherwise, it
will “jump” when you change direction. You can see the Hot Spot icon and its prop-
erties sheet in Figures 15.39 and 15.40.

Chapter 15 Working with Pictures and Animations in TGF2 353

View Action Point

The Action Point is the point where things like bullets are fired from objects. For
example, if you had a large spaceship with a gun mounted on it, you would set the
Action Point to the end of the gun barrel, where the bullet would first appear. You
can show the Action Point by clicking on the View Action Point button. You can see
the Action Point icon in Figure 15.41. Its properties sheet looks exactly like the Hot
Spot properties sheet in Figure 15.40.

FIGURE 15.39 The Hot
Spot icon.

FIGURE 15.40 The
Hot Spot properties
sheet.

FIGURE 15.41 The Action
Point icon.

Drawing Area

There’s not much to say about the drawing area. This is the place where you draw
your images. If your image is too large for the window, horizontal and vertical scroll
bars allow you to move around.

The Color Palette

This is where you select the color you want to draw or fill the canvas with. Figure
15.42 shows a selection of colors to choose from when drawing. The two boxes on
the bottom left are the current draw colors for the left and right mouse buttons. The
box on the bottom right is the currently selected transparent color.

THE ANIMATION TOOL

Animation is a word that still strikes fear in the hearts of many who want to develop
games, but TGF2 makes animation a lot easier with its animation tools built into the
Picture Editor. When using the Picture Editor and its animation tools:

• You can create your own active object, draw or import images, and animate it.
• You can use an already created active object, which already contains anima-

tions, and then change or update it.

To show you some of the animation features, you will be using a TGF2 file that has
an active object that already exists on the frame, and analyzing how the tools have
been used to animate it. As you do this, you will see the steps required to create your
own animated object.

1. You need to have TGF2 loaded with no file currently loaded.
2. Click File | Open and browse the DVD provided with this book and locate the

file called dragonanimation.mfa, which is in the TGFFILES folder. Then click
Open to load it into the program.

3. Double left-click Frame 1 to open the Frame Editor.
4. Notice an active object is already on the playfield of a dragon. Click Run ap-

plication to see the dragon fly as shown in Figure 15.43.

354 Awesome Game Creation: No Programming Required

FIGURE 15.42 The color palette.

ON THE DVD

Chapter 15 Working with Pictures and Animations in TGF2 355

5. This active object is moving because it already has its animation applied to it.
To see this you need to enter the Picture Editor and view its frames in the
animation tool, so double left-click on the dragon picture.

6. You can now see the dragon in the canvas area and all of its animation
frames in the animation tool, as shown in Figure 15.44.

FIGURE 15.43 Animated active object of a dragon.

FIGURE 15.44 The animation frames for the dragon.

You can see the different sections of the animation tool as separated in Figure
15.45.

356 Awesome Game Creation: No Programming Required

FIGURE 15.45 Various areas of the animation tool.

1: These are all the available animations that you can place images against. You
can also create your own animation groups.

2: Directions is the available directions each animation can have. Initially this
is set to four directions, but you can use the slider underneath it to increase
it to 32 directions.

3: This is the Frame Tools bar, where you can add frames and move through
the available frames you have created. This updates the current frame being
displayed on the canvas.

4: These are all of the frames of your animation for this particular animation
group.

5: The Direction tab contains specific information relating to the speed of the
animation and its loops.

6: This plays the current animation to give you an idea of what it looks like.
7: Information about the cursor position on the canvas and the colors in use at

that particular pixel.

To select all the frames of an animation, press Alt+A once you have single left-clicked in the
animation frame window. This lets you move or delete a whole sequence of animations at
one time. You can select multiple frames by holding down the Ctrl key while you click on
frames, or hold down the Shift key to select all frames between two selected frames.

Directions Tab

Figure 15.46 shows the controls for the speed of the animation (the Lower and
Higher speed boxes), as well as the number of times it will repeat itself before it stops
(the Repeat box). You can select Looping by ticking the Loop box. This makes the
animation sequence repeat over and over.

You can also change which frame number the animation loops back to in the
Back To box. This is useful in a long animation if you only want to repeat certain

Chapter 15 Working with Pictures and Animations in TGF2 357

parts. Say you are working with an animation of a man getting up from a crouched
position and then running away. You may only want to play the first couple of
frames of him being crouched down, then loop the animation back only to the run-
ning sequence as the man continues running.

An animation can have either one or two speeds assigned to it. An object can be animated
but be static with regard to its location on screen, or it can be animated and move around the
screen. The difference is that the second one also has a movement speed assigned to it as well
as its animated speed.

Lower Speed

The Lower Speed box in the Direction Options tab controls the speed when the
character is not moving around the screen. Setting this to zero halts the animation.
Setting it higher has the animation running all of the time. Of course, it may look
unrealistic if your character is running frantically without moving.

Higher Speed

The Higher Speed box in the Direction Options tab controls the maximum rate of the
animation when the character is moving around the screen. Note that the rate of
animation is proportional to the speed of the character, in between the Lower and
Higher settings. To create a realistic running action, you may need to change the
Higher setting to a value that matches the character’s speed across the screen.

For example, if you were to set a character’s movement speed high and the ani-
mation speed low, it would appear as though the character was being dragged across
the screen. If you had the animation speed high and the movement speed low, it
would look as though the character were trying to run fast on an icy floor.

FIGURE 15.46 The Directions tab options.

Animation Direction

This is a very useful feature that can transform your single-direction animation into a
character that moves to the left, right, up, down, and so on. Take a look at the Direc-
tion box, as shown in Figure 15.47, where two images show the left and right direction
of our flying dragon. By clicking on the different direction squares in the Direction
box, you can create a different animation for each direction the character can move.

358 Awesome Game Creation: No Programming Required

FIGURE 15.47 The difference between the left and right direction arrows.

If you take a look at Figure 15.47 you can see that on the clock face, the 3 o’clock
position (rightward motion) and the 9 o’clock position (leftward motion) have small
solid black squares with arrows pointing to them. These indicate that an animation
is assigned to those positions, so the dragon has a different animation for going left
and right.

Counting all possible directions, you can have up to 32 animated sequences for
the walk direction of a character. This can help things look smooth, but it is overkill
for most purposes. As computers have become more powerful, selecting 32 direc-
tions wouldn’t cause too much of a resource issue. In a large game with many direc-
tions and animations it would start to add up, and, although in most cases this
wouldn’t slow your machine down, it’s good to get into good habits when creating
your games. Why waste resources if you don’t need to. In the case of the flying
dragon you only need it to move left and right, so there is no need to select 32 direc-
tions when you are only going to use 2.

An easy way to create several different directions from one animation is to copy the anima-
tion to the new direction and then click on the rotate buttons to ensure they are pointing the
correct way.

Chapter 15 Working with Pictures and Animations in TGF2 359

Animation List

The default animation list can be seen in Figure 15.48. This list details the basic set of
animations provided with TGF2 that can have animations placed within them. These
animations can be referenced from within the Event Editor but also work automati-
cally when using certain movement types on that particular object. The animation
sets are:

Stopped. When the object is not moving.
Walking. Checks the speed of an object and runs this animation if it is moving

at a slow pace.
Running. Checks the speed of an object and runs this animation if it is moving

at a fast pace.
Appearing. Runs the animation as soon as the object is created.
Disappearing. Runs the animation as soon as the object is destroyed.
Bouncing. Plays the animation when the object is bouncing on another object

that is defined as an obstacle (something that it will bounce or hit).
Shooting. The animation is triggered when a shoot object is triggered.
Jumping. The animation is played when the object is jumping. Jumping is

used in platform movement games.
Falling. When an object is falling, the animation is played. This animation is

used primarily in platform games.
Climbing. When using the platform movement, this animation plays when the

object is climbing a ladder.
Crouch Down. If you are using platform movement, this animation set runs

when the object is crouching.
Stand up. When the object is standing up (not crouching), this animation

runs. This is also used in platform movement for platform games.

FIGURE 15.47 Need Caption

You can create your own animation sets for anything that is not covered in this
list. These are called user-defined animations. To create your own, right-click on the
animation list and select New. You can then enter the name of the animation set.

CHAPTER SUMMARY

In this chapter we have taken a look at how to use and create your own game
graphic assets. To do this you can use another paint package and then import images
into TGF2 or you can draw them inside the program’s Picture Editor. Either way,
you should now have enough knowledge to be able to attempt it in TGF2. You
should now be able to begin creating and designing your own 2D games in TGF2. If
you need any help you can consult the help file in the Help | Contents menu.

Now that you have had the chance to create some awesome games in a 2D world,
let’s move on to a package that will allow you to create 3D first-person shooters.

360 Awesome Game Creation: No Programming Required

C H A P T E R

16 INTRODUCTION TO
FPS CREATOR

361

In This Chapter

• Introduction
• Installation Walkthrough
• FPS Creator Terminology
• FPS Creator Creation Process
• FPS Creator Walkthrough

362 Awesome Game Creation: No Programming Required

First Person Shooter (FPS) Creator is a fast and easy way for anyone to create
his own FPS game. Without a program like FPS you would need to have access
to a 3D game engine, some form of scripting or C++ knowledge, and create or

purchase 3D models. FPS Creator takes away many of these headaches by giving
you the engine, a world creator, and some 3D models to get you started. Very
quickly you will find that you have made a small game and will want to create
bigger games in no time. This chapter will be look at the installation requirements
for the program to ensure you have the right level of equipment to run the program.
It will also go through the installation process and a walkthrough of the basic inter-
face to give you a good grounding in the product before you begin to create your
first game.

INTRODUCTION

FPS Creator has taken away many of the headaches a game creator might worry
about. The developers have created a game engine with all the necessary parts already
programmed, and you as the game creator only need to concentrate on putting the
components together to make your creation.

Some of the parts that are already present in the program are:

3D World Editor. Using simple building blocks, you can place your rooms and
objects within a 3D-built map editor.

One Click Build Export. Using a single mouse click, you can create an executable
file that can be distributed to other computers running the Windows operating
system.

Direct X9.0 Support. The 3D engine supports Microsoft Direct X9.0. This
means the speed and certain features of Direct X9.0 are incorporated into
the engine (or can be added at a later stage).

Import. You have the ability to import your own sounds, 3D models, and tex-
tures to create your own games how you visualize them.

Included Objects. Hundreds of rooms, guns, characters, and room items are in-
cluded with the full version. This allows the game creator who does not have
any 3D skills to make a game without worrying about the graphic aspect.

Physics Engine. A difficult area for any game creator to include in their games
is physics. Physics makes a game more realistic. For example, if you shoot or
knock some items off a table, the physics engine handles how they fall and
roll in a realistic manner.

Internet and Multiplayer Support. All the programming to connect online
and play with other people has already been done, so you can make your
game support online play straight out of the box.

Scripting. You can change aspects of your game by using the built-in scripting
language. This is used when you want to change or replace the default run-
ning of the game, for example, the enemy intelligence (how it reacts when
the player is near them or shoots at them).

Chapter 16 Introduction to FPS Creator 363

Many other things have already been done in the program to make it easier for
developers to be able to just get on with creating their visions, and you will see some
of these aspects as you begin to build games with the FPS Creator program.

System Requirements

The FPS Creator program has a set of minimum system requirements. These can be
seen in Table 16.1, and recommended requirements are listed in Table 16.2. It is im-
portant to take into account that the bigger the game you create, the longer it might
take to create the final output. The number of elements that you include will affect
the overall performance and running speed of the game.

Table 16.1 Minimum System Requirements

REQUIREMENTS

OS: Windows 2000 or Windows XP

Processor: Pentium 3 – 1 GHz

Memory: 256 MB RAM

Graphics Card: Direct X9.0c compatible with 64 MB RAM

Hard Disk: 1.4 GB

Other: Printer if you want to print any screens or documentation

Table 16.2 Recommended System Requirements

REQUIREMENTS

OS: Windows XP Home or Pro

Processor: Pentium 4 – 2.66GHz

Memory: 1 GB RAM

Graphics Card: Direct X9.0c compatible with 128 MB RAM

Hard Disk: 1.4 GB

Other: Printer if you want to print any screens or documentation

INSTALLATION WALKTHROUGH

The trial demo of FPS Creator can be found in the Demos folder on the DVD provided
with this book. The demo is time limited to 30 days, so only install the product when
you are ready to proceed with this part of the book.

ON THE DVD

364 Awesome Game Creation: No Programming Required

The trial version cannot build stand-alone executable files and does not contain all the media
and maps. To get access to this additional content you need to purchase the full version from
www.fpscreator.com.

1. Double left-click on the file FPSCreatorDemo.exe located in the Demos
folder on the DVD.

2. If you get a Warning dialog box, click Run and the files will begin to be
extracted.

3. The Welcome dialog box will appear as shown in Figure 16.1.
4. Click Next on the Welcome dialog box.
5. You will now be presented with the License Agreement dialog box as shown

in Figure 16.2.

FIGURE 16.1 The Welcome dialog box appears. FIGURE 16.2 License Agreement dialog box.

6. Click Yes to accept the license agreement, and then you will be presented
with the Choose Destination Location dialog as shown in Figure 16.3.

7. The default destination path is C:\Program Files\The Game Creators\FPS Cre-
ator Demo. If you want to use the default path, click Next. To select a location,
click Browse.

8. The files will then begin to be copied to your computer, as shown in Figure
16.4.

9. Once all files have been installed on your computer, you will see the final
dialog box, shown in Figure 16.5.

10. Click Finish to complete the installation.

An FPS Creator icon will be placed on your desktop, which can be seen in Fig-
ure 16.6, and it will also be installed in the Start | All Programs | The Game Creators
folder option.

ON THE DVD

www.fpscreator.com

Chapter 16 Introduction to FPS Creator 365

FPS CREATOR TERMINOLOGY

Before discussing specific aspects of the FPS Creator program, it is worth introducing
some of the terminology used in this part of the book that relates to the program.

Prefabs. Prefab is short for prefabricated—something that has already been
created. In this case it is a room that has already been designed, with the
entry or exit doors already added.

Segments. Segments are parts of rooms or environments that you can use to
create your own areas in your game, for example, corridors, stairs, floors,
and wall segments.

Entities. Entities could also be called objects, as they are the physical objects
that are in your rooms and environments. These entities can be enemy play-
ers, equipment, extra life, extra health, and scenery.

FIGURE 16.3 Choose the destination for installing
the files.

FIGURE 16.4 Files being installed onto the computer.

FIGURE 16.5 The final installation dialog box.

FIGURE 16.6 The FPS Creator desktop icon.

Markers. Markers covers a number of different items including light effects,
the starting position of the player, special action zones where something
happens when the player moves into them, and checkpoints that can save
the player’s position or be used to end the level.

FPS CREATOR CREATION PROCESS

The game creation process is quite simple in FPS Creator, and some parts can be
skipped or have more time spent on them depending on the type of game you are
creating. The demo version of the product comes with media to make either a sci-fi
game or a World War 2 game, so you are restricted to these types of stories and con-
tent. The game creation process for FPS Creator can be described as follows:

Design. Design your levels or maps. These could be first created on paper and
then within the 3D-world editor that FPS Creator provides, or you could skip
the paper design and lay out your maps straight in the editor. These rooms
and maps require you to create connecting doors, windows, and ceiling tiles.
You also need to add any door switches to allow the doors to be opened.

Place additional design aspects. Place the lighting for your room and any
specific trigger points. A trigger point is something that happens when the
player character walks over it, for example, add health, cause damage, or
end the level.

Place your room items. Once you have created your rooms, corridors, and
other locations, you need to place the contents of the world to make it more
realistic. For example, if you have created a sci-fi laboratory, you need to fill
it with tables, chairs, test tubes, and other items.

Place your player items. Place items such as weapons, health, and bullets to
aid the player’s progress through the game.

Place enemies. You want to have some enemy characters in your game to
make it more interesting and more challenging for the player. You can assign
where the enemy characters will move.

Test your game. Once everything is in place, it is a good idea to check that it
works as you expected it to. You may have to make changes at this stage or
add items if you feel it is not playing as you expected it to.

Compile. With the trial version you can test the levels, but you cannot compile
them into a file that can be distributed to other computers that are not run-
ning the demo. If you own the full version, you can compile the file into an
executable that you can give to your friends.

This creation list doesn’t have to completed in the order detailed here, but it
provides insight into the easiest order for creating your games. You might go through
these steps for each room or for the whole game, though it is easier to design a few
rooms at a time if you are doing it directly in the 3D editor. If you are creating on
paper, you can design much of the game before putting it into the program.

366 Awesome Game Creation: No Programming Required

Chapter 16 Introduction to FPS Creator 367

FPS CREATOR WALKTHROUGH

Double left-click on the FPS Creator icon on the desktop (shown in Figure 16.6) to
start the program. At this stage you will either get a loading screen, or if it has been
a few days since you installed the product, you may get a Days Left dialog box. This
dialog, which is shown in Figure 16.7, tells you how many days you have left until
the trial version no longer works on your computer. The dialog box gives you the
following information and options:

• How many days you have left of your trial
• The option to continue using the product in the trial mode
• The option to click Purchase FPSC Now to take you to the program creator’s Website.

For now, you want to continue using the product, so if you get this dialog box,
click Continue Trial. You will then be presented with the FPS Creator window as
shown in Figure 16.8.

FIGURE 16.8 The FPS Creator program window.

FIGURE 16.7 The Days Left dialog box in the trial version.

The application has been separated into six distinct areas:

• Drop-down text menus
• Menu buttons
• Library toolbar
• 3D world editor (grid)
• Cursor
• Status bar

The following chapters will go through many of these options in more detail, so do not worry
if you do not fully understand them at this point.

Drop-Down Text Menus

You can select various configurations and settings for the application from a number
of text menus. You can, for example, save or load a file or apply different options to
the 3D world. Only six heading are available from the text menu. These can be seen
in Figure 16.9, in which the Segments option has been selected.

368 Awesome Game Creation: No Programming Required

FIGURE 16.9 The Text menu options, with the Segments
option selected.

Menu Buttons

When you want to access the main configuration components of the program, use
the menu buttons. These menu buttons provide a quick and easy way of getting
access to the regular options you will be using the most when making your FPS
game. These menu buttons are displayed in groups and can be hidden if required
using the Text menu option View | Toolbars.

Standard Toolbar

The Standard toolbar consists of the common saving and loading buttons as well as
the options to cut and paste within the 3D editor. The toolbar can be seen in Figure
16.10.

Chapter 16 Introduction to FPS Creator 369

From left to right, the options are:

• New Level
• Open Level
• Save Level
• Cut
• Copy
• Erase
• Undo Segment Editing
• Redo Segment Editing

View Toolbar

The View toolbar handles how you see the 3D world and gives you options of zoom-
ing in closer, moving to a different layer (see note), or viewing close up. The toolbar
can be seen in Figure 16.11.

FIGURE 16.10 The Standard toolbar.

FIGURE 16.11 The View toolbar.

If you want to make a game in which the player can move upstairs and downstairs, floor
levels are called layers in FPS Creator. By default, the program starts on layer 5 to ensure
that if you forget about layers and make your game, you still have a number of floors avail-
able to you to make your character have the ability to move downstairs (or underground) if
needed. If it had started on layer 0, you wouldn’t have been able to add any parts of the
game lower than this floor, so layer 5 could be considered the ground floor of your game.

From left to right, the buttons are:

• Zoom In
• Zoom Out
• Increase Render Shroud
• Decrease Render Shroud
• Toggle Layers
• Move Up a Layer
• Move Down a Layer
• View Entire Layer
• Close Up View

Segments

The Segments toolbar provides a number of options to paint and color individual seg-
ments, walls, and floors. It also has options for entities (characters and items), which
will be covered later in this chapter. The Segments toolbar can be seen in Figure 16.12.

370 Awesome Game Creation: No Programming Required

FIGURE 16.12 The Segments toolbar.

From left to right, the buttons are:

• Entity Mode
• Segment Mode
• Interior Draw Mode
• Exterior draw mode
• Paint Only Segment Walls
• Paint Only Segment Floor
• Pick Segment
• Select Area

Draw

The Draw toolbar provides access too many options that allow you to draw specific
shapes for your segments including lines, rectangles, and freehand. The Draw tool-
bar can be seen in Figure 16.13.

FIGURE 16.13 The Draw toolbar.

From left to right, the buttons are:

• Draw Segment as Line
• Draw Segment as Rectangle
• Draw Segment as Ellipse
• Spray Segment
• Increase Spray Draw Size
• Decrease Spray Draw Size

Chapter 16 Introduction to FPS Creator 371

Waypoint

In all FPS games you have enemy players who might guard a specific point on the
map or move between a number of points. This can be done very easily in FPS Cre-
ator using a system called waypoints, whereby you specify the places the player can
move on the map. There are only two options to use waypoints from the menu but-
tons toolbar, these can be seen in Figure 16.14.

FIGURE 16.14 Waypoint toolbar.

From left to right, the buttons are:

• Create New Waypoint
• Waypoint Editing Mode

Test Game/Level

The Test Game/Level menu buttons allow you to test your game and see what the
final program will look like. There are two options within the Test Game/Level
menu toolbar, which can be seen in Figure 16.15.

FIGURE 16.15 The Test Game menu buttons.

From left to right, the buttons are:

• Test Level
• Quick Level Preview

Library Toolbar

The Library toolbar is where you will access all of the resources, items, and rooms
needed to create your 3D world. At the bottom of the toolbar are the four items al-
ready discussed: prefabs, segments, entities, and markers. Clicking on any of these
items reveals a new blank library screen or a set of objects that can be selected. For
example, clicking on Prefab or Entities gives you the option of adding a new entity.

This means adding from the core library to your current game library, which is
blank. Markers currently displays all possible options, and segments by default has a
ground segment that you can automatically apply. You will be using the Library
toolbar later in the next chapter when you create your first simple program.

3D World Editor

The 3D world editor is where you place all of your rooms, room objects, enemy play-
ers, and markers to create your game. The editor is made up of an X, Y, and Z grid
because it is in three dimensions. The 3D editor looks at first glance like a 2D grid, but
you can think of the 3D editor as a big cube, where you have blocks going to the right
(X), blocks coming forward (Z) and blocks going down (Y), also known as layers in
FPS Creator. The world is made up of a 40×40 grid, with a total of 20 levels (floors)
going up and down. You can see the 3D grid in Figure 16.16.

372 Awesome Game Creation: No Programming Required

FIGURE 16.16 An example of the editor grid.

When you are viewing the grid, you are actually looking at your world from a
bird’s eye view, so you are looking down on your rooms from above. If you wanted
to place an item at the far left-hand corner of your world, you would specify its
coordinates as X being 0 and Z being 0. The Y coordinate would depend on what
floor level you are working on, but to begin with it’s defaulted at level 5. To work
out where you are in the grid, you can see the actual coordinates at the very bottom
of the FPS Creator window as shown in Figure 16.17.

FIGURE 16.17 The coordinate location shown in FPS Creator.

Chapter 16 Introduction to FPS Creator 373

Because you are looking down on the world, you must think about where you
will place your rooms, corridors, and floors so that you have enough space for them.
If you are making a room, you may not want to place it at the very top of the grid,
as you will be restricted in the number of directions you can take to any connecting
corridors and rooms. An example of a room added to the 3D editor can be seen in
Figure 16.18.

FIGURE 16.18 A 3D room that takes up a number of the grid squares.

Each block on the grid is 100×100×100 in size in the game world. This is impor-
tant if you intend to make your own prefabricated rooms using some of the segment
building blocks.

Cursor

The cursor is the mouse display when in use in the 3D editor. Depending on whether
you are adding a prefab, entity, or painting a floor will depend on what this cursor
looks like. This is particularly useful to tell you the current mode the mouse cursor is
in, so that you don’t accidentally delete or overwrite your rooms. For example, if you
are in segment mode, you will have a square box with an X displayed in it and the
letter S in the bottom-right corner. The cursor is used to drop many of the game com-
ponents into your program and paint the various textures onto the walls, floors, and
ceilings.

Status Bar

The status bar, shown in Figure 16.17, is located at the bottom of the FPS Creator
window. As you move the mouse cursor around the editor, the status bar automat-
ically updates its current position. This is particularly useful when you are placing
rooms and items in specific locations.

