
Contents
1.	 Cover	Page

2.	 About	This	E-Book

3.	 Title	Page

4.	 Copyright	Page

5.	 Dedication	Page

6.	 Contents	at	a	Glance

7.	 Contents

8.	 Preface

9.	 Acknowledgments

10.	 About	the	Author

11.	 Chapter	1:	Game	Programming	Overview

1.	 Setting	Up	a	Development	Environment

1.	 Microsoft	Windows

2.	 Apple	macOS

2.	 Getting	This	Book’s	Source	Code

3.	 Beyond	the	C++	Standard	Library

4.	 The	Game	Loop	and	Game	Class

1.	 Anatomy	of	a	Frame

2.	 Implementing	a	Skeleton	Game	Class

3.	 Main	Function

4.	 Basic	Input	Processing

5.	 Basic	2D	Graphics

1.	 The	Color	Buffer

2.	 Double	Buffering

3.	 Implementing	Basic	2D	Graphics

4.	 Drawing	Walls,	a	Ball,	and	a	Paddle

6.	 Updating	the	Game

1.	 Real	Time	and	Game	Time

2.	 Logic	as	a	Function	of	Delta	Time

3.	 Updating	the	Paddle’s	Position

4.	 Updating	the	Ball’s	Position

7.	 Game	Project

8.	 Summary

9.	 Additional	Reading

10.	 Exercises

1.	 Exercise	1.1

2.	 Exercise	1.2

12.	 Chapter	2:	Game	Objects	and	2D	Graphics

1.	 Game	Objects

1.	 Types	of	Game	Objects

2.	 Game	Object	Models

3.	 Integrating	Game	Objects	into	the	Game	Loop

2.	 Sprites

1.	 Loading	Image	Files

2.	 Drawing	Sprites

3.	 Animating	Sprites

3.	 Scrolling	Backgrounds

4.	 Game	Project

5.	 Summary

6.	 Additional	Reading

7.	 Exercises

1.	 Exercise	2.1

2.	 Exercise	2.2

3.	 Exercise	2.3

13.	 Chapter	3:	Vectors	and	Basic	Physics

1.	 Vectors

1.	 Getting	a	Vector	between	Two	Points:	Subtraction

2.	 Scaling	a	Vector:	Scalar	Multiplication

3.	 Combining	Two	Vectors:	Addition

4.	 Determining	a	Distance:	Length

5.	 Determining	Directions:	Unit	Vectors	and

Normalization

6.	 Converting	from	an	Angle	to	a	Forward	Vector

7.	 Converting	a	Forward	Vector	to	an	Angle:

Arctangent

8.	 Determining	the	Angle	between	Two	Vectors:	Dot

Product

9.	 Calculating	a	Normal:	Cross	Product

2.	 Basic	Movement

1.	 Creating	a	Basic	MoveComponent	Class

2.	 Creating	an	InputComponent	Class

3.	 Newtonian	Physics

1.	 Linear	Mechanics	Overview

2.	 Computing	Positions	with	Euler	Integration

3.	 Issues	with	Variable	Time	Steps

4.	 Basic	Collision	Detection

1.	 Circle-Versus-Circle	Intersection

2.	 Creating	a	CircleComponent	Subclass

5.	 Game	Project

6.	 Summary

7.	 Additional	Reading

8.	 Exercises

1.	 Exercise	3.1

2.	 Exercise	3.2

3.	 Exercise	3.3

14.	 Chapter	4:	Artificial	Intelligence

1.	 State	Machine	Behaviors

1.	 Designing	a	State	Machine

2.	 Basic	State	Machine	Implementation

3.	 States	as	Classes

2.	 Pathfinding

1.	 Graphs

2.	 Breadth-First	Search

3.	 Heuristics

4.	 Greedy	Best-First	Search

5.	 A*	Search

6.	 Dijkstra’s	Algorithm

7.	 Following	a	Path

8.	 Other	Graph	Representations

3.	 Game	Trees

1.	 Minimax

2.	 Handling	Incomplete	Game	Trees

3.	 Alpha-Beta	Pruning

4.	 Game	Project

5.	 Summary

6.	 Additional	Reading

7.	 Exercises

1.	 Exercise	4.1

2.	 Exercise	4.2

15.	 Chapter	5:	OpenGL

1.	 Initializing	OpenGL

1.	 Setting	Up	the	OpenGL	Window

2.	 The	OpenGL	Context	and	Initializing	GLEW

3.	 Rendering	a	Frame

2.	 Triangle	Basics

1.	 Why	Polygons?

2.	 Normalized	Device	Coordinates

3.	 Vertex	and	Index	Buffers

3.	 Shaders

1.	 Vertex	Shaders

2.	 Fragment	Shaders

3.	 Writing	Basic	Shaders

4.	 Loading	Shaders

5.	 Drawing	Triangles

4.	 Transformation	Basics

1.	 Object	Space

2.	 World	Space

3.	 Transforming	to	World	Space

5.	 Matrices	and	Transformations

1.	 Matrix	Multiplication

2.	 Transforming	a	Point	by	Using	a	Matrix

3.	 Transforming	to	World	Space,	Revisited

4.	 Adding	World	Transforms	to	Actor

5.	 Transforming	from	World	Space	to	Clip	Space

6.	 Updating	Shaders	to	Use	Transform	Matrices

6.	 Texture	Mapping

1.	 Loading	the	Texture

2.	 Updating	the	Vertex	Format

3.	 Updating	the	Shaders

4.	 Alpha	Blending

7.	 Game	Project

8.	 Summary

9.	 Additional	Reading

10.	 Exercises

1.	 Exercise	5.1

2.	 Exercise	5.2

16.	 Chapter	6:	3D	Graphics

1.	 The	Actor	Transform	in	3D

1.	 Transform	Matrices	for	3D

2.	 Euler	Angles

3.	 Quaternions

4.	 New	Actor	Transform	in	Action

2.	 Loading	3D	Models

1.	 Choosing	a	Model	Format

2.	 Updating	the	Vertex	Attributes

3.	 Loading	a	gpmesh	File

3.	 Drawing	3D	Meshes

1.	 Transforming	to	Clip	Space,	Revisited

2.	 Out	with	the	Painter’s	Algorithm,	in	with	Z-

Buffering

3.	 The	BasicMesh	Shader

4.	 The	MeshComponent	Class

4.	 Lighting

1.	 Revisiting	Vertex	Attributes

2.	 Types	of	Lights

3.	 Phong	Reflection	Model

4.	 Implementing	Lighting

5.	 Game	Project

6.	 Summary

7.	 Additional	Reading

8.	 Exercises

1.	 Exercise	6.1

2.	 Exercise	6.2

17.	 Chapter	7:	Audio

1.	 Bootstrapping	Audio

1.	 FMOD

2.	 Installing	FMOD

3.	 Creating	an	Audio	System

4.	 Banks	and	Events

5.	 The	SoundEvent	Class

2.	 3D	Positional	Audio

1.	 Setting	Up	a	Basic	Listener

2.	 Adding	Positional	Functionality	to	SoundEvent

3.	 Creating	an	AudioComponent	to	Associate	Actors

with	Sound	Events

4.	 The	Listener	in	a	Third-Person	Game

5.	 The	Doppler	Effect

3.	 Mixing	and	Effects

1.	 Buses

2.	 Snapshots

3.	 Occlusion

4.	 Game	Project

5.	 Summary

6.	 Additional	Reading

7.	 Exercises

1.	 Exercise	7.1

2.	 Exercise	7.2

18.	 Chapter	8:	Input	Systems

1.	 Input	Devices

1.	 Polling

2.	 Positive	and	Negative	Edges

3.	 Events

4.	 Basic	InputSystem	Architecture

2.	 Keyboard	Input

3.	 Mouse	Input

1.	 Buttons	and	Position

2.	 Relative	Motion

3.	 Scroll	Wheel

4.	 Controller	Input

1.	 Enabling	a	Single	Controller

2.	 Buttons

3.	 Analog	Sticks	and	Triggers

4.	 Filtering	Analog	Sticks	in	Two	Dimensions

5.	 Supporting	Multiple	Controllers

5.	 Input	Mappings

6.	 Game	Project

7.	 Summary

8.	 Additional	Reading

9.	 Exercises

1.	 Exercise	8.1

2.	 Exercise	8.2

19.	 Chapter	9:	Cameras

1.	 First-Person	Camera

1.	 Basic	First-Person	Movement

2.	 Camera	(Without	Pitch)

3.	 Adding	Pitch

4.	 First-Person	Model

2.	 Follow	Camera

1.	 Basic	Follow	Camera

2.	 Adding	a	Spring

3.	 Orbit	Camera

4.	 Spline	Camera

5.	 Unprojection

6.	 Game	Project

7.	 Summary

8.	 Additional	Reading

9.	 Exercises

1.	 Exercise	9.1

2.	 Exercise	9.2

20.	 Chapter	10:	Collision	Detection

1.	 Geometric	Types

1.	 Line	Segments

2.	 Planes

3.	 Bounding	Volumes

2.	 Intersection	Tests

1.	 Contains	Point	Tests

2.	 Bounding	Volume	Tests

3.	 Line	Segment	Tests

4.	 Dynamic	Objects

3.	 Adding	Collisions	to	Game	Code

1.	 The	BoxComponent	Class

2.	 The	PhysWorld	Class

3.	 Ball	Collisions	with	SegmentCast

4.	 Testing	Box	Collisions	in	PhysWorld

5.	 Player	Collision	Against	the	Walls

4.	 Game	Project

5.	 Summary

6.	 Additional	Reading

7.	 Exercises

1.	 Exercise	10.1

2.	 Exercise	10.2

3.	 Exercise	10.3

21.	 Chapter	11:	User	Interfaces

1.	 Font	Rendering

2.	 UI	Screens

1.	 The	UI	Screen	Stack

2.	 The	Pause	Menu

3.	 Buttons

4.	 Dialog	Boxes

3.	 HUD	Elements

1.	 Adding	an	Aiming	Reticule

2.	 Adding	Radar

4.	 Localization

1.	 Working	with	Unicode

2.	 Adding	a	Text	Map

3.	 Other	Localization	Concerns

5.	 Supporting	Multiple	Resolutions

6.	 Game	Project

7.	 Summary

8.	 Additional	Reading

9.	 Exercises

1.	 Exercise	11.1

2.	 Exercise	11.2

3.	 Exercise	11.3

22.	 Chapter	12:	Skeletal	Animation

1.	 Foundations	of	Skeletal	Animation

1.	 Skeletons	and	Poses

2.	 The	Inverse	Bind	Pose	Matrix

3.	 Animation	Data

4.	 Skinning

2.	 Implementing	Skeletal	Animation

1.	 Drawing	with	Skinning	Vertex	Attributes

2.	 Loading	a	Skeleton

3.	 Loading	the	Animation	Data

4.	 The	Skinning	Vertex	Shader

5.	 Updating	Animations

3.	 Game	Project

4.	 Summary

5.	 Additional	Reading

6.	 Exercises

1.	 Exercise	12.1

2.	 Exercise	12.2

23.	 Chapter	13:	Intermediate	Graphics

1.	 Improving	Texture	Quality

1.	 Texture	Sampling,	Revisited

2.	 Mipmapping

3.	 Anisotropic	Filtering

2.	 Rendering	to	Textures

1.	 Creating	the	Texture

2.	 Creating	a	Framebuffer	Object

3.	 Rendering	to	a	Framebuffer	Object

4.	 Drawing	the	Mirror	Texture	in	the	HUD

3.	 Deferred	Shading

1.	 Creating	a	G-Buffer	Class

2.	 Writing	to	the	G-buffer

3.	 Global	Lighting

4.	 Adding	Point	Lights

5.	 Improvements	and	Issues

4.	 Game	Project

5.	 Summary

6.	 Additional	Reading

7.	 Exercises

1.	 Exercise	13.1

2.	 Exercise	13.2

24.	 Chapter	14:	Level	Files	and	Binary	Data

1.	 Level	File	Loading

1.	 Loading	Global	Properties

2.	 Loading	Actors

3.	 Loading	Components

2.	 Saving	Level	Files

1.	 Saving	Global	Properties

2.	 Saving	Actors	and	Components

3.	 Binary	Data

1.	 Saving	a	Binary	Mesh	File

2.	 Loading	a	Binary	Mesh	File

4.	 Game	Project

5.	 Summary

6.	 Additional	Reading

7.	 Exercises

1.	 Exercise	14.1

2.	 Exercise	14.2

25.	 Appendix	A:	Intermediate	C++	Review

26.	 Index

1.	 ii

2.	 iii

3.	 iv

4.	 v

5.	 vi

6.	 vii

7.	 viii

8.	 ix

9.	 x

10.	 xi

11.	 xii

12.	 xiii

13.	 xiv

14.	 xv

15.	 xvi

16.	 xvii

17.	 xviii

18.	 xix

19.	 xx

20.	 xxii

21.	 xxiii

22.	 xxiv

23.	 1

24.	 2

25.	 3

26.	 4

27.	 5

28.	 6

29.	 7

30.	 8

31.	 9

32.	 10

33.	 11

34.	 12

35.	 13

36.	 14

37.	 15

38.	 16

39.	 17

40.	 18

41.	 19

42.	 20

43.	 21

44.	 22

45.	 23

46.	 24

47.	 25

48.	 26

49.	 27

50.	 28

51.	 29

52.	 30

53.	 31

54.	 32

55.	 33

56.	 34

57.	 35

58.	 36

59.	 37

60.	 38

61.	 39

62.	 40

63.	 41

64.	 42

65.	 43

66.	 44

67.	 45

68.	 46

69.	 47

70.	 48

71.	 49

72.	 50

73.	 51

74.	 52

75.	 53

76.	 54

77.	 55

78.	 56

79.	 57

80.	 58

81.	 59

82.	 60

83.	 61

84.	 62

85.	 63

86.	 64

87.	 65

88.	 66

89.	 67

90.	 68

91.	 69

92.	 70

93.	 71

94.	 72

95.	 73

96.	 74

97.	 75

98.	 76

99.	 77

100.	 78

101.	 79

102.	 80

103.	 81

104.	 82

105.	 83

106.	 84

107.	 85

108.	 86

109.	 87

110.	 88

111.	 89

112.	 90

113.	 91

114.	 92

115.	 93

116.	 94

117.	 95

118.	 96

119.	 97

120.	 98

121.	 99

122.	 100

123.	 101

124.	 102

125.	 103

126.	 104

127.	 105

128.	 106

129.	 107

130.	 108

131.	 109

132.	 110

133.	 111

134.	 112

135.	 113

136.	 114

137.	 115

138.	 116

139.	 117

140.	 118

141.	 119

142.	 120

143.	 121

144.	 122

145.	 123

146.	 124

147.	 125

148.	 126

149.	 127

150.	 128

151.	 129

152.	 130

153.	 131

154.	 132

155.	 133

156.	 134

157.	 135

158.	 136

159.	 137

160.	 138

161.	 139

162.	 140

163.	 141

164.	 142

165.	 143

166.	 144

167.	 145

168.	 146

169.	 147

170.	 148

171.	 149

172.	 150

173.	 151

174.	 152

175.	 153

176.	 154

177.	 155

178.	 156

179.	 157

180.	 158

181.	 159

182.	 160

183.	 161

184.	 162

185.	 163

186.	 164

187.	 165

188.	 166

189.	 167

190.	 168

191.	 169

192.	 170

193.	 171

194.	 172

195.	 173

196.	 174

197.	 175

198.	 176

199.	 177

200.	 178

201.	 179

202.	 180

203.	 181

204.	 182

205.	 183

206.	 184

207.	 185

208.	 186

209.	 187

210.	 188

211.	 189

212.	 190

213.	 191

214.	 192

215.	 193

216.	 194

217.	 195

218.	 196

219.	 197

220.	 198

221.	 199

222.	 200

223.	 201

224.	 202

225.	 203

226.	 204

227.	 205

228.	 206

229.	 207

230.	 208

231.	 209

232.	 210

233.	 211

234.	 212

235.	 213

236.	 214

237.	 215

238.	 216

239.	 217

240.	 218

241.	 219

242.	 220

243.	 221

244.	 222

245.	 223

246.	 224

247.	 225

248.	 226

249.	 227

250.	 228

251.	 229

252.	 230

253.	 231

254.	 232

255.	 233

256.	 234

257.	 235

258.	 236

259.	 237

260.	 238

261.	 239

262.	 240

263.	 241

264.	 242

265.	 243

266.	 244

267.	 245

268.	 246

269.	 247

270.	 248

271.	 249

272.	 250

273.	 251

274.	 252

275.	 253

276.	 254

277.	 255

278.	 256

279.	 257

280.	 258

281.	 259

282.	 260

283.	 261

284.	 262

285.	 263

286.	 264

287.	 265

288.	 266

289.	 267

290.	 268

291.	 269

292.	 270

293.	 271

294.	 272

295.	 273

296.	 274

297.	 275

298.	 276

299.	 277

300.	 278

301.	 279

302.	 280

303.	 281

304.	 282

305.	 283

306.	 284

307.	 285

308.	 286

309.	 287

310.	 288

311.	 289

312.	 290

313.	 291

314.	 292

315.	 293

316.	 294

317.	 295

318.	 296

319.	 297

320.	 298

321.	 299

322.	 300

323.	 301

324.	 302

325.	 303

326.	 304

327.	 305

328.	 306

329.	 307

330.	 308

331.	 309

332.	 310

333.	 311

334.	 312

335.	 313

336.	 314

337.	 315

338.	 316

339.	 317

340.	 318

341.	 319

342.	 320

343.	 321

344.	 322

345.	 323

346.	 324

347.	 325

348.	 326

349.	 327

350.	 328

351.	 329

352.	 330

353.	 331

354.	 332

355.	 333

356.	 334

357.	 335

358.	 336

359.	 337

360.	 338

361.	 339

362.	 340

363.	 341

364.	 342

365.	 343

366.	 344

367.	 345

368.	 346

369.	 347

370.	 348

371.	 349

372.	 350

373.	 351

374.	 352

375.	 353

376.	 354

377.	 355

378.	 356

379.	 357

380.	 358

381.	 359

382.	 360

383.	 361

384.	 362

385.	 363

386.	 364

387.	 365

388.	 366

389.	 367

390.	 368

391.	 369

392.	 370

393.	 371

394.	 372

395.	 373

396.	 374

397.	 375

398.	 376

399.	 377

400.	 378

401.	 379

402.	 380

403.	 381

404.	 382

405.	 383

406.	 384

407.	 385

408.	 386

409.	 387

410.	 388

411.	 389

412.	 390

413.	 391

414.	 392

415.	 393

416.	 394

417.	 395

418.	 396

419.	 397

420.	 398

421.	 399

422.	 400

423.	 401

424.	 402

425.	 403

426.	 404

427.	 405

428.	 406

429.	 407

430.	 408

431.	 409

432.	 410

433.	 411

434.	 412

435.	 413

436.	 414

437.	 415

438.	 416

439.	 417

440.	 418

441.	 419

442.	 420

443.	 421

444.	 422

445.	 423

446.	 424

447.	 425

448.	 426

449.	 427

450.	 428

451.	 429

452.	 430

453.	 431

454.	 432

455.	 433

456.	 434

457.	 435

458.	 436

459.	 437

460.	 438

461.	 439

462.	 440

463.	 441

464.	 442

465.	 443

466.	 444

467.	 445

468.	 446

469.	 447

470.	 448

471.	 449

472.	 450

473.	 451

474.	 452

475.	 453

476.	 454

477.	 455

478.	 456

479.	 457

480.	 458

481.	 459

482.	 460

483.	 461

484.	 462

485.	 463

486.	 464

487.	 465

488.	 466

489.	 467

490.	 468

491.	 469

492.	 470

493.	 471

494.	 472

495.	 473

496.	 474

497.	 475

498.	 476

499.	 477

500.	 478

501.	 479

502.	 480

503.	 481

504.	 482

505.	 483

506.	 484

507.	 485

508.	 486

509.	 487

510.	 488

511.	 489

512.	 490

513.	 491

514.	 492

515.	 493

516.	 494

517.	 495

518.	 496

519.	 497

520.	 498

521.	 499

522.	 500

523.	 501

524.	 502

525.	 503

526.	 504

About	This	E-Book

EPUB	is	an	open,	industry-standard	format	for	e-

books.	However,	support	for	EPUB	and	its	many	features

varies	across	reading	devices	and	applications.	Use	your

device	or	app	settings	to	customize	the	presentation	to

your	liking.	Settings	that	you	can	customize	often	include

font,	font	size,	single	or	double	column,	landscape	or

portrait	mode,	and	figures	that	you	can	click	or	tap	to

enlarge.	For	additional	information	about	the	settings

and	features	on	your	reading	device	or	app,	visit	the

device	manufacturer’s	Web	site.