CHAPTER SUMMARY

In this chapter we took a quick tour of the FPS Creator program and its main tool-
bars. We have also looked at how you might want to think about creating your
game and the order in which you might want to approach it. In the following chap-
ter we will begin to use some of the items identified in this chapter and start to build
a simple game. The game won’t be too technical but will provide you with all the
necessary building blocks to be able to make your own game.

374 Awesome Game Creation: No Programming Required

C H A P T E R

17 CREATING A BASIC GAME
WITH FPS

375

In This Chapter

• Creating Your First Room
• Testing Your First Level
• Player Starting Position
• Adding a Weapon
• Adding an Enemy Player
• Creating a Corridor

376 Awesome Game Creation: No Programming Required

This chapter will go through various options to help you understand how to
build your games and add all the content required to make a first-person
shooter. While doing so, you will end up with a simple game that will intro-

duce you to the various functionality and mechanics of the product stage by stage.
At the end of this chapter you will have learned many of the basic features, which
will allow you to begin to put together your own game, structures, and maps.

CREATING YOUR FIRST ROOM

The first thing to do is drop a prefab room onto the 3D editor. A prefab (prefabri-
cated) room is a room that has already been created for you. All you need to do is to
select it from the library and place it on the grid. When you load up FPS Creator it
creates a blank game file automatically. If you placed a number of items on the grid,
you might need to clear these away before starting on your room. You can clear any
work you have already done and want to delete by selecting File | New from the
Menu option.

1. Ensure that FPS Creator is started.
2. Double left-click on the Add New Prefab icon in the Library toolbar, as

shown in Figure 17.1.

FIGURE 17.1 The Add
New Prefab icon.

3. You will be shown many prefabricated rooms from the prefab library, as
shown in Figure 17.2.

Notice that some of the library items are grayed out. This is because the number of prefabs
is restricted in the demo version. If you purchase the full version, these objects will be un-
locked for you to use.

4. Select the first prefab, called bunker large, either by double left-clicking on
it or single-clicking to highlight and then clicking OK on the bottom-right
corner of the screen.

5. You will now see a blue-and-white room move on the grid as you move your
mouse across it as shown in Figure 17.3. Notice that there is also a large blue

Chapter 17 Creating a Basic Game with FPS 377

arrow pointing upward. This tells you the direction of the room. This is
where the exit point of this room is located. In Figure 17.3 it’s in the top
wall. You cannot place the room at the very top of the grid, as you wouldn’t
have room to place a corridor or other room for the player to exit into. You
either need to rotate the room so that the door is located in a different direc-
tion or leave enough space on the gird to allow the placing of other prefabs
or sections.

6. You may have trouble seeing the prefab on the grid, as the grid is zoomed in
too close to see it. As highlighted in Figure 17.4, you can roll the wheel but-
ton on your mouse away from you to zoom in or toward you to zoom out.
In this case you want to zoom out, so move the mouse wheel toward you.

Once you have learned how to zoom out, you have two options for placing the
prefab and moving around the screen. You can zoom out all the way so that you can
see the whole grid area and then left-click on the grid to place the item, or you can
use the arrow keys (if you haven’t fully zoomed out) to move around the grid.
Again, you can click the left mouse button to place the prefab on the screen. Being
able to see the whole grid can be very useful, but it can make it difficult to place an
item in a specific area of the screen. If you were placing a weapon or a person at a
specific location, you would find it easier to zoom in closer and use the arrow keys
to navigate. If you are placing a large prefab, you can zoom out a little or you can
keep a watchful eye on the status bar at the bottom of the screen to see its current
location coordinates.

FIGURE 17.2 The prefab library.

378 Awesome Game Creation: No Programming Required

Now you can place the prefab onto the screen. For this example, place it near
the bottom of the grid.

7. Move your mouse cursor until the coordinates say “X5 Z34.” Then click the
left mouse button. This places the prefab room on the grid.

Once you have placed your prefab, if you move the cursor away from the room, you will
notice that it changes from a textured gray room with a green door at the top to a blue-and-
white shell. This is just how FPS Creator saves resources while creating your maps, as it
doesn’t then have to display the full graphics and items for every object placed—only the
area that you are working on. If it didn’t do this, even the more powerful home computers
would begin to struggle to display all of the graphics at one time.

FIGURE 17.3 The cursor has the outline of the prefab
attached to it.

FIGURE 17.4 The mouse wheel identified.

Chapter 17 Creating a Basic Game with FPS 379

Notice that once you have added the first prefab, the mouse still has the prefab
room attached to it. This is because you might want to repeat the action a number of
times. This saves some time when you are placing common items onto the grid, as
you won’t need to keep going into the library and selecting the object every time.

You now want to place another room at the top of the prefab that you have just
added to the grid. If you want to change the door direction of the prefab, you can do
this by pressing the R key, which rotates it. This quick key also rotates other objects.

8. Ensure that the mouse cursor is at the grid position (X5, Z29) and then click
on the left mouse button to place the prefab room.

You have finished adding this particular prefab. To prevent any accidental placing of more
prefabs or deleting parts of the ones already in place, you can remove the prefab from the cur-
sor by pressing the Delete key.

9. You now have two rooms connected to each other, as shown in Figure 17.5.

FIGURE 17.5 Two connected prefab rooms.

If you get stuck, you can load an example file that contains the two connected prefabs. The
file is called basic2rooms.fpm and is located in the FPSFILES folder on the DVD included
with this book.

ON THE DVD

TESTING YOUR FIRST LEVEL

Now that you have created your very simple level, you need to test it. You can test
your creations at any time to check your work and make sure it’s running exactly as
you intended. You can do this by clicking the Test Level button detailed in the pre-
vious chapter and shown in Figure 17.6.

380 Awesome Game Creation: No Programming Required

FIGURE 17.6 The Test Level button.

This runs a special program that prepares your game for display on the com-
puter. It displays a dialog box while it is compiling, as shown in Figure 17.7.

FIGURE 17.7 The Test Compile dialog box.

The Test dialog box also explains how you can navigate around the world once
it has been loaded onto your screen. The keys for playing the two-room test are the
same as for any game made with FPS Creator and are shown in Table 17.1.

Table 17.1 Keys Used to Play the Test Game

KEY EFFECT

W Forward

S Backward

A Left

→

Chapter 17 Creating a Basic Game with FPS 381

KEY EFFECT

D Right

Shift Run

Spacebar Jump

C Crouch

R Reload weapon

Enter Use or open door

Q Peer left

E Peer right

Once the game has successfully compiled and is ready to play, the OK button will
be available. Click OK, and this launches the game in full-screen mode. You can now
see your room and a door in the far corner, as shown in Figure 17.8. Move around
your game and go through the door at the far end. You can go through one of the
doors into another room, and the other door will lead to an outside area, at which
point you will fall and lose health and a life. For the final game you want to remove
the door leading to nowhere, but as this is a simple test, you can leave it be. When you
are ready to exit the test, press the Escape key; this places you back at the editor grid.

FIGURE 17.8 The test game being run.

In Figure 17.8 some yellow text is displayed at the bottom of the screen when you run your
test game. This is game performance information, and when you create a finished compiled
game in the full version, it does not appear. This information and other available informa-
tion help you improve the running performance of your game.

Now it’s time to add some more items and configure your first creation.

PLAYER STARTING POSITION

Within the world you are creating, you want to specify where the player starts his
adventure. This is the player’s starting position. This is important, as many FPS
games provide challenges and events around the player’s position. For example,
early on in the level the game may provide the player with a simple introduction to
the controls or to the weapons he might use. By placing the starting position in a
specific room or area you can guide the player through the challenges, making the
end result more interesting.

To add the player’s starting position you need to add a marker from the Library
toolbar.

1. Click Markers at the bottom of the Library toolbar. You can now see a selec-
tion of different items within the library, as shown in Figure 17.9.

382 Awesome Game Creation: No Programming Required

FIGURE 17.9 A selection of markers in the Library toolbar.

2. The very top marker is Player Start, so single left-click on this and see that the
mouse cursor changes into a green glowing arrow, as shown in Figure 17.10.

3. The cursor coordinates are located on the cursor position, so left-click on the
location (X7, Z38). This places a green arrow in the first room you created.

4. You may now want to delete the Player Start icon from the cursor so that
you don’t accidentally place another start location on the grid, so press the
Delete key.

Chapter 17 Creating a Basic Game with FPS 383

If you run the game now, the player will start in the first room, and you will be
able to move between the two rooms. This isn’t a big issue when you have created
only two rooms, but as the game levels gets larger, it’s essential to know where the
player’s start position is. Therefore, when possible, ensure that you create the
player’s start position early on in your creation.

You can find an example file of the two rooms and start position on the DVD
that comes with this book. It is located in the FPSFILES folder and is called player-
start.fpm.

ADDING A WEAPON

An FPS game without a weapon wouldn’t be much fun, so the next stage of your
game is to add a weapon in the room in which your character starts out. The weapon
for this example is placed on the floor, but in your own games you might decide to
place a weapon on a table or on top of another object. In a game you are taking more
time over you should consider carefully where to place items such as weapons, am-
munition, and health, as these can have a major influence on how easy or hard your
game is to play. Place too many weapons and too much health, and the game will be a
walk in the park for the player. Place very few, and the player might be lucky to get
through the first few levels, but would probably give up playing the game. This is a dif-
ficult balance to get right, but this fine-tuning can be done later on in your creation.

Using the file you’ve created so far, which contains two rooms and a player start
position, add a single weapon to the first room. If you don’t have this file loaded,
you can load the playerstart.fpm file from the FPSFILES directory to save you having
to create the file again.

1. Click Entities in the Library toolbar and then click Add new entity
2. From the entity library that appears, select Scifi | Items and then select the

tavor weapon, as shown in Figure 17.11.
3. Your cursor now contains the tavor gun, and you can rotate the item if re-

quired by using the R key. Left-click on the grid location (X5, Z34) to place
the gun in the top-left corner of the first room.

FIGURE 17.10 The cursor changed to the
player start marker.

ON THE DVD

ON THE DVD

4. Press the Delete key to remove the gun entity from the mouse cursor.
5. Run the game by clicking Test Level button. Then pick up the gun by walking

over it and try shooting. Figure 17.12 shows how the gun looks in the player
character’s hands.

384 Awesome Game Creation: No Programming Required

FIGURE 17.11 The entity library with the tavor selected.

FIGURE 17.12 The gun picked up and being carried.

Chapter 17 Creating a Basic Game with FPS 385

Notice that this gun has limited ammo, so you will need to rectify this later on
by placing additional ammunition items around the map, but there are other options
to increase the default gun amount. These configurations and how they can effect
your games are covered later on.

ADDING AN ENEMY PLAYER

A game wouldn’t be very good without enemy computer-controlled players, so you
now need to add one to your game.

For this game, add a single enemy player in the second room. This gives the
player the chance to pick up the weapon before being introduced to an attacking
character. First, ensure that you have the right file loaded. You need the current file
you have been working on or the file firstgun.fpm loaded. The firstgun file is located
on the DVD in the FPSFILES folder.

1. Ensure that the Entities tab is selected in the Library toolbar.
2. Click Add new entity and select Scifi | Characters from the entity library.
3. Select Conker (Pistol) from the objects that are displayed, as shown in Fig-

ure 17.13.

ON THE DVD

FIGURE 17.13 A selection of enemy characters to choose from.

4. Your cursor changes to a green circle, which contains the Conker character.
The character is pointing upward on the grid. This means that when you
enter the room he would have his back to you. You need to rotate him so
that he is facing you as you come through the door. Press the R key four
times to have him pointing downward on the grid. Left-click the mouse but-
ton in the second room at coordinates (X7, Z29).

5. Press the Delete key to change the cursor back to its basic type, so that you
don’t accidentally add any more characters to the grid.

If you run the game now, you can rush toward the gun and pick it up. If you
walk through the door, you will be able to get into a gun battle with the enemy
character, and you should be able to win against him. An example of what you
should see is shown in Figure 17.14.

386 Awesome Game Creation: No Programming Required

FIGURE 17.14 The enemy is closing in.

Notice that once you have defeated the enemy character, he drops his weapon,
which you can pick up and use. This is another great way of allowing the player to
pick up extra ammunition and weapons throughout the game and can be used as an
optional way of providing the player with new supplies rather than leaving additional
items littering the room.

CREATING A CORRIDOR

Now you want to expand your game some more by creating a corridor to another
room. In all of the games you create you need some way for the player to move be-

Chapter 17 Creating a Basic Game with FPS 387

tween areas. This could be inside between rooms or outside moving between a garden
and a building. In both cases you need an interconnecting area. This could be room to
room, but that wouldn’t make your game levels very exciting. For this example create
two corridors. There are a number of ways to create this link between rooms:

• Create a floor area between the rooms, for example, a lawn outside. You need to
place a wall around the space to enclose it.

• Create a corridor by placing a many segment components of a corridor. In this
option you build the floor, walls, and ceiling independently of each other.

• Create a corridor using segments—a tunnel or ventilation shaft segment. These
are easier to place than separate wall, floor, and ceiling segments.

Creating a Corridor Using Single Segments

In the first example you will create a connection between rooms using single seg-
ments parts that contain the floor, walls, and ceiling but only cover one block on the
grid. First, you need to ensure that you have the right file loaded: the current file
you have been working on or the file firstenemy.fpm. The firstenemy file is located
on the DVD in the FPSFILES folder.

Before you begin creating your corridor, create another smaller prefab room
above the one that contains the enemy computer-controlled player. This allows
your hero to navigate to another room and sneak up and attack the enemy.

1. Click on the Prefabs tab in the Library toolbar.
2 Left-click the Add new prefab icon.
3. Double left-click the bunker small prefab.
4. Place the smaller room at the location (X6, Z26).
5. You now have three rooms, and the topmost one on the grid is the smallest.

You can see your current room structure in Figure 17.15, where item 1 is
our new room, item 2 is where the enemy player has been placed, and item
3 is the player’s starting location.

6. Now you want to add the single segments sections by using the Ventilation
object, so click Segments in the Library toolbar. Click Add new segment and
then select the object called Ventilation Duct Straight.

7. The cursor changes to a line with two arrows, one at each end, as shown in
Figure 17.16.

8. These two arrows indicate the direction that the Ventilation Duct Straight is
going to be placed onto the grid. This provides you with a good pointer in
the direction that it will appear, so first you will need to rotate it to place it
in the correct position.

9. Press the R key to rotate the arrows once so that they are pointing left and
right.

10. Place the cursor at the coordinates (X4, Z37) and click on the left mouse
button to place the first part of the ventilation system.

ON THE DVD

11. Now place a 90-degree part so that the player can start to move up on the
grid. Click Add new segment and choose Ventilation Duct Corner from the
Scifi | Corridors menu. Your cursor will change to two arrows, one pointing
left and one pointing down. This shows you where the corner of the venti-
lation segment would be, so press R twice to rotate it so that the player will
move in the correct direction.

12. The arrows should be pointing up and to the right. Move your cursor to the
coordinates (X3, Z37) and left-click the mouse. This places a right turn in
the ventilation system.

Any objects, segments, or prefabs you use in your game now appear in the Library toolbar
so that you don’t have to select from the large list. This can speed up development if you are
using the same items throughout your game.

388 Awesome Game Creation: No Programming Required

FIGURE 17.15 The three completed
rooms in the game.

FIGURE 17.16 The cursor has changed to two arrows.

Chapter 17 Creating a Basic Game with FPS 389

13. Now that you have the right turn segment, you need to place a number of
straight-line pieces to get the ventilation system up to the top room on the grid.
Select Ventilation Duct Straight from the Library toolbar, rotate it once, and
then place the object at the following coordinates: (X3, Z36), (X3, Z35), (X3,
Z34), (X3, Z33), (X3, Z32), (X3, Z31), (X3, Z30), (X3, Z29), and (X3, Z28).

14. It’s time for the vent to make a right turn so that it moves toward the top
room. Select the Ventilation Duct Corner object from the library. The arrows
should be pointing down and to the right. If they are not, press the R key.
Once the direction is correct click on the coordinates (X3, Z27).

15. Now it’s time to add another straight piece of ventilation system so you can
connect it to the room. Select Ventilation Duct Straight from the Library
toolbar and ensure that the direction arrows point left and right. Then click
on the coordinates (X4, Z27), (X5, Z27). You now have your rooms and
connecting corridor looking like Figure 17.17.

FIGURE 17.17 They current room layout.

When you run the game, you should now see your newly created ventilation
system, but it doesn’t look quite as shown in Figure 17.18. When you placed the
start and end of your ventilation system onto the grid, it deleted the walls that they
were connected to.

You can do two things to get this working correctly. First, paint a wall segment
to cover the gap that has been created by placing the ventilation system. Then create
an access into the ventilation system by placing a small door. If you do not do this in
this order, you may find that there is no access into the ventilation system.

To paint a wall segment onto the gaps that were left when the ventilation sys-
tem was put in place, find the wall texture image used for this prefab and paint it
onto the wall gap. When you add a prefab, it also adds the relevant segments that
make up the room, so the first thing to do is find the segment that relates to the
room. Then you can select the Paint Only Segment walls option.

16. Ensure that Segments is selected in the tabs of the Library toolbar.
17. Click on the Bunker Fighting Area Low item and then in the menu buttons

select Paint Only Segment Walls.
18. Press R to rotate the arrow until it is pointing to the left.
19. Single left-click the mouse to paint the wall segments at coordinates (X5,

Z37) and (X6, Z27).

If you now run the game, you will notice that the wall segments all look the
same, and there is no sign of the ventilation system. Next, you can drop the ventila-
tion door into place, and this automatically knows to cut away the wall section to
place its opening. FPS creator does all the major work for you as long as you do it in
the correct order as mentioned previously.

Now it’s time to drop a ventilation door into place:

20. Click the Segments tab and then Add new segment.

390 Awesome Game Creation: No Programming Required

FIGURE 17.18 Problem with the ventilation system wall.

Chapter 17 Creating a Basic Game with FPS 391

21. Ensure that the Scifi | Scenery menu is selected, and you should see a large se-
lection of door and window options. Double left-click on Door Vent Duct (use).

Notice some of the items have (use), (auto), (remote), or (fake) after them. This is how they
can be used or accessed. In the case of a use door, you need to press the Enter key (also called
the Use key in the game) to open the door or window. If it is auto, when you are close to the
object it will automatically open. Remote means you can create a wall button to open the
door, and fake means the door does not open at all and is there for cosmetic reasons.

22. Press R to rotate the arrow until it is pointing to the left and then left-click at
the coordinates (X5, Z37) and (X6, Z27).

23. On running the game, you should be able to see the ventilation door as
shown in Figure 17.19, and when you walk up close to it, you will be asked
to press the Enter key to access it.

FIGURE 17.19 The newly created ventilation system.

If you want to check your work against the completed ventilation system, you
can load the example called vent.fpm in the FPSFILES folder on the DVD.

Creating a Corridor Using the Paint Tools

Rather than use segments as the building blocks, you can paint your walls, floors,
and ceilings directly onto the grid. This gives you a lot of power to make the world
much more varied than using the basic prefabs or segments that are already pro-
vided. Next, take the graphical look and feel of one of the prefabs and create your
own corridor from the first room, winding its way up to the last room.

ON THE DVD

Ensure that you have the file vent.fpm loaded. This file can be found in the FPS-
FILES folder on the DVD provided with this book.

The file provides you with a simple three-room map, with a ventilation system
that you created earlier. You can create this corridor a number of ways. You can
paint using the basic floor tiles or paint the whole floor and walls in one go. For
speed, and because it automatically applies a good textured wall and floor, use the
second option.

1. Click the Segments tab in the Library toolbar.
2. Now you need to select the segment you will use to paint the walls and floor

with, so single left-click Bunker Fighting Area Low. Now click on the coor-
dinates shown in Table 17.2 to paint the walls and floor into place:

Table 17.2 Coordinates to Paint the Corridor

COORDINATES (X, Z)

(10, 37)

(11, 37)

(12, 37)

(12, 36)

(11, 35)

(11, 34)

(11, 33)

(11, 32)

(12, 32)

(12, 31)

(12, 30)

(12, 29)

(12, 28)

(12, 27)

(11, 27)

(10, 27)

(9, 27)

If you make a mistake, click the right mouse button to delete the grid entry you just placed.

You should now have a corridor that connects the bottom room to the top
room. Notice that between the two rooms the corridor is connected to an open wall.
You will want to have this open area filled in with a wall and a door. Now it’s time
to paint a wall in both locations.

392 Awesome Game Creation: No Programming Required

ON THE DVD

Chapter 17 Creating a Basic Game with FPS 393

3. Click Paint Only Segment Walls.
4. Press R to rotate the arrow until it is pointing to the left. Then click on the

coordinates (X10, Z37) and (X9, Z27).

You need to add the door, so you can use the one that is already in the Segment
tab of the Library toolbar.

5. Click Door Tough (use). The arrow should be pointing to the left. Then click
on the coordinates (X10, Z37) and (X9, Z27).

If you now run the game you can access the corridor through the door to the
right, walk around the middle room, and attack the enemy player from behind. No-
tice that there currently isn’t any roof to the corridor. You may not necessarily want
one in your own game, or you may want to cover part of the corridor to provide
small gaps for the player to look out. The easiest way to do this is to use the Bunker
Fighting Area Ceiling and apply it to the corridor roof. To do this you have to apply
the roof to the level above. Otherwise, you will actually be placing the ceiling on the
current level’s floor. So first, you need to move up a single level so that you can
paste the ceiling.

6. Click the “+” button on the keyboard to move up a level. The cursor layer
will now read “6.”

7. Ensure that Segments is selected in the Library toolbar tabs. Then single left-
click Bunker Fighting Area Ceiling and then click on the coordinates given
in Table 17.3:

Table 17.3 Ceiling Coordinates

COORDINATES (X, Z)

(10, 37)

(11, 37)

(12, 37)

(12, 35)

(11, 35)

(11, 34)

(11, 32)

(12, 32)

(12, 31)

(12, 29)

(12, 28)

(12, 27)

(10, 27)

(9, 27)

You may notice that your rooms are two levels deep, while your corridor is only a single level
deep.

Run your game and go through the right-hand door. Your corridor now has a
roof though some parts of it are left open for the player to look through, as shown in
Figure 17.20.

394 Awesome Game Creation: No Programming Required

FIGURE 17.20 Corridor with gaps on the ceiling.

If you want to check your work against the completed corridor that you have
just walked through, you can load the example called corridor.fpm in the FPSFILES
folder on the DVD.

CHAPTER SUMMARY

In this chapter you looked at FPS Creator and created your first set of rooms, placed
a weapon, and selected the location in which the player would start the game. You
also placed an enemy player, created a ventilation system, and painted a corridor
system with a roof. You now have the knowledge and the skills to place some of the
basic components in the world. In the next chapter you will be expanding our game
and placing more complex items and options that you might see in today’s FPS
games. This includes stairs, elevators, trigger zones, and many other exciting things.

ON THE DVD

C H A P T E R

18 FPS CREATOR: NEXT STEP

395

In This Chapter

• Adding Windows
• Creating Door Switches
• Lighting Rooms and Corridors
• World Effects: Smoke and Fire
• Making Your World More Visually Exciting

396 Awesome Game Creation: No Programming Required

Now that you have your basic game in place, it’s time to begin adding some
more content and features to the game and increasing its overall complexity.
Do this by adding more rooms and more enemies, and while doing so add

more features that are available in FPS Creator. This will give you a strong ground-
ing to take your games to the next level.

ADDING WINDOWS

Adding windows to your game is a nice touch and can give the world a more realis-
tic feel, as well as allowing the players glimpses into rooms they are approaching.
Windows can be destroyed, allowing the player to walk through it, or they can be
fake windows that the user can’t actually look through but give the feeling of it
being a real building. You can also apply smaller windows that can be destroyed but
are too small for the player to walk through.

Load the game you have been working on, and then you can add an additional
room and add some windows to it. The file is called corridor.fpm and is located in
the FPSFILES folder on the DVD provided with this book.

First, create two new rooms, one of which will have windows that look into the
other room and allow you to see what’s inside it.