Many	titles	include	programming	code	or

configuration	examples.	To	optimize	the	presentation	of

these	elements,	view	the	e-book	in	single-column,

landscape	mode	and	adjust	the	font	size	to	the	smallest

setting.	In	addition	to	presenting	code	and

configurations	in	the	reflowable	text	format,	we	have

included	images	of	the	code	that	mimic	the	presentation

found	in	the	print	book;	therefore,	where	the	reflowable

format	may	compromise	the	presentation	of	the	code

listing,	you	will	see	a	“Click	here	to	view	code	image”

link.	Click	the	link	to	view	the	print-fidelity	code	image.

To	return	to	the	previous	page	viewed,	click	the	Back

button	on	your	device	or	app.

Game	Programming	in
C++

Creating	3D	Games

Sanjay	Madhav

Boston	•	Columbus	•	Indianapolis	•	New	York	•	San

Francisco

Amsterdam	•	Cape	Town	•	Dubai	•	London	•	Madrid	•

Milan

Munich	•	Paris	•	Montreal	•	Toronto	•	Delhi	•	Mexico

City	•	São

Paulo	•	Sydney	•	Hong	Kong	•	Seoul	•	Singapore	•	Taipei

•	Tokyo

Many	of	the	designations	used	by	manufacturers	and

sellers	to	distinguish	their	products	are	claimed	as

trademarks.	Where	those	designations	appear	in	this

book,	and	the	publisher	was	aware	of	a	trademark	claim,

the	designations	have	been	printed	with	initial	capital

letters	or	in	all	capitals.

The	author	and	publisher	have	taken	care	in	the

preparation	of	this	book,	but	make	no	expressed	or

implied	warranty	of	any	kind	and	assume	no

responsibility	for	errors	or	omissions.	No	liability	is

assumed	for	incidental	or	consequential	damages	in

connection	with	or	arising	out	of	the	use	of	the

information	or	programs	contained	herein.

For	information	about	buying	this	title	in	bulk

quantities,	or	for	special	sales	opportunities	(which	may

include	electronic	versions;	custom	cover	designs;	and

content	particular	to	your	business,	training	goals,

marketing	focus,	or	branding	interests),	please	contact

our	corporate	sales	department	at

corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact

governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact

intlcs@pearson.com.

Visit	us	on	the	Web:	informit.com/aw

Library	of	Congress	Control	Number:	2017964125

Copyright	©	2018	Pearson	Education,	Inc.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw

All	rights	reserved.	Printed	in	the	United	States	of

America.	This	publication	is	protected	by	copyright,	and

permission	must	be	obtained	from	the	publisher	prior	to

any	prohibited	reproduction,	storage	in	a	retrieval

system,	or	transmission	in	any	form	or	by	any	means,

electronic,	mechanical,	photocopying,	recording,	or

likewise.	For	information	regarding	permissions,	request

forms,	and	the	appropriate	contacts	within	the	Pearson

Education	Global	Rights	&	Permissions	Department,

please	visit	www.pearsoned.com/permissions/.

Overwatch™	is	a	trademark	of	Blizzard	Entertainment,

Inc.,	in	the	U.S.	and/or	other	countries.

Call	of	Duty 	is	a	registered	trademark	of	Activision

Publishing,	Inc.

Uncharted	™	and	Horizon:	Zero	Dawn™	are	trademarks

of	and	God	of	War 	is	a	registered	trademark	of	Sony

Interactive	Entertainment	LLC.

Visual	Studio ,	Xbox ,	and	Windows 	are	registered

trademarks	of	Microsoft	Corporation.

Apple ,	iOS ,	Mac ,	macOS ,	and	Xcode 	are

registered	trademarks	of	Apple	Inc.

GitHub 	is	a	registered	trademark	of	GitHub,	Inc.

OpenGL 	and	the	oval	logo	are	trademarks	or	registered

trademarks	of	Silicon	Graphics,	Inc.	in	the	United	States

and/or	other	countries	worldwide.

Linux 	is	a	registered	trademark	of	Linus	Torvalds.

FMOD 	is	a	registered	trademark	of	Firelight

®

®

® ® ®

® ® ® ® ®

®

®

®

®

http://www.pearsoned.com/permissions/

Technologies	Pty,	Ltd.

Pac-Man 	is	a	registered	trademark	of	Bandai	Namco

Entertainment	Inc.

Asteroids 	and	Pong 	are	registered	trademarks	of	Atari

Interactive	Inc.

PlayStation 	is	a	registered	trademark	of	Sony

Interactive	Entertainment	Inc.

Android 	is	a	registered	trademark	of	Google	Inc.

Unreal 	is	a	trademark	or	registered	trademark	of	Epic

Games,	Inc.	in	the	United	States	of	America	and

elsewhere.

Unity 	is	a	registered	trademark	of	Unity	Technologies.

Maya 	and	FBX 	are	registered	trademarks	of

Autodesk,	Inc.,	in	the	USA	and	other	countries.

Skyrim 	is	a	registered	trademark	of	ZeniMax	Media

Inc.

Planet	Coaster 	is	a	registered	trademark	of	Frontier

Developments	Plc.

ISBN-13:	978-0-13-459720-1

ISBN-10:	0-13-459720-6

1			18

Editor-in-Chief

Mark	Taub

Executive	Editor

®

® ®

®

®

®

®

® ®

®

®

Laura	Lewin

Development	Editor

Michael	Thurston

Managing	Editor

Sandra	Schroeder

Tech	Editors

Josh	Glazer

Brian	Overland

Matt	Whiting

Senior	Project	Editor	

Lori	Lyons

Production	Manager

Dhayanidhi	Karunanidhi

Copy	Editor

Kitty	Wilson

Indexer	

Lisa	Stumpf

Proofreader

Larry	Sulky

Editorial	Assistant

Courtney	Martin

Cover	Designer

Chuti	Prasertsith

Compositor

codemantra

To	my	family	and	friends:	Thanks	for	the	support.

Contents	at	a	Glance

Preface

Acknowledgments

About	the	Author

1	Game	Programming	Overview

2	Game	Objects	and	2D	Graphics

3	Vectors	and	Basic	Physics

4	Artificial	Intelligence

5	OpenGL

6	3D	Graphics

7	Audio

8	Input	Systems

9	Cameras

10	Collision	Detection

11	User	Interfaces

12	Skeletal	Animation

13	Intermediate	Graphics

14	Level	Files	and	Binary	Data

A	Intermediate	C++	Review

Index

Register	your	copy	of	Game	Programming	in	C++

on	the	InformIT	site	for	convenient	access	to

updates	and	corrections	as	they	become	available.

To	start	the	registration	process,	go	to

informit.com/register	and	log	in	or	create	an

account.	Enter	the	product	ISBN	9780134597201

and	click	Submit.	Look	on	the	Registered	Products

tab	for	an	Access	Bonus	Content	link	next	to	this

product,	and	follow	that	link	to	access	any	available

bonus	materials.	If	you	would	like	to	be	notified	of

exclusive	offers	on	new	editions	and	updates,	please

check	the	box	to	receive	email	from	us.

Contents

Preface

Acknowledgments

About	the	Author

1	Game	Programming	Overview

Setting	Up	a	Development	Environment

Microsoft	Windows

Apple	macOS

Getting	This	Book’s	Source	Code

Beyond	the	C++	Standard	Library

The	Game	Loop	and	Game	Class

Anatomy	of	a	Frame

Implementing	a	Skeleton	Game	Class

Main	Function

Basic	Input	Processing

Basic	2D	Graphics

The	Color	Buffer

Double	Buffering

Implementing	Basic	2D	Graphics

Drawing	Walls,	a	Ball,	and	a	Paddle

Updating	the	Game

Real	Time	and	Game	Time

Logic	as	a	Function	of	Delta	Time

Updating	the	Paddle’s	Position

Updating	the	Ball’s	Position

Game	Project

Summary

Additional	Reading

Exercises

Exercise	1.1

Exercise	1.2

2	Game	Objects	and	2D	Graphics

Game	Objects

Types	of	Game	Objects

Game	Object	Models

Integrating	Game	Objects	into	the	Game	Loop

Sprites

Loading	Image	Files

Drawing	Sprites

Animating	Sprites

Scrolling	Backgrounds

Game	Project

Summary

Additional	Reading

Exercises

Exercise	2.1

Exercise	2.2

Exercise	2.3

3	Vectors	and	Basic	Physics

Vectors

Getting	a	Vector	between	Two	Points:	Subtraction

Scaling	a	Vector:	Scalar	Multiplication

Combining	Two	Vectors:	Addition

Determining	a	Distance:	Length

Determining	Directions:	Unit	Vectors	and	Normalization

Converting	from	an	Angle	to	a	Forward	Vector

Converting	a	Forward	Vector	to	an	Angle:	Arctangent

Determining	the	Angle	between	Two	Vectors:	Dot	Product

Calculating	a	Normal:	Cross	Product

Basic	Movement

Creating	a	Basic	MoveComponent	Class

Creating	an	InputComponent	Class

Newtonian	Physics

Linear	Mechanics	Overview

Computing	Positions	with	Euler	Integration

Issues	with	Variable	Time	Steps

Basic	Collision	Detection

Circle-Versus-Circle	Intersection

Creating	a	CircleComponent	Subclass

Game	Project

Summary

Additional	Reading

Exercises

Exercise	3.1

Exercise	3.2

Exercise	3.3

4	Artificial	Intelligence

State	Machine	Behaviors

Designing	a	State	Machine

Basic	State	Machine	Implementation

States	as	Classes

Pathfinding

Graphs

Breadth-First	Search

Heuristics

Greedy	Best-First	Search

A*	Search

Dijkstra’s	Algorithm

Following	a	Path

Other	Graph	Representations

Game	Trees

Minimax

Handling	Incomplete	Game	Trees

Alpha-Beta	Pruning

Game	Project

Summary

Additional	Reading

Exercises

Exercise	4.1

Exercise	4.2

5	OpenGL

Initializing	OpenGL

Setting	Up	the	OpenGL	Window

The	OpenGL	Context	and	Initializing	GLEW

Rendering	a	Frame

Triangle	Basics

Why	Polygons?

Normalized	Device	Coordinates

Vertex	and	Index	Buffers

Shaders

Vertex	Shaders

Fragment	Shaders

Writing	Basic	Shaders

Loading	Shaders

Drawing	Triangles

Transformation	Basics

Object	Space

World	Space

Transforming	to	World	Space

Matrices	and	Transformations

Matrix	Multiplication

Transforming	a	Point	by	Using	a	Matrix

Transforming	to	World	Space,	Revisited

Adding	World	Transforms	to	Actor

Transforming	from	World	Space	to	Clip	Space

Updating	Shaders	to	Use	Transform	Matrices

Texture	Mapping

Loading	the	Texture

Updating	the	Vertex	Format

Updating	the	Shaders

Alpha	Blending

Game	Project

Summary

Additional	Reading

Exercises

Exercise	5.1

Exercise	5.2

6	3D	Graphics

The	Actor	Transform	in	3D

Transform	Matrices	for	3D

Euler	Angles

Quaternions

New	Actor	Transform	in	Action

Loading	3D	Models

Choosing	a	Model	Format

Updating	the	Vertex	Attributes

Loading	a	gpmesh	File

Drawing	3D	Meshes

Transforming	to	Clip	Space,	Revisited

Out	with	the	Painter’s	Algorithm,	in	with	Z-Buffering

The	BasicMesh	Shader

The	MeshComponent	Class

Lighting

Revisiting	Vertex	Attributes

Types	of	Lights

Phong	Reflection	Model

Implementing	Lighting

Game	Project

Summary

Additional	Reading

Exercises

Exercise	6.1

Exercise	6.2

7	Audio

Bootstrapping	Audio

FMOD

Installing	FMOD

Creating	an	Audio	System

Banks	and	Events

The	SoundEvent	Class

3D	Positional	Audio

Setting	Up	a	Basic	Listener

Adding	Positional	Functionality	to	SoundEvent

Creating	an	AudioComponent	to	Associate	Actors	with	Sound	Events

The	Listener	in	a	Third-Person	Game

The	Doppler	Effect

Mixing	and	Effects

Buses

Snapshots

Occlusion

Game	Project

Summary

Additional	Reading

Exercises

Exercise	7.1

Exercise	7.2

8	Input	Systems

Input	Devices

Polling

Positive	and	Negative	Edges

Events

Basic	InputSystem	Architecture

Keyboard	Input

Mouse	Input

Buttons	and	Position

Relative	Motion

Scroll	Wheel

Controller	Input

Enabling	a	Single	Controller

Buttons

Analog	Sticks	and	Triggers

Filtering	Analog	Sticks	in	Two	Dimensions

Supporting	Multiple	Controllers

Input	Mappings

Game	Project

Summary

Additional	Reading

Exercises

Exercise	8.1

Exercise	8.2

9	Cameras

First-Person	Camera

Basic	First-Person	Movement

Camera	(Without	Pitch)

Adding	Pitch

First-Person	Model

Follow	Camera

Basic	Follow	Camera

Adding	a	Spring

Orbit	Camera

Spline	Camera

Unprojection

Game	Project

Summary

Additional	Reading

Exercises

Exercise	9.1

Exercise	9.2

10	Collision	Detection

Geometric	Types

Line	Segments

Planes

Bounding	Volumes

Intersection	Tests

Contains	Point	Tests

Bounding	Volume	Tests

Line	Segment	Tests

Dynamic	Objects

Adding	Collisions	to	Game	Code

The	BoxComponent	Class

The	PhysWorld	Class

Ball	Collisions	with	SegmentCast

Testing	Box	Collisions	in	PhysWorld

Player	Collision	Against	the	Walls

Game	Project

Summary

Additional	Reading

Exercises

Exercise	10.1

Exercise	10.2

Exercise	10.3

11	User	Interfaces

Font	Rendering

UI	Screens

The	UI	Screen	Stack

The	Pause	Menu

Buttons

Dialog	Boxes

HUD	Elements

Adding	an	Aiming	Reticule

Adding	Radar

Localization

Working	with	Unicode

Adding	a	Text	Map

Other	Localization	Concerns

Supporting	Multiple	Resolutions

Game	Project

Summary

Additional	Reading

Exercises

Exercise	11.1

Exercise	11.2

Exercise	11.3

12	Skeletal	Animation

Foundations	of	Skeletal	Animation

Skeletons	and	Poses

The	Inverse	Bind	Pose	Matrix

Animation	Data

Skinning

Implementing	Skeletal	Animation

Drawing	with	Skinning	Vertex	Attributes

Loading	a	Skeleton

Loading	the	Animation	Data

The	Skinning	Vertex	Shader

Updating	Animations

Game	Project

Summary

Additional	Reading

Exercises

Exercise	12.1

Exercise	12.2

13	Intermediate	Graphics

Improving	Texture	Quality

Texture	Sampling,	Revisited

Mipmapping

Anisotropic	Filtering

Rendering	to	Textures

Creating	the	Texture

Creating	a	Framebuffer	Object

Rendering	to	a	Framebuffer	Object

Drawing	the	Mirror	Texture	in	the	HUD

Deferred	Shading

Creating	a	G-Buffer	Class

Writing	to	the	G-buffer

Global	Lighting

Adding	Point	Lights

Improvements	and	Issues

Game	Project

Summary

Additional	Reading

Exercises

Exercise	13.1

Exercise	13.2

14	Level	Files	and	Binary	Data

Level	File	Loading

Loading	Global	Properties

Loading	Actors

Loading	Components

Saving	Level	Files

Saving	Global	Properties

Saving	Actors	and	Components

Binary	Data

Saving	a	Binary	Mesh	File

Loading	a	Binary	Mesh	File

Game	Project

Summary

Additional	Reading

Exercises

Exercise	14.1

Exercise	14.2

A	Intermediate	C++	Review

Index

PREFACE

Today,	video	games	are	some	of	the	most	popular	forms

of	entertainment.	Newzoo’s	“Global	Games	Market

Report”	estimates	over	$100	billion	in	revenue	for	games

in	2017.	This	staggering	amount	shows	how	popular	this

field	truly	is.	Because	of	the	size	of	this	market,	game

programmers	are	in	low	supply	and	high	demand.

Alongside	this	explosion	of	games,	game	technology	has

become	increasingly	democratized.	A	single	developer

can	make	award-winning	and	hit	games	by	using	one	of

many	popular	game	engines	and	tools.	For	game

designers,	these	tools	are	fantastic.	So	what	value	is	there

in	learning	how	to	program	games	in	C++?

If	you	take	a	step	back,	you	can	see	that	many	game

engines	and	tools	are,	at	their	core,	written	in	C++.	This

means	that	C++	is	ultimately	the	technology	behind

every	game	created	using	one	of	these	tools.

Furthermore,	top-notch	developers	who	release	some	of

the	most	popular	games	today—including	Overwatch,

Call	of	Duty,	and	Uncharted—still	predominantly	use

C++	because	it	provides	a	great	combination	of

performance	and	usability.	Thus,	any	developer	who

wants	to	eventually	work	for	one	of	these	companies

needs	a	strong	understanding	of	programming	games—

specifically	in	C++.

This	book	dives	into	many	of	the	technologies	and

systems	that	real	game	developers	use.	The	basis	for

much	of	the	material	in	this	book	is	video	game

programming	courses	taught	at	the	University	of

Southern	California	over	the	course	of	almost	a	decade.

The	approach	used	in	this	book	has	successfully

prepared	many	students	to	make	it	in	the	video	games

industry.

This	book	is	also	heavily	focused	on	real	working

implementations	of	code	integrated	into	actual	game

project	demos.	It	is	critical	to	understand	how	all	the

various	systems	that	go	into	a	game	work	together.	For

this	reason,	you	should	keep	the	source	code	handy	while

working	through	this	book.

At	this	writing,	all	the	code	provided	with	this	book

works	on	both	PC	and	macOS,	using	the	Microsoft	Visual

Studio	2017	and	Apple	Xcode	9	development

environments,	respectively.

The	source	code	for	this	book	is	available	on	GitHub,	at

https://github.com/gameprogcpp/code.	For

instructions	on	setting	up	the	development	environment

for	this	book,	see	Chapter	1,	“Game	Programming

Overview.”

WHO	SHOULD	READ	THIS
BOOK?

https://github.com/gameprogcpp/code

This	book	is	for	you	if	you’re	a	programmer	who	is

comfortable	with	C++	and	wants	to	learn	how	to

program	3D	video	games.	For	readers	rusty	on	C++,

Appendix	A,	“Intermediate	C++	Review,”	reviews

several	C++	concepts.	However,	if	you	have	with

little	or	no	prior	C++	experience,	you	should	learn

C++	before	jumping	into	this	book.	(One	option	is

Programming	Abstractions	in	C++	by	Eric	Roberts.)

This	book	also	expects	you	to	be	familiar	with	some

common	data	structures,	including	dynamic	arrays

(vectors),	trees,	and	graphs,	and	to	have	some

recollection	of	high	school-level	algebra.

The	topics	covered	in	this	book	are	applicable	to	readers

in	academic	environments,	hobbyists,	and	junior-	and

mid-level	game	programmers	who	want	to	expand	their

knowledge	of	game	programming.	The	content	in	this

book	corresponds	to	a	little	more	than	a	semester	and	a

half	of	material	in	a	university	setting.

HOW	THIS	BOOK	IS	ORGANIZED
This	book	is	intended	to	be	read	linearly	from

Chapter	1	through	Chapter	14.	However,	in	case	you

are	not	interested	in	some	specific	topics,	Figure	P.1

shows	the	dependencies	between	the	chapters.

In	the	first	handful	of	chapters,	the	games	are	in	2D	as

you	learn	core	concepts.	From	Chapter	6	onward	(with

the	exception	of	Chapter	8),	the	games	are	in	3D.

The	chapters	cover	the	following	information:

Chapter	1,	“Game	Programming	Overview,”	looks	at	the

fundamental	concepts	of	game	programming	and	how	to	get	an

initial	game	up	and	running.	It	also	introduces	the	Simple

DirectMedia	Layer	(SDL)	library.

Chapter	2,	“Game	Objects	and	2D	Graphics,”	discusses	how

programmers	organize	the	objects	in	their	games	and	explores

additional	2D	graphics	concepts,	such	as	flipbook	animation.

Chapter	3,	“Vectors	and	Basic	Physics,”	covers	mathematical

vectors,	which	are	critical	tools	for	any	game	programmer.	It	also

explores	the	basics	of	physics,	for	use	with	both	motion	and

collisions.

Chapter	4,	“Artificial	Intelligence,”	looks	at	approaches	to	make

game	characters	that	are	computer	controlled,	including	concepts

such	as	state	machines	and	pathfinding.

Chapter	5,	“OpenGL,”	explores	how	to	create	an	OpenGL	renderer,

including	implementing	vertex	and	pixel	shaders.	It	includes	a

discussion	of	matrices.

Figure	P.1	Chapter	dependencies

Chapter	6,	“3D	Graphics,”	focuses	on	converting	the	code	created	so

far	to	work	for	a	3D	game,	including	how	to	represent	the	view,

projection,	and	rotations.

Chapter	7,	“Audio,”	covers	how	to	bootstrap	an	audio	system	using

the	excellent	FMOD	API.	It	includes	coverage	of	3D	positional

audio.

Chapter	8,	“Input	Systems,”	discusses	how	to	design	a	more	robust

input	system	for	processing	keyboard,	mouse,	and	game	controller

events.

Chapter	9,	“Cameras,”	shows	how	to	implement	several	different	3D

cameras,	including	a	first-person	camera,	a	follow	camera,	and	an

orbit	camera.

Chapter	10,	“Collision	Detection,”	dives	into	methods	of	collision

detection	for	games,	including	spheres,	planes,	line	segments,	and

boxes.

Chapter	11,	“User	Interfaces,”	looks	at	implementing	both	a	menu

system	and	heads-up	display	(HUD)	elements	such	as	a	radar	and

aiming	reticule.

Chapter	12,	“Skeletal	Animation,”	covers	how	to	animate	characters

in	3D.

Chapter	13,	“Intermediate	Graphics,”	explores	a	handful	of

intermediate	graphics	topics,	including	how	to	implement	deferred

shading.

Chapter	14,	“Level	Files	and	Binary	Data,”	discusses	how	to	load

and	save	level	files,	as	well	as	how	to	write	binary	file	formats.

Appendix	A,	“Intermediate	C++	Review,”	reviews	several

intermediate	C++	topics	used	throughout	the	book	including

memory	allocation	and	collections.

Each	chapter	includes	a	corresponding	game	project

(with	source	code	available,	as	mentioned),

recommended	additional	readings,	and	a	couple	of

exercises.	These	exercises	generally	instruct	you	to	add

additional	features	to	the	code	implemented	in	the

chapter.

CONVENTIONS	USED	IN	THIS
BOOK
New	terms	appear	in	bold.	Code	appears	in	a

monospaced	font.	Small	snippets	of	code

sometimes	appear	as	standalone	paragraphs:

DoSomething();

Longer	code	segments	appear	in	code	listings,	as	in

Listing	P.1.

Listing	P.1	Sample	Code	Listing

void	DoSomething()

{

			//	Do	the	thing

			ThisDoesSomething();

}

From	time	to	time,	some	paragraphs	appear	as	notes,

tips,	sidebars,	and	warnings.	Here	is	an	example	of	each.

notenote

Notes	contain	some	useful	information	about	implementation	changes	or
other	features	that	are	worth	noting.

tiptip

Tips	provide	hints	on	how	to	add	certain	additional	features	to	your	code.

warningwarning

Warnings	call	out	specific	pitfalls	that	warrant	caution.

SIDEBAR

Sidebars	are	lengthier	discussions	that	are	tangential	to	the	main

content	of	the	chapter.	This	content	is	interesting	but	isn’t	crucial	to
understanding	the	core	topics	of	the	chapter.

ACKNOWLEDGMENTS

Although	this	is	not	my	first	book,	writing	this	one	has

been	an	especially	long	process.	I	am	thankful	that	Laura

Lewin,	the	executive	editor	on	this	book,	was	especially

patient	throughout	the	two	years	this	book	was	in

progress.	I	would	also	like	to	thank	the	rest	of	the	team

at	Pearson,	including	Michael	Thurston,	the

development	editor	on	this	book.

I	would	also	like	to	acknowledge	the	work	put	in	by	the

technical	editors	on	this	book:	Josh	Glazer,	Brian

Overland,	and	Matt	Whiting.	The	technical	reviews	were

critical	in	making	sure	both	that	the	content	was	correct

and	that	it	was	accessible	for	the	target	audience.

I’d	also	like	to	thank	all	my	colleagues	at	the	USC

Information	Technology	Program	and	especially	those

who	helped	shape	the	curriculum	of	the	games	courses	I

teach:	Josh	Glazer,	Jason	Gregory,	Clark	Kromenaker,

Mike	Sheehan,	and	Matt	Whiting.	Much	of	the

inspiration	for	this	book	comes	from	that	curriculum.	I

would	also	like	to	thank	all	my	excellent	TAs	over	the

years,	who	are	too	numerous	to	name	personally.

I	would	also	like	to	thank	the	content	creators	on	sites

like	https://opengameart.org	and	https://freesound.org

https://opengameart.org
https://freesound.org

for	creating	excellent	game	content	released	under

Creative	Commons	licenses.	These	sites	were	critical	to

finding	assets	for	the	game	projects	in	this	book.

Finally,	I’d	like	to	thank	my	parents,	as	well	my	sister,

Nita,	and	her	family.	Without	their	support,	inspiration,

and	guidance,	I	never	would	have	gotten	here	in	the	first

place.	I’d	also	like	to	thank	my	friends,	like	Kevin,	who

understood	when	I	couldn’t	go	see	the	latest	movie,	go	to

dinner,	or	really	do	anything	social	because	I	was

“working	on	my	book.”	Well,	I	guess	I	have	time	now.…

ABOUT	THE	AUTHOR

Sanjay	Madhav	is	a	senior	lecturer	at	the	University	of

Southern	California,	where	he	teaches	several

programming	and	video	game	programming	courses.	He

has	taught	at	USC	since	2008.

Prior	to	joining	USC,	Sanjay	worked	as	a	programmer	for

several	video	game	developers,	including	Electronic	Arts,

Neversoft,	and	Pandemic	Studios.	His	credited	games

include	Medal	of	Honor:	Pacific	Assault,	Tony	Hawk’s

Project	8,	Lord	of	the	Rings:	Conquest,	and	The

Saboteur.

Sanjay	is	also	the	author	of	Game	Programming

Algorithms	and	Techniques	and	co-author	of

Multiplayer	Game	Programming.	He	has	a	B.S.	and	an

M.S.	in	computer	science	and	is	pursuing	a	Ph.D.	in

computer	science,	all	from	USC.

CHAPTER	1

GAME	PROGRAMMING
OVERVIEW

This	chapter	first	discusses	how	to	set	up	a

development	environment	and	access	the

source	code	for	this	book.	Next,	it	covers	the

core	concepts	behind	any	real-time	game:

the	game	loop,	how	a	game	updates	over

time,	and	the	basics	of	game	input	and

output.	Throughout	the	chapter,	you	will	see

how	to	implement	code	for	a	version	of	the

classic	game	Pong.

SETTING	UP	A	DEVELOPMENT
ENVIRONMENT
Although	it’s	possible	to	write	the	source	code	for	any

program	with	a	text	editor,	professional	developers

typically	use	an	integrated	development

environment	(IDE).	The	advantage	of	an	IDE	is

that	it	provides	code	completion	and	debugging	in

addition	to	text	editing	capabilities.	The	code	for	this

book	works	on	both	Microsoft	Windows	and	Apple

macOS,	and	the	choice	of	IDE	depends	on	the	choice

of	platform.	For	Windows,	this	book	uses	Microsoft

Visual	Studio,	and	for	macOS,	it	uses	Apple	Xcode.

The	remainder	of	this	section	contains	brief

instructions	on	setup	of	these	environments	on	their

respective	platforms.

Microsoft	Windows

For	Windows	development,	the	most	popular	IDE	by

far	is	Microsoft	Visual	Studio.	Visual	Studio	also

tends	to	be	the	most	popular	IDE	for	C++	game

developers,	with	most	PC	and	console	developers

gravitating	toward	the	IDE.

This	book	uses	Microsoft	Visual	Studio	Community	2017,

which	is	available	as	a	free	download	at

https://www.visualstudio.com/downloads/.	Installation

of	Visual	Studio	Community	2017	requires	Microsoft

https://www.visualstudio.com/downloads/

Windows	7	or	higher.

When	you	run	the	installer	program	for	Visual	Studio,	it

asks	which	“workloads”	it	should	install.	Make	sure	to

minimally	select	the	Game	Development	with	C++

workload.	Feel	free	to	also	select	any	other	workloads	or

options	desired.

warningwarning

THERE	ARE	DIFFERENT	VERSIONS	OF	VISUAL	STUDIO:	There	are
several	other	products	in	the	Microsoft	Visual	Studio	suite,	including	Visual
Studio	Code	and	Visual	Studio	for	Mac.	Neither	of	these	products	are	the
same	thing	as	Visual	Studio	Community	2017,	so	be	careful	to	install	the
correct	version!

Apple	macOS

On	macOS,	Apple	provides	the	free	Xcode	IDE	for

development	of	programs	for	macOS,	iOS,	and	other

related	platforms.	The	code	for	this	book	works	in

both	Xcode	8	and	9.	Note	that	Xcode	8	requires

macOS	10.11	El	Capitan	or	higher,	while	Xcode	9

requires	macOS	10.12	Sierra	or	higher.

To	install	Xcode,	simply	go	to	the	Apple	App	Store	and

search	for	Xcode.	The	first	time	Xcode	runs,	it	asks	if	you

want	to	enable	debugging	features.	Make	sure	to	select

Yes.

GETTING	THIS	BOOK’S	SOURCE
CODE
Most	professional	developers	utilize	source

control	systems,	which,	among	many	other

features,	keep	a	history	of	the	source	code.	With	such

a	system,	if	code	changes	cause	unexpected	or

undesired	behavior,	it’s	easy	to	return	to	a	previously

known	working	version	of	code.	Furthermore,	source

control	allows	for	much	easier	collaboration	between

multiple	developers.

One	popular	source	control	system	is	Git,	originally

developed	by	Linus	Torvalds	of	Linux	fame.	In	Git,	the

term	repository	refers	to	a	specific	project	hosted

under	source	control.	The	GitHub	website

(https://github.com)	provides	for	easy	creation	and

management	of	Git	repositories.

The	source	code	for	this	book	is	available	on	GitHub	at

https://github.com/gameprogcpp/code.	If	you	are

unfamiliar	with	the	Git	system,	you	can	simply	click	the

green	Clone	or	Download	button	and	choose	Download

ZIP	to	download	a	compressed	ZIP	file	that	contains	all

the	book’s	source	code.

Alternatively,	if	you	wish	to	use	Git,	you	can	clone	the

repository	via	the	command	line,	as	follows:

Click	here	to	view	code	image

$	git	clone	https://github.com/gameprogcpp/code.git

This	command	works	out	of	the	box	in	the	macOS

terminal,	but	Windows	users	need	to	first	install	Git	for

Windows	(see	https://git-for-windows.github.io).

https://github.com
https://github.com/gameprogcpp/code
https://git-for-windows.github.io

The	source	code	contains	a	separate	directory	(or	folder)

for	each	chapter.	For	example,	this	chapter’s	source	code

is	in	the	Chapter01	directory.	In	this	directory,	there	is

a	Chapter01-Windows.sln	file	for	Microsoft	Visual

Studio	and	a	Chapter01-Mac.xcodeproj	file	for

Apple	Xcode.	Before	moving	forward,	make	sure	that	you

can	compile	the	code	for	this	chapter.

BEYOND	THE	C++	STANDARD
LIBRARY
The	C++	Standard	Library	only	supports	text	console

input	and	output	and	does	not	have	any	graphics

libraries	built	in.	To	implement	graphics	in	a	C++

program,	you	must	use	one	of	the	many	available

external	libraries.

Unfortunately,	many	libraries	are	platform	specific,

meaning	they	work	on	only	one	operating	system	or	type

of	computer.	For	example,	the	Microsoft	Windows

application	programming	interface	(API)	can	create

windows	and	other	UI	elements	supported	by	the

Windows	operating	system.	However,	the	Windows	API

doesn’t	work	on	Apple	macOS—for	obvious	reasons.

Likewise,	macOS	has	its	own	set	of	libraries	for	these

same	features	that	do	not	work	on	Windows.	As	a	game

programmer,	you	can’t	always	avoid	platform-specific

libraries.	For	instance,	game	developers	working	with	the

Sony	PlayStation	4	console	must	use	libraries	provided

by	Sony.

Luckily,	this	book	sticks	to	cross-platform	libraries,

meaning	that	the	libraries	work	on	many	different

platforms.	All	the	source	code	for	this	book	works	on

recent	versions	of	both	Windows	and	macOS.	Although

Linux	support	is	untested,	the	game	projects	generally

should	also	work	on	Linux.

One	of	the	foundational	libraries	used	in	this	book	is

Simple	DirectMedia	Layer	(SDL;	see

https://www.libsdl.org).	The	SDL	library	is	a	cross-

platform	game	development	library	written	in	C.	It

provides	support	for	creating	windows,	creating	basic	2D

graphics,	processing	input,	and	outputting	audio,	among

other	features.	SDL	is	a	very	lightweight	library	that

works	on	many	platforms,	including	Microsoft	Windows,

Apple	macOS,	Linux,	iOS,	and	Android.

In	this	first	chapter,	the	only	external	library	needed	is

SDL.	Subsequent	chapters	use	other	libraries	and

introduce	them	when	needed.

THE	GAME	LOOP	AND	GAME
CLASS
One	of	the	big	differences	between	a	game	and	any

other	program	is	that	a	game	must	update	many

times	per	second	for	as	long	as	the	program	runs.	A

game	loop	is	a	loop	that	controls	the	overall	flow

for	the	entire	game	program.	Like	any	other	loop,	a

game	loop	has	code	it	executes	on	every	iteration,

and	it	has	a	loop	condition.	For	a	game	loop,	you

https://www.libsdl.org

want	to	continue	looping	as	long	as	the	player	hasn’t

quit	the	game	program.

Each	iteration	of	a	game	loop	is	a	frame.	If	a	game	runs

at	60	frames	per	second	(FPS),	this	means	the	game

loop	completes	60	iterations	every	second.	Many	real-

time	games	run	at	30	or	60	FPS.	By	running	this	many

iterations	per	second,	the	game	gives	the	illusion	of

continuous	motion	even	though	it’s	only	updating	at

periodic	intervals.	The	term	frame	rate	is

interchangeable	with	FPS;	a	frame	rate	of	60	means	the

same	thing	as	60	FPS.

Anatomy	of	a	Frame

At	a	high	level,	a	game	performs	the	following	steps

on	each	frame:

1.	It	processes	any	inputs.

2.	It	updates	the	game	world.

3.	It	generates	any	outputs.

Each	of	these	three	steps	has	more	depth	than	may	be

apparent	at	first	glance.	For	instance,	processing	inputs

(step	1)	clearly	implies	detecting	any	inputs	from	devices

such	as	a	keyboard,	mouse,	or	controller.	But	these

might	not	be	the	only	inputs	for	a	game.	Consider	a	game

that	supports	an	online	multiplayer	mode.	In	this	case,

the	game	receives	data	over	the	Internet	as	an	input.	In

certain	types	of	mobile	games,	another	input	might	be

what’s	visible	to	the	camera,	or	perhaps	GPS

information.	Ultimately,	the	inputs	to	a	game	depend	on

both	the	type	of	game	and	the	platform	it	runs	on.

Updating	a	game	world	(step	2)	means	going	through

every	object	in	the	game	world	and	updating	it	as

needed.	This	could	be	hundreds	or	even	thousands	of

objects,	including	characters	in	the	game	world,	parts	of

the	user	interface,	and	other	objects	that	affect	the	game

—even	if	they	are	not	visible.

For	step	3,	generating	any	outputs,	the	most	apparent

output	is	the	graphics.	But	there	are	other	outputs,	such

as	audio	(including	sound	effects,	music,	and	dialogue).

As	another	example,	most	console	games	have	force

feedback	effects,	such	as	the	controller	shaking	when

something	exciting	happens	in	the	game.	And	for	an

online	multiplayer	game,	an	additional	output	would	be

data	sent	to	the	other	players	over	the	Internet.

Consider	how	this	style	of	game	loop	might	apply	to	a

simplified	version	of	the	classic	Namco	arcade	game	Pac-

Man.	For	this	simplified	version	of	the	game,	assume

that	the	game	immediately	begins	with	Pac-Man	in	a

maze.	The	game	program	continues	running	until	Pac-

Man	either	completes	the	maze	or	dies.	In	this	case,	the

“process	inputs”	phase	of	the	game	loop	need	only	read

in	the	joystick	input.