1. Ensure that the file corridor.fpm is loaded, and then click Prefabs in the Library
toolbar.

2. Click Add new prefab and then select hallway large.
3. Left-click on the grid at the location (X5, Z21) and then with the mouse still

displaying the prefab cursor, press the R key three times until the arrow is
pointing to the right. Then click the left mouse button at the coordinates
(X10, Z21) to place another room to the right of the one you’ve just added.

4. Run the game to check that you have two rooms, as shown in Figure 18.1.

As you add more and more content to the game, you may notice that it takes longer to load
when you want to preview it. This is normal, as your computer has to compile the program
into a special version for previewing.

5. Now it’s time to add some windows. Click Segments in the Library toolbar.
Then click Add new segment.

6. Double left-click Window Large. Press R on the keyboard so that the arrow
is pointing to the right.

7. Click on the coordinates (X9, Z21), (X9, Z22), (X9, Z24), and (X9, Z25).

One of the two new rooms added previously now has windows across it. Figure
18.2 shows the grid view, and Figure 18.3 shows the game view.

ON THE DVD

Chapter 18 FPS Creator: Next Step 397

FIGURE 18.1 The room layout with two new rooms.

FIGURE 18.2 Grid view of the windows, shown next to the arrows.

8. Run the game and move to the two new rooms. Try shooting out the win-
dows, jumping through them (once they have been destroyed), and gener-
ally have a look around and get used to what the window system might do
for your games.

398 Awesome Game Creation: No Programming Required

CREATING DOOR SWITCHES

Most FPS games have some doors that open automatically, some that require a key,
and others need the player to click on a switch to activate them. When you want to
use a wall switch to open a door, you need to place a Remote Door. Until the user
clicks the switch, the door remains locked and there is no access into the next room
or corridor.

Load the game you have been working on, to which you will add an additional
room and a door with a switch. The file you need to load is called windows.fpm and
is located in the FPSFILES folder on the DVD provided with this book.

1. First, add a new room in which you can place a door that will be activated
by a switch. Select the Prefab tab in the Library toolbar, click Add new pre-
fab, and choose bunker small. Left-click on the grid coordinates (X2, Z22).

2. Now you have a room, but with no door access, so click the Segments tab on
the Library toolbar and click Add new segment. As you are using the demo
version, not all objects are available, so you cannot pick the best shaped and
painted object for your game, but to see how it works, select Door Prison
Cell (remote).

3. Press R until the arrow is pointing to the left and then click on the coordi-
nates (X5, Z23).

4. Now you need to place the door switch, so click the Entities tab on the Library
toolbar, click Add new entity, navigate to Scifi | Wall furniture, and select
switch7.

ON THE DVD

FIGURE 18.3 The windows as displayed in the game, with one in the
process of being destroyed.

Chapter 18 FPS Creator: Next Step 399

5. Place the wall switch away from the door to make it more interesting for the
player so he will need to flip the switch in another room to make the door
open. In the top-right room (the one with the windows) place the switch at
coordinates (X13, Z21). You can see the map and the door and switch objects
highlighted in Figure 18.4.

Run the game. You have to go into the room with the windows and flick the switch
before the door opens. If you try to access the door before hitting the switch, notice that
there is no message on screen advising you to press the Use key, and the door will stay
firmly closed. You can see the switch and door in the distance in Figure 18.5.

FIGURE 18.4 The door switch and locked door on the grid.

FIGURE 18.5 The door switch to open the door in the distance.

LIGHTING ROOMS AND CORRIDORS

An important aspect of any game is lighting the environment. This can make all the
difference in making a more chilling and scary experience for the player, as well as
making the world look more realistic. A good example of this is games like Doom® 3,
where you walk through a space base on Mars that has seen a catastrophic accident,
and many of the locations have different levels of damage. Many lights are flicker-
ing, and in the corridors very little light exists, which make it very scary for the play-
ers to move around the world, as they cannot see far in the distance. This tense
situation is made worse where creatures can appear around any corner, taking the
player by surprise.

There are two types of lights in games: natural light and artificial light. Artificial
light is created easily by placing a lamp or other light object on the screen and then
adding a light effect to it. Natural light is the combination of the surroundings. For
this type of lighting you can add a light effect on its own without placing it on a light
object.

FPS Creator by default lights all of the rooms and corridors you create the same
way, so when you play, all the areas can be seen. For a basic game this is perfect and
very simple to get up and running. If you want to make your game a little more ex-
citing and professional looking, as soon as you add a light effect, this “light all” is
switched off. Therefore, when you play the game with only one light applied, the
rest of the rooms are in near darkness. Unfortunately, this means that as soon as you
begin to add lighting to your game there is a lot more work to be done to get your
game looking right. An example of a room that is lighted and a darker room beyond
can be seen in Figure 18.6.

400 Awesome Game Creation: No Programming Required

FIGURE 18.6 Room beyond in the dark.

Chapter 18 FPS Creator: Next Step 401

Adding a light is a simple process.

1. Select the Markers tab in the Library toolbar.
2. Select the relevant light object, as shown in Figure 18.7, and drop it onto the

grid in the appropriate location.

FIGURE 18.7 The available light markers.

WORLD EFFECTS: SMOKE AND FIRE

In some worlds there may be reason to add a fire or smoke effect to make the game
visually pleasing or to restrict the user’s movements. For example, you could place a
fire effect in a room, blocking a particular route. A number of World War 2 FPS
games use fire to add to the overall feeling of danger but also to block a particular
route. This is a game trick, as in these cases the route blocked by fire may not have
ever been a route out of the map, but it adds an illusion of a bigger world that the
player can’t get to. In the game you have been making over the past two chapters,
you are going to add a smoke and fire effect.

Adding Fire to Your Game

It’s time to add a fire effect to the top-left corner room, in which you created a door
that could only be opened by a switch. You need to ensure that you have the file

lights.fpm open, which is located in the FPSFILES folder on the DVD provided with
this book.

1. Click on the Entities tab.
2. Click the Add new entity graphic.
3. From the menu select Generic | Decals.
4. Select Fire and then you will be taken back to the grid.
5. The cursor has changed to a cone-shaped object, which you can now place

on the grid. Left-click on the grid in the locations listed in Table 18.1 to add
the fire effect.

Table 18.1 Fire Effect Locations

COORDINATES

X4, Z24

X3, Z24

X2, Z24

X4, Z23

X3, Z23

X2, Z23

X4, Z22

X3, Z22

X2, Z22

You can now see your cones of fire, as shown in Figure 18.8.
If you run the game, go to the door switch and enable it. Then move to the room

at the top-left corner of the world and you will see the fire effect. An example of this
is shown in Figure 18.9. You can walk into the fire with no ill effects, as you would
need to tell the program to reduce health when walking through it.

You will see how to add the reduction of health in the next chapter.

Adding Smoke to Your Game

Using the same process that you used for adding fire, you can add smoke to your
game. In this case you are going to add an industrial pipe and make the smoke appear
from that. Load the file beforesmoke.fpm, which is located in the folder FPSFILES on
the DVD.

1. Click Entities and select Add new entity.
2. Select Scifi |Furnitureb | EquipmentD.
3. You should be back at the grid map. Press R twice to rotate the pipe until it

is pointing to the right.

402 Awesome Game Creation: No Programming Required

ON THE DVD

ON THE DVD

Chapter 18 FPS Creator: Next Step 403

4. Click on the coordinates (X9, Z35) to place the pipe.
5. Now you can add the smoke. Ensure that the Entities tab is selected in the

Library toolbar and then click Add new entity.
6. Choose Generic | Decals and select smoke1 and place it at the coordinates

(X9, Z35).

FIGURE 18.8 The cones of fire in place, ready to
set the room alight.

FIGURE 18.9 The fire effect in the game.

7. As a square isn’t as precise as you may want it, once you have placed the
smoke, you have the opportunity of moving its location. If you have placed
the smoke and you still have smoke as the cursor, press Delete key before
you start.

8. Move the mouse cursor over the smoke object and notice that it is highlighted
in green. Click the right mouse button to access the object properties and
zoom in close to it.

9. Holding down the right mouse button and moving it in a particular direction
will move the 3D world, allowing you to get a better look at the smoke’s
location. An example of this can be seen in Figure 18.10.

404 Awesome Game Creation: No Programming Required

FIGURE 18.10 Zoomed in close to the smoke.

10. Use the arrow keys to precisely position the smoke. Click the left mouse but-
ton to return to the normal grid mode.

11. Run the game and see the smoke appearing from the pipe object, as shown
in Figure 18.11.

As the smoke object is close to the wall, you may have to move it a small amount to ensure
that it looks correct on the screen. If you place it too close to the wall, you may get a strange
effect, where part of the smoke is cut away. It is always a good idea to place an object on the
grid. Then check how it looks and reposition it if need be.

Chapter 18 FPS Creator: Next Step 405

MAKING YOUR WORLD MORE VISUALLY EXCITING

When you are creating the world for your characters, it is useful to furnish this
world with items that relate to the characters’ surroundings. For example, if you are
creating a game in a hospital, you might want to place beds, medicine cabinets, and
hospital-based wall signs.

1. Ensure that the file aftersmoke.fpm is loaded. The file is located in the FPS-
FILES folder on the DVD.

2. Ensure that the Entities tab is selected in the Library toolbar. Select Add new
entity.

3. Select the Scifi | Furnitureb menu item and then the storageC object.
4. Place two of these items in the room just above the room where the enemy

player is located at coordinates (X6, Z26) and (X8, Z26).

You may need to right-click on the shelves to position them exactly on the screen.

5. Now that the shelves have been placed, you can put items onto them. Click Add
new entity, then Scifi | Items. Select any of the available items and then place
them on the shelves. You can do this a number of times to fill up the shelves.

6. You may find placing items very difficult because all of the items start at
floor level. To place an item on a particular shelf level, use the Page up and
Page down keys.

Another useful tip for precise positioning of multiple objects of the same item is to place a single
item and then right-click on it to edit the properties. You can then precisely position it. Once you
have done that, exit out of the properties and then left-click on the object to make it moveable and
left-click a number of times to place the object. You can see this in action in Figure 18.12.

FIGURE 18.11 The smoke appearing from the pipe.

ON THE DVD

406 Awesome Game Creation: No Programming Required

FIGURE 18.12 Close up of one of the shelves to place items precisely.

For an example of some items placed on the two shelves, open furniture.fpm in
the FPSFILES directory on the DVD.

7. Try adding more items from the library to make your world more exciting.

You may notice when you run the game that when you look at the shelves, the ammunition
is moving up and down. This is because these objects are dynamic objects, which means they
may have a movement applied to them. You can change an object’s type by going into its
properties, which will be covered in the next chapter.

CHAPTER SUMMARY

In this chapter you have built upon your knowledge of FPS Creator and began to
make your game more interesting for the players. You did this in two ways, first, by
providing more of a challenge, whereby they need to flip a switch to open a remote
door, and second, by adding more content to make the game world feel more realis-
tic. When you are creating your own games, think about the surroundings and how
they should be presented to the player. In the next chapter you will begin to add
more functionality to your game including special game markers, which tell FPS
Creator when to do a specific task.

ON THE DVD

C H A P T E R

19 TAKING FPS CREATOR
TO THE NEXT LEVEL

407

In This Chapter

• Stairs, Elevators, and Teleporters
• Creating Enemy Patrols Using Waypoints
• Zones

408 Awesome Game Creation: No Programming Required

This chapter covers various aspects of FPS Creator that will start to make your
game stand out and make it more professional in terms of what the player can
do within the world.

STAIRS, ELEVATORS, AND TELEPORTERS

Many games exist on various height levels, whereby the player moves up a ladder or
a set of stairs to reach another room or position on the map. In the game Half-Life® 2
you are sometimes walking up building rubble and then jumping back down to the
same height level that you started on. Using different types of items to move between
levels certainly makes games more interesting than just providing a single level to
move around on.

The word level has two different meanings in games. It can mean the number of separate
sections in a game that are defined by a loading screen or a increasing level of difficultly. It
can also refer to a game that exists on more than one floor. A floor does not necessarily mean
it has to be confined to a building, but it is a handy way to visualize how the setup works.

In this chapter you will be adding a number of different ways to move around in
your game on the different floors of the rooms. You are going to add a set of stairs,
which the user can walk up, an elevator the user can walk into to travel up a floor, and
a teleporter that can magically move the player to a new location when he walks into
it.

Stairs

This is a common object in games in which the player is moving indoors to allow the
player to move between floors. When making a set of stairs in FPS Creator, you will
need to think about the placement of the stairs and prepare the floor and rooms
above it, so that it all connects correctly. The other issue to think about is that many
room prefabs are two levels in the map, so you need to consider adding areas for the
player to walk on.

Open the file beforestairs.fpm, which is located in the FPSFILES folder.
In this example you are going to add a set of stairs and a gantry for the player to

walk on and then place a door and a connecting room, which will be on the next
level up. First, add a room and a door at layer level 6.

1. Press the “+” key to move to layer level 6.
2. Ensure that the Prefabs tab is selected and then click Add new prefab.
3. Select bunker small and place it at the coordinates (X8, Z33).
4. Now add a floor at the same level as the room (and the same level as the door

once you have placed it). Ensure that you are at layer 6, click on the Seg-
ments tab, and then click Add new segment. Select Military Gantry Deadend
and place it at the coordinates (X7, Z32). Press R twice and click on (X7, Z36).

ON THE DVD

Chapter 19 Taking FPS Creator to the Next Level 409

5. Click Add new segment and choose Military Gantry Cross. Place it at the co-
ordinates (X7, Z33).

6. Click Add new segment, choose Military Gantry Straight, and place it at the
coordinates (X7, Z32) and (X7, Z35).

7. Now you can add a staircase to access this floor, so click on the “-” button to
move back to layer 5.

8. Click Add new segment, select Staircase Metal, and press R until the arrow
is pointing to the right. Left-click to place the object at the coordinates (X6,
Z33).

9. Nearly everything is in place to allow the player to walk up the stairs and ac-
cess another room at a different layer. Click the “+” button to move to layer 6.

10. Ensure that the Segments tab is selected and then click Add new segment.
Select Door Control Room (auto).

11. Ensure that the arrow is pointing to the right and click on the coordinates
(X7, Z33).

12. Run the game and you should be able to move up the stairs and walk into
another room. You can see how it should look in Figure 19.1.

FIGURE 19.1 Stairs with access to another room.

If you want to compare this walkthrough with the final code, open the file after-
stairs.fpm, which is located in the FPSFILES folder on the DVD.

Elevators

Using elevators is another great way of adding realism into your games. It is also a
good way of breaking your game into levels or sections. Many games have used
elevators to move the player between levels, and usually the elevator is one way to

ON THE DVD

410 Awesome Game Creation: No Programming Required

prevent the player from going back where he came from. Half-Life and Half-Life 2
used lifts to great effect as a way of breaking the sections up, to continue telling a
story, or creating a situation in a game that becomes hectic, fun, and memorable. In
one (of many) memorable sections in Half-life 2 the player has to fight off the
enemy while waiting for the lift to descend, so the player is stuck in a room, being
closed in on by zombies while trying to survive long enough to get into the elevator.
Creating something players fondly remember enjoying in a game is very important
to their overall enjoyment and can sway a player’s opinion to be positive. Another
game that uses elevators well is Max Payne®, in which toward the end of the game
the player has located the enemies’ base and the elevator is the level loading
between levels, which were the different floors of the building.

In FPS Creator an elevator is called a lift, so we will continue to use both words where required.

In this section you are going to create a simple elevator effect. Creating an eleva-
tor requires three Lift parts and a Door to enter and exit the elevator.

Base of Lift. This is the very bottom of the elevator and is the entry point for
the player. The door needs to be placed here.

Tube Section. If you create a large elevator over a number of levels, you need
to connect the base of the lift and the top using the tube. You can connect
the base and the top together in one section if you don’t want to create a
large elevator.

Top of Lift. This is the very top of the elevator.

When you select the lift segments, you need to consider if the elevator will
move up or down. You can do this by selecting the segments that are highlighted
with “platform.” The top segment with the corresponding platform text in the name
begins with the pad that moves the player to the top; the bottom (base) starts with it
at the bottom.

In the following example you will create two rooms.

1. Open FPS Creator and begin on a new file.
2. Ensure that the Prefabs tab is selected and then click Add new prefab. Select

the bunker large item.
3. Place the bunker large item in the coordinates (X0, Z35).

This places a room, but you need another for the elevator to connect to. Keep in
mind the height of the rooms involved and where you need to place the next room to
ensure that it is placed on the roof. In this case the building is three levels tall, so you
need to move up a few layers before you place the connecting room above the base.

4. Press the “+” key three times. You will know you are at the right height
when you see the roof of the room you just placed.

5. As you are still in the Prefab mode, you can left-click on the coordinates
(X0, Z35) at layer 8 to place the room.

6. Press the Delete key to remove the item from the mouse cursor.

Chapter 19 Taking FPS Creator to the Next Level 411

Now that you have the two rooms one on top of the other, you need to place the
elevator segments. The best place to start is to add the bottom segment, followed by
the topmost segment, and then fill in the gaps. Finally, place the doors for access to
the elevator pad.

7. Click the Segments tab in the Library toolbar and then click Add new segment.
8. Under Scifi | Scenery is Lift Base (platform). This is the bottommost lift item,

which allows for it to move up. Double left click on Lift Base (platform).
9. Press the “-“ key three times to return to the room at layer 5.

10. Left-click at the coordinates (X4, Z39) at layer 5.

Now add the topmost part of the elevator.

11. Click on Add new segment icon in the Library toolbar.
12. Double left-click Lift Top. Click on the “+” key three times to move to layer 8.
13. Left-click at the coordinates (X4, Z39) at layer 8 to place the item.

Now that you have placed the top and bottom items, you need to connect them.

14. Click Add new segment and then double left-click to select Lift Tube. Press
the “-“ key twice to move down to layer 6. Left-click on the coordinates (X4,
Z39) at layer 6.

15. Press the “+” key once to move to layer 7. As the mouse cursor still has the
Lift Tube attached, left-click at the coordinates (X4, Z39) at layer 7.

The elevator parts are now in place. If you run the game you will see the lift in the
bottom corner of the room, but there is no way to access it, as shown in Figure 19.2.

FIGURE 19.2 The elevator segments but no access.

You need to add a door to the bottom and top lift segments to allow the player
to enter and exit it. The elevator is automatic, so as soon as the player moves into
the pad it will move the player up on its own. Therefore, once the doors have been
added, you will have completed the elevator.

16. Click Add new segment, and then select Door Telescopic (auto) by double
left-clicking on it.

17. Press R twice to rotate the segment and make the arrow point down.
18. Left-click on the grid at coordinates (X4, Z38) at layer 5.
19. Press the “+” key three times, and you should be at layer 8.
20. Left-click on the grid at coordinates (X4, Z38) at layer 8.

You have now added all of the components to create an elevator and allow access
to it for the player. Run the game and try the elevator, as shown in Figure 19.3.

412 Awesome Game Creation: No Programming Required

FIGURE 19.3 Inside the new elevator.

If you want to compare your version with the one on the DVD, you can find it
in the file liftcomplete.fp in the FPSFILES folder.

At the time of writing, enemies cannot move into the elevator with the player, so this is a good
way of getting away from the enemy.

Teleporters

A teleporter is a way to move a player from one location to another. If you have
seen the TV show Star Trek™, you know they use a teleporter to move from the ship
to other locations, for example, to another ship or to a planet’s surface. A teleporter

ON THE DVD

Chapter 19 Taking FPS Creator to the Next Level 413

is another way of adding something a little more fun and different to allow your
player to move around the game world. To use teleporters, you create a start tele-
porter and an end teleporter. The player is automatically placed at the end teleporter
when he walks into the start teleporter.

You will use the file you created for the elevators. If you have already closed it,
you can find it on the DVD in the FPSFILES folder. The file is called liftcomplete.fpm.

1. Ensure that you are at layer 5 of the map.
2. First, add a new room at layer 5. Ensure that the Prefabs tab is selected and

then click Add new prefab.
3. Select bunker large and place it at the coordinates (X0, Z30).
4. Make sure the Segments tab is selected in the Library toolbar, and then click

Add new segment.
5. Double left-click Teleporter IN. This is the starting point teleporter. The

arrow on the cursor tells you which way the player can walk into the tele-
porter, so it is important to rotate the object if it is placed near a wall to en-
sure that the player can gain access to it.

6. Press R twice so that the arrow is pointing down.
7. Single left-click at the coordinates (X0, Z39) at layer 5. You should see the

current layout at layer 5, as shown in Figure 19.4.

ON THE DVD

FIGURE 19.4 The current room layout of layer 5 with an elevator and a teleporter.

8. Click on the Add new segment icon and double left-click the Teleporter OUT
icon. You may need to press R twice to place the arrow in a up-pointing
direction.

9. Place the teleporter at the coordinates (X0, Z30). Your map should now look
like Figure 19.5.

414 Awesome Game Creation: No Programming Required

FIGURE 19.5 The two teleporters ready to be used.

If you were to run the game now you would start the game standing just outside
the OUT teleporter. This is because FPS Creator places the player where it believes
the player should start. You are supposed to tell the program where to start.

10. Click the Markers tab in the Library toolbar and then click Player Start. The
mouse cursor changes to a green arrow.

11. Press R three times until the arrow is pointing in a south-east direction
(pointing diagonally toward the elevator).

12. Click on the coordinates (X1, Z36).
13. If you run the game now, you will see the teleporter in the right-hand side

of the screen and the elevator on the left, as shown in Figure 19.6.

In the demo version there is a bug, which means you cannot place a teleporter on two differ-
ent layers without some strange effects. You can get around this when you are designing your
game and placing your floors of the map on the grid. You can see the problem by opening
and running teleportbug.fpm in the FPSFILES folder.

Chapter 19 Taking FPS Creator to the Next Level 415

CREATING ENEMY PATROLS USING WAYPOINTS

Another way to add more realism is in the form of waypoints for the computer-
controlled players. This allows you to set the path a character will walk along, rather
than having him stand statically in one place. If all characters in the game, including the
enemies, just stood still and didn’t interact with the world in which they existed, the
game would not be rated as highly as another game that is exactly the same but with
this interactivity included. Many games use waypoints or other methods of making
their NPC’s (nonplayer characters) move around the world. Great examples of this are
Grand Theft Auto™ 4 and The Elder Scrolls® Oblivion™. In Grand Theft Auto characters
walk along the streets and shout things out if you walk into them. The Elder Scrolls
adds even more complexity by giving characters a daily movement path, whereby they
move between their homes and work and do tasks. They stop on the way and talk to
other characters. Waypoints aren’t as powerful as the systems utilized in the two games
just mentioned, but they can still make your games appear more realistic.

To create a waypoint, click on the Waypoint icon on the menu bar as shown in
Figure 19.7.

You will then have a star icon on the grid, which you can then move to a posi-
tion in a particular room. When you want to create another point that the player
will walk to, hold down the Shift key and click on the star. This creates a new entry
point that you can drag and drop into place on the grid.

You are now going to create a waypoint for a computer-controlled character,
which will walk around two rooms. The rooms have been created for you and the
character placed on screen. All you have to do is create character’s path. For this ex-
ample load the file waypointbefore.fpm from the FPSFILES folder on the DVD.

FIGURE 19.6 The elevator and teleporter in the same room.

ON THE DVD

1. Open up the file waypointbefore.fpm in the FPSFILES directory.

In this file you will see four rooms connecting to each other. The player starts in
the bottom-left room. An NPC starts in the top-left room You will make the charac-
ter move between the top-left and top-right rooms. You can see the layout of the file
in Figure 19.8.

416 Awesome Game Creation: No Programming Required

FIGURE 19.7 The Waypoint icon.

FIGURE 19.8 The room ready to add the waypoint.

2. Click the Waypoint button that was shown in Figure 19.7.
3. You will now have a colored square on the grid. Left-click on it and while

holding down the left mouse button drag the star to any location you want.
For this example drop it just above the computer-controlled player. You can
leave it there by releasing the left mouse button.

4. You need to create another star farther up in the room. To create a second
star, hold down the Shift key and left-click on the star you just placed above
the computer-controlled player.

ON THE DVD

Chapter 19 Taking FPS Creator to the Next Level 417

5. Another star will appear on the grid. You can drag and drop this star farther
up in the room. Continue to place these movement nodes on the grid to cre-
ate a pattern similar to that shown in Figure 19.9.