The	“update	game	world”	phase	of	the	loop	updates	Pac-

Man	based	on	this	joystick	input	and	then	also	updates

the	four	ghosts,	pellets,	and	the	user	interface.	Part	of

this	update	code	must	determine	whether	Pac-Man	runs

into	any	ghosts.	Pac-Man	can	also	eat	any	pellets	or

fruits	he	moves	over,	so	the	update	portion	of	the	loop

also	needs	to	check	for	this.	Because	the	ghosts	are	fully

AI	controlled,	they	also	must	update	their	logic.	Finally,

based	on	what	Pac-Man	is	doing,	the	UI	may	need	to

update	what	data	it	displays.

notenote

This	style	of	game	loop	is	single-threaded,	meaning	it	does	not	take
advantage	of	modern	CPUs	that	can	execute	multiple	threads
simultaneously.	Making	a	game	loop	that	supports	multiple	threads	is	very
complex,	and	not	necessary	for	games	that	are	smaller	in	scope.	A	good
book	to	learn	more	about	multi-threaded	game	loops	is	Jason	Gregory’s,
listed	in	the	“Additional	Reading”	section	at	the	end	of	this	chapter.

The	only	outputs	in	the	“generate	outputs”	phase	of	the

classic	Pac-Man	game	are	the	audio	and	video.	Listing

1.1	provides	pseudocode	showing	what	the	game	loop	for

this	simplified	version	of	Pac-Man	might	look	like.

Listing	1.1	Pac-Man	Game	Loop	Pseudocode

Click	here	to	view	code	image

void	Game::RunLoop()

{

			while	(!mShouldQuit)

			{

						//	Process	Inputs

						JoystickData	j	=	GetJoystickData();

						//	Update	Game	World

						UpdatePlayerPosition(j);

						for	(Ghost&	g	:	mGhost)

						{

									if	(g.Collides(player))

									{

												//	Handle	Pac-Man	colliding	with	a	ghost

									}

									else

									{

												g.Update();

									}

						}

						//	Handle	Pac-Man	eating	pellets

						//	...

						//	Generate	Outputs

						RenderGraphics();

						RenderAudio();

			}

}

Implementing	a	Skeleton	Game	Class

You	are	now	ready	to	use	your	basic	knowledge	of	the

game	loop	to	create	a	Game	class	that	contains	code

to	initialize	and	shut	down	the	game	as	well	as	run

the	game	loop.	If	you	are	rusty	in	C++,	you	might

want	to	first	review	the	content	in	Appendix	A,

“Intermediate	C++	Review,”	as	the	remainder	of	this

book	assumes	familiarity	with	C++.	In	addition,	it

may	be	helpful	to	keep	this	chapter’s	completed

source	code	handy	while	reading	along,	as	doing	so

will	help	you	understand	how	all	the	pieces	fit

together.

Listing	1.2	shows	the	declaration	of	the	Game	class	in	the

Game.h	header	file.	Because	this	declaration	references

an	SDL_Window	pointer,	you	need	to	also	include	the

main	SDL	header	file	SDL/SDL.h.	(If	you	wanted	to

avoid	including	this	here,	you	could	use	a	forward

declaration.)	Many	of	the	member	function	names	are

self-explanatory;	for	example,	the	Initialize	function

initializes	the	Game	class,	the	Shutdown	function	shuts

down	the	game,	and	the	RunLoop	function	runs	the

game	loop.	Finally,	ProcessInput,	UpdateGame,	and

GenerateOutput	correspond	to	the	three	steps	of	the

game	loop.

Currently,	the	only	member	variables	are	a	pointer	to	the

window	(which	you’ll	create	in	the	Initialize

function)	and	a	bool	that	signifies	whether	the	game

should	continue	running	the	game	loop.

Listing	1.2	Game	Declaration

Click	here	to	view	code	image

class	Game

{

public:

			Game();

			//	Initialize	the	game

			bool	Initialize();

			//	Runs	the	game	loop	until	the	game	is	over

			void	RunLoop();

			//	Shutdown	the	game

			void	Shutdown();

private:

			//	Helper	functions	for	the	game	loop

			void	ProcessInput();

			void	UpdateGame();

			void	GenerateOutput();

			//	Window	created	by	SDL

			SDL_Window*	mWindow;

			//	Game	should	continue	to	run

			bool	mIsRunning;

};

With	this	declaration	in	place,	you	can	start

implementing	the	member	functions	in	Game.cpp.	The

constructor	simply	initializes	mWindow	to	nullptr	and

mIsRunning	to	true.

Game::Initialize
The	Initialize	function	returns	true	if

initialization	succeeds	and	false	otherwise.	You

need	to	initialize	the	SDL	library	with	the	SDL_Init

function.	This	function	takes	in	a	single	parameter,	a

bitwise-OR	of	all	subsystems	to	initialize.	For	now,

you	only	need	to	initialize	the	video	subsystem,

which	you	do	as	follows:

Click	here	to	view	code	image

int	sdlResult	=	SDL_Init(SDL_INIT_VIDEO);

Note	that	SDL_Init	returns	an	integer.	If	this	integer	is

nonzero,	it	means	the	initialization	failed.	In	this	case,

Game::Initialize	should	return	false	because

without	SDL,	the	game	cannot	continue:

Click	here	to	view	code	image

if	(sdlResult	!=	0)

{

			SDL_Log("Unable	to	initialize	SDL:	%s",	SDL_GetError());

			return	false;

}

Using	the	SDL_Log	function	is	a	simple	way	to	output

messages	to	the	console	in	SDL.	It	uses	the	same	syntax

as	the	C	printf	function,	so	it	supports	outputting

variables	to	printf	specifiers	such	as	%s	for	a	C-style

string	and	%d	for	an	integer.	The	SDL_GetError

function	returns	an	error	message	as	a	C-style	string,

which	is	why	it’s	passed	in	as	the	%s	parameter	in	this

code.

SDL	contains	several	different	subsystems	that	you	can

initialize	with	SDL_Init.	Table	1.1	shows	the	most

commonly	used	subsystems;	for	the	full	list,	consult	the

SDL	API	reference	at	https://wiki.libsdl.org.

Table	1.1	SDL	Subsystem	Flags	of	Note

Flag Subsystem

https://wiki.libsdl.org

SDL_INIT_AUDIO Audio	device	management,

playback,	and	recording

SDL_INIT_VIDEO Video	subsystem	for	creating	a

window,	interfacing	with

OpenGL,	and	2D	graphics

SDL_INIT_HAPTIC Force	feedback	subsystem

SDL_INIT_GAMECONTROLLER Subsystem	for	supporting

controller	input	devices

If	SDL	initializes	successfully,	the	next	step	is	to	create	a

window	with	the	SDL_CreateWindow	function.	This	is

just	like	the	window	that	any	other	Windows	or	macOS

program	uses.	The	SDL_CreateWindow	function	takes

in	several	parameters:	the	title	of	the	window,	the	x/y

coordinates	of	the	top-left	corner,	the	width/height	of

the	window,	and	optionally	any	window	creation	flags:

Click	here	to	view	code	image

mWindow	=	SDL_CreateWindow(

			"Game	Programming	in	C++	(Chapter	1)",	//	Window	title

			100,			//	Top	left	x-coordinate	of	window

			100,			//	Top	left	y-coordinate	of	window

			1024,		//	Width	of	window

			768,			//	Height	of	window

			0						//	Flags	(0	for	no	flags	set)

);

As	with	the	SDL_Init	call,	you	should	verify	that

SDL_CreateWindow	succeeded.	In	the	event	of	failure,

mWindow	will	be	nullptr,	so	add	this	check:

Click	here	to	view	code	image

if	(!mWindow)

{

			SDL_Log("Failed	to	create	window:	%s",	SDL_GetError());

			return	false;

}

As	with	the	initialization	flags,	there	are	several	possible

window	creation	flags,	as	shown	in	Table	1.2.	As	before,

you	can	use	a	bitwise-OR	to	pass	in	multiple	flags.

Although	many	commercial	games	use	full-screen	mode,

it’s	faster	to	debug	code	if	the	game	runs	in	windowed

mode,	which	is	why	this	book	shies	away	from	full

screen.

Table	1.2	Window	Creation	Flags	of	Note

Flag Result

SDL_WINDOW_FULLSCREEN Use	full-screen	mode

SDL_WINDOW_FULLSCREEN_DESKTOP Use	full-screen	mode	at

the	current	desktop

resolution	(and	ignore

width/height	parameters

to	SDL_CreateWindow)

SDL_WINDOW_OPENGL Add	support	for	the

OpenGL	graphics	library

SDL_WINDOW_RESIZABLE Allow	the	user	to	resize

the	window

If	SDL	initialization	and	window	creation	succeeds,

Game::Initialize	returns	true.

Game::Shutdown
The	Shutdown	function	does	the	opposite	of

Initialize.	It	first	destroys	the	SDL_Window	with

SDL_DestroyWindow	and	then	closes	SDL	with

SDL_Quit:

void	Game::Shutdown()

{

			SDL_DestroyWindow(mWindow);

			SDL_Quit();

}

Game::RunLoop
The	RunLoop	function	keeps	running	iterations	of

the	game	loop	until	mIsRunning	becomes	false,	at

which	point	the	function	returns.	Because	you	have

the	three	helper	functions	for	each	phase	of	the	game

loop,	RunLoop	simply	calls	these	helper	functions

inside	the	loop:

Click	here	to	view	code	image

void	Game::RunLoop()

{

			while	(mIsRunning)

			{

						ProcessInput();

						UpdateGame();

						GenerateOutput();

			}

}

For	now,	you	won’t	implement	these	three	helper

functions,	which	means	that	once	in	the	loop,	the	game

won’t	do	anything	just	yet.	You’ll	continue	to	build	on

this	Game	class	and	implement	these	helper	functions

throughout	the	remainder	of	the	chapter.

Main	Function

Although	the	Game	class	is	a	handy	encapsulation	of

the	game’s	behavior,	the	entry	point	of	any	C++

program	is	the	main	function.	You	must	implement

a	main	function	(in	Main.cpp)		as	shown	in	Listing

1.3.

Listing	1.3	main	Implementation

Click	here	to	view	code	image

int	main(int	argc,	char**	argv)

{

			Game	game;

			bool	success	=	game.Initialize();

			if	(success)

			{

						game.RunLoop();

			}

			game.Shutdown();

			return	0;

}

This	implementation	of	main	first	constructs	an	instance

of	the	Game	class.	It	then	calls	Initialize,	which

returns	true	if	the	game	successfully	initializes,	and

false	otherwise.	If	the	game	initializes,	you	then	enter

the	game	loop	with	the	call	to	RunLoop.	Finally,	once	the

loop	ends,	you	call	Shutdown	on	the	game.

With	this	code	in	place,	you	can	now	run	the	game

project.	When	you	do,	you	see	a	blank	window,	as	shown

in	Figure	1.1	(though	on	macOS,	this	window	may	appear

black	instead	of	white).	Of	course,	there’s	a	problem:	The

game	never	ends!	Because	no	code	changes	the

mIsRunning	member	variable,	the	game	loop	never

ends,	and	the	RunLoop	function	never	returns.

Naturally,	the	next	step	is	to	fix	this	problem	by	allowing

the	player	to	quit	the	game.

Figure	1.1	Creating	a	blank	window

Basic	Input	Processing

In	any	desktop	operating	system,	there	are	several

actions	that	the	user	can	perform	on	application

windows.	For	example,	the	user	can	move	a	window,

minimize	or	maximize	a	window,	close	a	window

(and	program),	and	so	on.	A	common	way	to

represent	these	different	actions	is	with	events.

When	the	user	does	something,	the	program	receives

events	from	the	operating	system	and	can	choose	to

respond	to	these	events.

SDL	manages	an	internal	queue	of	events	that	it	receives

from	the	operating	system.	This	queue	contains	events

for	many	different	window	actions,	as	well	as	events

related	to	input	devices.	Every	frame,	the	game	must	poll

the	queue	for	any	events	and	choose	either	to	ignore	or

process	each	event	in	the	queue.	For	some	events,	such

as	moving	the	window	around,	ignoring	the	event	means

SDL	will	just	automatically	handle	it.	But	for	other

events,	ignoring	the	event	means	nothing	will	happen.

Because	events	are	a	type	of	input,	it	makes	sense	to

implement	event	processing	in	ProcessInput.	Because

the	event	queue	may	contain	multiple	events	on	any

given	frame,	you	must	loop	over	all	events	in	the	queue.

The	SDL_PollEvent	function	returns	true	if	it	finds

an	event	in	the	queue.	So,	a	very	basic	implementation	of

ProcessInput	would	keep	calling	SDL_PollEvent	as

long	as	it	returns	true:

Click	here	to	view	code	image

void	Game::ProcessInput()

{

			SDL_Event	event;

			//	While	there	are	still	events	in	the	queue

			while	(SDL_PollEvent(&event))

			{

			}

}

Note	that	the	SDL_PollEvent	function	takes	in	an

SDL_Event	by	pointer.	This	stores	any	information

about	the	event	just	removed	from	the	queue.

Although	this	version	of	ProcessInput	makes	the

game	window	more	responsive,	the	player	still	has	no

way	to	quit	the	game.	This	is	because	you	simply	remove

all	the	events	from	the	queue	and	don’t	respond	to	them.

Given	an	SDL_Event,	the	type	member	variable

contains	the	type	of	the	event	received.	So,	a	common

approach	is	to	create	a	switch	based	on	the	type	inside

the	PollEvent	loop:

Click	here	to	view	code	image

SDL_Event	event;

while	(SDL_PollEvent(&event))

{

			switch	(event.type)

			{

						//	Handle	different	event	types	here

			}

}

One	useful	event	is	SDL_QUIT,	which	the	game	receives

when	the	user	tries	to	close	the	window	(either	by

clicking	on	the	X	or	using	a	keyboard	shortcut).	You	can

update	the	code	to	set	mIsRunning	to	false	when	it

sees	an	SDL_QUIT	event	in	the	queue:

Click	here	to	view	code	image

SDL_Event	event;

while	(SDL_PollEvent(&event))

{

			switch	(event.type)

			{

						case	SDL_QUIT:

									mIsRunning	=	false;

									break;

			}

}

Now	when	the	game	is	running,	clicking	the	X	on	the

window	causes	the	while	loop	inside	RunLoop	to

terminate,	which	in	turn	shuts	down	the	game	and	exits

the	program.	But	what	if	you	want	the	game	to	quit	when

the	user	presses	the	Escape	key?	While	you	could	check

for	a	keyboard	event	corresponding	to	this,	an	easier

approach	is	to	grab	the	entire	state	of	the	keyboard	with

SDL_GetKeyboardState,	which	returns	a	pointer	to

an	array	that	contains	the	current	state	of	the	keyboard:

Click	here	to	view	code	image

const	Uint8*	state	=	SDL_GetKeyboardState(NULL);

Given	this	array,	you	can	then	query	a	specific	key	by

indexing	into	this	array	with	a	corresponding

SDL_SCANCODE	value	for	the	key.	For	example,	the

following	sets	mIsRunning	to	false	if	the	user	presses

Escape:

Click	here	to	view	code	image

if	(state[SDL_SCANCODE_ESCAPE])

{

			mIsRunning	=	false;

}

Combining	all	this	yields	the	current	version	of

ProcessInput,	shown	in	Listing	1.4.	Now	when

running	the	game,	the	user	can	quit	either	by	closing	the

window	or	pressing	the	Escape	key.

Listing	1.4	Game::ProcessInput	Implementation

Click	here	to	view	code	image

void	Game::ProcessInput()

{

			SDL_Event	event;

			while	(SDL_PollEvent(&event))

			{

						switch	(event.type)

						{

									//	If	this	is	an	SDL_QUIT	event,	end	loop

									case	SDL_QUIT:

												mIsRunning	=	false;

												break;

						}

			}

			

			//	Get	state	of	keyboard

			const	Uint8*	state	=	SDL_GetKeyboardState(NULL);

			//	If	escape	is	pressed,	also	end	loop

			if	(state[SDL_SCANCODE_ESCAPE])

			{

						mIsRunning	=	false;

			}

}

BASIC	2D	GRAPHICS
Before	you	can	implement	the	“generate	outputs”

phase	of	the	game	loop,	you	need	some

understanding	of	how	2D	graphics	work	for	games

Most	displays	in	use	today—whether	televisions,

computer	monitors,	tablets,	or	smartphones—use	raster

graphics,	which	means	the	display	has	a	two-

dimensional	grid	of	picture	elements	(or	pixels).	These

pixels	can	individually	display	different	amounts	of	light

as	well	as	different	colors.	The	intensity	and	color	of

these	pixels	combine	to	create	a	perception	of	a

continuous	image	for	the	viewer.	Zooming	in	on	a	part	of

a	raster	image	makes	each	individual	pixel	discernable,

as	you	can	see	in	Figure	1.2.

Figure	1.2	Zooming	in	on	part	of	an	image	shows	its

distinct	pixels

The	resolution	of	a	raster	display	refers	to	the	width

and	height	of	the	pixel	grid.	For	example,	a	resolution	of

1920×1080,	commonly	known	as	1080p,	means	that

there	are	1080	rows	of	pixels,	with	each	row	containing

1920	pixels.	Similarly,	a	resolution	of	3840×2160,	known

as	4K,	has	2160	rows	with	3840	pixels	per	row.

Color	displays	mix	colors	additively	to	create	a	specific

hue	for	each	pixel.	A	common	approach	is	to	mix	three

colors	together:	red,	green,	and	blue	(abbreviated	RGB).

Different	intensities	of	these	RGB	colors	combine	to

create	a	range	(or	gamut)	of	colors.	Although	many

modern	displays	also	support	color	formats	other	than

RGB,	most	video	games	output	final	colors	in	RGB.

Whether	or	not	RGB	values	convert	to	something	else	for

display	on	the	monitor	is	outside	the	purview	of	the

game	programmer.

However,	many	games	internally	use	a	different	color

representation	for	much	of	their	graphics	computations.

For	example,	many	games	internally	support

transparency	with	an	alpha	value.	The	abbreviation

RGBA	references	RGB	colors	with	an	additional	alpha

component.	Adding	an	alpha	component	allows	certain

objects	in	a	game,	such	as	windows,	to	have	some

amount	of	transparency.	But	because	few	if	any	displays

support	transparency,	the	game	ultimately	needs	to

calculate	a	final	RGB	color	and	compute	any	perceived

transparency	itself.

The	Color	Buffer

For	a	display	to	show	an	RGB	image,	it	must	know

the	colors	of	each	pixel.	In	computer	graphics,	the

color	buffer	is	a	location	in	memory	containing	the

color	information	for	the	entire	screen.	The	display

can	use	the	color	buffer	for	drawing	the	contents

screen.	Think	of	the	color	buffer	as	a	two-

dimensional	array,	where	each	(x,	y)	index

corresponds	to	a	pixel	on	the	screen.	In	every	frame

during	the	“generate	outputs”	phase	of	the	game

loop,	the	game	writes	graphical	output	into	the	color

buffer.