If you put a node in the wrong place and want to delete it, click the right mouse button while
the cursor is over the node you want to remove.

It is important to place a number of nodes (stars) close together around the door, as oth-
erwise the computer-controlled player may not move correctly between the door and the next
available node.

FIGURE 19.9 A path movement for the computer player.

6. Run the game. You will need to walk through the door to watch the com-
puter-controlled player walking along the path through the door and then
back again. If you want to open an example file, you can load one called
waypoint.fpm from the FPSFILES directory on the DVD.

ZONES

Zones are very important for checking when a player has moved into a specific area
on the map. You have probably seen some of these zones in games you have played.
For example in The Elder Scrolls Oblivion you might be walking through a cave when
a rock fall happens and blocks one of the tunnels. This is effectively a trigger zone

ON THE DVD

whereby the computer continues to track the player until he moves to a specific
point on the map, and it will then do something. Other zones can do things like add
health, remove health, and create an action on screen. FPS Creator comes with a
number of zones for you to place on the map:

Heal Zone. When the player walks into this area he receives an increase in
health points. Many games have ways of getting healed other than the tra-
ditional health packs or wall health machines seen in Half-Life and Doom 3.
For example, role playing games may have a fountain or pool of health.

Hurt Zone. When the player walks into this area, he will have an amount of
health points removed. You wouldn’t normally just place this zone and have
the player’s health removed, as the player would be confused as to why he is
losing points. You use a hurt zone in combination with an effect. This could
be fire, lava, or spikes, for example. In games like Doom 3 you might see fire
or gas coming intermittently from pipes that you have to traverse. If you time
it wrong, you lose points.

Win Zone. When you want the current level to be completed, you can place a
win zone. This is the final area or room you want the player to see before he
moves on to the next level. You can place multiple win zones within a level
to make the game less linear and add more value to the game, as the player
can take different routes through the game and still complete it.

Linear is a term that describes a straight line or path. Linear and nonlinear are terms used
a lot in games to distinguish between games that only allow a specific route through the game
with no alternatives and games that are open ended and have different stories or routes. The
more options you can provide in your game, the more interesting it will become and the more
replay value it will have, meaning players will come back time and again and replay it to
see if they can do things differently.

Trigger Zone. A trigger zone triggers something to happen, for example, the
lights being turned on or a door unlocked. A trigger zone is controlled by a
script, so you can make it more complex if you know how to write simple
code. Trigger zones are very common in today’s games and are the trigger to
NPC’s reacting and animation effects happening. In a World War 2 FPS you
might be given the task of storming a building or a gun emplacement. When
you get to a certain area, the enemy will appear or begin to retreat. This is
an aspect of one type of trigger zone.

Sound Zone. The sound zone is a way to play a sound effect or music at a given
moment. This is an effective way of building suspense in a game and provides
a more realistic experience. If you are creating a haunted house, you could
play a distant scream or the creaking of floorboards. This technique was used
very successfully in the game Vampire: The Masquerade during one of the
missions in a haunted house.

418 Awesome Game Creation: No Programming Required

Chapter 19 Taking FPS Creator to the Next Level 419

Story Zone. Many games use video to reveal the story to the players as they
progress. In Call of Duty® when you get to the start or end of a level it might
play a story of what’s been happening. This not only gives the player an idea
of what’s going on, but it also helps the player become more immersed in
the game. This makes the player care about the characters they interact with
and provides a more movie-based emotional roller coaster ride through the
game. If the player doesn’t care about the characters, he may not care as
much for the game. The story zone in FPS Creator allows the game designer
to play video at a specific point in the game. When you place a story zone in
FPS Creator, it plays a default video until you decide to replace it. It only
plays the video once when the player enters the room or area.

Now it’s time to create these zones to show you how easy they are to add to
your games.

Hurt Zone

First, you are going to create a room that contains fire. The player needs to walk
through it to reach the next room. While walking through the fire the player loses
health points, so you need to add a hurt zone. There is already a file that contains the
rooms and a room that contains fire. The file is called triggerzones.fpm and is located
on the DVD in the folder FPSFILES.

1. Open the file triggerzones.fpm in the FPSFILES directory.
2. Seven rooms are in an “n” shape, and the second room is already filled with

the fire entity. If you were to walk into this area now, nothing would hap-
pen except that you would see fire rising from the ground.

3. Click the Markers tab in the Library toolbar.
4. Select Hurt Zone, and the cursor will change to a red cube. Left-click on all pos-

sible squares in the second room, which contains the fire entity. Run the game
now and walk through the room, a red haze should appear on the screen, and
your health points should quickly decrease, as shown in Figure 19.10.

5. Run through the room and open the door on the other side, and the health
reduction will stop.

Heal Zone

Now put a heal zone in the room directly after the hurt zone so the player can
restore his health. The heal zone is added in exactly the same way as the hurt zone,
so use the file you have just added the heal zone.

1. Ensure that the Markers tab is selected and then click on Heal Zone. The
cursor will change to a green cube. Fill in a number of boxes in the top-left
corner room.

2. Run the game and run through the fire room and into the next room.
Watch your health go back up.

ON THE DVD

Sound Zone

Now play some music when the player walks into a room. Use the file you have
been working on or load healzone.fpm from the FPSFILES directory on the DVD.

1. Ensure that the Markers tab is selected in the Library toolbar and then click
on Sound Zone. The cursor will change to a blue cube.

2. Left-click just after the door on the top-middle room. The sound zone is cur-
rently configured as a default setting, which is to play a sound like a door
opening. To change it, right-click on the cube. This accesses the object prop-
erties. You can do this process for many of the objects you have added to a
game in FPS Creator, which allows you to change the scripts they use or
their properties. You can see the properties for this object in Figure 19.11.

3. Under the Sound heading is Sound0 and then a file path. This file path is
currently set to its default setting. Left-click on the path, and you can edit it.
Clicking on the three dots that appear opens the Select File dialog box, as
shown in Figure 19.12.

4. It already defaults to the audiobank folder, so navigate to the music\generic
folder by double left-clicking on it. Single left-click on the victory.wav file
and then click Open.

5. The sound file path in the properties is now updated. If you accidentally left-
click on the map editor, it will exit out of the properties without saving, and
you will need to start again with changing the file path and file it plays.

6. Ensure that the path and file is to the victory.wav file and click Apply Changes.
This takes you back to the map grid. Play the game, walk through the fire and
health zones, and then enter the next room where the music should begin to
play.

420 Awesome Game Creation: No Programming Required

FIGURE 19.10 The health is quickly being reduced.

ON THE DVD

Chapter 19 Taking FPS Creator to the Next Level 421

The music files provided with the demo are not very long, so try adding your own .wav files
if you want to play a song that lasts longer.

Story Zone

Now create a story zone in the top-right corner room of the “n” shaped map. First,
you should understand how the default story zone works.

FIGURE 19.11 The properties for the sound zone.

FIGURE 19.12 The Select File dialog box.

You can either continue to use the file you have been working on or you can
load the file soundzone.fpm, which contains all the changes you have made using
zones up to now. The file is in the FPSFILES directory on the DVD.

1. Click on the Markers tab in the Library toolbar and then click on the Story
Zone icon. Your mouse will change to a green cube. Single left-click on the
top-right corner of the room in a location you expect the user to walk into.
In this case place it just next to the door, so it will run as soon as the player
walks into the room.

Remember that when you place a story zone or sound zone, you must place it in an area the
player is expected to walk through. It would do no good to place a zone in the corner of
the room if there is no reason for the player to go there. Good places are near equipment or
the entrance or exit to a room or area.

2. You can see where the story zone has been placed in our example in Figure
19.13.

422 Awesome Game Creation: No Programming Required

ON THE DVD

FIGURE 19.13 The story zone placed just inside the room.

If you now run the game and walk through the rooms until you get to the story
zone, the game will switch from where you are controlling the player to a short
video sequence. The sequence doesn’t do a lot; it just plays a video of a character ap-
pearing as shown in Figure 19.14.

Chapter 19 Taking FPS Creator to the Next Level 423

There are two parts to the story mode sequence: an AVI file, which is a standard
video format, and an audio file, which can be used to provide commentary with the
video. The storyvideo.avi file provided with the demo has the properties shown in
Table 19.1.

Table 19.1 Video Properties of the File Provided with the Demo

VIDEO PROPERTIES

Width = 640

Height = 480

Duration 00:00:04 seconds

Frame rate : 25 frames/second

Data rate : 848 kbps

Video sample size: 24 bit

Video compression : Cinepak Codec

The table should give you an idea of what settings to create the file in. If you try
to load a video file that the program does not support, when you go back in to view
the properties of the story zone, the visual heading will not contain the path to the
file. Additionally, you need to copy the video file you want to use in the story zone
into the videobank directory, which is located under the FPS Creator Demo\Files
folder. If you do not do this, when you walk into the zone nothing will happen.

FIGURE 19.14 The story mode being played.

If you are using a video with sound, make sure you remove the sound item from the story
zone. Otherwise, the sound from the video will conflict with it.

Try adding your own video file to the program. Make sure you copy it into the
correct media folder before accessing the object properties and selecting the AVI file.

Win Zone

A win zone is the final zone you would add to your completed level. In an FPS game
you would create a number of levels, as the levels help break up the game into manage-
able chunks for the game creators and allow you to separate your story into sections.
The win zone is the final act for a level, and as soon as the player walks over it, the game
ends.

1. Ensure that the Markers tab is selected and left-click on the Win Zone icon.
Your cursor will now change to a yellow cube.

2. Left-click once on the final room in the set of rooms you have been working
on. If you want, you can open the file storyzone.fpm in the FPSFILES direc-
tory or continue using the file that you have been making.

3. Left-click in the final room at the bottom right and place a win zone. You can
place one inside the door, as you know the player is likely to walk into that.

When you compile your game as an executable, it will take into account the lev-
els in your game and will go to the next available level when the player walks into a
win zone.

4. Run the game now and get your character to walk into the win zone to
complete the test level.

CHAPTER SUMMARY

This chapter took FPS Creator to another level, by showing you many features you
can use in your games. It is important to think about how you might implement
these items in your game. If they are used correctly, you can really make your game
stand out. Adding sound zones, for example, can add atmosphere. Adding a story
mode can explain the story and what is happening in the game.

424 Awesome Game Creation: No Programming Required

C H A P T E R

20 FPS CREATOR
ADVANCED OPTIONS

425

In This Chapter

• Performance Checking
• Building an Executable
• Creating a Multiplayer Online Game

426 Awesome Game Creation: No Programming Required

This chapter looks at some of the more advanced features of FPS Creator. Some
of these features are only available in the full version, but we will provide a
quick look into what they can do and how they work.

PERFORMANCE CHECKING

You may have already noticed that if you press the Tab key while playing a test build
game in FPS Creator, a graph will appear with a set of text and numbers, as shown
in Figure 20.1. This is information about your game on a particular level, and it is
very useful for optimizing your game to ensure that it runs as fast as possible. In FPS
Creator this screen is called the Level Profiler.

FIGURE 20.1 The Level Profiler.

Adding many objects and moving players and lights all take up valuable mem-
ory and space, so it is important to reduce the load on the computer where possible.
To do this you need to understand which levels are the most resource hungry and
try to minimize the impact, allowing the game to perform better on lower specifica-
tion machines.

The text in Figure 20.1 is split into a number of items:

Polygons in Scene: Polygons are what make up your 3D world. The more of
them you have, the longer it takes to draw and refresh your surroundings.
The fewer you have, the less realistic the world looks, but the faster the
game will go. Fine-tuning this can make a difference in the speed of the
game without compromising the quality.

Chapter 20 FPS Creator Advanced Options 427

Frame Rate: This is the current frame rate of the game. If it is too slow, the game
will crawl to a stop. You should aim for a frame rate close to 30 or above.

Overall: This calculates the time it takes for an entire cycle of the game to com-
plete. You can compare this amount to other values to work out how much
CPU time the game is consuming.

Lighting: This shows how much count in a cycle the lights are using. If this is
too high, you can reduce the number of dynamic lights or the overall num-
ber of lights you have in a level.

Player: This shows the amount of resources being used to handle the player
each cycle.

Entities: This shows the count that is being used to handle the entities you
placed in your game, including artificial intelligence, collisions, and any
other logic.

Guns: This displays the count in a cycle used to handle the player’s gun and
directions.

Misc: Any other tasks that the game processes in a cycle are displayed here.
Debugging: This shows how much in a cycle the debugging uses in the game.

This is above 0 when the game is in test mode. When you build the game, it
no longer needs the debug mode, and it goes to zero.

Remainder: This tells you what count is left between the debug code and the
rendering to screen.

Sync: This is the amount of resources in a cycle that the game is using to re-
draw the graphics.

Position: This is the player’s position in the game world.
Areabox: This displays an area number where the player is standing. The game

is split into invisible rectangles by FPS Creator. The first number is the box
the player is in. The second number is the total number of boxes in the level.

AllPolys: This displays the number of polygons drawn in this game frame.
LocalPolys: This shows the number of polygons drawn in the invisible area

box in which your player is standing.
Collision Polys: When one object collides with another, this takes some pro-

cessing. This counter shows the number of polygons tested for this frame.

Also notice two graphics below these items. The first shows the amount of mem-
ory being used by the resources. There are peaks and low points in the graph, but
any constant or regular peaks could signal a problem. Each item on the graph is
numbered, as shown in Figure 20.2. These equate to specific tasks, and exact details
can be found in the product documentation.

In graph 2 are a number of colored lines:

• The yellow line signifies the number of polygons in use within the game. At one
point this dips and then increases again.

• The cyan line details the amount of time required to calculate any collisions in
the level.

• The red line is the frame rate that has been achieved.

428 Awesome Game Creation: No Programming Required

Using this Level Profiler, you should be able to tell which parts of your game are
running slowly and the possible reasons for it. You can then remove lights and enti-
ties, reduce enemies, rerun the game, and see the results.

BUILDING AN EXECUTABLE

This section will show you how to create a final executable file in FPS Creator. You
cannot do this in the demo version of the product, but it is an important step that is
required if you do decide to move to the full version.

In many game creation systems when you have a game loaded into the program
and you decide to create an executable of it, it takes the loaded game and produces
the final result. This is not the case in FPS Creator. FPS Creator asks you for the lev-
els stored on your disk and then builds them into a playable game.

1. To create an executable file, click on the file option, as shown in Figure 20.3,
and select Build.

2. A dialog box appears, as shown in Figure 20.4, and on the Game Project Set-
tings tab you can configure the file name, the controls the player users to
move around the screen, and the keys used to change weapons.

3. In the Level settings shown in Figure 20.5 you can specify various aspects of
the game properties:

Title Screen. The main menu screen, which is the first screen the player
sees when playing the game. The contents of what is displayed in the screen
are stored in an FPI file.
Global Script. Allows you to configure items such as the sky map, any fog
and ambience levels, the lives and health panels within the game and their
positions, and other items.

FIGURE 20.2 The Level Profiler graphs.

Chapter 20 FPS Creator Advanced Options 429

Game Over. The screen that appears when the game is over and the player
did not successfully complete it. You can change the background image, the
music, and other items.
Game Complete. The screen that appears if you successfully complete the
game. The same as the Game Over screen in terms of what you can change.

FIGURE 20.3 The Build
option in the File menu.

FIGURE 20.4 The Game Project Settings tab.

430 Awesome Game Creation: No Programming Required

FIGURE 20.5 The Level Settings tab.

Below this you can bring all your levels together into the list of levels by using
the add, insert, and delete options. You can also amend the loading screen between
the levels.

4. In the Textures tab, shown in Figure 20.6, you can reduce the game file size
by reducing the quality of the textures and the lighting in the game. The set-
ting you select here will have a bearing on the overall build time when you
build the executable file.

5. The Arena tab is used when you are building an online multiplayer game.
You can see it in Figure 20.7. The options are grayed out when you are in
the normal single-player mode. You can change into Arena mode from the
File menu.

6. In the Build Settings tab, as shown in Figure 20.8, you have the final options
for building your executable. In this screen you can amend the location of
the file and the filename. You can also make changes to the visual aspect of
the game. To build the executable, click the Build Game Executable button.

In very large games with many levels the build may take a long time to generate the exe-
cutable file.

Chapter 20 FPS Creator Advanced Options 431

FIGURE 20.6 The Textures tab.

FIGURE 20.7 The Arena tab.

CREATING A MULTIPLAYER ONLINE GAME

When you have completed a single-player game and given it to your friends and fam-
ily to play, you might want to play a game you have created with them playing along.
You can do this with FPS Creator by using the multiplayer aspect of the product.

1. The first thing you need to do is change modes from single-player to Arena
mode. To do this, select the File New Arena option. You can tell when you
are working in Arena mode, as the background color is a dark red rather
than the black used for single-player mode.

2. If you now look in the Preferences (accessible from the File menu option),
you can see the Single Player or Multiplayer radio button. Ensure that the
Multiplayer is selected.

3. You would then create your maps.

Not all features are available in Arena mode, as this is a different type of game than the
single-player mode, so some features are disabled. Consult the user guide for further details
on which features are available in single-player mode and multiplayer mode.

4. Select the Build Game menu option and follow the same process as you
would if you were building a normal executable. This time, when you click
on the Arena tab, you can select various options, as shown in Figure 20.9.

432 Awesome Game Creation: No Programming Required

FIGURE 20.8 The Build Settings tab.

Chapter 20 FPS Creator Advanced Options 433

You can change the winning objective of the game to either getting to a specific
location, getting first to a certain number of frags (kills), or being the one with the high-
est number after a specified time limit. You can also configure it so that one shot hitting
a player will kill him, and you can configure the number of players. Finally, you can
spawn (make people appear) at a start marker or a random location on the map.

Once you have built your executable, you can distribute it among your friends, on
the Internet, or via file sharing systems. To get involved in a multiplayer game, people
who want to play in the same game would start the executable. One of the players
would become the host (server), while everyone else would be a client. This means
the host is the central hub of all communication between the players, so ensure that
this machine is on a fast connection link and preferably a fast PC. All machines must
be networked either locally or connectable over the Internet. If you are using the In-
ternet you must ensure that any firewall software you are running allows the software
to be the host and client and access and transfer data between them. Consult your fire-
wall software for more information on this if you have problems.

5. Double left-click your executable file, as shown in Figure 20.10.
6. The menu screen will load and will ask for your name, as shown in Figure

20.11. This is the name you will be known as in the game. You can use your
real name or a made-up one.

FIGURE 20.9 The Arena tab with selectable options.

7. You can now see the options screen shown in Figure 20.12. This is where
you select if you are a host or if you will join a game. In this example, Host
has been selected, and the game will begin to load as shown in Figure 20.13.

8. Next, you are asked to select the character you want to play in the game, as
shown in Figure 20.14.

434 Awesome Game Creation: No Programming Required

FIGURE 20.10 The arena game files.

FIGURE 20.11 Asking for your game name.

Chapter 20 FPS Creator Advanced Options 435

9. You should now be in the game, as shown in Figure 20.15, waiting for your
friends to join you for a game.

FIGURE 20.12 The options screen to create a game or
connect to one.

FIGURE 20.13 The game starts to load.

FIGURE 20.14 Select the character you want to play in the game.

CHAPTER SUMMARY

In this chapter you learned how to check the performance of your game, how to
create an executable file that you can play on any PC or give to your friends, and
how to create a multiplayer FPS game.

When creating your games, you need to make sure they are interesting and fun
but also that they perform at a reasonable speed. If they don’t run at a reasonable
speed, you may find that the fun and interesting points are lost very quickly. Use the
Level Profiler to find aspects of your game that are not running as well as they
should and then tweak and change your game to make it run as well as it can with-
out impacting on the game’s structure.

Though FPS games are a lot of fun, it is even more fun playing them online with
your friends. Create different settings and maps and then challenge your friends to a
weekly competition to see who is the best FPS player.

This is the last chapter covering FPS Creator. Now you will move on to The 3D
Gamemaker for a whirlwind tour of an easy-to-use software tool that might give
you some ideas for FPS games.

436 Awesome Game Creation: No Programming Required

FIGURE 20.15 The game in progress.

C H A P T E R

21 THE 3D GAMEMAKER

437

In This Chapter

• System Requirements
• Installation
• Creating a Game with The 3D Gamemaker
• Saving the Game
• Playing the Game

438 Awesome Game Creation: No Programming Required

Of all the tools we have looked at, perhaps none is quite as easy to use as The
3D Gamemaker. Though it is the oldest of the tools available, it still provides
an easy way for the game maker to create a simple game in minutes. It also

provides a good way to see the range of games you might want to create from differ-
ent genres, so even if you don’t use it as a tool to develop programs, it is useful to get
the creative ideas flowing.

A demo version of The 3D Gamemaker is on the DVD. This version has much of the function-
ality of the standard version without the graphic content. You cannot make a distributable
game with it. If you would like to purchase the full version, visit www.thegamecreators.com
or www.focusmm.co.uk. You can find the demo version of the software in the Demos\3DGM
folder on the DVD provided with this book.

SYSTEM REQUIREMENTS

The minimum system requirements for The 3D Gamemaker are:

• 400 Mhz Pentium II Processor
• Windows 95, 98, 2000, ME, or XP
• 600 MB of hard disk space
• 64 MB of RAM
• DirectX version 7.0a
• Fully DirectX-compatible graphics card with 3D acceleration and 8MB of memory
• DirectX-compatible sound card
• 4x speed DVD drive

The recommended system requirements are:

• 600 Mhz Pentium III Processor
• Windows 95, 98, 2000, ME, or XP
• 600 MB of hard disk space
• 128 MB of RAM
• DirectX version 8.0a
• Fully DirectX-compatible graphics card with 3D acceleration and 16 MB memory
• DirectX-compatible sound card
• 16x speed CD-ROM drive

INSTALLATION

To install The 3D Gamemaker:

1. Put the DVD that accompanies the book into your DVD drive.
2. Double-click My Computer and then the letter of your DVD drive.
3. Double-click the Demos\3DGM directory. Then double-click on the file

Setup.exe, which is the installation file for this program. You’ll see the screen
shown in Figure 21.1.

ON THE DVD

ON THE DVD

www.thegamecreators.com
www.focusmm.co.uk

Chapter 21 The 3D Gamemaker 439

4. From the Welcome screen, click Next. You will then be presented with the
License Agreement screen, as shown in Figure 21.2.

FIGURE 21.1 The opening screen for installation. FIGURE 21.2 The License Agreement dialog box.

5. Read the license information and then click Yes to continue.
6. The Setup dialog box appears next, as shown in Figure 21.3. You can only

select the typical setup option, so click Next.
7. You can then select a destination directory, as shown in Figure 21.4. You

can accept the default or click Browse to select a new folder. When you are
ready, you can click Next.

FIGURE 21.3 Typical installation option. FIGURE 21.4 Typical installation dialog box.

8. The program folder name dialog box will appear. Unless you want to change
the name of the folder, as shown in Figure 21.5, click Next.

440 Awesome Game Creation: No Programming Required

9. You should now see the dialog box shown in Figure 21.6. This sets out the
installation program information, including the destination directory and
how much space is required.

FIGURE 21.5 The program folder’s name. FIGURE 21.6 The installation information.

10. Click Next to continue with the installation if you are happy with the infor-
mation. If not, click Back and change any of the information.

11. The files get copied to your machine.
12. You are asked if you want to add a shortcut icon to the desktop, as shown in

Figure 21.7. Click Yes.
13. Next you see a confirmation dialog box as shown in Figure 21.8 to show you

that the installation was successful.

FIGURE 21.7 The Add Icon to the Desktop dialog box.

FIGURE 21.8 The installation completed successfully.

Chapter 21 The 3D Gamemaker 441

14. Click Finish to complete the installation.
15. You now have a 3D Gamemaker icon on the desktop.

CREATING A GAME WITH THE 3D GAMEMAKER

You have just walked through the steps required to install The 3D Gamemaker. Now
that it’s installed, you can use it to develop a 3D game. The software comes with a va-
riety of prebuilt environments and 3D models that you can be use in your creations.
Some have been disabled in the demo version but are available in the full version.