The	memory	usage	of	the	color	buffer	depends	on	the

number	of	bits	that	represent	each	pixel,	called	the	color

depth.	For	example,	in	the	common	24-bit	color	depth,

red,	green,	and	blue	each	use	8	bits.	This	means	there	are

2 ,	or	16,777,216,	unique	colors.	If	the	game	also	wants

to	store	an	8-bit	alpha	value,	this	results	in	a	total	of	32

bits	for	each	pixel	in	the	color	buffer.	A	color	buffer	for	a

1080p	(1920×1080)	target	resolution	with	32	bits	per

24

pixel	uses	1920×1080×4	bytes,	or	approximately	7.9	MB.

notenote

Many	game	programmers	also	use	the	term	framebuffer	to	reference	the
location	in	memory	that	contains	the	color	data	for	a	frame.	However,	a	more
precise	definition	of	framebuffer	is	that	it	is	the	combination	of	the	color	buffer
and	other	buffers	(such	as	the	depth	buffer	and	stencil	buffer).	In	the	interest
of	clarity,	this	book	references	the	specific	buffers.

Some	recent	games	use	16	bits	per	RGB	component,

which	increases	the	number	of	unique	colors.	Of	course,

this	doubles	the	memory	usage	of	the	color	buffer,	up	to

approximately	16	MB	for	1080p.	This	may	seem	like	an

insignificant	amount,	given	that	most	video	cards	have

several	gigabytes	of	video	memory	available.	But	when

considering	all	the	other	memory	usage	of	a	cutting-edge

game,	8	MB	here	and	8	MB	there	quickly	adds	up.

Although	most	displays	at	this	writing	do	not	support	16

bits	per	color,	some	manufacturers	now	offer	displays

that	support	color	depths	higher	than	8	bits	per	color.

Given	an	8-bit	value	for	a	color,	there	are	two	ways	to

reference	this	value	in	code.	One	approach	involves

simply	using	an	unsigned	integer	corresponding	to	the

number	of	bits	for	each	color	(or	channel).	So,	for	a

color	depth	with	8	bits	per	channel,	each	channel	has	a

value	between	0	and	255.	The	alternative	approach	is	to

normalize	the	integer	over	a	decimal	range	from	0.0	to

1.0.

One	advantage	of	using	a	decimal	range	is	that	a	value

yields	roughly	the	same	color,	regardless	of	the

underlying	color	depth.	For	example,	the	normalized

RGB	value	(1.0,	0.0,	0.0)	yields	pure	red	whether	the

maximum	value	of	red	is	255	(8	bits	per	color)	or	65,535

(16	bits	per	color).	However,	the	unsigned	integer	RGB

value	(255,	0,	0)	yields	pure	red	only	if	there	are	8	bits

per	color.	With	16	bits	per	color,	(255,	0,	0)	is	nearly

black.

Converting	between	these	two	representations	is

straightforward.	Given	an	unsigned	integer	value,	divide

it	by	the	maximum	unsigned	integer	value	to	get	the

normalized	value.	Conversely,	given	a	normalized

decimal	value,	multiply	it	by	the	maximum	unsigned

integer	value	to	get	an	unsigned	integer	value.	For	now,

you	should	use	unsigned	integers	because	the	SDL

library	expects	them.

Double	Buffering

As	mentioned	earlier	in	this	chapter,	games	update

several	times	per	second	(at	the	common	rates	of	30

and	60	FPS).	If	a	game	updates	the	color	buffer	at

the	same	rate,	this	gives	the	illusion	of	motion,	much

the	way	a	flipbook	appears	to	show	an	object	in

motion	when	you	flip	through	the	pages.

However,	the	refresh	rate,	or	the	frequency	at	which

the	display	updates,	may	be	different	from	the	game’s

frame	rate.	For	example,	most	NTSC	TV	displays	have	a

refresh	rate	of	59.94	Hz,		meaning	they	refresh	very

slightly	less	than	60	times	per	second.	However,	some

newer	computer	monitors	support	a	144	Hz	refresh	rate,

which	is	more	than	twice	as	fast.

Furthermore,	no	current	display	technology	can

instantaneously	update	the	entire	screen	at	once.	There

always	is	some	update	order—whether	row	by	row,

column	by	column,	in	a	checkerboard,	and	so	on.

Whatever	update	pattern	the	display	uses,	it	takes	some

fraction	of	a	second	for	the	whole	screen	to	update.

Suppose	a	game	writes	to	the	color	buffer,	and	the

display	reads	from	that	same	color	buffer.	Because	the

timing	of	the	game’s	frame	rate	may	not	directly	match

the	monitor’s	refresh	rate,	it’s	very	like	that	the	display

will	read	from	the	color	buffer	while	the	game	is	writing

to	the	buffer.	This	can	be	problematic.

For	example,	suppose	the	game	writes	the	graphical	data

for	frame	A	into	the	color	buffer.	The	display	then	starts

reading	from	the	color	buffer	to	show	frame	A	on	the

screen.	However,	before	the	display	finishes	drawing

frame	A	onto	the	screen,	the	game	overwrites	the	color

buffer	with	the	graphical	data	for	frame	B.	The	display

ends	up	showing	part	of	frame	A	and	part	of	frame	B	on

the	screen.	Figure	1.3	illustrates	this	problem,	known	as

screen	tearing.

Figure	1.3	Simulation	of	screen	tearing	with	a

camera	panning	to	the	right

Eliminating	screen	tearing	requires	two	changes.	First,

rather	than	having	one	color	buffer	that	the	game	and

display	must	share,	you	create	two	separate	color	buffers.

Then	the	game	and	display	alternate	between	the	color

buffers	they	use	every	frame.	The	idea	is	that	with	two

separate	buffers,	the	game	can	write	to	one	(the	back

buffer)	and,	at	the	same	time,	the	display	can	read	from

the	other	one	(the	front	buffer).	After	the	frame

completes,	the	game	and	display	swap	their	buffers.	Due

to	the	use	of	two	color	buffers,	the	name	for	this

technique	is	double	buffering.

As	a	more	concrete	example,	consider	the	process	shown

in	Figure	1.4.	On	frame	A,	the	game	writes	its	graphical

output	to	buffer	X,	and	the	display	draws	buffer	Y	to	the

screen	(which	is	empty).	When	this	process	completes,

the	game	and	display	swap	which	buffers	they	use.	Then

on	frame	B,	the	game	draws	its	graphical	output	to	buffer

Y,	while	the	display	shows	buffer	X	on	screen.	On	frame

C,	the	game	returns	to	buffer	X,	and	the	display	returns

to	buffer	Y.	This	swapping	between	the	two	buffers

continues	until	the	game	program	closes.

Figure	1.4	Double	buffering	involves	swapping	the

buffers	used	by	the	game	and	display	every	frame

However,	double	buffering	by	itself	does	not	eliminate

screen	tearing.	Screen	tearing	still	occurs	if	the	display	is

drawing	buffer	X	when	the	game	wants	to	start	writing	to

X.	This	usually	happens	only	if	the	game	is	updating	too

quickly.	The	solution	to	this	problem	is	to	wait	until	the

display	finishes	drawing	its	buffer	before	swapping.	In

other	words,	if	the	display	is	still	drawing	buffer	X	when

the	game	wants	to	swap	back	to	buffer	X,	the	game	must

wait	until	the	display	finishes	drawing	buffer	X.

Developers	call	this	approach	vertical

synchronization,	or	vsync,	named	after	the	signal

that	monitors	send	when	they	are	about	to	refresh	the

screen.

With	vertical	synchronization,	the	game	might	have	to

occasionally	wait	for	a	fraction	of	a	second	for	the	display

to	be	ready.	This	means	that	the	game	loop	may	not	be

able	to	achieve	its	target	frame	rate	of	30	or	60	FPS

exactly.	Some	players	argue	that	this	causes

unacceptable	stuttering	of	the	frame	rate.	Thus,	the

decision	on	whether	to	enable	vsync	varies	depending	on

the	game	or	player.	A	good	idea	is	to	offer	vsync	as	an

option	in	the	engine	so	that	you	can	choose	between

occasional	screen	tearing	or	occasional	stuttering.

Recent	advances	in	display	technology	seek	to	solve	this

dilemma	with	an	adaptive	refresh	rate	that	varies

based	on	the	game.	With	this	approach,	rather	than	the

display	notifying	the	game	when	it	refreshes,	the	game

tells	the	display	when	to	refresh.	This	way,	the	game	and

display	are	in	sync.	This	provides	the	best	of	both	worlds

as	it	eliminates	both	screen	tearing	and	frame	rate

stuttering.	Unfortunately,	at	this	writing,	adaptive

refresh	technology	is	currently	available	only	on	certain

high-end	computer	monitors.

Implementing	Basic	2D	Graphics

SDL	has	a	simple	set	of	functions	for	drawing	2D

graphics.	Because	the	focus	of	this	chapter	is	2D,	you

can	stick	with	these	functions.	Starting	in	Chapter	5,

“OpenGL,”	you’ll	switch	to	the	OpenGL	library	for

graphics,	as	it	supports	both	2D	and	3D.

Initialization	and	Shutdown

To	use	SDL’s	graphics	code,	you	need	to	construct	an

SDL_Renderer	via	the	SDL_CreateRenderer

function.	The	term	renderer	generically	refers	to

any	system	that	draws	graphics,	whether	2D	or	3D.

Because	you	need	to	reference	this	SDL_Renderer

object	every	time	you	draw	something,	first	add	an

mRenderer	member	variable	to	Game:

SDL_Renderer*	mRenderer;

Next,	in	Game::Initialize,	after	creating	the

window,	create	the	renderer:

Click	here	to	view	code	image

mRenderer	=	SDL_CreateRenderer(

			mWindow,	//	Window	to	create	renderer	for

			-1,						//	Usually	-1

			SDL_RENDERER_ACCELERATED	|	SDL_RENDERER_PRESENTVSYNC

);

The	first	parameter	to	SDL_CreateRenderer	is	the

pointer	to	the	window	(which	you	saved	in	mWindow).

The	second	parameter	specifies	which	graphics	driver	to

use;	this	might	be	relevant	if	the	game	has	multiple

windows.	But	with	only	a	single	window,	the	default	is

-1,	which	means	to	let	SDL	decide.	As	with	the	other

SDL	creation	functions,	the	last	parameter	is	for

initialization	flags.	Here,	you	choose	to	use	an

accelerated	renderer	(meaning	it	takes	advantage	of

graphics	hardware)	and	enable	vertical	synchronization.

These	two	flags	are	the	only	flags	of	note	for

SDL_CreateRenderer.

As	with	SDL_CreateWindow,	the

SDL_CreateRenderer	function	returns	a	nullptr	if	it

fails	to	initialize	the	renderer.	As	with	initializing

SDL,		Game::Initialize	returns	false	if	the

renderer	fails	to	initialize.

To	shut	down	the	renderer,	simply	add	a	call	to

SDL_DestroyRenderer	in	Game::Shutdown:

SDL_DestroyRenderer(mRenderer);

Basic	Drawing	Setup
At	a	high	level,	drawing	in	any	graphics	library	for

games	usually	involves	the	following	steps:

1.	Clear	the	back	buffer	to	a	color	(the	game’s	current

buffer).

2.	Draw	the	entire	game	scene.

3.	Swap	the	front	buffer	and	back	buffer.

First,	let’s	worry	about	the	first	and	third	steps.	Because

graphics	are	an	output,	it	makes	sense	to	put	graphics

drawing	code	in	Game::GenerateOutput.

To	clear	the	back	buffer,	you	first	need	to	specify	a	color

with	SDL_SetRenderDrawColor.	This	function	takes

in	a	pointer	to	the	renderer,	as	well	as	the	four	RGBA

components	(from	0	to	255).	For	example,	to	set	the

color	as	blue	with	100%	opacity,	use	the	following:

SDL_SetRenderDrawColor(

			mRenderer,

			0,			//	R

			0,			//	G

			255,	//	B

			255		//	A

);

Next,	call	SDL_RenderClear	to	clear	the	back	buffer	to

the	current	draw	color:

SDL_RenderClear(mRenderer);

The	next	step—skipped	for	now—is	to	draw	the	entire

game	scene.

Finally,	to	swap	the	front	and	back	buffers,	you	call

SDL_RenderPresent:

SDL_RenderPresent(mRenderer);

With	this	code	in	place,	if	you	now	run	the	game,	you’ll

see	a	filled-in	blue	window,	as	shown	in	Figure	1.5.

Figure	1.5	Game	drawing	a	blue	background

Drawing	Walls,	a	Ball,	and	a	Paddle

This	chapter’s	game	project	is	a	version	of	the	classic

video	game	Pong,	where	a	ball	moves	around	the

screen,	and	the	player	controls	a	paddle	that	can	hit

the	ball.	Making	a	version	of	Pong	is	a	rite	of	passage

for	any	aspiring	game	developer—analogous	to

making	a	“Hello	World”	program	when	first	learning

how	to	program.	This	section	explores	drawing

rectangles	to	represent	the	objects	in	Pong.	Because

these	are	objects	in	the	game	world,	you	draw	them

in	GenerateOuput—after	clearing	the	back	buffer
but	before	swapping	the	front	and	back	buffers.

For	drawing	filled	rectangles,	SDL	has	a

SDL_RenderFillRect	function.	This	function	takes	in

an	SDL_Rect	that	represents	the	bounds	of	the	rectangle

and	draws	a	filled-in	rectangle	using	the	current	draw

color.	Of	course,	if	you	keep	the	draw	color	the	same	as

the	background,	you	won’t	see	any	rectangles.	You

therefore	need	to	change	the	draw	color	to	white:

Click	here	to	view	code	image

SDL_SetRenderDrawColor(mRenderer,	255,	255,	255,	255);

Next,	to	draw	the	rectangle,	you	need	to	specify

dimensions	via	an	SDL_Rect	struct.	The	rectangle	has

four	parameters:	the	x/y	coordinates	of	the	top-left

corner	of	the	rectangle	onscreen,	and	the	width/height	of

the	rectangle.	Keep	in	mind	that	in	SDL	rendering,	as	in

many	other	2D	graphics	libraries,	the	top-left	corner	of

the	screen	is	(0,	0),	positive	x	is	to	the	right,	and	positive

y	is	down.

For	example,	if	you	want	to	draw	a	rectangle	at	the	top	of

the	screen,	you	can	use	the	following	declaration	of	an

SDL_Rect:

SDL_Rect	wall{

			0,								//	Top	left	x

			0,								//	Top	left	y

			1024,					//	Width

			thickness	//	Height

};

Here,	the	x/y	coordinates	of	the	top-left	corner	are	(0,	0),

meaning	the	rectangle	will	be	at	the	top	left	of	the	screen.

You	hard-code	the	width	of	the	rectangle	to	1024,

corresponding	to	the	width	of	the	window.	(It’s	generally

frowned	upon	to	assume	a	fixed	window	size,	as	is	done

here,	and	you’ll	remove	this	assumption	in	later

chapters.)	The	thickness	variable	is	const	int	set	to

15,	which	makes	it	easy	to	adjust	the	thickness	of	the

wall.

Finally,	you	draw	the	rectangle	with

SDL_RenderFillRect,	passing	in	SDL_Rect	by

pointer:

Click	here	to	view	code	image

SDL_RenderFillRect(mRenderer,	&wall);

The	game	then	draws	a	wall	in	the	top	part	of	the	screen.

You	can	use	similar	code	to	draw	the	bottom	wall	and	the

right	wall,	only	changing	the	parameters	of	the

SDL_Rect.	For	example,	the	bottom	wall	could	have	the

same	rectangle	as	the	top	wall	except	that	the	top-left	y

coordinate	could	be	768	-	thickness.

Unfortunately,	hard-coding	the	rectangles	for	the	ball

and	paddle	does	not	work	because	both	objects	will

ultimately	move	in	the	UpdateGame	stage	of	the	loop.

Although	it	makes	some	sense	to	represent	both	the	ball

and	paddle	as	classes,	this	discussion	doesn’t	happen

until	Chapter	2,	“Game	Objects	and	2D	Graphics.”	In	the

meantime,	you	can	just	use	member	variables	to	store

the	center	positions	of	both	objects	and	draw	their

rectangles	based	on	these	positions.

First,	declare	a	simple	Vector2	struct	that	has	both	x

and	y	components:

struct	Vector2

{

			float	x;

			float	y;

};

For	now,	think	of	a	vector	(not	a	std::vector)	as	a

simple	container	for	coordinates.	Chapter	3,	“Vectors

and	Basic	Physics,”	explores	the	topic	of	vectors	in	much

greater	detail.

Next,	add	two	Vector2s	as	member	variables	to	Game—

one	for	the	paddle	position	(mPaddlePos)	and	one	for

the	ball’s	position	(mBallPos).	The	game	constructor

then	initializes	these	to	sensible	initial	values:	the	ball

position	to	the	center	of	the	screen	and	the	paddle

position	to	the	center	of	the	left	side	of	the	screen.

Armed	with	these	member	variables,	you	can	then	draw

rectangles	for	the	ball	and	paddle	in	GenerateOutput.

However,	keep	in	mind	that	the	member	variables

represent	the	center	points	of	the	paddle	and	ball,	while

you	define	an	SDL_Rect	in	terms	of	the	top-left	point.

To	convert	from	the	center	point	to	the	top-left	point,

you	simply	subtract	half	the	width/height	from	the	x	and

y	coordinates,	respectively.	For	example,	the	following

rectangle	works	for	the	ball:

Click	here	to	view	code	image

SDL_Rect	ball{

			static_cast<int>(mBallPos.x	-	thickness/2),

			static_cast<int>(mBallPos.y	-	thickness/2),

			thickness,

			thickness

};

The	static	casts	here	convert	mBallPos.x	and

mBallPos.y	from	floats	into	integers	(which	SDL_Rect

uses).	In	any	event,	you	can	make	a	similar	calculation

for	drawing	the	paddle,	except	its	width	and	height	are

different	sizes.

With	all	these	rectangles,		the	basic	game	drawing	now

works,	as	shown	in	Figure	1.6.	The	next	step	is	to

implement	the	UpdateGame	phase	of	the	loop,	which

moves	the	ball	and	paddle.

Figure	1.6	A	game	with	walls,	a	paddle,	and	a	ball

drawing

UPDATING	THE	GAME
Most	video	games	have	some	concept	of	time

progression.	For	real-time	games,	you	measure	this

progression	of	time	in	fractions	of	a	second.	For

example,	a	game	running	at	30	FPS	has	roughly	33

milliseconds	(ms)	elapse	from	frame	to	frame.

Remember	that	even	though	a	game	appears	to

feature	continuous	movement,	it	is	merely	an

illusion.	The	game	loop	actually	runs	several	times

per	second,	and	every	iteration	of	the	game	loop

updates	the	game	in	a	discrete	time	step.	So,	in	the

30	FPS	example,	each	iteration	of	the	game	loop

should	simulate	33ms	of	time	progression	in	the

game.	This	section	looks	at	how	to	consider	this

discrete	progression	of	time	when	programming	a

game.

Real	Time	and	Game	Time

It	is	important	to	distinguish	real	time,	the	time

elapsing	in	the	real	world,	from	game	time,	the

time	elapsing	in	the	game’s	world.	Although	there

often	is	a	1:1	correspondence	between	real	time	and

game	time,	this	isn’t	always	the	case.	Take,	for

instance,	a	game	in	a	paused	state.	Although	a	great

deal	of	time	might	elapse	in	the	real	world,	the	game

doesn’t	advance	at	all.	It’s	not	until	the	player

unpauses	the	game	that	the	game	time	resumes

updating.

There	are	many	other	instances	where	real	time	and

game	time	might	diverge.	For	example,	some	games

feature	a	“bullet	time”	gameplay	mechanic	that	reduces

the	speed	of	the	game.	In	this	case,	the	game	time	must

update	at	a	substantially	slower	rate	than	actual	time.	On

the	opposite	end	of	the	spectrum,	many	sports	games

feature	sped-up	time.	In	a	football	game,	rather	than

requiring	a	player	to	sit	through	15	full	minutes	per

quarter,	the	game	may	update	the	clock	twice	as	fast,	so

each	quarter	takes	only	7.5	minutes.	And	some	games

may	even	have	time	advance	in	reverse.	For	example,

Prince	of	Persia:	The	Sands	of	Time	featured	a	unique

mechanic	where	the	player	could	rewind	the	game	time

to	a	certain	point.

With	all	these	ways	real	time	and	game	time	might

diverge,	it’s	clear	that	the	“update	game”	phase	of	the

game	loop	should	account	for	elapsed	game	time.

Logic	as	a	Function	of	Delta	Time

Early	game	programmers	assumed	a	specific

processor	speed	and,	therefore,	a	specific	frame	rate.

The	programmer	might	write	the	code	assuming	an	8

MHz	processor,	and	if	it	worked	properly	for	those

processors,	the	code	was	just	fine.	When	assuming	a

fixed	frame	rate,	code	that	updates	the	position	of	an

enemy	might	look	something	like	this:

Click	here	to	view	code	image

//	Update	x	position	by	5	pixels

enemy.mPosition.x	+=	5;

If	this	code	moves	the	enemy	at	the	desired	speed	on	an

8	MHz	processor,	what	happens	on	a	16	MHz	processor?

Well,	because	the	game	loop	now	runs	twice	as	fast,	the

enemy	will	now	also	move	twice	as	fast.	This	could	be	the

difference	between	a	game	that’s	challenging	for	players

and	one	that’s	impossible.	Imagine	running	this	game	on

a	modern	processor	that	is	thousands	of	times	faster.	The

game	would	be	over	in	a	heartbeat!

To	solve	this	issue,	games	use	delta	time:	the	amount	of

elapsed	game	time	since	the	last	frame.	To	convert	the

preceding	code	to	using	delta	time,	instead	of	thinking	of

movement	as	pixels	per	frame,	you	should	think	of	it	as

pixels	per	second.	So,	if	the	ideal	movement	speed	is	150

pixels	per	second,	the	following	code	is	much	more

flexible:

Click	here	to	view	code	image

//	Update	x	position	by	150	pixels/second

enemy.mPosition.x	+=	150	*	deltaTime;

Now	the	code	will	work	well	regardless	of	the	frame	rate.

At	30	FPS,	the	delta	time	is	~0.033,	so	the	enemy	will

move	5	pixels	per	frame,	for	a	total	of	150	pixels	per

second.	At	60	FPS,	the	enemy	will	move	only	2.5	pixels

per	frame	but	will	still	move	a	total	of	150	pixels	per

second.	The	movement	certainly	will	be	smoother	in	the

60	FPS	case,	but	the	overall	per-second	speed	remains

the	same.

Because	this	works	across	many	frame	rates,	as	a	rule	of

thumb,	everything	in	the	game	world	should	update	as	a

function	of	delta	time.

To	help	calculate	delta	time,	SDL	provides	an

SDL_GetTicks	member	function	that	returns	the

number	of	milliseconds	elapsed	since	the	SDL_Init

function	call.	By	saving	the	result	of	SDL_GetTicks

from	the	previous	frame	in	a	member	variable,	you	can

use	the	current	value	to	calculate	delta	time.

First,	you	declare	an	mTicksCount	member	variable

(initializing	it	to	zero	in	the	constructor):

Uint32	mTicksCount;

Using	SDL_GetTicks,	you	can	then	create	a	first

implementation	of	Game::UpdateGame:

Click	here	to	view	code	image

void	Game::UpdateGame()

{

			//	Delta	time	is	the	difference	in	ticks	from	last	frame

			//	(converted	to	seconds)

			float	deltaTime	=	(SDL_GetTicks()	-	mTicksCount)	/	1000.0f;

			//	Update	tick	counts	(for	next	frame)

			mTicksCount	=	SDL_GetTicks();

			

			//	TODO:	Update	objects	in	game	world	as	function	of	delta	time!

			//	...

}

Consider	what	happens	the	very	first	time	you	call

UpdateGame.	Because	mTicksCount	starts	at	zero,	you

end	up	with	some	positive	value	of	SDL_GetTicks	(the

milliseconds	since	initialization)	and	divide	it	by

1000.0f	to	get	a	delta	time	in	seconds.	Next,	you	save

the	current	value	of	SDL_GetTicks	in	mTicksCount.

On	the	next	frame,	the	deltaTime	line	calculates	a	new

delta	time	based	on	the	old	value	of	mTicksCount	and

the	new	value.	Thus,	on	every	frame,	you	compute	a	delta

time	based	on	the	ticks	elapsed	since	the	previous	frame.

Although	it	may	seem	like	a	great	idea	to	allow	the	game

simulation	to	run	at	whatever	frame	rate	the	system

allows,	in	practice	there	can	be	several	issues	with	this.

Most	notably,	any	game	that	relies	on	physics	(such	as	a

platformer	with	jumping)	will	have	differences	in

behavior	based	on	the	frame	rate.

Though	there	are	more	complex	solutions	to	this

problem,	the	simplest	solution	is	to	implement	frame

limiting,	which	forces	the	game	loop	to	wait	until	a

target	delta	time	has	elapsed.	For	example,	suppose	that

the	target	frame	rate	is	60	FPS.	If	a	frame	completes

after	only	15ms,	frame	limiting	says	to	wait	an	additional

~1.6ms	to	meet	the	16.6ms	target	time.

Conveniently,	SDL	also	provides	a	method	for	frame

limiting.	For	example,	to	ensure	that	at	least	16ms

elapses	between	frames,	you	can	add	the	following	code

to	the	start	of	UpdateGame:

Click	here	to	view	code	image

while	(!SDL_TICKS_PASSED(SDL_GetTicks(),	mTicksCount	+	16))

			;

You	also	must	watch	out	for	a	delta	time	that’s	too	high.

Most	notably,	this	happens	when	stepping	through	game

code	in	the	debugger.	For	example,	if	you	pause	at	a

breakpoint	in	the	debugger	for	five	seconds,	you’ll	end	up

with	a	huge	delta	time,	and	everything	will	jump	far

forward	in	the	simulation.	To	fix	this	problem,	you	can

clamp	the	delta	time	to	a	maximum	value	(such	as

0.05f).	This	way,	the	game	simulation	will	never	jump

too	far	forward	on	any	one	frame.	This	yields	the	version

of	Game::UpdateGame	in	Listing	1.5.	While	you	aren’t

updating	the	position	of	the	paddle	or	ball	just	yet,	you

are	at	least	calculating	the	delta	time	value.

Listing	1.5	Game::UpdateGame	Implementation

Click	here	to	view	code	image

void	Game::UpdateGame()

{

			//	Wait	until	16ms	has	elapsed	since	last	frame

			while	(!SDL_TICKS_PASSED(SDL_GetTicks(),	mTicksCount	+	16))

						;

			//	Delta	time	is	the	difference	in	ticks	from	last	frame

			//	(converted	to	seconds)

			float	deltaTime	=	(SDL_GetTicks()	-	mTicksCount)	/	1000.0f;

			

			//	Clamp	maximum	delta	time	value

			if	(deltaTime	>	0.05f)

			{

						deltaTime	=	0.05f;

			}

			//	TODO:	Update	objects	in	game	world	as	function	of	delta	time!

}

Updating	the	Paddle’s	Position

In	Pong,	the	player	controls	the	position	of	the

paddle	based	on	input.	Suppose	you	want	the	W	key

to	move	the	paddle	up	and	the	S	key	to	move	the

paddle	down.	Pressing	neither	key	or	both	keys

should	mean	the	paddle	doesn’t	move	at	all.

You	can	make	this	concrete	by	using	a	mPaddleDir

integer	member	variable	that’s	set	to	0	if	the	paddle

doesn’t	move,	-1	if	if	the	paddle	moves	up	(negative	y),

and	1	if		the	paddle	moves	down	(positive	y).

Because	the	player	controls	the	position	of	the	paddle	via

keyboard	input,	you	need	code	in	ProcessInput	that

updates	mPaddleDir	based	on	the	input:

mPaddleDir	=	0;

if	(state[SDL_SCANCODE_W])

{

			mPaddleDir	-=	1;

}

if	(state[SDL_SCANCODE_S])

{

			mPaddleDir	+=	1;

}

Note	how	you	add	and	subtract	from	mPaddleDir,

which	ensures	that	if	the	player	presses	both	keys,

mPaddleDir	is	zero.

Next,	in	UpdateGame,	you	can	add	code	that	updates	the

paddle	based	on	delta	time:

Click	here	to	view	code	image

if	(mPaddleDir	!=	0)

{

			mPaddlePos.y	+=	mPaddleDir	*	300.0f	*	deltaTime;

}

Here,	you	update	the	y	position	of	the	paddle	based	on

the	paddle	direction,	a	speed	of	300.0f	pixels/second,

and	delta	time.	If	mPaddleDir	is	-1,	the	paddle	will

move	up,	and	if	it’s	1,	it’ll	move	down.

One	problem	is	that	this	code	allows	the	paddle	to	move

off	the	screen.	To	fix	this,	you	can	add	boundary

conditions	for	the	paddle’s	y	position.	If	the	position	is

too	high	or	too	low,	move	it	back	to	a	valid	position:

Click	here	to	view	code	image

if	(mPaddleDir	!=	0)

{

			mPaddlePos.y	+=	mPaddleDir	*	300.0f	*	deltaTime;

			//	Make	sure	paddle	doesn't	move	off	screen!

			if	(mPaddlePos.y	<	(paddleH/2.0f	+	thickness))

			{

						mPaddlePos.y	=	paddleH/2.0f	+	thickness;

			}

			else	if	(mPaddlePos.y	>	(768.0f	-	paddleH/2.0f	-	thickness))

			{

						mPaddlePos.y	=	768.0f	-	paddleH/2.0f	-	thickness;

			}

}

Here,	the	paddleH	variable	is	a	constant	that	describes

the	height	of	the	paddle.	With	this	code	in	place,	the

player	can	now	move	the	paddle	up	and	down,	and	the

paddle	can’t	move	offscreen.

Updating	the	Ball’s	Position

Updating	the	position	of	the	ball	is	a	bit	more

complex	than	updating	the	position	of	the	paddle.

First,	the	ball	travels	in	both	the	x	and	y	directions,

not	just	in	one	direction.	Second,	the	ball	needs	to

bounce	off	the	walls	and	paddles,	which	changes	the

direction	of	travel.	So	you	need	to	both	represent	the

velocity	(speed	and	direction)	of	the	ball	and

perform	collision	detection	to	determine	if	the

ball	collides	with	a	wall.

To	represent	the	ball’s	velocity,	add	another	Vector2

member	variable	called	mBallVel.	Initialize	mBallVel

to	(-200.0f,	235.0f),	which	means	the	ball	starts

out	moving	−200	pixels/second	in	the	x	direction	and

235	pixels/second	in	the	y	direction.	(In	other	words,	the

ball	moves	diagonally	down	and	to	the	left.)

To	update	the	position	of	the	ball	in	terms	of	the	velocity,

add	the	following	two	lines	of	code	to	UpdateGame:

Click	here	to	view	code	image

mBallPos.x	+=	mBallVel.x	*	deltaTime;

mBallPos.y	+=	mBallVel.y	*	deltaTime;

This	is	like	updating	the	paddle’s	position,	except	now

you	are	updating	the	position	of	the	ball	in	both	the	x

and	y	directions.

Next,	you	need	code	that	bounces	the	ball	off	walls.	The

code	for	determining	whether	the	ball	collides	with	a	wall

is	like	the	code	for	checking	whether	the	paddle	is

offscreen.	For	example,	the	ball	collides	with	the	top	wall

if	its	y	position	is	less	than	or	equal	to	the	height	of	the

ball.

The	important	question	is:	what	to	do	when	the	ball

collides	with	the	wall?	For	example,	suppose	the	ball

moves	upward	and	to	the	right	before	colliding	against

the	top	wall.	In	this	case,	you	want	the	ball	to	now	start

moving	downward	and	to	the	right.	Similarly,	if	the	ball

hits	the	bottom	wall,	you	want	the	ball	to	start	moving

upward.	The	insight	is	that	bouncing	off	the	top	or

bottom	wall	negates	the	y	component	of	the	velocity,	as

shown	in	Figure	1.7(a).	Similarly,	colliding	with	the

paddle	on	the	left	or	wall	on	the	right	should	negate	the	x

component	of	the	velocity.

Figure	1.7	(a)	The	ball	collides	with	the	top	wall	so

starts	moving	down.	(b)	The	y	difference	between	the

ball	and	paddle	is	too	large

For	the	case	of	the	top	wall,	this	yields	code	like	the

following:

if	(mBallPos.y	<=	thickness)

{

			mBallVel.y	*=	-1;

}

However,	there’s	a	key	problem	with	this	code.	Suppose

the	ball	collides	with	the	top	wall	on	frame	A,	so	the	code

negates	the	y	velocity	to	make	the	ball	start	moving

downward.	On	frame	B,	the	ball	tries	to	move	away	from

the	wall,	but	it	doesn’t	move	far	enough.	Because	the	ball

still	collides	with	the	wall,	the	code	negates	the	y	velocity

again,	which	means	the	ball	starts	moving	upward.	Then

on	every	subsequent	frame,	the	code	keeps	negating	the

ball’s	y	velocity,	so	it	is	forever	stuck	on	the	top	wall.

To	fix	this	issue	of	the	ball	getting	stuck,	you	need	an

additional	check.	You	want	to	only	negate	the	y	velocity	if

the	ball	collides	with	the	top	wall	and	the	ball	is	moving

toward	the	top	wall	(meaning	the	y	velocity	is	negative):

Click	here	to	view	code	image

if	(mBallPos.y	<=	thickness	&&	mBallVel.y	<	0.0f)

{

			mBallVel.y	*=	-1;

}

This	way,	if	the	ball	collides	with	the	top	wall	but	is

moving	away	from	the	wall,	you	do	not	negate	the	y

velocity.

The	code	for	colliding	against	the	bottom	and	right	walls

is	very	similar	to	the	code	for	colliding	against	the	top

wall.	Colliding	against	the	paddle,	however,	is	slightly

more	complex.	First,	you	calculate	the	absolute	value	of

the	difference	between	the	y	position	of	the	ball	and	the	y

position	of	the	paddle.	If	this	difference	is	greater	than

half	the	height	of	the	paddle,	the	ball	is	too	high	or	too

low,	as	shown	earlier	in	Figure	1.7(b).	You	also	need	to

check	that	the	ball’s	x-position	lines	up	with	the	paddle,

and	the	ball	is	not	trying	to	move	away	from	the	paddle.

Satisfying	all	these	conditions	means	the	ball	collides

with	the	paddle,	and	you	should	negate	the	x	velocity:

Click	here	to	view	code	image

if	(

				//	Our	y-difference	is	small	enough

				diff	<=	paddleH	/	2.0f	&&

				//	Ball	is	at	the	correct	x-position

				mBallPos.x	<=	25.0f	&&	mBallPos.x	>=	20.0f	&&

				//	The	ball	is	moving	to	the	left

				mBallVel.x	<	0.0f)

{

			mBallVel.x	*=	-1.0f;

}

With	this	code	complete,	the	ball	and	paddle	now	both

move	onscreen,	as	in	Figure	1.8.	You	have	now

completed	your	simple	version	of	Pong!

Figure	1.8	Final	version	of	Pong

GAME	PROJECT
This	chapter’s	game	project	implements	the	full	Pong

game	code	constructed	throughout	the	chapter.	To

control	the	paddle,	the	player	uses	the	W	and	S	keys.

The	game	ends	when	the	ball	moves	offscreen.	The

code	is	available	in	the	book’s	GitHub	repository	in

the	Chapter01	directory.	Open	Chapter01-

windows.sln	in	Windows	and	Chapter01-

mac.xcodeproj	on	Mac.	(For	instructions	on	how

to	access	the	GitHub	repository,	consult	the

instructions	at	the	beginning	of	this	chapter.)

SUMMARY

Real-time	games	update	many	times	per	second	via	a

loop	called	the	game	loop.	Each	iteration	of	this	loop

is	a	frame.	For	example,	60	frames	per	second	means

that	there	are	60	iterations	of	the	game	loop	per

second.	The	game	loop	has	three	main	phases	that	it

completes	every	frame:	processing	input,	updating

the	game	world,	and	generating	output.	Input

involves	not	only	input	devices	such	as	the	keyboard

and	mouse	but	networking	data,	replay	data,	and	so

on.	Outputs	include	graphics,	audio,	and	force

feedback	controllers.

Most	displays	use	raster	graphics,	where	the	display

contains	a	grid	of	pixels.	The	size	of	the	grid	depends	on

the	resolution	of	the	display.	The	game	maintains	a	color

buffer	that	saves	color	data	for	every	pixel.	Most	games

use	double	buffering,	where	there	are	two	color	buffers,

and	the	game	and	display	alternate	between	using	these

buffers.	This	helps	reduce	the	amount	of	screen	tearing

(that	is,	the	screen	showing	parts	of	two	frames	at	once).

To	eliminate	screen	tearing,	you	also	must	enable

vertical	synchronization,	which	means	the	buffers	swap

only	when	the	display	is	ready.

For	a	game	to	work	properly	at	variable	frame	rates,	you

need	to	write	all	game	logic	as	a	function	of	delta	time—

the	time	interval	between	frames.	Thus,	the	“update

game	world”	phase	of	the	game	loop	should	account	for

delta	time.	You	can	further	add	frame	limiting	to	ensure

that	the	frame	rate	does	not	go	over	some	set	cap.

In	this	chapter,	you	have	combined	all	these	different

techniques	to	create	a	simple	version	of	the	classic	video

game	Pong.

ADDITIONAL	READING
Jason	Gregory	dedicates	several	pages	to	discussing

the	different	formulations	of	a	game	loop,	including

how	some	games	take	better	advantage	of	multi-core

CPUs.	There	are	also	many	excellent	references

online	for	the	various	libraries	used;	for	example,	the

SDL	API	reference	is	handy.

Gregory,	Jason.	Game	Engine	Architecture,

2nd	edition.	Boca	Raton:	CRC	Press,	2014.

SDL	API	Reference.

https://wiki.libsdl.org/APIByCategory.

Accessed	June	15,	2016.

EXERCISES
Both	of	this	chapter’s	exercises	focus	on	modifying

your	version	of	Pong.	The	first	exercise	involves

adding	a	second	player,	and	the	second	exercise

involves	adding	support	for	multiple	balls.

Exercise	1.1

The	original	version	of	Pong	supported	two	players.