Getting Started

In this section, you’ll develop a simple game with The 3D Gamemaker. When you
first double-click on the icon on the desktop, you will get the menu screen shown in
Figure 21.9.

FIGURE 21.9 The main menu screen in The 3D Gamemaker.

From here you can:

Make Game. This is the menu option you use to begin putting your game
together.

Load Game. If you have already created a game, you can use the load option
to load it back in and continue working on it.

Magic Game. When you click on this button, the software randomly creates a
game for you. This is not available in the demo version.

Preferences. Configure the preferences for The 3D Gamemaker software.
Switch to Beginner Mode. There are two modes: the beginner mode and the

standard mode (as shown in the demo). This basic mode takes away much

of the complexity and makes the interface easier to use for beginners. The
beginner mode does not exist in the demo version.

Exit the 3D Gamemaker. Exit the program.

1. Select the Make Game option.
2. The next screen, as shown in Figure 21.10, shows a number of tabs. The

Demo tab is selected by default. These are all of the scenes available for the
game creator to pick. As this is the demo version, you can only select those
in the Demo tab. Take a look at the other tabs to see what content is avail-
able to you if you decide to purchase the full version.

3. Select the scene called _Cellar03 by left-clicking on it. This draws the scene
into the right-hand window, as shown in Figure 21.11.

442 Awesome Game Creation: No Programming Required

FIGURE 21.10 The current scene selection. FIGURE 21.11 The scene is displayed in the right-hand
window.

Under the larger picture of the scene is a position bar. You can drag this to the
right to walk through the scene. You can also click on one of the three boxes to
change the sounds, preferences, and textures.

Notice at the top of the screen that the second picture from the left is selected.
This is the navigation bar that you use to move through the setting up of your game.

4. The second box in is selected. This is the scene window. Click on the third
picture, which looks like a joystick. You can then see the Select a Player
window. Choose an object to be the player character. The player character is
the player that will be controlled by the person playing the game.

5. Select the _Crossbow object and see it being displayed, as shown in Figure
21.12.

6. Click on the next picture in the navigation bar. This is the Player Bullet
screen. Here you need to pick a bullet to fire from either a weapon or object,
for example, a tank. In this case the player will be using a crossbow, so select
the arrow like object called _Quarrel, as shown in Figure 21.13.

Chapter 21 The 3D Gamemaker 443

7. Click on the next tab, which is the Game Enemies screen. Here you pick
what characters you want to play the enemies. You can select more than
one enemy character, as shown in Figure 21.14, where the secret agent is
the first, the mutant is the second, and the happy dude is the third.

8. Click on the next picture in the menu bar to select the Enemy Bullets screen.
Here you choose the bullets that the enemies will fire at you. In Figure 21.15
the lightning object and the brick are selected. When you are creating a more
specific game, you would keep the items in context. For example, if it was a
horror game you might select the pumpkin and lightning objects, but not a
striped shell. This also applies to the characters and the scene.

FIGURE 21.12 The Select a Player window. FIGURE 21.13 Picking the arrow object on the Player
Bullet screen.

FIGURE 21.14 The Game Enemies selection screen. FIGURE 21.15 The Enemy Bullets selection screen.

9. Click on the next picture to access the Game Obstacles selection screen.
These are items that will be placed on screen to block your access to rooms or
the road. You can destroy them by shooting at them in this game. All three
obstacles that are available in this demo are selected in Figure in 21.16.

10. In many games when you get to the end of a level, you have to fight an end
of level boss. You can do this in The 3D Gamemaker by clicking on the next
picture in the tab, the End of Level Boss selection screen. Select an end of
level boss. In Figure 21.17 the Robot is selected.

444 Awesome Game Creation: No Programming Required

FIGURE 21.16 The Game Obstacles selection screen. FIGURE 21.17 The End of Level Boss selection screen.

11. Click the next picture, which is for Game Items. In this screen you can select
from different game items. In many games these are called collectibles. The
list also contains extra energy, life, and strength items for the player to pick
up. In Figure 21.18 all three items that are available in this demo are selected.

12. Now click on the next picture, which is for setting the global game settings, as
shown in Figure 21.19. In this screen you can configure the game settings:
• Objectives, or the aim of the game
• How difficult it is to play the game
• Number of players?
• Volume levels
• Font styles and type
• The appearance of the game
• The title screen layout—the main menu
• Highscore layout

As you can see from Figure 21.19, the only option available in the demo is to change the
menu screen. All other features are disabled in this version.

Chapter 21 The 3D Gamemaker 445

SAVING THE GAME

After making all of the selections, it’s time to save the game. Click the icon that looks
like a disc in the upper-right corner of the screen. A menu will appear with four op-
tions: Play, Load, Save, and Standalone (which is disabled in the demo version). You
can see this menu in Figure 21.20. Choose Save Game.

The Save a Game menu is displayed next. You can name your game anything
you’d like. In the example shown in Figure 21.21, it is called FirstGame.3gm (The
3D Gamemaker adds the .3gm extension).

FIGURE 21.18 The Game Items selection screen. FIGURE 21.19 The Global Settings screen.

FIGURE 21.20 Choose Save Game from the menu. FIGURE 21.21 The Save a Game menu.

PLAYING THE GAME

After you save the game, the original menu is again presented (see Figure 21.21). To
play your game, click Play Game.

1. When you execute the game, you see the opening screen. This screen, seen
in Figure 21.22, is the screen you could have edited, but didn’t, earlier.

2. Press the Space Bar to begin the game. The game will start to load, as shown
in Figure 21.23. When it is done loading, you’ll see the game level, as shown
in Figure 21.24.

3. Go ahead. Test the game. You’ll see the game items you selected from the
menu system in Figure 21.25 and the end of level boss in Figure 21.26.

446 Awesome Game Creation: No Programming Required

FIGURE 21.24 The level is displayed. FIGURE 21.25 Game items placed on the game
screen.

FIGURE 21.22 The opening screen of the game. FIGURE 21.23 The game is being loaded.

If you complete the game successfully or if you fail your quest, you receive an
onscreen message, as shown in Figure 21.27. If you get a high score you are asked to
enter your name, shown in Figure 21.28. Finally, you see the results on the high-
score table in Figure 21.29.

Chapter 21 The 3D Gamemaker 447

CHAPTER SUMMARY

In this chapter, you built a game using the Standard mode of The 3D Gamemaker.
The built-in levels and models make it easy to build a complete project using The 3D
Gamemaker. It is recommended that you play with the different features and options
that are available. This should give you ideas for your own amazing games.

In the next chapter we will be looking at a 3D graphics creation product that
allows you to make your own 3D models or export them into animated images for
use in 2D game creation packages.

FIGURE 21.26 The end of level boss. FIGURE 21.27 The congratulations message if you get
to the end of the game.

FIGURE 21.28 Enter your name when you get a high
score.

FIGURE 21.29 The highscore table results.

This page intentionally left blank

C H A P T E R

22 GAMESPACE LITE

449

In This Chapter

• System Requirements
• Installation
• gameSpace Lite Interface
• Creating Primitives
• A Simple 3D example
• Exporting the Model

450 Awesome Game Creation: No Programming Required

Throughout this book you have been shown how to make your own sounds
and sprites for your 2D games. This chapter takes a look at a product called
gameSpace (logo shown in Figure 22.1) from Caligari (http://www.caligari.com/),

which allows game creators and hobbyists to create 3D graphics.

FIGURE 22.1 The gameSpace logo.

For this book you are going to use the Lite version. This is more than just a
demo version and is capable of creating good 3D models. It has a few limitations, but
if you want to create larger objects and scenes, you can easily upgrade to the full
gameSpace product at a very competitive price. If you want to create professional
game level objects you might want to purchase Truespace 7.5.

You can export any models created in gameSpace to X format; this can be im-
ported and used in FPS Creator. You may be wondering if gameSpace Lite can be
used if you decide to start making games in TGF2 or Game Maker, and the answer is
unfortunately “no.” You would need to use the full version of gameSpace 1.6, True-
space, or another 3D package that can export to bitmaps and then use them within
your 2D creations. Some people find creating images of characters easier in a 3D
package than drawing in a 2D drawing package, so you can still use these in your
programs, but remember, it will still be only 2D.

An example of a set of graphics created in a 3D package and exported to BMPs
for use in TGF2 can be found on the DVD provided with this book in the folder
3dTO2D. Run the program called MagicMaths.exe. When the animation has com-
pleted, you will see an elf drop from the sky onto the game logo. This 3D-looking elf
was created in a 3D package.

SYSTEM REQUIREMENTS

The system requirements for gameSpace Lite are

• Windows 98, ME, NT4, 2000, or XP
• AMD Athlon or Pentium 120 (P4 or AMD K7 recommended)
• 64MB RAM (128 or more recommended)
• 50 MB free hard disk space
• 3D video card with at least 16 MB of video memory and D3D or OGL drivers

ON THE DVD

http://www.caligari.com/

Chapter 22 gameSpace Lite 451

INSTALLATION

The installation file for gameSpace is located in the \Demos folder on the DVD pro-
vided with this book and is called gSLight_PP.exe.

1. Double left-click on the file gSLight_PP.exe to begin the installation.
2. You will be presented with the Welcome dialog box, as shown in Figure

22.2. Click Next to continue with the installation.
3. Now you will see the License Agreement screen, as shown in Figure 22.3.

Read the details and usage information for using this product. When you have
read this and are ready to continue, click the I accept the agreement radio
button. If you do not want to accept the agreement, you can select the other
radio button, but you will not be able to continue with the installation.

ON THE DVD

FIGURE 22.2 The Welcome dialog box. FIGURE 22.3 The License Agreement dialog box.

4. Ensure that the I accept the agreement radio button is selected and click
Next.

5. You now have to select a location to install the product, as shown in Figure
22.4.

6. You can either stay with the default selection or browse for an alternate
location. Once you are ready, you can click Next.

7. If you want to reduce the size of the installation, you can unselect some of
the options shown in Figure 22.5. The installation size is pretty small, so it is
recommended that you leave all boxes selected. If you want to reduce the
size of the installation, click on the drop-down box and select the installa-
tion type. Click Next to continue.

8. You will be advised of the starting location of the program shortcut files, as
shown in Figure 22.6. The default should suffice in most cases, so click Next.

452 Awesome Game Creation: No Programming Required

9. You will be asked if you want to create a desktop icon and a quick launch
icon and given additional options to choose from. Leave the first two selected,
as shown in Figure 22.7, and click Next.

FIGURE 22.4 Selecting where the program files will be
placed.

FIGURE 22.5 gameSpace components.

FIGURE 22.6 The shortcut and menu folder dialog box. FIGURE 22.7 Additional options.

10. You will be given a final list of installation settings, as shown in Figure 22.8.
If everything is correct, click Install. If you want to change anything, click
Back and make the relevant changes.

11. These are the settings you want, so click Install. The program files will begin
to be installed onto your computer.

12. Once the installation is complete, a final dialog box, as shown in Figure 22.9,
will advise you that the install has completed, and a help Web page will
open, advising you what to do next (Figure 22.10).

Chapter 22 gameSpace Lite 453

13. Click Finish to close the dialog box, and a text help file will appear. This pro-
vides additional information about the requirements of the product and its
capabilities. Once you have read this document you can close it.

14. An icon will appear on your desktop. Double-click on it. This opens up the
dialog box shown in Figure 22.11, which does not allow you to proceed
until you have registered your product and received your serial key.

FIGURE 22.8 Installation settings dialog. FIGURE 22.9 The installation has completed dialog box.

FIGURE 22.10 The welcome help page.

15. To register, you can click on the link provided in the HTML help page or visit
http://forms.caligari.com/gamespace/gsl_reg.asp. Fill in your details on the Web
page and you will be emailed a serial key.

16. Once you receive your email, which contains the serial key, enter it into the
dialog box in Figure 22.11 and click Continue. gameSpace now loads, as
shown in Figure 22.12.

454 Awesome Game Creation: No Programming Required

FIGURE 22.11 The serial key dialog box.

FIGURE 22.12 The gameSpace window.

GAMESPACE LITE INTERFACE

Before we look at the basic modeling features of gameSpace, you need to take a tour
of the interface so that you can understand where particular features and options
are located. Figure 22.13 shows some of the areas numbered so you can pick out the
important options.

http://forms.caligari.com/gamespace/gsl_reg.asp

Chapter 22 gameSpace Lite 455

1: The top-left corner options handle additional layers, recording of objects
moving, and creating of keyframes, which allow you to create animated
movies. You also have access to an advanced scene editor so you can set up
a scene using a timeline. There are also options to turn on collision detection
and create script to handle how the 3D world you create will react.

2: This is your 3D plane, where you place all of your 3D created objects and items
to make up your images and models. You can change the view from this
single view (called standard) to four views, which creates four windows and
displays your models from four different angles. Many people prefer this view,
as it gives them a better understanding of the model from multiple directions.

3: These two arrows show the direction of any lights that have been placed on
the plane. By default, there are two lights on the plane at the start of the cre-
ation, and you can move these or add additional ones as you need. Adding
lights increases the luminosity on a particular side or angle of an object, de-
pending on where the light has been placed.

4: This is the move control and allows you to easily move your 3D objects. Hold
down the left mouse button over one of the direction controls and move the
mouse to move the object in that particular direction.

5: This allows you to view images and 3D models that have already been created,
as well as lights, scenes, primitives, and already created projects.

A primitive is a basic shape that you can use to build up your model, for example, a cube or
a sphere.

FIGURE 22.13 Some of the options of gameSpace.

6: This allows you to access the various drawing tools for the program, includ-
ing what primitive shapes to draw and adding text, lights, and cameras.

7: This configures options for rendering the output of the object, the display of
the plane, and other configuration options.

gameSpace is a very powerful program, and has many options and configurations.
To find out more, we recommend you consult the extensive help files or visit the
gameSpace product Web pages at www.caligari.com/gamespace/.

CREATING PRIMITIVES

Primitives are the basic building blocks of any 3D model. By placing a primitive on
the plane and then pulling it, squashing it, cutting it, and sticking primitives together,
you can create a wide range of shapes.

In the bottom-left corner of the screen, next to the recycle bin you can see a
shape. If you left-click and hold on this shape, a selection of objects will appear, as
shown in Figure 22.14.

456 Awesome Game Creation: No Programming Required

FIGURE 22.14 The various primitives you can use.

Click on one of the primitives to select it. Your mouse cursor allows you to click
on the plane and create the primitive. You can make the primitive shape larger or
smaller by holding the left mouse button and dragging it on the plane.

There are nine primitives to choose from:

• Sphere/Geosphere
• Plane
• Cube

www.caligari.com/gamespace/

Chapter 22 gameSpace Lite 457

• Cylinder
• Cone
• Rounded Cylinder
• Rounded Cube
• Torus

You can see what each one looks like in Figures 22.15 to 22.23.

FIGURE 22.15 A Torus Primitive shape. FIGURE 22.16 A Rounded Cube Primitive shape.

FIGURE 22.17 A Rounded Cylinder Primitive shape. FIGURE 22.18 A Geosphere Primitive shape.

458 Awesome Game Creation: No Programming Required

FIGURE 22.19 A Sphere Primitive shape. FIGURE 22.20 A Cone Primitive shape.

FIGURE 22.21 A Cylinder Primitive shape. FIGURE 22.22 A Cube Primitive shape.

FIGURE 22.23 A Plane Primitive shape.

Chapter 22 gameSpace Lite 459

Once you have placed a primitive, you need to click the right mouse button, or
you can continue to press the left mouse button to place more objects. Once you
have pressed the right mouse button, if you move your mouse around the object,
you will see some colored bars or circles. These allow you to amend the shape of the
object or rotate it.

A SIMPLE 3D EXAMPLE

Now you will create a simple 3D model to get a quick idea of what you need to do to
make your own models. When making a 3D model, it is good to use reference mate-
rial or draw a pencil drawing of what you intend to make so you have a good idea of
what you need to create and its dimensions.

In this example you will create a simple hut building.

1. Click on the primitives and select Cylinder. Draw a small cylinder shape on
the screen. This will be the walls of the building.

2. Now click on the Cone primitive and draw it to make a roof for the building.
3. Your objects now look like Figure 22.24.

FIGURE 22.24 The two primitives next to each other.

4. Unfortunately, the roof is currently at the same height as the walls, so you
need to increase the height of the object. First, click on the object so that it has
a box around it. You can then use the right mouse button to adjust the height
of the object.

5. By making slight adjustments of height and position, you should be able to
get the object on top of the Cylinder, as shown in Figure 22.25.

The main problem with using this single view is that the precise positioning of
the object takes a lot of moving around the screen. As mentioned earlier, there is a
four-window option to display different views of the object, and this is much better
for any precise positioning work that is required.

6. Left-click and hold on the Standard views button and then from the pop-up,
as shown in Figure 22.26, select the four-view button. You can now see four
different angles and precisely position the objects.

460 Awesome Game Creation: No Programming Required

FIGURE 22.25 The hut
taking shape.

FIGURE 22.26 The two objects precisely positioned.

Chapter 22 gameSpace Lite 461

You can now apply a texture to the objects to make it look better, rather than
this dull gray color. gameSpace allows you to place a texture onto a model or paint
specific colors. For this, place a texture that is included in gameSpace.

7. Change back to Standard view.
8. Click on the Materials button on the left-hand toolbar, and a Materials tool-

bar will appear, as shown in Figure 22.27.

FIGURE 22.27 The Materials library
button highlighted and the
materials library displayed.

9. Select the Wooden Doll texture in the bottom row, second from the left.
Drag and drop it onto the Cylinder object.

10. Select Camouflage from the bottom row on the left and drop it onto the
Cone object.

11. You can see how it will look by clicking on the Render button, as shown in
Figure 22.28. If you receive an error message about the object being too large,
you need to resize the object so that it is a size that this version supports.

EXPORTING THE MODEL

The exporting of the model is very straightforward:

1. Select the File menu option at the bottom of the screen and then select Save
As | Object.

2. A Save As dialog box will appear. By changing the Save as type you can con-
vert to a number of different formats, as shown in Figure 22.29.

3. Type in the file name of the object.
4. Click Save when you are ready to save.

462 Awesome Game Creation: No Programming Required

FIGURE 22.28 The Render button, which shows you how the
object will look.

FIGURE 22.29 The Save As dialog box.

CHAPTER SUMMARY

In this chapter you took a quick tour of a free 3D program called gameSpace Lite,
which can help you create 3D models for use in FPS Creator or in other game making
programs.

3D modeling is a time-consuming process and isn’t something that can be learned
in one sitting. If you are interested in making your own 3D models for your games, we
recommend that you read the accompanying documentation, visit the gameSpace
Web site, and get a better feel for the program by spending more time looking over the
features and building models. You may need to upgrade to the full version if you want
to use it to export bitmap animations for use in TGF2 and Game Maker.

C H A P T E R

23 GAME-MAKING WEB SITES

463

In This Chapter

• Useful Web Sites

464 Awesome Game Creation: No Programming Required

If you are looking for additional material to help you improve your game creating
skills or are just interested in learning more, the Internet is the best place to start.
The Internet has many game-based Web sites and resources that you can access

for free and use to hone your skills. This chapter will look at some of the useful Web
sites and resource sites you can visit to help you in your quest.

USEFUL WEB SITES

This is a quick round up of useful and interesting sites for you to visit.

Awesome Programming

To accompany this book a Web site has been created, as shown in Figure 23.1. This
Web site offers all the latest information on the book as well as links to files and
other sites of interest. You can also find contact details if you want to email the au-
thor of this book and send him any comments or your own games that you have
created with the programs on the DVD.

FIGURE 23.1 Awesome Programming Web site, www.awesomeprogramming.com,
which accompanies this book.

www.awesomeprogramming.com

Chapter 23 Game-Making Web Sites 465

Make Amazing Games

If you enjoyed using TGF2 and are interested in learning more about it, visit
www.makeamazing.com. This Web site accompanies the book Make Amazing Games In
Minutes, which shows aspiring game creators how to create their own games using
TGF2. The whole book is devoted to TGF2 and also has additional material and
demos for distributing your own software. This book is also available from Charles
River Media. You can see the Web site in Figure 23.2.

FIGURE 23.2 The Make Amazing Games Web site.

Power Users Guide

If you are thinking about making educational programs, screensavers, or Windows-
based applications, you can visit the Web site www.powerusersguide.com. This Web site is
based on another book by Charles River Media, called The Power Users Guide to Windows
Development. The software used in this book is similar to TGF2 and uses the same inter-
face but is called Multimedia Fusion Developer. You can see the Web site in Figure 23.3.

Clickteam

This is the home Web site of TGF2 and its more powerful brothers Multimedia Fusion 2
and Multimedia Fusion 2 Developer. At this site you can access online videos, tutorials,

www.makeamazing.com
www.powerusersguide.com

466 Awesome Game Creation: No Programming Required

and additional material to load into TGF2. You can also register on the online forums,
which provide up-to-date information about the latest versions, new features, and sup-
port questions and answers. You can access the Web site at www.clickteam.com; you can
see a screenshot of the Web site in Figure 23.4.

EJAY

A product that we covered in this book, eJay is an easy to use music creation soft-
ware program. You can get more information on the product from the Web site at
www.ejay.co.uk. You can also register as an artist at eJay and upload your tunes and
music for others to listen to. You can see the Web site in Figure 23.5.

Click Convention

If you want to meet up with like-minded game hobbyists and professionals, you
should visit the Click Convention Web site at www.clickconvention.com. This is a meet-
ing of users from the Clickteam forums who get together on a yearly basis to discuss
game creation techniques and show off their own creations. You can see the Web
site in Figure 23.6.

FIGURE 23.3 The Power Users Guide to Windows Web site.

www.clickteam.com
www.ejay.co.uk
www.clickconvention.com

Chapter 23 Game-Making Web Sites 467

FIGURE 23.4 The Clickteam Web site at www.clickteam.com.

FIGURE 23.5 The eJay Web site at www.ejay.co.uk.

www.clickteam.com
www.ejay.co.uk

Caligari

One of the products we included a demo of on the DVD is gameSpace from Caligari.
Caligari produces a wide range of 3D-based modeling software to meet the require-
ments of any hobbyist or professional wanting to make their own models. They offer a
wide range of products from a free version to the professional version used to make 3D
effects in movies and computer games. You can visit the Web site at www.caligari.com
and access gameSpace from the links. You can see the Web site in Figure 23.7.

The Game Creators

We have included products from The Game Creators on the DVD, namely FPS Cre-
ator and The 3D Gamemaker. They make a wide range of game creation programs as
well as ones that require you to use traditional programming techniques. You can
find out more about these products at their Web site at www.thegamecreators.com.

Game Maker

You used Game Maker 7 Lite earlier in this book, and you can find out more, down-
load product examples and help files, as well as upgrade to the full version at
www.yoyogames.com/make. You can also upload your own executable game creations
to their download service.

468 Awesome Game Creation: No Programming Required

FIGURE 23.6 The Click Convention Web site at www.clickconvention.com.

www.clickconvention.com
www.caligari.com
www.thegamecreators.com
www.yoyogames.com/make

Chapter 23 Game-Making Web Sites 469

ACIDplanet

We used ACID XPress earlier in the book, and this Web site compliments the product
very well. It provides a place where artists can upload their own tracks, but also has
access to articles and additional help files for the product. The great thing about
ACIDplanet is that they release free music loops that you can download and use in
your own creations. Visit the site at www.acidplanet.com.

Turbo Squid

Want to purchase 3D models and content for your own games so you don’t have to
spend time making your own? Turbo Squid is a content provider, so you can search
its archives, see the different file formats, and download/purchase content. You
should read any license terms carefully to ensure that they meet with your product
requirements. You can visit the Web site at www.turbosquid.com.

Gamasutra

If you want to get articles and information about professional game creation and de-
velopment, Gamasutra is the Web site to visit. There is tons of useful information
that will help you understand the game market and game making techniques. You
can visit the site and register at www.gamasutra.com.

FIGURE 23.7 Caligari’s gameSpace Web site accessible from www.caligari.com.

www.caligari.com
www.acidplanet.com
www.turbosquid.com
www.gamasutra.com

Retro Remakes

If you are interested in making or playing classic games that appeared on the Spec-
trum 48/128, Commodore 64, Atari, and Amiga computers, this is a great place to
visit. Not only does it have many remakes of classic games, but you can learn a lot
about game development, and particularly level development, from older games.
You can visit the Remakes site at www.retroremakes.com.