Remove	the	right	wall	onscreen	and	replace	that	wall

with	a	second	paddle	for	player	2.	For	this	second

paddle,	use	the	I	and	K	keys	to	move	the	paddle	up

https://wiki.libsdl.org/APIByCategory

and	down.	Supporting	a	second	paddle	requires

duplicating	all	the	functionality	of	the	first	paddle:	a

member	variable	for	the	paddle’s	position,	the

direction,	code	to	process	input	for	player	2,	code

that	draws	the	paddle,	and	code	that	updates	the

paddle.	Finally,	make	sure	to	update	the	ball	collision

code	so	that	the	ball	correctly	collides	with	both

paddles.

Exercise	1.2

Many	pinball	games	support	“multiball,”	where

multiple	balls	are	in	play	at	once.	It	turns	out

multiball	is	also	fun	for	Pong!	To	support	multiple

balls,	create	a	Ball	struct	that	contains	two

Vector2s:	one	for	the	position	and	one	for	the

velocity.	Next,	create	a	std::vector<Ball>

member	variable	for	Game	to	store	these	different

balls.	Then	change	the	code	in	Game::Initialize

to	initialize	the	positions	and	velocities	of	several

balls.	In	Game::UpdateGame,	change	the	ball

update	code	so	that	rather	than	using	the	individual

mBallVel	and	mBallPos	variables,	the	code	loops

over	the	std::vector	for	all	the	balls.

CHAPTER	2

GAME	OBJECTS	AND	2D
GRAPHICS

Most	games	have	many	different	characters

and	other	objects,	and	an	important	decision

is	how	to	represent	these	objects.	This

chapter	first	covers	different	methods	of

object	representation.	Next,	it	continues	the

discussion	of	2D	graphics	techniques	by

introducing	sprites,	sprite	animations,	and

scrolling	backgrounds.	This	chapter

culminates	with	a	side-scrolling	demo	that

applies	the	covered	techniques.

GAME	OBJECTS
The	Pong	game	created	in	Chapter	1	does	not	use

separate	classes	to	represent	the	wall,	paddles,	and

ball.	Instead,	the	Game	class	uses	member	variables

to	track	the	position	and	velocity	of	the	different

elements	of	the	game.	While	this	can	work	for	a	very

simple	game,	it’s	not	a	scalable	solution.	The	term

game	object	refers	to	anything	in	the	game	world

that	updates,	draws,	or	both	updates	and	draws.

There	are	several	methods	to	represent	game	objects.

Some	games	employ	object	hierarchies,	others

employ	composition,	and	still	others	utilize	more

complex	methods.	Regardless	of	the	implementation,

a	game	needs	some	way	to	track	and	update	these

game	objects.

Types	of	Game	Objects

A	common	type	of	game	object	is	one	that’s	both

updated	every	frame	during	the	“update	game	world”

phase	of	the	loop	and	drawn	every	frame	during	the

“generate	outputs”	phase.	Any	character,	creature,	or

otherwise	movable	object	falls	under	this	umbrella.

For	example,	in	Super	Mario	Bros.,	Mario,	any

enemies,	and	all	the	dynamic	blocks	are	game	objects

that	the	game	both	updates	and	draws.

Developers	sometimes	use	the	term	static	object	for

game	objects	that	draw	but	don’t	update.	These	objects

are	visible	to	the	player	but	never	need	to	update.	An

example	of	this	is	a	building	in	the	background	of	a	level.

In	most	games,	a	building	doesn’t	move	or	attack	the

player	but	is	visible	onscreen.

A	camera	is	an	example	of	a	game	object	that	updates	but

doesn’t	draw	to	the	screen.	Another	example	is	a

trigger,	which	causes	something	to	occur	based	on

another	object’s	intersection.	For	instance,	a	horror

game	might	want	to	have	zombies	appear	when	the

player	approaches	a	door.	In	this	case,	the	level	designer

would	place	a	trigger	object	that	can	detect	when	the

player	is	near	and	trigger	the	action	to	spawn	the

zombie.	One	way	to	implement	a	trigger	is	as	an	invisible

box	that	updates	every	frame	to	check	for	intersection

with	the	player.

Game	Object	Models

There	are	numerous	game	object	models,	or	ways

to	represent	game	objects.	This	section	discusses

some	types	of	game	object	models	and	the	trade-offs

between	these	approaches.

Game	Objects	as	a	Class	Hierarchy
One	game	object	model	approach	is	to	declare	game

objects	in	a	standard	object-oriented	class	hierarchy,

which	is	sometimes	called	a	monolithic	class

hierarchy	because	all	game	objects	inherit	from	one

base	class.

To	use	this	object	model,	you	first	need	a	base	class:

Click	here	to	view	code	image

class	Actor

{

public:

			//	Called	every	frame	to	update	the	Actor

			virtual	void	Update(float	deltaTime);

			//	Called	every	frame	to	draw	the	Actor

			virtual	void	Draw();

};

Then,	different	characters	have	different	subclasses:

Click	here	to	view	code	image

class	PacMan	:	public	Actor

{

public:

			void	Update(float	deltaTime)	override;

			void	Draw()	override;

};

Similarly,	you	could	declare	other	subclasses	of	Actor.

For	example,	there	may	be	a	Ghost	class	that	inherits

from	Actor,	and	then	each	individual	ghost	could	have

its	own	class	that	inherits	from	Ghost.	Figure	2.1

illustrates	this	style	of	game	object	class	hierarchy.

Figure	2.1	Partial	class	hierarchy	for	Pac-Man

A	disadvantage	of	this	approach	is	that	it	means	that

every	game	object	must	have	all	the	properties	and

functions	of	the	base	game	object	(in	this	case,	Actor).

For	example,	this	assumes	that	every	Actor	can	update

and	draw.	But	as	discussed,	there	may	be	objects	that

aren’t	visible,	and	thus	calling	Draw	on	these	objects	is	a

waste	of	time.

The	problem	becomes	more	apparent	as	the	functionality

of	the	game	increases.	Suppose	many	of	the	actors	in	the

game—but	not	all	of	them—need	to	move.	In	the	case	of

Pac-Man,	the	ghosts	and	Pac-Man	need	to	move,	but	the

pellets	do	not.	One	approach	is	to	place	the	movement

code	inside	Actor,	but	not	every	subclass	will	need	this

code.	Alternatively,	you	could	extend	the	hierarchy	with

a	new	MovingActor	that	exists	between	Actor	and	any

subclasses	that	need	movement.	However,	this	adds

more	complexity	to	the	class	hierarchy.

Furthermore,	having	one	big	class	hierarchy	can	cause

difficulties	when	two	sibling	classes	later	need	to	have

features	shared	between	them.	For	instance,	a	game	in

the	vein	of	Grand	Theft	Auto	might	have	a	base

Vehicle	class.	From	this	class,	it	might	make	sense	to

create	two	subclasses:	LandVehicle	(for	vehicles	that

traverse	land)	and	WaterVehicle	(for	water-based

vehicles	like	boats).

But	what	happens	if	one	day	a	designer	decides	to	add	an

amphibious	vehicle?	It	may	be	tempting	to	create	a	new

subclass	called	AmphibiousVehicle	that	inherits	from

both	LandVehicle	and	WaterVehicle.	However,	this

requires	use	of	multiple	inheritance	and,	furthermore,

means	that	AmphibiousVehicle	inherits	from

Vehicle	along	two	different	paths.	This	type	of

hierarchy,	called	diamond	inheritance,	can	cause

issues	because	the	subclass	might	inherit	multiple

versions	of	a	virtual	function.	For	this	reason,	it’s

recommended	that	we	avoid	diamond	hierarchies.

Game	Objects	with	Components
Instead	of	using	a	monolithic	hierarchy,	many	games

instead	use	a	component-based	game	object

model.	This	model	has	become	increasingly	popular,

especially	because	the	Unity	game	engine	uses	it.	In

this	approach,	there	is	a	game	object	class,	but	there

are	no	subclasses	of	the	game	object.	Instead,	the

game	object	class	has-a	collection	of	component

objects	that	implement	needed	functionality.

For	example,	in	the	monolithic	hierarchy	we	looked	at

earlier,	Pinky	is	a	subclass	of	Ghost,	which	is	a	subclass

of	Actor.	However,	in	a	component-based	model,	Pinky

is	a	GameObject	instance	containing	four	components:

PinkyBehavior,	CollisionComponent,

TransformComponent,	and	DrawComponent.	Figure

2.2	shows	this	relationship.

Figure	2.2	The	components	that	make	up	the	ghost

Pinky

Each	of	these	components	has	the	specific	properties	and

functionality	needed	for	that	component.	For	example,

DrawComponent	handles	drawing	the	object	to	the

screen,	and	TransformComponent	stores	the	position

and	transformation	of	an	object	in	the	game	world.

One	way	to	implement	a	component	object	model	is	with

a	class	hierarchy	for	components.	This	class	hierarchy

generally	has	a	very	shallow	depth.	Given	a	base

Component	class,	GameObject	then	simply	has	a

collection	of	components:

Click	here	to	view	code	image

class	GameObject

{

public:

			void	AddComponent(Component*	comp);

			void	RemoveComponent(Component*	comp);

private:

			std::unordered_set<Component*>	mComponents;

};

Notice	that	GameObject	contains	only	functions	for

adding	and	removing	components.	This	makes	systems

that	track	different	types	of	components	necessary.	For

example,	every	DrawComponent	might	register	with	a

Renderer	object	so	that	when	it	is	time	to	draw	the

frame,	the	Renderer	is	aware	of	all	the	active

DrawComponents.

One	advantage	of	the	component-based	game	object

model	is	that	it’s	easier	to	add	functionality	only	to	the

specific	game	objects	that	require	it.	Any	object	that

needs	to	draw	can	have	a	DrawComponent,	but	objects

that	don’t	simply	don’t	have	one.

However,	a	disadvantage	of	pure	component	systems	is

that	dependencies	between	components	in	the	same

game	object	are	not	clear.	For	instance,	it’s	likely	that	the

DrawComponent	needs	to	know	about	the

TransformComponent	in	order	know	where	the	object

should	draw.	This	means	that	the	DrawComponent

likely	needs	to	ask	the	owning	GameObject	about	its

TransformComponent.	Depending	on	the

implementation,	the	querying	can	become	a	noticeable

performance	bottleneck.

Game	Objects	as	a	Hierarchy	with	Components
The	game	object	model	used	in	this	book	is	a	hybrid

of	the	monolithic	hierarchy	and	the	component

object	models.	This	is,	in	part,	inspired	by	the	game

object	model	used	in	Unreal	Engine	4.	There	is	a

base	Actor	class	with	a	handful	of	virtual	functions,

but	each	actor	also	has	a	vector	of	components.

Listing	2.1	shows	the	declaration	of	the	Actor	class,

with	some	getter	and	setter	functions	omitted.

Listing	2.1	Actor	Declaration

Click	here	to	view	code	image

class	Actor

{

public:

			//	Used	to	track	state	of	actor

			enum	State

			{

						EActive,

						EPaused,

						EDead

			};

			//	Constructor/destructor

			Actor(class	Game*	game);

			virtual	~Actor();

	

			//	Update	function	called	from	Game	(not	overridable)

			void	Update(float	deltaTime);

			//	Updates	all	the	components	attached	to	the	actor	(not	overridable)

			void	UpdateComponents(float	deltaTime);

			//	Any	actor-specific	update	code	(overridable)

			virtual	void	UpdateActor(float	deltaTime);

	

			//	Getters/setters

			//	...

		

			//	Add/remove	components

			void	AddComponent(class	Component*	component);

			void	RemoveComponent(class	Component*	component);

private:

			//	Actor's	state

			State	mState;

			//	Transform

			Vector2	mPosition;	//	Center	position	of	actor

			float	mScale;						//	Uniforms	scale	of	actor	(1.0f	for	100%)

			float	mRotation;			//	Rotation	angle	(in	radians)

			//	Components	held	by	this	actor

			std::vector<class	Component*>	mComponents;

			class	Game*	mGame;

};

The	Actor	class	has	several	notable	features.	The	state

enum	tracks	the	status	of	the	actor.	For	example,	Update

only	updates	the	actor	when	in	the	EActive	state.	The

EDead	state	notifies	the	game	to	remove	the	actor.	The

Update	function	calls	UpdateComponents	first	and

then	UpdateActor.	UpdateComponents	loops	over	all

the	components	and	updates	each	in	turn.	The	base

implementation	of	UpdateActor	is	empty,	but	Actor

subclasses	can	write	custom	behavior	in	an	overridden

UpdateActor	function.

In	addition,	the	Actor	class	needs	access	to	the	Game

class	for	several	reasons,	including	to	create	additional

actors.	One	approach	is	to	make	the	game	object	a

singleton,	a	design	pattern	in	which	there	is	a	single,

globally	accessible	instance	of	a	class.	But	the	singleton

pattern	can	cause	issues	if	it	turns	out	there	actually	need

to	be	multiple	instances	of	the	class.	Instead	of	using

singletons,	this	book	uses	an	approach	called

dependency	injection.	In	this	approach,	the	actor

constructor	receives	a	pointer	to	the	Game	class.	Then	an

actor	can	use	this	pointer	to	create	another	actor	(or

access	any	other	required	Game	functions).

As	in	the	Chapter	1	game	project,	a	Vector2	represents

the	position	of	an	Actor.	Actors	also	support	a	scale

(which	makes	the	actor	bigger	or	smaller)	and	a	rotation

(to	rotate	the	actor).	Note	that	the	rotation	is	in	radians,

not	degrees.

Listing	2.2	contains	the	declaration	of	the	Component

class.	The	mUpdateOrder	member	variable	is	notable.	It

allows	certain	components	to	update	before	or	after

other	components,	which	can	be	useful	in	many

situations.	For	instance,	a	camera	component	tracking	a

player	may	want	to	update	after	the	movement

component	moves	the	player.	To	maintain	this	ordering,

the	AddComponent	function	in	Actor	sorts	the

component	vector	whenever	adding	a	new	component.

Finally,	note	that	the	Component	class	has	a	pointer	to

the	owning	actor.	This	is	so	that	the	component	can

access	the	transform	data	and	any	other	information	it

deems	necessary.

Listing	2.2	Component	Declaration

Click	here	to	view	code	image

class	Component

{

public:

			//	Constructor

			//	(the	lower	the	update	order,	the	earlier	the	component	updates)

			Component(class	Actor*	owner,	int	updateOrder	=	100);

			//	Destructor

			virtual	~Component();

			//	Update	this	component	by	delta	time

			virtual	void	Update(float	deltaTime);

			int	GetUpdateOrder()	const	{	return	mUpdateOrder;	}

protected:

			//	Owning	actor

			class	Actor*	mOwner;

			//	Update	order	of	component

			int	mUpdateOrder;

};

Currently,	the	implementations	of	Actor	and

Component	do	not	account	for	player	input	devices,	and

this	chapter’s	game	project	simply	uses	special	case	code

for	input.	Chapter	3,		“Vector	and	Basic	Physics,”	revisits

how	to	incorporate	input	into	the	hybrid	game	object

model.

This	hybrid	approach	does	a	better	job	of	avoiding	the

deep	class	hierarchies	in	the	monolithic	object	model,

but	certainly	the	depth	of	the	hierarchy	is	greater	than	in

a	pure	component-based	model.	The	hybrid	approach

also	generally	avoids,	though	does	not	eliminate,	the

issues	of	communication	overhead	between	components.

This	is	because	every	actor	has	critical	properties	such	as

the	transform	data.

Other	Approaches
There	are	many	other	approaches	to	game	object

models.	Some	use	interface	classes	to	declare	the

different	possible	functionalities,	and	each	game

object	then	implements	the	interfaces	necessary	to

represent	it.	Other	approaches	extend	the

component	model	a	step	further	and	eliminate	the

containing	game	object	entirely.	Instead,	these

approaches	use	a	component	database	that	tracks

objects	with	a	numeric	identifier.	Still	other

approaches	define	objects	by	their	properties.	In

these	systems,	adding	a	health	property	to	an	object

means	that	it	can	take	and	receive	damage.

With	any	game	object	model,	each	approach	has

advantages	and	disadvantages.	However,	this	book	sticks

to	the	hybrid	approach	because	it’s	a	good	compromise

and	works	relatively	well	for	games	of	a	certain

complexity	level.

Integrating	Game	Objects	into	the	Game
Loop

Integrating	the	hybrid	game	object	model	into	the

game	loop	requires	some	code,	but	it	ultimately	isn’t

that	complex.	First,	add	two	std::vector	of

Actor	pointers	to	the	Game	class:	one	containing	the

active	actors	(mActors),	and	one	containing	pending

actors		(mPendingActors).	You	need	the	pending

actors	vector	to	handle	the	case	where,	while

updating	the	actors	(and	thus	looping	over

mActors),	you	decide	to	create	a	new	actor.	In	this

case,	you	cannot	add	an	element	to	mActors

because	you’re	iterating	over	it.	Instead,	you	need	to

add	to	the	mPendingActors	vector	and	then	move

these	actors	into	mActors	after	you’re	done

iterating.

Next,	create	two	functions,	AddActor	and

RemoveActor,	which	take	in	Actor	pointers.	The

AddActor	function	adds	the	actor	to	either

mPendingActors	or	mActors,	depending	on	whether

you	are	currently	updating	all	mActors	(denoted	by	the

mUpdatingActors	bool):

Click	here	to	view	code	image

void	Game::AddActor(Actor*	actor)

{

			//	If		updating	actors,	need	to	add	to	pending

			if	(mUpdatingActors)

			{

						mPendingActors.emplace_back(actor);

			}

			else

			{

						mActors.emplace_back(actor);

			}

}

Similarly,	RemoveActor	removes	the	actor	from

whichever	of	the	two	vectors	it	is	in.

You	then	need	to	change	the	UpdateGame	function	so

that	it	updates	all	the	actors,	as	shown	in	Listing	2.3.

After	computing	delta	time,	as	discussed	in	Chapter	1,

you	then	loop	over	every	actor	in	mActors	and	call

Update	on	each.	Next,	you	move	any	pending	actors	into

the	main	mActors	vector.	Finally,	you	see	if	any	actors

are	dead,	in	which	case	you	delete	them.