The Daily Click

If you are looking for a community site where you can upload your games and get
feedback on them, then the Daily Click site is a good place to visit. You can find
game articles, reviews, and games to download. This is a user-based site, so it doesn’t
have the professional edge some of the other sites have, but it can provide a goldmine
of interesting and useful information. You can visit the site at www.create-games.com.

CHAPTER SUMMARY

In this chapter we have taken a quick look at some of the useful Web sites you can
visit. Many Web sites are available on the Internet that provide useful and interest-
ing details about game creation. Some are better than others, but using links off
some of the ones mentioned here will allow you to access some of the better ones
rather than trying to do a general search in your favorite search engine.

470 Awesome Game Creation: No Programming Required

www.retroremakes.com
www.create-games.com

A P P E N D I X

A DESIGN DOCUMENT:
FIRST-PERSON SHOOTER

471

Document written by John Doe.
Version # 1.20
April 23, 2007
Copyright 2007 ABC Gaming. All rights Reserved.

DESIGN HISTORY

This is version 1.20 of the document, which began on April 23, 2007.

Version 1.10

For example, you can use Version 1.10, 1.20, etc.

1. Changed platforms for game. Added Max OS X.
2. Graphics are now 32 bit.

Version 1.20

The story has now been rewritten.

1. Details of story now changed.
2. Enemy character is now a humanoid model.

GAME OVERVIEW

Type of Game

This game is a 3D shooter with. . . .

472 Awesome Game Creation: No Programming Required

Game Ideas

This game has been in the creation process for a number of years. The original idea
was to place a character in a 2D world, but with the power of today’s graphics cards,
we can now realize our creation and world within 3D.

Location

The game takes place on an island. You are surrounded by rocky ledges and water as
far as the eye can see. You wake up with a cut on your head and you cannot remem-
ber how you got here.

Players

You will control the main character in the story from a first-person perspective. You
will begin the game with a knife, and additional weapons are available throughout
the level.

Main Objective

Your objective is to get off the island and remember what happened.

Game Overview

The game takes a slightly different approach from the development of first-person
shooters in that instead of blasting your way through a level, destroying everything
in sight, you must also figure out a way to get off the island. There are multiple ways
of getting off the island including building a craft or stealing a boat plane. While
trying to accomplish the mission of getting off the island, you will also try to piece
together how you got on the island in the first place.

FEATURES

General Features

• Large terrains
• 3D graphics
• 32-bit color
• Several types of enemies, including animal and human

Multiplayer Features

• Up to four players using TCP/IP connection over the Internet
• Players can host their own server and allow people to connect

Appendix A Design Document: First Person Shooter 473

Editor

• No world editor at this time, but planned for Version 2.1
• Free levels available to download off the Internet to registered users

THE GAME WORLD

Overview

An island with no obvious means of escape.

Key Locations

• There is a cave on the south side of the island, which contains a repair kit and
supplies.

• The creek that runs throughout the island is the quickest way to travel.
• There is a boat at the bottom of the lagoon. A compass is inside it.

Objects

• Various boat parts to fix the broken boat on the west end of the island
• Food items to restore health
• Additional weapons and ammunition
• Notes and letters from various characters telling the story of the island
• Parts to build a glider on the center mountain ridge

GRAPHICS

Rendering/3D Engine

The 3D engine will be using in-house-written routines that support Direct X9. It will
be an FPS view with the ability to view from behind the character if needed. The island
will be one continuous area with behind-the-scenes loading, so the player is not inter-
rupted in any way. There will be loading pauses of major story arc chapters, which will
describe what is happening once a player achieves a certain goal or objective.

GAME CHARACTERS

Main Character

There is only a single main character in the game. Other characters will appear, but
they will only be extras to the story line.

474 Awesome Game Creation: No Programming Required

Enemies

There will be several enemies that you’ll encounter:

• Wolves
• Rabid dogs
• Sharks
• Guards
• Soldiers
• Elite soldiers

WEAPONS

Types

There will be 12 different weapon types on the island, starting with a knife and
including:

• Pistol
• Rifle
• Sub machine gun
• Sniper gun

MUSIC AND SOUND EFFECTS

Music

The in-game music will be made by a third-party musician in a recording studio,
which will then be imported into our game.

Sounds

The sound effects include basic weapon loadings, firing, footsteps when walking, a
swimming sound, etc.

APPENDIX ABC

Any additional information . . . ideas include:

User Interface

The basic user interface will consist of three menus. . . .

A P P E N D I X

B THE KEY POSITIONS IN
A DEVELOPMENT TEAM

475

Adevelopment project is made up of several key positions. Without
any of these, it would not be successful. That being said, depend-
ing on the size of your team, a single individual may be forced to

wear many hats, or in the case of the lone developer, all of the hats. That
is, although all of the positions are required, a single individual may fill
one or all of them.

Because the game industry is still in its infancy, it’s sometimes diffi-
cult to discuss the positions that make up a team. The type of game being
produced definitely also has a profound effect on the required personnel.
Every development project is arranged differently. As the industry matures,
there will certainly be more standard types of arrangements.

DESIGNER

Many development projects have a lead game designer who is responsi-
ble for the creation of the game script. This position is often one of the
most misunderstood of any of the key positions and is often left com-
pletely off the team. This leaves everyone, from the producer to program-
mers, clamoring for the title.

It is the designer who makes many of the decisions related to the cre-
ation of important aspects such as puzzles or the levels in an FPS. Like a
screenwriter for a movie, the designer is responsible for the overall feel of
the game. Communication is a very important aspect of this job, as de-
signers work with the other team members throughout the duration of a
project.

In the beginning stages of a game, designers spend most of their time
focusing on writing short scripts and working on the beginning story-
board sketches. A typical storyboard displays the action of a game in a
very simple manner. Depending on the basic talents of the designer, the

476 Awesome Game Creation: No Programming Required

storyboard may even include stick figures and basic shapes to convey the action.
Storyboards are a sort of rough draft that will later be transformed into the game.

After the decisions have been made on the game concepts, the designer begins
working on a blueprint for the game, called a design document. Simply put, the docu-
ment details every aspect of a game and will evolve as the game is being developed.

PROGRAMMER

Game programmers are software developers who take the ideas, art, and music and
combine them into a software project. Programmers obviously write the code for the
game, but they may also have several additional responsibilities. For instance, if an
artist is designing graphics for the game, the lead programmer could be responsible
for the development of a custom set of tools for creating the graphics. It is also the
lead programmer’s job to keep everything running smoothly and to somehow figure
out a way to satisfy everyone, from the producer to the artists. Unlike the stereotype
portrayed on many Web sites, books, and even movies, programmers usually don’t
stroll into work at noon, work for a few hours, and then leave. The truth is, they
often arrive earlier and leave later than anyone else on the development team.

Programmers are responsible for taking the vast number of elements and com-
bining them to form the executable program. They decide how fast characters can
run and how high they can jump. They are responsible for accounting for every-
thing inside the virtual world. While doing all of this, they often attempt to create
software that can be reusable for other projects and spend a great deal of time opti-
mizing the code to make it is as fast as possible.

Sometimes, a project may have several programmers who each specialize in one
key area, such as graphics, sound, or artificial intelligence (AI). The following list de-
tails the various types of programmers and what they are primarily responsible for:

Engine or graphics programmers. They create the software that controls
how graphics and animations are stored and ultimately displayed on the
screen.

AI programmers. They create a series of rules that determine how enemies or
characters will react to game situations and attempt to make them act as re-
alistically as possible.

Sound programmers. They work with the audio personnel to create a realistic-
sounding environment.

Tool programmers. As previously mentioned, programmers often write soft-
ware for artists, designers, and sound designers to use in the development
studio.

Appendix B The Key Positions in a Development Team 477

AUDIO-RELATED POSITIONS

High-quality music and sound effects are an integral part of any gaming project. This
is also an area that many teams simply cannot afford to throw a great deal of money
at. Having superb audio components such as music, sound, and voice can greatly
enhance the total experience for the consumer. The opposite is also true, however.
Music that is done poorly can keep people away from your product, regardless of its
other qualities. The positions listed below are usually filled by key audio personnel,
although sometimes a programmer or other team member will fill in, as needed.

Musician

When compared with the stress and long hours of the programmers, musicians are
often at the other end of the workload. They often have the least amount of work of
any of the positions on the team. That’s not to imply that they don’t work hard; it’s
just that there isn’t as much for them to do. They usually are responsible only for the
music for a game. While this is an important job, it doesn’t typically take a great deal
of time compared with the other team members’ jobs. Because of the relatively short
production times, musicians often have secondary work outside of the gaming
industry.

Sound Effects

Depending on the makeup of a team, a musician could be involved with the creation
of the sound effects in a game. This can often make up for the lack of work and help
keep the budgets down. Another route many teams choose to follow is the purchase
of pre-existing sound effects. Many sound effects companies distribute their work on
CD-ROMs or the Internet. Many teams choose to purchase the sounds produced by
these companies and alter them to their liking.

ART-RELATED POSITIONS

Artist

The artists are responsible for creating the graphics elements that make up a project.
They often specialize in one area within a project, such as 3D graphics or 2D artwork
such as textures. The artists usually work from a set of specifications given to them
by the programmer. Unfortunately, artists and programmers often have many dis-
agreements on these specifications. For instance, artists might want to increase the
polygon counts on a 3D model so that their work will look better, while program-
mers may want to decrease the counts to make the program run more smoothly.

478 Awesome Game Creation: No Programming Required

Game artists have a variety of technical constraints imposed by the limitations of
the hardware they are creating for. Although hardware continues to increase in
speed and go down in cost, there is never enough power to satisfy a development
project. Therefore, it is often the artists who are given the responsibility to create ob-
jects that work within the constraints.

Depending on the development team, there are three basic types of artists: char-
acter artists (or animators, as some prefer to be called), 3D modelers, and texture
artists.

Character Artist

Character artists have one of the most demanding jobs on the team. They create all
of the moveable objects in a game, such as the main character and vehicles. It is their
job to turn the preliminary sketches that are often discussed by the entire team into
a believable object on a computer screen.

Using 3D modeling tools such as 3D Studio Max™, TrueSpace®, Maya®, or Light-
wave™, character artists use basic shapes and combine them to form characters. If
you have never used a 3D-modeling program, you can think of it as a type of digital
clay. Once created, characters are fleshed out with a 2D graphic image that is made
in another program.

The character artists are also responsible for the animation of the objects. They
may be required to animate a horse, a human being, or a creature that previously
existed only in someone’s mind. Character artists often look at real-world examples
to get their ideas on how a character should move. Depending on the type of game,
they may have to create facial expressions or emotions as well.

It’s often the responsibility of a character artist to implement cut scenes in a
game, as well. Many artists enjoy creating cut screens even more than creating the
characters in the game. They have much greater freedom and are not restricted as to
the number of polygons a certain object can have or the size of the object.

3D Modeler

The 3D modeler usually works on the settings in which a game takes place, such as a
basketball arena or a Wild West wasteland. Background artists work hand in hand
with the designer to create believable environments that work within the constraints
of a game. Like character artists, they use a wide range of tools for their jobs, includ-
ing both 2D and 3D graphics tools, although they usually only model static objects.

Texture Artist

Texture artists might be the best friend of the other artists. It is their job to take the
work created by the modeler and character artist and add detail to it. For example,
they could create a brick texture that when added to a 3D box created by the mod-
eler, creates the illusion of a pile of bricks. On the other hand, they could create a
texture that looks like cheese, turning this same box into a block of cheese.

Appendix B The Key Positions in a Development Team 479

PRODUCER

A producer oversees the entire project and attempts to keep everything moving
along as smoothly as possible. A producer often acts as an arbitrator to help patch up
any problems between team members. For instance, if an artist wants to increase the
color palette and a programmer wants to decrease it, the producer may make the
final decision.

SECONDARY POSITIONS

Several secondary positions can be important to the development cycle, as well. De-
pending on the budget, these positions may or may not exist at all or could be filled
by other members of the team.

Beta Tester

Beta testers test the playability of a game and look for bugs that may occur when the
game is executed. This is one of the most undervalued of the positions and should
never be done by the person responsible for programming the game. In reality, be-
cause of tight budgets and deadlines, beta testing is one of the steps that is often cut
before it is completed, as due dates unfortunately take precedence over most deci-
sions. If adequate beta testing is performed, a development team can save a tremen-
dous amount of time and resources without having to produce unnecessary patches
at a later date.

Play Testers

The play testers are often confused with beta testers. The difference is that play
testers only test the playability of a game. They often critique areas such as move-
ment or graphic elements. Again, these positions are often filled by people who per-
form other tasks on the team. Unlike beta testers, play testers do not attempt to find
or report bugs. Their purpose is to judge if a game is fun to play.

This page intentionally left blank

A P P E N D I X

C ABOUT THE DVD

481

The companion DVD contains everything you need to make all of
the programs included in this book.

GENERAL MINIMUM SYSTEM REQUIREMENTS

You need a computer that can run Windows 95 or better with a CD-
ROM/DVD drive, a sound card, and a mouse.

ACID XPRESS (WWW.ACIDPLANET.COM) TRIAL

The file name for the program is acidxpress50a.exe, and it is located in
the Demos folder.

Requirements:
• Microsoft® Windows® 2000 or XP 800 MHz processor (1 GHz if using

video)
• 200 MB hard disk space for program installation
• 600 MB hard disk space for optional Sony Sound Series Loops &

Samples reference library installation
• 256 MB RAM
• Windows-compatible sound card CD-ROM drive (for installation

from a CD only)
• Supported CD-recordable drive (for CD burning only)
• Microsoft DirectX® 8.1 or later
• Internet Explorer 5.1 or later

DANCE EJAY 7 (WWW.EJAY.CO.UK) TRIAL

The file name for the program is danceejay7Demo.exe, and it is located in
the Demos folder.

WWW.ACIDPLANET.COM
WWW.EJAY.CO.UK

482 Awesome Game Creation: No Programming Required

Requirements:
• Pentium 3, 800 MHz or higher
• 256 MB RAM
• Windows 98, ME, 2000, XP
• 1.4 GB free hard disk space
• 4x CD-ROM
• CD-Writer (for Audio CD Burning feature)
• DirectX 9.0 compatible graphics card with 32 MB of video memory (16-bit color,

1024 × 768, 32 MB)
• DirectX 9.0 compatible sound card (16-bit)
• DirectX 9.0c
• Web browser

Recommended Specs:
• Pentium 4, 1.8 GHz
• 512 MB RAM
• Windows 98, ME, 2000, XP
• 1.4 GB free hard disk space (for Install)
• 2.0 GB free hard disk space (for OS Cache)
• 4x CD-ROM
• DirectX 9.0 compatible graphics card with 64 MB of video memory (16-bit color,

1024 × 768, 64 MB)
• DirectX 9.0 compatible sound card (16-bit)
• DirectX 9.0c
• Web browser

The graphics card must be compatible with Direct X 9.0c.

GAME MAKER 7.0 LITE (WWW.YOYOGAMES.COM) TRIAL

The file name for the program is gmaker.exe, and it is located in the Demos folder.

Requirements:
• Pentium PC or higher
• Windows ME, 2000, XP, or Vista (or higher)
• 10 MB of hard disk space
• 65000 colors (16-bit)
• 800 × 600 screen resolution
• 32 MB 3D graphics card (DX compatible 8.0)
• Sound card

GAMES FACTORY 2.0 (WWW.CLICKTEAM.COM) TRIAL

The file name for the program is TGF2Demo.exe, and it is located in the Demos folder.

WWW.YOYOGAMES.COM
WWW.CLICKTEAM.COM

Appendix C About the DVD 483

Minimum Requirements:
• Operating system: Windows 95 with IE 4.0, 98, NT 4.0 with Service pack 3 or

above, 2000, XP, or Vista
• Pentium Processor
• 32 MB RAM with Windows 9x, 64 MB with Windows NT, 128 MB with 2000

and Windows XP, 512 MB with Vista
• CD-ROM drive
• Graphics card with 8 MB or more (or minimum OS requirements)
• Sound card (optional but recommended)
• 50–100 MB free hard disk space

Recommended Requirements:
• Operating system: Windows 98, 2000, XP, or Vista
• Pentium 4 Processor
• 64 MB RAM with Windows 98, 256 MB RAM with Windows 2000 or XP, and

1 GB RAM with Windows Vista
• CD-ROM drive
• Graphics card with 32 MB RAM
• Sound card
• 200–500 free hard disk space

FPS CREATOR (WWW.FPSCREATOR.COM) TRIAL

The file name for the program is FPSCreatorDemo.exe, and it is located in the Demos
folder.

Minimum Requirements:
• Operating system: Windows 2000 or XP
• Processor: Pentium 3 – 1 GHz
• Memory: 256 MB RAM
• Graphics card: Direct X9.0c–compatible with 64 MB RAM
• Hard disk: 1.4 GB
• Other: Printer if you want to print any screens or documentation

Recommended Requirements:
• OS: Windows XP Home or Pro
• Processor: Pentium 4 – 2.66 GHz
• Memory: 1 GB RAM
• Graphics card: Direct X9.0c–compatible with 128 MB RAM
• Hard disk: 1.4 GB
• Other: Printer if you want to print any screens or documentation

3D GAME MAKER (WWW.THEGAMECREATORS.COM) TRIAL

The file name for the program is setup.exe, and it is located in the Demos\3DGM folder.

WWW.FPSCREATOR.COM
WWW.THEGAMECREATORS.COM

484 Awesome Game Creation: No Programming Required

Minimum Requirements:
• 400 Mhz Pentium II Processer
• Windows 95, 98, 2000, ME, or XP
• 600 MB of hard disk space
• 64 MB of RAM
• DirectX Version 7.0a
• Fully DirectX-compatible graphics card with 3D acceleration and 8 MB of memory
• DirectX-compatible sound card
• 4x CD-ROM drive

Recommended Requirements:
• 600 Mhz Pentium III Processor
• Windows 95, 98, 2000, ME, or XP
• 600 MB of hard disk space
• 128 MB of RAM
• DirectX Version 8.0a
• Fully DirectX–compatible graphics card with 3D acceleration and 16 MB memory
• DirectX compatible sound card
• 16x CD-ROM drive

GAMESPACE LITE (WWW.CALIGARI.COM) TRIAL

The file name for the program is gSLight_PP.exe, and it is located in the Demos folder.

Requirements:
• Windows 98, ME, NT4, 2000, or XP
• AMD Athlon or Pentium 120 (P4 or AMD K7 recommended)
• 64 MB RAM (128 or more recommended)
• 50 MB free hard disk space
• 3D video card with at least 16 MB of video memory and D3D or OGL drivers

FOLDERS

A number of folders on the DVD contain important files for use with this book as
well as useful information.

3dTO2D. An example of 3D images being used on a 2D program
Animations. A set of images that create an animation effect
Demos. Location of the demo files you can install
EJAYFILES. Files needed for the eJay program
Figures. Color versions of every figure seen in the book
FPSFILES. Example files required for the FPS Creator
GAMESPACE. Example files for the gameSpace chapter
Samples. Sound files for use in some of the example files
TGFFILES. Example files required for the chapters using The Games Factory 2

software

WWW.CALIGARI.COM

INDEX

485

NUMBERS
1.33:1 aspect ratio, 40
1610 microprocessors, 16
16:9 aspect ratio, 40–42
16-bit color (High Color), 44–45
24-bit color (True Color), 44–45
256 Color setting, 44–45
2D art, 37–38
2D games. see End of Earth;

Litter Bug
32-bit color, 44
3D cards, 4–5
3D Gamemaker, 437–447

creating game with,
441–445

DVD-ROM for this book,
484

installing, 438–441
playing game, 445–447
saving game, 445
system requirements, 438

3D games
board games, 22
fighting games, 26
first person shooter games,

30
first-person 3D vehicle

games, 30–31
maze games, 21
polygons and, 17
rendering real-time, 45
third-person games, 31

3D graphics, 37–38. see also 3D
Gamemaker; gameSpace
Lite

3D world editor, 362, 372–374
3dTO2D folder, DVD-ROM for

this book, 484
4004 microprocessors, 16
4:3 aspect ratio, 40, 42
6502 microprocessors, 16
8-bit color, 44

A
A key, FPS Creator test game,

381
ACID Music Studio, Sony, 68
ACID Planet website, 469
ACID XPress, 69–78

installing, 69–71
requirements, 69
running for first time, 71–73
simple creation in, 75–78
sound loops, 68
touring, 73–75
trial, DVD-ROM for this

book, 481
action games, 91
Action Point, viewing, 353

actions
Event Editor, adding,

199–201
Event Editor icons for, 193
Event Editor, in events, 195
Game Maker, setting vari-

ables, 148
Game Maker, spaceship

event, 150–152
recording, 62–63
sound effect created from,

62
sound effects conveying,

61
TGF2, creating Litter Bug,

278–286
active objects, 319–321
Add New Object dialog, 328
Add New Prefab icon, 376
Add Object dialog box, 326
Ad-Lib, history of, 20
advanced control of objects,

317–339
active objects, 319–321
backdrop and quick back-

drop objects, 321–323
hi-score objects, 323–325
lives objects, 326–327
score objects, 328
text objects, 325–326
using in your games,

318–319
advanced control of objects,

movement
Bouncing Ball, 329–331
Eight Directions movement,

335
Mouse Controlled, 334
multiple, 338–339
overview of, 328–329
Path Movement, 331–333
Pinball Movement, 333–334
Platform movement,

337–338
Race Car movement,

336–337
advanced games

Black Jack. see Black Jack
Dragons. see Dragons

adventure games
choosing game type, 91
overview of, 32

After End group, Dragons game,
311

alarm (timer), 161–162, 248
Alien Wars, 186–254

with Event Editor. see Event
Editor, TGF2

with Frame Editor, 191–193

highscores frame, program-
ming, 252–253

highscores frame, setup,
214–216

Library, 204–205
loading, 187
overview of, 186
setup, creating and renam-

ing frames, 207–208
setup, game frame, 212–214
setup, main frame, 208–212
setup, overview, 205–207
with Storyboard Editor,

188–190
storyline, 186–187

Alien Wars, game frame pro-
gramming, 231–251
collision between enemy

and bullet, 245–247
collision between enemy

and spaceship, 251
components, 232
creating enemy ships,

237–242
determining if music has

stopped playing, 234
display always on top,

236–237
player shooting, 242–244
position of bullets, 244–245
recreate enemy robots, 247
robot animations, 250
robot firing, 247–250
Start of Frame, 232–234
stopping ship from leaving

scene, 234–236
Alien Wars, main frame pro-

gramming, 217–231
button effects, 227–229
components, 217
creating note event,

217–219
determining if music has

stopped playing,
223–224

overview of, 217
setting transparency to 0,

224–226
Start of Frame event,

219–223
user clicks, 229–231

alterable variables
Black Jack, 305
Dragons, 312

AMD (Athlon) processor, 4
Animation folder, DVD-ROM

for this book, 484
animation tool, 354–359

animation direction, 358

default animation list, 359
Directions tab options,

356–357
overview of, 354–356

animations
sprite, 50–52
TGF2, creating tracks for

each direction, 337
TGF2, programming

buttons in main frame,
227–229

TGF2, putting robots back
into normal, 250

TGF2, setting up in game
frame, 233–234

TGF2, using Shooting
Animation, 248–250

anti-aliasing technique, 55
Arena mode, FPS Creator,

432–436
Arena tab, FPS Creator,

430–433
arrays, 301–302
artificial light, 400
aspect ratio, 40–42
assembly language, 14–15
Asteroids game, 13, 24
Athlon (AMD) processor, 4
ATI graphic cards, 5
audience, designing for, 93
audio files, story zone,

423–424
auto items, 391
AVI files, story zone, 423–424
Awesome Programming

website, 464

B
Back Color button, 218–219
backdrop objects, 321–323
background

Game Maker, creating End
of Earth, 126,
139–140, 144

TGF2, creating Litter Bug,
259–260, 262, 264,
267–268

TGF2, for comments in
Alien Wars, 218–219

backup devices, 6–7
Badguy, Litter Bug game

computer players group,
288–291

defined, 262
end code, 293
ordering, 276
positioning, 265

battle card games, 24
BD (Blu Ray Disc) DVD

format, 6
behavior code, 312–314
beta tester, 479
Black Jack, 298–306

alterable variables and
flags, 305

application properties,
298–300

files, 300
frames, 298–299
game Event Editor,

304–305
game frame, 302–304

loops, 306
menu Event Editor, 302
menu frame, 300–302

Blu Ray Disc (BD) DVD
format, 6

board games, 22
body collision, recording

sound, 62
Bouncing Ball movement,

329–331
Build Game menu, FPS Cre-

ator, 428–436
Build Settings tab, FPS Cre-

ator, 430, 432
bullets. see also gunshots

3D Gamemaker, enemy
screen, 443

3D Gamemaker, player
screen, 442

Game Maker, firing
frequency, 151

Game Maker, importing
sprites, 135–137

Game Maker, program-
ming, 163

TGF2, collision between
enemy and, 245

TGF2, handling firing from
enemy robots,
247–250

TGF2, player shooting,
242–244

Bunker Fighting Area Ceiling,
393

buttons
FPS Creator menu,

368–371
TGF2, adding comment to,

226
TGF2, programming in

main frame, 227–229
buying equipment, 8–9

C
C key, FPS Creator, 381
C programming language, 18
C++ programming language,

18–19
Caligari website, 468–469
capacitors, 12
car crash sound, recording,

62
card games

battle card games vs., 24
creating Black Jack. see

Black Jack
overview of, 22–23

Cartesian coordinate system,
37–38

CD Burning, eJay 7, 83
CD-R (CD-Recordable) drives,

6
CD-ROM, accompanying this

book
ACID XPress, exporting

songs with, 78
ACID XPress installation,

69–71
ACID XPress, simple

creation using, 76
Alien Wars, 187
Black Jack game, 300

design document sample,
94

Dragons game, 306
eJay 7, exporting songs

with, 87
eJay 7 installation, 79–80
End of Earth, adding

background to,
139–140

End of Earth, creating
sprites, 132

FPS Creator trial demo,
363

Game Maker, creating
game, 119

Litter Bug library, 257
music, programming in

main frame, 221
number of colors, 44–45
sound looping programs,

68
TGF2 installation, 176
TGF2 trial version, 174
user clicks, programming,

230
working with animation

tool, 354
working with Game

Maker, 106
CD-ROM drives

backups to, 6, 8
game studio setup, 5

CD-ROMs, creating music
from, 6

ceilings, creating, 393–394
CGA (PC graphics standard),

20
chair, for game studio, 8
Change Sprite dialog, 151
characters

3D Gamemaker, adding,
443

in design document
section, 97, 473–474

FPS Creator, adding
enemy, 385–386

Game Maker, stopping
from leaving screen,
157, 165–166

TGF2, adding to game
frame, 265

ChocoBreak tutorial, 233
cleaning fluid, 275, 285–287
Clear Image option, Picture

Editor, 343
Click Convention website,

466, 468
Clickteam website, 465–467
clients, in multiplayer online

games, 433–435
CMYK (Cyan, Magenta,

Yellow and Black) color
value, 43

code groups. see groups,
code

collisions
Game Maker, ice events,

163
Game Maker, reducing

health score for, 158
testing with backdrop

platform object, 338

TGF2, dirt and cleaning
fluid, 286–287

TGF2, enemy and bullet,
245–247

color
changing background,

218–219
depth, 44–45
graphics and, 42–44
masking, 52–53

Color Palette, 353–354
Color Picker, 347–348
comments, TGF2

in Event Editor, 195–196
game name and version,

269
preventing object from

leaving screen, 235
programming in main

frame, 217–219
programming music,

269–270
recreating enemy robots,

245
Storyboard Editor,

188–189
when mouse is over

object, 270–271
Commodore 64, 19
computer on a chip, 16
computer players group, TGF2,

287–291
computers

game studio setup, 3–4
history of silicon circuits,

12
tips for buying, 8–9

conditions
adding to Event Editor,

197–199
defined, 196
for menu frame, 231

Cone primitives, 457–458
Config & Options, eJay 7, 83
Confirmation dialog, TGF2,

178
connectors, recording device,

64
consoles, game, 19–20
Control Panel

creating Litter Bug game,
261, 266

using sound card’s mixer
panel, 65

Copy, in Picture Editor, 345
Copy command, 46
corridors, FPS Creator

creating with paint tools,
391–394

creating with single
segments, 387–391

lighting, 400–401
Counter, 261, 266, 274, 293
Counter_NLvl, Litter Bug, 260,

266, 293–294
Create Object action, 238–243
credit cards, purchasing

equipment with, 8
credit screens, 36
Crop command, 48–49
Crop tool, Picture Editor, 346
Cube primitives, 457–458

486 Index

Index 487

cursor, FPS Creator, 373,
378–379

Cut, Picture Editor, 345
Cut command, 46
Cylinder primitives, 457–458

D
D key, FPS Creator, 381
The Daily Click website, 470
debugging, in FPS Creator, 427
DEC (Digital Equipment

Corporation), 12
delete

changing cursor back to
basic type, 382, 384

Picture Editor tool, 345
sprites, 121

Demos folder, DVD-ROM for
this book, 484

design document
components of, 94–95
defining, 94
first person shooter,

471–480
for game idea, 90
game proposal vs., 101
importance to team, 95
miscellaneous and appen-

dix area of, 101
overview of, 93–94
printing copy for every-

one, 101
sample outline, 94
storyline. see storyline

design history, 471
designer, 475–476
desk, game studio setup, 8
desktop toys, 33
digital cameras, game studio

setup, 5
Digital Equipment Corporation

(DEC), 12
digital subscriber line (DSL)

modems, game studio
setup, 5–6

Direct X9.0, FPS Creator
support for, 362

directions, for animations, 357
Directions and Initial Direc-

tions dialog, 335
dirt objects, Litter Bug game

collisions between clean-
ing fluid and, 286–287

computer players group,
290–291

defined, 261
end code, 293
placing off-screen objects,

266
Display group, Dragons game,

311
Doom? 3, 398–399
door slamming, recording

sound, 62
door switches, 398–399
dpi (dots per inch), 40
Dr. Mario, 24
drag-and-drop games, 15
Dragons, 306–315

alterable variables and
flags, 312

application properties,
307–308

behaviors, 312–314
files, 306–307
frames, 307
game Event Editor, 311
game frame, 310
highscore Event Editor,

314–315
highscore frame, 312–314
menu frame, 308–309

Draw Health settings, 167
Draw toolbar, FPS Creator,

370
drawing area, Picture Editor,

353
drop-down text menus, FPS

Creator, 368
DSL (digital subscriber line)

modems, game studio
setup, 5–6

DVD-ROM, accompanying this
book, 481–485
3D Gamemaker, 484
3D Gamemaker installa-

tion, 438
ACID XPress trial, 481
eJay Dance 7 trial, 482
folders, 484–485
FPS Creator, adding door

switches, 398
FPS Creator, adding

enemy player, 385
FPS Creator, adding fire

effect, 402
FPS Creator, adding

furnishings, 405
FPS Creator, adding smoke

effect, 402
FPS Creator, adding sound

zone, 420–421
FPS Creator, adding story

zone, 422
FPS Creator, adding

windows, 396
FPS Creator, creating

corridor with paint
tools, 392

FPS Creator, creating
corridor with single
segments, 387, 391

FPS Creator, overview of,
483

FPS Creator, player start
position, 383

Game Maker 7.0 Lite, 482
Games Factory 2.0, 483
gameSpace Lite, 450, 484
gameSpace Lite installa-

tion, 451
system requirements for,

481
DVD-ROM drives

backup device, 6
game studio setup, 5

E
E key, FPS Creator test game,

381
Edit menu, Game Maker, 113
editing

TGF2, hi-score object,
324–325

TGF2 screens for, 181–183
educational games, 32, 91
edutainment games, 32
EGA graphics standard, 20
Eight Directions movement,

335
eJay Dance 7, 79–87

DVD-ROM for this book,
482

exporting songs, 86–87
installing, 79–81
requirements for, 79
running for first time,

81–83
simple creation in, 84–86
sound loops, 68
touring, 83–84

eJay website, 466–467
EJAYFILES folder, DVD-ROM

for this book, 484
elements. see game design

elements
elevators, adding, 409–412
Ellipse tool, 349
End group, Dragons game, 311
End of Earth, 129–171

background, 139–140
executable file, 170–171
help file, 169–170
music, 137–139
objects, 140–142
overview of, 130–131
rooms, 142–147
sound using script,

168–169
sprites, 131–137

End of Earth, programming
objects, 147–168
bullet events, 163
health events, 167
ice events, 163–166
life events, 167–168
navigation buttons,

147–150
spaceship events, 150–163

end of level boss, 3D
Gamemaker, 444, 446–447

enemy players
3D Gamemaker, adding,

443
design document, 97, 474
FPS Creator, adding,

385–386
in single or multiplayer

games, 100
enemy players, TGF2

bullets from, 247–250
collisions between bullet

and, 245–247
collisions between player’s

ship and bullet of, 251
creating robots, 238–243
Dragons game, 311
recreating robots, 245
robot animations, 250

Enter key, FPS Creator test
game, 381

entities, FPS Creator
defined, 365

door switches, 398–399
enemy player, 385–386
fire effect, 402
furnishings, 405–406
in Library toolbar,

371–372
performance checking, 427
smoke effect, 402–405
weapon, 383–385

equipment. see game studio
setup

Eraser tool, 351–352
Ethernet network, game

studio setup, 7
Event Editor

Black Jack game frame,
304–305

Black Jack menu frame,
302

Dragons game frame, 311
Dragons highscore frame,

314–315
Dragons menu frame, 309
lives object requiring, 327

Event Editor, TGF2, 193–201
adding action, 200–201
adding to, 196–200
defined, 180
events, 195–196
object icons, 194–195
overview of, 182–183
programming main frame.

see Alien Wars, main
frame programming

events, Game Maker
overview of, 120
programming objects. see

End of Earth, program-
ming objects

selecting, 123–124
executable files

FPS Creator, creating,
428–432

FPS Creator, creating
multiplayer online
game, 432–436

Game Maker, creating,
170–171

Exit to Desktop, eJay 7, 83
Explorer tab, ACID XPress,

74–75
Export tool, Picture Editor,

344
exporting

ACID XPress songs, 78
eJay Dance 7 songs, 86–87
models, in gameSpace Lite,

462
one-click build, in FPS

Creator, 362
Expression Evaluator, 222,

224–229

F
F1 key, 169
fake items, 391
Family Computer (Famicom)

console, Nintendo, 19
fighting games, 25–26
Figures folder, DVD-ROM for

this book, 484

488 Index

File Manager editor, eJay 7,
86–87

File Manager, eJay 7, 83
File menu, Build option of FPS

Creator, 428–432
File menu, Game Maker, 112
files

Black Jack, 300
Dragons, 306–307
executable. see executable

files
help, 169–170
new, 258

Fill tool, 350
Filled Ellipse tool, 349
Filled Rectangle tool, 348
fire, recording sound of, 62
fire effect, 401–402
firing gun

programming, 159–161
programming bullet

events, 163
recording sound for, 63

First Person Shooter Creator.
see FPS (First Person
Shooter) Creator

first person shooter, design
document, 471–480

first-person 3D vehicle games,
30–31

flags, in Black Jack, 305
flags, in Dragons, 312
flight sims, 28
Flip command, 49–50
Flip Horizontally tool, 346
Flip Vertically tool, 346
FMV (full-motion video)

games, 32
folders, DVD-ROM for this

book, 484–485
fonts, 218, 325–326
footsteps, recording sound of,

63
formats

backup, 6
graphic, 56–57
MP3, 78
music and sound effects,

99
formatted text object, 325–326
FPS (First Person Shooter)

Creator, 395–436
door switches, 398–399
DVD-ROM for this book,

483, 484
elevators, 409–412
enemy patrols using

waypoints, 415–417
executable file, 428–432
fire effect, 401–403
furnishings, 405–406
games, 30
lighting rooms and corri-

dors, 400–401
multiplayer online game,

432–436
performance checking,

426–428
placing zones, 417–424
smoke effect, 402–405
stairs, 408–409
teleporters, 412–415

using models created in
gameSpace, 450

windows, 396–398
FPS (First Person Shooter)

Creator, creating basic
game, 375–394
corridor with paint tools,

391–394
corridor with single

segments, 387–391
creating first room,

376–379
enemy player, 385–386
player starting position,

382–383
testing, 380–382
weapon, 383–385

FPS (First Person Shooter)
Creator, introduction,
361–374
3D world editor, 372–373
cursor, 373
defined, 361
drop-down text menus,

368
game creation process, 366
installing, 363–365
Library toolbar, 371–372
menu buttons, 368–371
options in program,

362–363
program window, 367
status bar, 374
system requirements,

363
terminology, 365–366

Frame Editor, TGF2
Alien Wars project,

191–193
defined, 180
overview of, 182

frame rate, FPS Creator, 427
frames, TGF2

Black Jack game, 298–299
Dragons game, 307
overview of, 181
placing active object on,

320
placing objects on,

318–319
full-motion video (FMV)

games, 32

G
Gamasutra website, 469
Game Complete, FPS Creator,

429
The Game Creators website,

468
game design elements, 89–103

audience, 93
design document, 93–96
determining market,

101–102
game idea and treatment,

92–93
game type, 91–92
overview of, 90–91
proposal issues, 101
required resources and

scheduling, 103
team, 93

technical information and
associated risks, 102

technology, 93
game design elements, story-

line, 96–102
heroes and enemies, 97
levels, 96
menu navigation, 98
miscellaneous and appen-

dix, 100–101
music and sound effects,

99
user interface, 98–99

game development, history of,
11–20
assembly language, 14–15
computer on a chip, 16
easier programming

languages, 17–19
future of, 20–21
game consoles, 19–20
game genres. see genres,

game
graphics, 16–17
polygons, 17
silicon circuits, 12
Spacewar, 12–14

game frame, Alien Wars,
231–251
application size, 206–207
components, 232
creating and renaming,

207–208
creating enemy ships,

237–242
determining if music has

stopped playing, 234
display on top, 236–237
enemy and bullet colli-

sions, 245–247
enemy and spaceship

collisions, 251
initial scene setup for,

212–214
player shooting, 242–244
position of bullets,

244–245
recreate enemy robots,

247
robot animations, 250
robot firing, 247–250
Start of Frame, 232–234
stopping ship from leaving

scene, 234–236
game frame, Black Jack,

302–304
game frame, Dragons, 310
game frame, Litter Bug,

274–294
cleaning fluid, 285–286
collisions between clean-

ing fluid and dirt,
286–287

computer players group,
287–291

defined, 258
end code, 292–294
guardrails, 274–276
initial scene setup for,

260–267
movement, 278–285
order, 276–278

Start of Frame event, 274
game idea, 92–93
Game Information, 169–170
Game Items selection screen,

3D Gamemaker, 444–445
Game Maker 7.0 Lite, 105–116

creating shoot-em-up
game with. see End of
Earth

desktop icon, 108–109
DVD-ROM for this book,

482
installing, 106–108
interface, 109–110
menus, 112–116
Resource Explorer,

110–111
system requirements, 109
website, 468

Game Maker 7.0 Lite, first
project, 117–127
creating simple program,

120–126
events, 119
objects, 118–119
overview of, 118
saving and running,

126–127
sprites, 119

Game Maker Language
(GML), 168–169

game making websites,
463–470
ACID Planet, 469
Awesome Programming,

464
Caligari, 468–469
Click Convention, 466,

468
Clickteam, 465–466
The Daily Click, 470
eJay, 466–467
Gamasutra, 469
The Game Creators, 468
Game Maker, 468
Make Amazing Games,

465
Power Users Guide, 465
Retro Remakes, 470
Turbo Squid, 469

Game Over, FPS Creator, 429
game studio setup, 1–9

backup devices, 6–7
computer, 3–4
digital camera, 5
Ethernet network, 7
good chair and desk, 8
graphic (video) cards and

3D cards, 4–5
graphic tablets, 7
modem, 5–6
network, 7
other peripherals, 5
overview of, 2–3
processor, 4
RAM, 4
scanner, 5
tips for purchasing, 8–9
wireless network, 8

game treatment, 92–93
The Games Factory 2. see TGF2

(The Games Factory 2)

Index 489

gameSpace Lite, 450–462
creating primitives,

456–459
DVD-ROM for this book,

484
exporting model, 462
installing, 451–454
interface, 454–456
overview of, 450
simple 3D example,

459–462
system requirements, 450

GeForce graphic cards, 5
genres, game, 21–34

adventure games, 32
battle card games, 24
board games, 22
card games, 22–23
choosing game type from,

91–92
crossover and combining

of, 34
design document, first

person shooter, 471
desktop toys, 33
educational games, 32
edutainment games, 32
fighting games, 25–26
First Person Shooter (FPS)

3D games, 30
first-person 3D vehicle

games, 30–31
flight sims, 28
full-motion video (FMV)

games, 32
game market data on,

101–102
maze games, 21
overview of, 21
puzzle games, 24
quiz games, 24
racing games, 27
real-time strategy games,

28–29
role-playing games (RPGs),

31
screen savers, 33
shoot ‘em ups, 25
side scrollers, 25–26
Sims, 30
sports games, 33
third-person 3D games, 31
turn-based strategy games,

28
Geosphere primitives, 456–457
Global Script, FPS Creator, 428
Global Settings screen, 3D

Gamemaker, 444–445
global values, TGF2

collisions between enemy
and bullet, 246

creating enemy ships,
238–239, 241–242

setting up for storing
scores, 232

GML (Game Maker Lan-
guage), 168–169

gradient background, 322
Graetz, J. Martin, 12–13
Grammy Awards, music and

sound of video games, 60

graphic (video) cards, 4–5, 20
graphic tablets, 7
graphics, 35–57

adding multiple images,
132–133

adding using Open File
dialog, 132–133

advances in, 16–17
anti-aliasing technique, 55
aspect ratio and, 40–42
color and, 42–45
Copy command, 46
Crop command, 48–49
Cut command, 46
design document, first

person shooter, 473,
477–478

Flip commands for, 49–50
formats, 56–57
FPS Creator, 362
masks, 52–54
opacity, 54
Paste command, 46
pixels, 38–39
programming guardrails,

274–276
Resize command, 47–48
resolution, 40
Rotate command, 47
sights, 36–38
Skew command, 47
sound vs., 60–61
sprites, 50
vector, 13

graphics accelerator cards, 20
grid option, backgrounds, 144
Group Neutral, TGF2, 276–278
groups, code

computer players, 287–291
creating, 199–200
creating enemy ships

using, 237–242
Dragons game Event

Editor, 311
guardrails, programming,

274–276
guns, FPS Creator

adding enemy, 385–386
adding player, 383–385
design document for, 474
performance checking,

427
gunshots. see also bullets

programming, 159–161
programming bullet

collision events, 165
programming bullet

events, 163
recording sound for, 63

H
hard disk drives, 7
Hardware and Sound option,

Windows Vista, 65
HD DVD (High Definition)

format, 6
heal zone, 418–420
health events

adding heal zone, 419–420
adding hurt zone, 419
adding to room, 146

for collision events,
158–159

programming, 167
setting number of, 152

Help & Tutorials, eJay 7, 82
help file

creating, 169–170
Game Maker, 116
gameSpace Lite, 453–454
TGF2 tutorial, 179–189

heroes, in design document,
97–98

High Color (16-bit color),
44–45

High Definition (HD DVD)
format, 6

Higher Speed box, Direction
Options tab, 357

high-level programming
language, 18

highscore frame
Alien Wars, 214–216,

252–253
defined, 258
Dragons, 314–315
Litter Bug, 267–268,

294–295
hi-score objects, 323–325
history, of games. see game

development, history of
hosts, multiplayer online

games, 433–435
Hot Spot, 352–353
HTML (Hyper Text Markup

Language), 18
hubs, Ethernet networks, 7
human-readable languages,

14–15, 18
hurt zone, 418, 419
Hyper Text Markup Language

(HTML), 18

I
I, Robot game, 17
ice events

adding to room, 145
destroying bullet once it

hits, 163
events and actions for,

163–166
programming, 163–166
programming spaceship

collisions, 158
icons

3D Gamemaker desktop,
440

FPS Creator, Add New
Prefab, 376

FPS Creator desktop,
364–365

Game Maker desktop,
108–109

gameSpace Lite desktop,
452

sound control, 65
icons, movement

Bouncing Ball, 330
Eight Directions move-

ment, 335
Mouse Controlled move-

ment, 334

Path Movement, 331
Pinball movement, 333
Platform Movement, 337
Race Car movement, 336

icons, Picture Editor tools
Action Point, 353
Clear image option, 343
Color Picker, 348
Ellipse tool, 349
Eraser tool, 352
Export option, 344
Fill tool, 350
Flip Horizontally and Flip

Vertically, 346
Hot Spot, 353
Import option, 343
Line tool, 348
Options, 345
Pen tool, 348
Polygon tool, 349
Rectangle tool, 349
Rotate tool, 352
Selection tool, 348
Shape tool, 350
Size, 352
Spray tool, 351
Text tool, 351
Transparency tool, 347
Undo and Redo, 346
Zoom Control, 347

icons, TGF2
active object, 319
backdrop object, 321
Event Editor, 193,

194–195
hi-score object, 323–324
lives object, 326
score object, 328
text object, 325

IDE (Integrated Development
Environment), Game
Maker, 110

idea, game, 92–93
images. see graphics
importing

in FPS Creator, 362
Picture Editor Import tool,

343–344
Information dialog, TGF2,

176–177
in-game assets, screen layout,

36
integrated circuits, 12
Integrated Development

Environment (IDE), Game
Maker, 110

Intel, 4, 16
interactive, defined, 45
interface. see user interface
Internet

creating multiplayer online
games, 432–436

FPS Creator support for,
362

obtaining samples from, 68
interpolation, 39
intersect boundary, 157
items, Frame Editor, 191–192

J
Jaws movie, 61

K
Kung Fu game, 26

L
L global value, 238–239,

241–242
Layer object, 260, 266,

276–278
Layer Toolbar, 276–278
layers, FPS Creator, 369
Legends of the Five Rings

battle card game, 24
level boss, 3D Gamemaker,

444, 446–447
level numbers, TGF2,

238–239, 241–242
Level Placements group, TGF2

creating enemy ships,
237–243

player shooting, 242–244
recreating enemy robots,

245
level profiler, FPS Creator,

426–428
levels

adding win zone to com-
pleted, 424

designing, 96
as frames in TGF2, 181
Game Maker rooms

corresponding to, 118
as layers in FPS Creator,

369
testing in FPS Creator,

380–382
library files

Alien Wars, game frame,
212–213

Alien Wars, Highscores
frame, 215

Alien Wars, main menu
frame, 208–209

Alien Wars, working with,
204–205

Litter Bug, game frame,
262–263

Litter Bug, Highscores
frame, 267–268

Litter Bug, menu frame,
259–260

Litter Bug, working with,
212–214

for sound effects, 61
Library toolbar, FPS Creator,

371–372, 376–379
License Agreement

3D Gamemaker installa-
tion, 438

ACID XPress installation,
69–71

eJay 7 installation, 80
FPS Creator installation,

364
gameSpace Lite installa-

tion, 451
TGF2 installation, 176

licenses, MP3, 78
life events, Game Maker

actions for collision events,
158–159

adding to room, 146

importing sprites, 135–137
programming, 167–168
setting number of lives,

152
lighting, FPS Creator,

400–401, 427
Line In, 64
Line Out, 64
Line tool, Picture Editor, 348
linear routes, 418
Litter Bug, 255–295

creating new file, 258
game frame scene setup,

260–267
game window size setup,

258–259
Highscores frame scene

setup, 267–268
Library, 256–257
menu frame programming,

269–273
menu frame scene setup,

259–260
storyline, 256

Litter Bug, game frame pro-
gramming, 274–294
cleaning fluid, 285–286
cleaning fluid and dirt

collisions, 286–287
computer players group,

287–291
end code, 292–294
guardrails, 274–276
movement, 278–285
order, 276–278
overview of, 274
Start of Frame event, 274

lives object, TGF2, 326–327
logos, screen layout, 36
loops

creating music from, 68
used in Black Jack, 306

M
machine language, 14–15
machine noises, recording, 63
Magic The Gathering, 24
main frame. see also Alien

Wars, main frame pro-
gramming
overview of, 217
setting up, 208–212

Make Amazing Games in Minutes
(Charles River Media), 465

Make Amazing Games web-
site, 465

markers, FPS Creator
adding heal zone, 419–420
adding hurt zone, 419
adding player’s starting

position with, 382–383
adding sound zone,

420–421
adding story zone, 422
adding win zone, 424
defined, 366
in Library toolbar,

371–372
lighting rooms and corri-

dors, 401
market, game, 101–102

masks, 52–54
Materials toolbar, gameSpace

Lite, 461
maze games, 21
memory, FPS Creator perfor-

mance, 427
memory, RAM, 4, 12
menu buttons, FPS Creator,

368–371
menu frame

Black Jack, 300–302
defined, 258
Dragons, 308–309
initial scene setup for

Litter Bug, 259–260
menu navigation, design

document, 98
menu screen layout, 36
menus, Game Maker, 112–116
metal oxide semiconductor

(MOS) technology, 16
microchips, 12
microphones, 65, 66–67
microprocessors, 16
Microsoft Flight Simulator X,

28
MIDI/Game Port, 64
Minskytron, 13
Mixer, ACID XPress, 75
mixer panel, sound card,

65–66
modems, game studio setup,

5–6
MOS (metal oxide semicon-

ductor) technology, 16
motif, quick backdrop object,

322
mouse, FPS Creator

adding prefab room,
376–379

configuring right button
on, 345

cursor in 3D world editor,
373–374

removing object from
cursor, 379

Mouse Controlled movement,
334

mouse pointer, in TGF2
button effects, 227–229
creating even conditions,

282–283
defined, 195
going back to start of

game, 252–253
not over object, 271–272
over object, 270–271
player shooting, 243
Tape Mouse function, Path

Editor, 332
user clicks, 229–231, 273

Move Fixed dialog,
Gamemaker, 153–156,
163

movement, 328–339
animations within types

of, 359
Bouncing Ball, 329–331
creating computer players

group, 287–291
creating own, 278–285

Eight Directions move-
ment, 335

Mouse Controlled, 334
multiple movement,

338–339
overview of, 328–329
Path movement, 331–333
Pinball movement,

333–334
Platform movement,

337–338
Race Car movement,

336–337
Movement_Map, Litter Bug

game, 262, 263, 282–283
MP3 format, using, 78
Ms. Pac-Man, 21
multiplayer games

creating FPS, 432–436
design document, FPS,

472–473
designing, 100

multiple movement, 338–339
multiple-choice quiz games,

24
music

adding in TGF2, 219–224,
234, 252, 269–270

adding to rooms, 137–139
adding using script,

168–169
creating, 67–68
in design document, 99,

474, 477
importance of, 60
obtaining or creating, 61–62
recording, 62–67
types, 60–61
types of sounds, 60–61

music, with ACID XPress,
69–78
installing, 69–71
requirements for, 69
running for first time,

71–73
simple creation in, 75–78
touring, 73–75

music, with eJay Dance 7,
79–87
exporting songs, 86–87
installing, 79–81
requirements for, 79
running for first time,

81–83
simple creation in, 84–86
touring, 83–84

N
naming conventions

adding sprite to project,
135

game frames, 207–208
rooms, 142–144
saving 3D Gamemaker

game, 445
NARAS (National Academy

of Recording Arts and
Sciences), 60

National Academy of Record-
ing Arts and Sciences
(NARAS), 60

490 Index

Index 491

natural light, in games, 400
navigation buttons, program-

ming, 147–150
Negate option, 228, 279–280
NES (Nintendo Entertainment

System), 19–20
networks

creating multiplayer online
game, 432–436

game studio setup, 7–8
New Condition option, Event

Editor, 197–198
Nintendo Entertainment

System (NES), 19–20
No Key event, 155
No More Lives, 167–168
nonlinear routes, 418
note events, 217–219
number column, Storyboard

Editor, 188
numbering system, creating

rooms, 142
NVIDIA?, 5

O
Object-Oriented Programming

(OOP), C++, 18–19
objects

FPS Creator, design docu-
ment, 473

FPS Creator, included in,
362

Game Maker, adding,
120–126, 140–142

Game Maker, overview of,
118–119

TGF2, advanced control of.
see advanced control of
objects

TGF2, conditions of, 199
TGF2, creating enemy

robot, 238–243
TGF2, display always on

top of screen, 236–237
TGF2, game frame setup,

213–214, 264–267
TGF2, highscores frame

setup, 215–216
TGF2, in Event Editor,

193–195
using sprites, 119

Obstacle Type, backdrop and
quick backdrop objects,
322–323

Obstacles selection screen, 3D
Gamemaker, 444

OK button, FPS Creator test
game, 381

online resources. see also game
making websites
FPS Creator full version,

364
Game Maker, 106
game market data, 102
gameSpace Lite, 450, 456
MP3 license costs, 78
using loops, 68

OOP (Object-Oriented Pro-
gramming), C++, 18–19

opacity, applying, 54
Open File dialog, 132–133

Options, Picture Editor, 345
OS (operating system), pur-

chasing, 4
overall time, in FPS Creator,

427

P
Pac-Man, 17, 21
Paint Only Segment walls

option, 390, 393
paint tools, FPS Creator,

391–394
palette masking, 53–54
pasting, 46, 345
Path Editor, 331–333
Path movement, 331–333
PDAs (personal digital assis-

tants), 61, 63–64
PDP (Programmed Data

Processor), 12–14
Pen tool, Picture Editor, 348
performance checking, FPS

Creator, 426–428
peripherals, game studio

setup, 5
personal digital assistants

(PDAs), 61, 63–64
physics engine, FPS Creator,

362
Picture Editor, 342–354

accessing in quick back-
drop object, 322

Color Palette, 353–354
creating animation tracks

for each direction, 337
drawing area, 353
overview of, 342

Picture Editor, tools
Clear, 343
Color Picker, 347–348
Crop tool, 346
Cut, Copy, Paste and

Delete, 345
Ellipse tool, 349
Eraser tool, 351–352
Export, 344
Fill tool, 350
Filled Ellipse tool, 349
Filled Rectangle tool, 348
Flip Horizontally, 346
Flip Vertically, 346
Import, 343–344
Line tool, 348
Options, 345
Pen tool, 348
Polygon tool, 349
Rectangle tool, 348–349
Redo tool, 346
Rotate tool, 352
Selection tool, 347–348
Shape tool, 350
Size tool, 351–352
Spray tool, 350–351
Text tool, 351
Transparency tool, 347
Undo tool, 346
view Action Point, 353
view Hot Spot, 352–353
Zoom control, 347

Pinball movement, 333–334
pixels

color depth and, 45
computer graphics and, 38
interpolation and, 39
in resolution, 40

Plane primitives, 457–458
Platform movement, 337–338
Play button

Game Maker, adding as
object, 141

Game Maker, importing
sprites, 135–136

Game Maker, program-
ming, 149

TGF2, programming user
clicks, 229–230

TGF2, turning animation
on and off for,
227–228

Play Control Balance slider,
66, 135–136

Play Game, 445–447
play testers, 479
playback volumes, sound card

mixer panel, 66
Player Bullet screen, 3D

Gamemaker, 442
player shooting, TGF2

cleaning fluid, 275
collisions between enemy

and bullet, 245–247
position of bullets,

244–245
programming game frame,

242–244
player starting position, FPS

Creator, 382–383
Player_ship sprite, Game

Maker, 135–136. see also
spaceship events, program-
ming

plus (+) sign, 111
Pokémon battle card game, 24
Polygon tool, Picture Editor,

349
polygons

graphics accelerator cards
rendering, 20

history of games, 17
performance in FPS

Creator, 426–427
position, performance in FPS

Creator, 427
positional masking, 53–54
Possible Directions option, 335
The Power Users Guide to Win-

dows Development (Charles
River Media), 465

Power Users Guide website,
465

prefabs, FPS Creator
adding door switches, 398
adding windows, 396
creating corridor with

single segments,
387–391

creating room, 376–379
defined, 365
in Library toolbar,

371–372
primitives

3D example of, 459–462

creating, 456–459
defined, 454

processors, 4, 19–20
producer, design document,

479
Programmed Data Processor

(PDP), 12–14
programmer, design docu-

ment, 476
programming languages

assembly language, 14–15
development of easier,

17–19
proofreading, design docu-

ments, 95
properties

adding to objects, 140–142
backdrop object and quick

backdrop object,
321–322

background, 140
Black Jack, 298–300
changing active object, 320
Dragons application,

307–308
importing sprites, 135–137
object, 121–125
Pinball movement,

333–334
room, 125–126
sound zone, 420–421
sprite, 121–122, 131–132

Properties window, TGF2,
205–207

proposal, basic game, 101
PSTN (standard telephone)

line modems, 5–6
puzzle games, 24, 91

Q
Q key, FPS Creator test game,

381
quick backdrop objects,

321–323
Quit button

Game Maker, adding as
object, 141

Game Maker, importing
sprites, 135

Game Maker, program-
ming, 149–150

Game Maker, properties
and image for, 136

TGF2, placing, 259–260
TGF2, programming user

clicks, 230–231, 273
TGF2, turning animation

on and off, 228–229
TGF2, when mouse is over

object, 270–271
quiz games, 24, 32

R
R key, FPS Creator

creating corridor, 387,
389–391

defined, 379
test game, 381

Race Car movement, 336–337
racing games, 27
Radeon line of graphic cards, 5

rain, recording sound, 63
RalliSport Challenge, 27
RAM (random access mem-

ory), 4, 12
random access memory

(RAM), 4, 12
real-time strategy games,

28–29
recording devices, 64
recording sounds, 62–67

from household items,
62–63

overview of, 61–62
using PDA, 63–64
using recording device,

64–65
using sound card’s mixer

panel, 65–66
using Windows sound

recorder, 66–67
Rectangle tool, Picture Editor,

348–349
Redo tool, Picture Editor, 346
Regenerate enemy comment,

247–250
registration, ACID XPress,

71–73
relative box, 160
remote items, 391
Rename option, game frames,

207–208
render, defined, 45
Render button, gameSpace

Lite, 461–462
required resources, game

proposal, 103
requirements

3D Gamemaker, 438
ACID XPress, 69
eJay Dance 7, 79
FPS Creator, 363
Game Maker, 109
gameSpace Lite, 450
TGF2, 175
using DVD-ROM for this

book, 481
Resize command, 47–48
resolution

computer graphics and, 40
setting up game in TGF2,

205–206
Resource Explorer, Game

Maker, 110–111, 125–126
Resources menu, Game Maker

Create Background,
139–140

Create Object, 140–142
Create Room, 142
Create Sound, 138–139
Create Sprite, 121, 132
defined, 114

retro gaming, 186
Retro Remakes website, 470
RGB (Red, Green, Blue)

values, 42–43
room start event, configuring,

152
rooms, FPS Creator

adding windows, 396–398
creating corridor with

paint tools, 391–394

creating corridor with
single segments,
387–394

creating for basic game,
376–379

lighting, 400–401
rooms, Game Maker

adding music, 137–139
creating, 125–126
defined, 118
objects within, 118–119
placing sprites/objects in,

142–147
transitions between,

147–148
Rotate command, 47
Rotate tool, Picture Editor, 352
Rounded Cube primitives, 457
Rounded Cylinder primitives,

457
RPGs (role-playing games), 31
Run Application button,

Frame Editor, 193
Run Frame button, TGF2, 193,

216
Run menu, Game Maker, 115,

127
Russell, Stephen R. “Slug”, 13

S
S key, FPS Creator test game,

380
samples, obtaining, 68, 484
scanners, game studio setup, 5
schedule, game proposal, 103
score

Game Maker, collisions,
165

overview of, 328
TGF2, collisions, 246,

286–287
TGF2, setting global values

for, 232–234
screen

displaying objects always
on top of, 236–237

placing enemy ships on,
237–242

preventing object from
leaving, 234–236

screen resolution
TGF2, for Alien Wars, 190,

215–216
TGF2, for Litter Bug,

258–259
screen savers, 33
scripting, FPS Creator, 362
Scripts menu, Game Maker,

115
segments, FPS Creator

adding windows, 396
creating corridor with

paint tools, 392
creating corridors with

single, 387–391
defined, 365
in Library toolbar,

371–372
Segment toolbar, 370

Selection tool, Picture Editor,
347–348

serial key, gameSpace Lite,
454

Set Variable dialog, 151–152
shadows, adding, 262, 264,

276–277
Shape tool, Picture Editor, 350
shelves, in FPS Creator,

405–406
shelves, in TGF2, 264–265
Shift key, FPS Creator, 381
Shoot an Object dialog,

244–245
shoot-em-ups

in Game Maker. see End of
Earth

overview of, 25
in TGF2. see Alien Wars

Shooting Animation, 248–250
Show Me How dialog, ACID

XPress, 73
side scroller genre, 25–26. see

also Dragons
sights, computer graphics and,

36–38
silicon circuits, 12
sim game genre, 30, 91
The Sims game, 30
single player game, designing,

100
Size tool, Picture Editor,

351–352
Skew command, 47
Small Office Home Network

(SOHO) network system, 7
smoke effect, 402–405
SOHO (Small Office Home

Network) network system,
7

solid-state computers, 12
Song Arranger, eJay 7, 83–84
Sony, ACID Music Studio, 68
sound

collisions between enemy
and bullet, 246

in design document, 99,
474, 477

history of game consoles,
20

importance of, 60
obtaining or creating,

61–62
recording, 62–67
in Samples folder, DVD-

ROM for this book,
484

types of, 60–61
using script to add,

168–169
sound, with ACID XPress,

69–78
installing, 69–71
requirements for, 69
running for first time,

71–73
simple creation in, 75–78
touring, 73–75

sound, with eJay Dance 7,
79–87
exporting songs, 86–87
installing, 79–81
requirements for, 79

running for first time,
81–83

simple creation in, 84–86
touring, 83–84

Sound and Audio option,
Windows XP, 65

Sound Blaster, 20
sound cards, 19, 64–66
sound clip archive, eJay 7, 85
sound zone, 418, 420–421
Space Battle, 24
Space Invaders, 24, 186
space scene, Frame Editor,

191–192
Spacebar key, FPS Creator test

game, 381
spaceship events, program-

ming, 150–163
adding to room in End of

Earth, 146
collisions with ice aster-

oids, 158
configuring room start,

152
controlling movement,

152–157
creating alarm, 162
creating enemy ships,

237–242
firing gun, 159–161
no more health, 158–159
no movement of space-

ship, 155–157
overview of, 150
preventing spaceship from

leaving screen,
234–236

setting up animation,
233–234

setting up correct anima-
tions, 150–152

stopping from leaving
screen, 157

Spacewar
history of, 12–14
shoot ‘em up genre, 24
written in assembly

language, 15
speeds, animation, 357
Spellfire battle card game, 24
Sphere primitives, 456–458
sports games, 33
Spray tool, Picture Editor,

350–351
spreadsheet, Event Editor as,

183
Sprite Editor, 132–133
Sprite Properties menu,

131–132
sprites

creating first game,
121–122

creating objects, 135–136
for game graphics, 17
importing, 131–137
numbering system for,

121
overview of, 50, 119
setting up correct anima-

tions, 150–152
stairs, 408–409

492 Index

Index 493

standard telephone (PSTN)
line modems, 5–6

Standard toolbar, FPS Creator,
368–369

Start button
placing, 259–260
programming user clicks,

273
when mouse is over

object, 270–271
Start of Frame condition,

197–198
Start of Frame event

game frame, 232–234, 274
main frame, 219–223
menu frame, 269–270

Static movement, 329
static text object, 325–326
status bar, FPS Creator, 374
story zone

adding, 421–424
defined, 419
placement of, 422

Storyboard condition, 198
Storyboard Controls

programming to go back to
start, 252–253

programming user clicks,
229–231, 273

Storyboard Editor, 180–182,
188–190

storyline
design document, 471–472
heroes and enemies,

97–98
levels of game, 96
menu navigation, 98
miscellaneous and appen-

dix area, 100–101
music and sound effects,

99
single or multiplayer, 100
user interface, 98–99

storyline, for projects in this
book
Alien Wars, 186–187
End of Earth, 130–131
Litter Bug, 256

strategy games, 28–29, 91
string object, 325–326
String_Score, 261
styles, for text objects,

325–326
SuperVGA graphics standard,

20
surge protectors, 8–9
sync, checking in FPS Creator,

427

T
tabs

active object, 320–321
backdrop object and quick

backdrop object,
321–323

hi-score object, 324

lives object, 326
team members

design documents and, 93,
95

game proposal about, 102
maps of levels for, 96

technology
choosing game, 93
game proposal, 102

teleporters, FPS Creator,
412–415

terminology, FPS Creator,
365–366

Test Compile dialog box, 380
test game

3D Gamemaker, 446–447
design document, 479
FPS Creator, 371

Test Level button, FPS Creator,
380–382, 384–385

Tetris, 24
text, 325–326. see also com-

ments, TGF2
text menus, FPS Creator, 368
Text tool, Picture Editor, 351
texture, 430–431, 461
TGF2 (The Games Factory 2),

173–184
about, 174–175
advanced games. see Black

Jack; Dragons
advanced objects. see

advanced control of
objects

Alien Wars. see Alien Wars
animation tool, 354–359
DVD-ROM for this book,

483
Event Editor, 182–183
Frame Editor, 182
installing, 176–179
Litter Bug. see Litter Bug
maze games with, 21
requirements for, 175
starting for first time,

179–180
Storyboard Editor,

181–182
working with pictures in.

see Picture Editor
TGFFILES folder, DVD-ROM

for this book, 484
third-person 3D games, 31
thumbnails, Storyboard Editor,

188–189
thunder sound, recording, 63
Time Display window, ACID

XPress, 74
Time Line window, ACID

XPress, 74
timer (alarm), 161–162, 248
Title Screen, FPS Creator, 428
Tixo (TX-O) computer, 12–13
Torus primitives, 457
Track Header window, ACID

XPress, 73

transitions
between rooms in Game

Maker, 147–148
using Storyboard Editor,

189–190
transparency, in TGF2

adding comments, 224
setting for objects,

221–223
setting to O, 224–226

Transparency tool, Picture
Editor, 347

Transport Toolbar window,
ACID XPress, 74

treatment, game, 92–93
Trespasser, 61
trigger zone, 418
True Color (24-bit color),

44–45
Try Movement, 334
Turbo Squid website, 469
turn-based strategy games, 28
TX-O (Tixo) computer, 12–13

U
Undo tool, 346
uninterruptible power supply

(UPS), 8–9
UPS (uninterruptible power

supply), 8–9
use items, 391
user clicks, programming,

229–231, 273
user interface

in design document, 98–99
Game Maker, 109–110
gameSpace Lite, 454–456
screen layout, 36

user-defined animations, 357

V
variables, in Game Maker

predefined, 149
programming gunshots,

160–161
programming Quit button,

150
setting in actions, 148–149
setting up correct anima-

tions, 150–152
vector graphics, 13, 16–17
Vectrex, 16–17
Ventilation object, 387–391
VGA graphics standard, 20
video (graphic) cards, 4–5, 20
video files, story zone,

423–424
View toolbar, FPS Creator, 369
views, Action Point, 353
views, Hot Spot, 352–353

W
W key, FPS Creator, 380
Wave Balance slider, 66
waypoints, 371, 415–417

weapons. see also bullets;
gunshots
3D Gamemaker, adding,

442
design document, first

person shooter, 474
FPS Creator, adding,

383–385
Web Link, eJay 7, 83
websites. see game making

websites; online resources
Welcome dialog, TGF2, 176
What You See Is What You

Get (WYSIWYG) inter-
faces, 18

widescreen aspect ratio, 40–42
win zone, 418, 424
Window menu, Game Maker,

116
Windows

purchasing processors, 4
Vista, Hardware and

Sound, 65
working with sound

recorder, 66–67
XP, Sound and Audio, 65

windows, adding in FPS
Creator, 396–398

Wing Commander, 28
wireless network, game studio

setup, 8
Witanen, Wayne, 13
Workspace toolbar, Black Jack,

298–300
Workspace toolbar, Litter Bug

adjusting game window
size, 258–259

creating new file in,
258–259

placing objects in game
frame, 263

placing objects in High-
scores frame, 268

placing objects in menu
frame, 260

WYSIWYG (What You See Is
What You Get) interfaces,
18

X
X format, 450
X-Wing, 28

Z
Zip drives, 6–8
zones, FPS Creator, 417–424

defined, 418–419
heal zone, 419–420
hurt zone, 419
sound zone, 420–421
story zone, 421–424
win zone, 424

Zoom control, 347

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

THE DVD THAT ACCOMPANIES THIS BOOK MAY BE USED ON A SINGLE PC
ONLY. THE LICENSE DOES NOT PERMIT THE USE ON A NETWORK (OF ANY
KIND). YOU FURTHER AGREE THAT THIS LICENSE GRANTS PERMISSION TO USE
THE PRODUCTS CONTAINED HEREIN, BUT DOES NOT GIVE YOU RIGHT OF OWN-
ERSHIP TO ANY OF THE CONTENT OR PRODUCT CONTAINED ON THIS DVD. USE
OF THIRD-PARTY SOFTWARE CONTAINED ON THIS DVD IS LIMITED TO AND
SUBJECT TO LICENSING TERMS FOR THE RESPECTIVE PRODUCTS.

CHARLES RIVER MEDIA, INC. (“CRM”) AND/OR ANYONE WHO HAS BEEN IN-
VOLVED IN THE WRITING, CREATION, OR PRODUCTION OF THE ACCOMPANYING
CODE (“THE SOFTWARE”), OR THE THIRD-PARTY PRODUCTS CONTAINED ON
THIS DVD, CANNOT AND DO NOT WARRANT THE PERFORMANCE OR RESULTS
THAT MAY BE OBTAINED BY USING THE SOFTWARE. THE AUTHOR AND PUB-
LISHER HAVE USED THEIR BEST EFFORTS TO ENSURE THE ACCURACY AND
FUNCTIONALITY OF THE TEXTUAL MATERIAL AND PROGRAMS CONTAINED
HEREIN; WE, HOWEVER, MAKE NO WARRANTY OF THIS KIND, EXPRESS OR IM-
PLIED, REGARDING THE PERFORMANCE OF THESE PROGRAMS. THE SOFTWARE
IS SOLD “AS IS” WITHOUT WARRANTY (EXCEPT FOR DEFECTIVE MATERIALS
USED IN MANUFACTURING THE DISC OR DUE TO FAULTY WORKMANSHIP); THE
SOLE REMEDY IN THE EVENT OF A DEFECT IS EXPRESSLY LIMITED TO REPLACE-
MENT OF THE DISC, AND ONLY AT THE DISCRETION OF CRM.

THE AUTHOR, THE PUBLISHER, DEVELOPERS OF THIRD-PARTY SOFTWARE, AND
ANYONE INVOLVED IN THE PRODUCTION AND MANUFACTURING OF THIS WORK
SHALL NOT BE LIABLE FOR DAMAGES OF ANY KIND ARISING OUT OF THE USE OF
(OR THE INABILITY TO USE) THE PROGRAMS, SOURCE CODE, OR TEXTUAL MA-
TERIAL CONTAINED IN THIS PUBLICATION. THIS INCLUDES, BUT IS NOT LIMITED
TO, LOSS OF REVENUE OR PROFIT, OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THE PRODUCT.

THE SOLE REMEDY IN THE EVENT OF A CLAIM OF ANY KIND IS EXPRESSLY
LIMITED TO REPLACEMENT OF THE BOOK AND/OR DVD, AND ONLY AT THE
DISCRETION OF CRM.

THE USE OF “IMPLIED WARRANTY” AND CERTAIN “EXCLUSIONS” VARY FROM
STATE TO STATE, AND MAY NOT APPLY TO THE PURCHASER OF THIS PRODUCT.