Listing	2.3	Game::UpdateGame	Updating	Actors

Click	here	to	view	code	image

void	Game::UpdateGame()

{

			//	Compute	delta	time	(as	in	Chapter	1)

			float	deltaTime	=	/*	...	*/;

		

			//	Update	all	actors

			mUpdatingActors	=	true;

			for	(auto	actor	:	mActors)

			{

						actor->Update(deltaTime);

			}

			mUpdatingActors	=	false;

	

			//	Move	any	pending	actors	to	mActors

			for	(auto	pending	:	mPendingActors)

			{

						mActors.emplace_back(pending);

			}

			mPendingActors.clear();

	

			//	Add	any	dead	actors	to	a	temp	vector

			std::vector<Actor*>	deadActors;

			for	(auto	actor	:	mActors)

			{

						if	(actor->GetState()	==	Actor::EDead)

						{

									deadActors.emplace_back(actor);

						}

			}

	

			//	Delete	dead	actors	(which	removes	them	from	mActors)

			for	(auto	actor	:	deadActors)

			{

						delete	actor;

			}

}

Adding	and	removing	actors	from	the	game’s	mActors

vector	also	adds	some	complexity	to	the	code.	This

chapter’s	game	project	has	the	Actor	object

automatically	add	or	remove	itself	from	the	game	in	its

constructor	and	destructor,	respectively.	However,	this

means	that	code	that	loops	over	the	mActors	vector	and

deletes	the	actors	(such	as	in	Game::Shutdown)	must

be	written	carefully:

Click	here	to	view	code	image

//	Because	~Actor	calls	RemoveActor,	use	a	different	style	loop

while	(!mActors.empty())

{

			delete	mActors.back();

}

SPRITES
A	sprite	is	a	visual	object	in	a	2D	game,	typically

used	to	represent	characters,	backgrounds,	and	other

dynamic	objects.	Most	2D	games	have	dozens	if	not

hundreds	of	sprites,	and	for	mobile	games,	the	sprite

data	accounts	for	much	of	the	overall	download	size

of	the	game.	Because	of	the	prevalence	of	sprites	in

2D	games,	it	is	important	to	use	them	as	efficiently

as	possible.

Each	sprite	has	one	or	more	image	files	associated	with

it.	There	are	many	different	image	file	formats,	and

games	use	different	formats	based	on	platform	and	other

constraints.	For	example,	PNG	is	a	compressed	image

format,	so	these	files	take	up	less	space	on	disk.	But

hardware	cannot	natively	draw	PNG	files,	so	they	take

longer	to	load.	Some	platforms	recommend	using

graphics	hardware–friendly	formats	such	as	PVR	(for

iOS)	and	DXT	(for	PC	and	Xbox).	This	book	sticks	with

the	PNG	file	format	because	image	editing	programs

universally	support	PNGs.

Loading	Image	Files

For	games	that	only	need	SDL’s	2D	graphics,	the

simplest	way	to	load	image	files	is	to	use	the	SDL

Image	library.	The	first	step	is	to	initialize	SDL

Image	by	using	IMG_Init,	which	takes	in	a	flag

parameter	for	the	requested	file	formats.	To	support

PNG	files,	add	the	following	call	to

Game::Initialize:

IMG_Init(IMG_INIT_PNG)

Table	2.1	lists	the	supported	file	formats.	Note	that	SDL

already	supports	the	BMP	file	format	without	SDL

Image,	which	is	why	there	is	no	IMG_INIT_BMP	flag	in

this	table.

Table	2.1	SDL	Image	File	Formats

Flag Format

IMG_INIT_JPG JPEG

IMG_INIT_PNG PNG

IMG_INIT_TIF TIFF

Once	SDL	Image	is	initialized,	you	can	use	IMG_Load	to

load	an	image	file	into	an	SDL_Surface:

Click	here	to	view	code	image

//	Loads	an	image	from	a	file

//	Returns	a	pointer	to	an	SDL_Surface	if	successful,	otherwise	nullptr

SDL_Surface*	IMG_Load(

			const	char*	file	//	Image	file	name

);

Next,	SDL_CreateTextureFromSurface	converts	an

SDL_Surface	into	an	SDL_Texture	(which	is	what

SDL	requires	for	drawing):

Click	here	to	view	code	image

//	Converts	an	SDL_Surface	to	an	SDL_Texture

//	Returns	a	pointer	to	an	SDL_Texture	if	successful,	otherwise	nullptr

SDL_Texture*	SDL_CreateTextureFromSurface(

			SDL_Renderer*	renderer,	//	Renderer	used

			SDL_Surface*	surface				//	Surface	to	convert

);

The	following	function	encapsulates	this	image-loading

process:

Click	here	to	view	code	image

SDL_Texture*	LoadTexture(const	char*	fileName)

{

			//	Load	from	file

			SDL_Surface*	surf	=	IMG_Load(fileName);

			if	(!surf)

			{

						SDL_Log("Failed	to	load	texture	file	%s",	fileName);

						return	nullptr;

			}

			//	Create	texture	from	surface

			SDL_Texture*	text	=	SDL_CreateTextureFromSurface(mRenderer,	surf);

			SDL_FreeSurface(surf);

			if	(!text)

			{

						SDL_Log("Failed	to	convert	surface	to	texture	for	%s",	fileName);

						return	nullptr;

			}

			return	text;

}

An	interesting	question	is	where	to	store	the	loaded

textures.	It’s	very	common	for	a	game	to	use	the	same

image	file	multiple	times	for	multiple	different	actors.	If

there	are	20	asteroids,	and	each	asteroid	uses	the	same

image	file,	it	doesn’t	make	sense	to	load	the	file	from	disk

20	times.

A	simple	approach	is	to	create	a	map	of	filenames	to

SDL_Texture	pointers	in	Game.	You	then	create	a

GetTexture	function	in	Game	that	takes	in	the	name	of

a	texture	and	returns	its	corresponding	SDL_Texture

pointer.	This	function	first	checks	to	see	if	the	texture

already	exists	in	the	map.	If	it	does,	you	can	simply

return	that	texture	pointer.	Otherwise,	you	run	the	code

that	loads	the	texture	from	its	file.

notenote

While	a	map	of	filenames	to	SDL_Texture	pointers	makes	sense	in	a
simple	case,	consider	that	a	game	has	many	different	types	of	assets—
textures,	sound	effects,	3D	models,	fonts,	and	so	on.	Therefore,	writing	a
more	robust	system	to	generically	handle	all	types	of	assets	makes	sense.
But	in	the	interest	of	simplicity,	this	book	does	not	implement	such	an	asset
management	system.

To	help	split	up	responsibilities,	you	also	create	a

LoadData	function	in	Game.	This	function	is	responsible

for	creating	all	the	actors	in	the	game	world.	For	now

these	actors	are	hard-coded,	but	Chapter	14,	“Level	Files

and	Binary	Data,”	adds	support	for	loading	the	actors

from	a	level	file.	You	call	the	LoadData	function	at	the

end	of	Game::Initialize.

Drawing	Sprites

Suppose	a	game	has	a	basic	2D	scene	with	a

background	image	and	a	character.	A	simple	way	to

draw	this	scene	is	by	first	drawing	the	background

image	and	then	the	character.	This	is	like	how	a

painter	would	paint	the	scene,	and	hence	this

approach	is	known	as	the	painter’s	algorithm.	In

the	painter’s	algorithm,	the	game	draws	the	sprites	in

back-to-front	order.	Figure	2.3	demonstrates	the

painter’s	algorithm,	first	drawing	the	background

star	field,	then	the	moon,	then	any	asteroids,	and

finally	the	ship.

Figure	2.3	The	painter’s	algorithm	applied	to	a

space	scene

Because	this	book	uses	a	game	object	model	with

components,	it	makes	a	great	deal	of	sense	to	create	a

SpriteComponent	class.	Listing	2.4	provides	the

declaration	of	SpriteComponent.

Listing	2.4	SpriteComponent	Declaration

Click	here	to	view	code	image

class	SpriteComponent	:	public	Component

{

public:

			//	(Lower	draw	order	corresponds	with	further	back)

			SpriteComponent(class	Actor*	owner,	int	drawOrder	=	100);

			~SpriteComponent();

			virtual	void	Draw(SDL_Renderer*	renderer);

			virtual	void	SetTexture(SDL_Texture*	texture);

		

			int	GetDrawOrder()	const	{	return	mDrawOrder;	}

			int	GetTexHeight()	const	{	return	mTexHeight;	}

			int	GetTexWidth()	const	{	return	mTexWidth;	}

protected:

			//	Texture	to	draw

			SDL_Texture*	mTexture;

			//	Draw	order	used	for	painter's	algorithm

			int	mDrawOrder;

			//	Width/height	of	texture

			int	mTexWidth;

			int	mTexHeight;

};

The	game	implements	the	painter’s	algorithm	by

drawing	sprite	components	in	the	order	specified	by	the

mDrawOrder	member	variable.	The	SpriteComponent

constructor	adds	itself	to	a	vector	of	sprite	components

in	the	Game	class	via	the	Game::AddSprite	function.

In	Game::AddSprite,	you	need	to	ensure	that

mSprites	stays	sorted	by	draw	order.	Because	every	call

to	AddSprite	preserves	the	sorted	order,	you	can

implement	this	as	an	insertion	into	an	already-sorted

vector:

Click	here	to	view	code	image

void	Game::AddSprite(SpriteComponent*	sprite)

{

			//	Find	the	insertion	point	in	the	sorted	vector

			//	(The	first	element	with	a	higher	draw	order	than	me)

			int	myDrawOrder	=	sprite->GetDrawOrder();

			auto	iter	=	mSprites.begin();

			for	(;

						iter	!=	mSprites.end();

						++iter)

			{

						if	(myDrawOrder	<	(*iter)->GetDrawOrder())

						{

									break;

						}

			}

	

			//	Inserts	element	before	position	of	iterator

			mSprites.insert(iter,	sprite);

}

Because	this	orders	the	sprite	components	by

mDrawOrder,	Game::GenerateOutput	can	just	loop

over	the	vector	of	sprite	components	and	call	Draw	on

each.	You	put	this	code	in	between	the	code	that	clears

the	back	buffer	and	swaps	the	back	buffer	and	front

buffer,	replacing	the	code	in	the	Chapter	1	game	that

drew	the	wall,	ball,	and	paddle	rectangles.

As	discussed	in	Chapter	6,	“3D	Graphics,”	3D	games	can

also	use	the	painter’s	algorithm,	though	there	are	some

drawbacks	in	doing	so.	But	for	2D	scenes,	the	painter’s

algorithm	works	very	well.

The	SetTexture	function	both	sets	the	mTexture

member	variable	and	uses	SDL_QueryTexture	to	get

the	width	and	height	of	the	texture:

Click	here	to	view	code	image

void	SpriteComponent::SetTexture(SDL_Texture*	texture)

{

			mTexture	=	texture;

			//	Get	width/height	of	texture

			SDL_QueryTexture(texture,	nullptr,	nullptr,

						&mTexWidth,	&mTexHeight);

}

To	draw	textures,	there	are	two	different	texture	drawing

functions	in	SDL.	The	simpler	function	is

SDL_RenderCopy:

Click	here	to	view	code	image

//	Renders	a	texture	to	the	rendering	target

//	Returns	0	on	success,	negative	value	on	failure

int	SDL_RenderCopy(

			SDL_Renderer*	renderer,		//	Render	target	to	draw	to

			SDL_Texture*	texture,				//	Texture	to	draw

			const	SDL_Rect*	srcrect,	//	Part	of	texture	to	draw	(null	if	whole)

			const	SDL_Rect*	dstrect,	//	Rectangle	to	draw	onto	the	target

);

However,	for	more	advanced	behavior	(such	as	rotating

sprites),	you	can	use	SDL_RenderCopyEx:

Click	here	to	view	code	image

//	Renders	a	texture	to	the	rendering	target

//	Returns	0	on	success,	negative	value	on	failure

int	SDL_RenderCopyEx(

			SDL_Renderer*	renderer,		//	Render	target	to	draw	to

			SDL_Texture*	texture,				//	Texture	to	draw

			const	SDL_Rect*	srcrect,	//	Part	of	texture	to	draw	(null	if	whole)

			const	SDL_Rect*	dstrect,	//	Rectangle	to	draw	onto	the	target

			double	angle,												//	Rotation	angle	(in	degrees,	clockwise)

			const	SDL_Point*	center,	//	Point	to	rotate	about	(nullptr	for	center)

			SDL_RenderFlip	flip,					//	  How	to	flip	texture	(usually	SDL_FLIP_NONE)

);

Because	actors	have	a	rotation,	and	you	want	your

sprites	to	inherit	this	rotation,	you	must	use

SDL_RenderCopyEx.	This	introduces	a	few

complexities	to	the	SpriteComponent::Draw

function.	First,	the	SDL_Rect	struct’s	x/y	coordinates

correspond	to	the	top-left	corner	of	the	destination.

However,	the	actor’s	position	variable	specifies	the

center	position	of	the	actor.	So,	as	with	the	ball	and

paddle	in	Chapter	1,	you	must	compute	the	coordinates

for	the	top-left	corner.

Second,	SDL	expects	an	angle	in	degrees,	but	Actor	uses

an	angle	in	radians.	Luckily,	this	book’s	custom	math

library	in	the	Math.h	header	file	includes	a

Math::ToDegrees	function	that	can	handle	the

conversion.	Finally,	in	SDL	a	positive	angle	is	clockwise,

but	this	is	the	opposite	of	the	unit	circle	(where	positive

angles	are	counterclockwise).	Thus,	negate	the	angle	to

maintain	the	unit	circle	behavior.	Listing	2.5	shows	the

SpriteComponent::Draw	function.

Listing	2.5	SpriteComponent::Draw

Implementation

Click	here	to	view	code	image

void	SpriteComponent::Draw(SDL_Renderer*	renderer)

{

			if	(mTexture)

			{

						SDL_Rect	r;

						//	Scale	the	width/height	by	owner's	scale

						r.w	=	static_cast<int>(mTexWidth	*	mOwner->GetScale());

						r.h	=	static_cast<int>(mTexHeight	*	mOwner->GetScale());

						//	Center	the	rectangle	around	the	position	of	the	owner

						r.x	=	static_cast<int>(mOwner->GetPosition().x	-	r.w	/	2);

						r.y	=	static_cast<int>(mOwner->GetPosition().y	-	r.h	/	2);

						//	Draw

						SDL_RenderCopyEx(renderer,

									mTexture,	//	Texture	to	draw

									nullptr,		//	Source	rectangle

									&r,							//	Destination	rectangle

									-Math::ToDegrees(mOwner->GetRotation()),	//	(Convert	angle)

									nullptr,	//	Point	of	rotation

									SDL_FLIP_NONE);	//	Flip	behavior

			}

}

This	implementation	of	Draw	assumes	that	the	position

of	the	actor	corresponds	to	its	position	onscreen.	This

assumption	holds	only	for	games	where	the	game	world

exactly	corresponds	to	the	screen.	This	doesn’t	work	for	a

game	like	Super	Mario	Bros.	that	has	a	game	world

larger	than	one	single	screen.	To	handle	such	a	case,	the

code	needs	a	camera	position.	Chapter	9,	“Cameras,”

discusses	how	to	implement	cameras	in	the	context	of	a

3D	game.

Animating	Sprites

Most	2D	games	implement	sprite	animation	using	a

technique	like	flipbook	animation:	a	series	of

static	2D	images	played	in	rapid	succession	to	create

an	illusion	of	motion.	Figure	2.4	illustrates	what	such

a	series	of	images	for	different	animations	for	a

skeleton	sprite	might	look	like.

Figure	2.4	Series	of	images	for	a	skeleton	sprite

The	frame	rate	of	sprite	animations	can	vary,	but	many

games	choose	to	use	24	FPS	(the	traditional	frame	rate

used	in	film).	This	means	that	every	second	of	an

animation	needs	24	individual	images.	Some	genres,

such	as	2D	fighting	games,	may	use	60	FPS	sprite

animations,	which	dramatically	increases	the	required

number	of	images.	Luckily,	most	sprite	animations	are

significantly	shorter	than	1	second	in	duration.

The	simplest	way	to	represent	an	animated	sprite	is	with

a	vector	of	the	different	images	corresponding	to	each

frame	in	an	animation.	The	AnimSpriteComponent

class,	declared	in	Listing	2.6,	uses	this	approach.

Listing	2.6	AnimSpriteComponent	Declaration

Click	here	to	view	code	image

class	AnimSpriteComponent	:	public	SpriteComponent

{

public:

			AnimSpriteComponent(class	Actor*	owner,	int	drawOrder	=	100);

			//	Update	animation	every	frame	(overriden	from	component)

			void	Update(float	deltaTime)	override;

			//	Set	the	textures	used	for	animation

			void	SetAnimTextures(const	std::vector<SDL_Texture*>&	textures);

			//	Set/get	the	animation	FPS

			float	GetAnimFPS()	const	{	return	mAnimFPS;	}

			void	SetAnimFPS(float	fps)	{	mAnimFPS	=	fps;	}

private:

			//	All	textures	in	the	animation

			std::vector<SDL_Texture*>	mAnimTextures;

			//	Current	frame	displayed

			float	mCurrFrame;

			//	Animation	frame	rate

			float	mAnimFPS;

};

The	mAnimFPS	variable	allows	different	animated	sprites

to	run	at	different	frame	rates.	It	also	allows	the

animation	to	dynamically	speed	up	or	slow	down.	For

instance,	as	a	character	gains	speed,	you	could	increase

the	frame	rate	of	the	animation	to	further	add	to	the

illusion	of	speed.	The	mCurrFrame	variable	tracks	the

current	frame	displayed	as	a	float,	which	allows	you	to

also	keep	track	of	how	long	that	frame	has	displayed.

The	SetAnimTextures	function	simply	sets	the

mAnimTextures	member	variable	to	the	provided

vector	and	resets	mCurrFrame	to	zero.	It	also	calls	the

SetTexture	function	(inherited	from

SpriteComponent)	and	passes	in	the	first	frame	of	the

animation.	Since	this	code	uses	the	SetTexture

function	from	SpriteComponent,	it’s	unnecessary	to

override	the	inherited	Draw	function.

The	Update	function,	shown	in	Listing	2.7,	is	where

most	of	the	heavy	lifting	of	AnimSpriteComponent

occurs.	First,	update	mCurrFrame	as	a	function	of	the

animation	FPS	and	delta	time.	Next,	you	make	sure	that

mCurrFrame	remains	less	than	the	number	of	textures

(which	means	you	need	to	wrap	around	back	to	the	start

of	the	animation	if	needed).	Finally,	cast	mCurrFrame	to

an	int,	grab	the	correct	texture	from	mAnimTextures,

and	call	SetTexture.

Listing	2.7	AnimSpriteComponent::Update

Implementation

Click	here	to	view	code	image

void	AnimSpriteComponent::Update(float	deltaTime)

{

			SpriteComponent::Update(deltaTime);

			if	(mAnimTextures.size()	>	0)

			{

						//	Update	the	current	frame	based	on	frame	rate

						//	and	delta	time

						mCurrFrame	+=	mAnimFPS	*	deltaTime;

					

						//	Wrap	current	frame	if	needed

						while	(mCurrFrame	>=	mAnimTextures.size())

						{

									mCurrFrame	-=	mAnimTextures.size();

						}

						//	Set	the	current	texture

						SetTexture(mAnimTextures[static_cast<int>(mCurrFrame)]);

			}

}

One	feature	missing	from	AnimSpriteComponent	is

better	support	for	switching	between	animations.

Currently,	the	only	way	to	switch	an	animation	is	to	call

SetAnimTextures	repeatedly.	It	makes	more	sense	to

have	a	vector	of	all	the	different	textures	for	all	of	a

sprite’s	animations	and	then	specify	which	images

correspond	to	which	animation.	You’ll	explore	this	idea

further	in	Exercise	2.2.

SCROLLING	BACKGROUNDS
A	trick	often	used	in	2D	games	is	having	a

background	that	scrolls	by.	This	creates	an

impression	of	a	larger	world,	and	infinite	scrolling

games	often	use	this	technique.	For	now,	we	are

focusing	on	scrolling	backgrounds,	as	opposed	to

scrolling	through	an	actual	level.	The	easiest	method

is	to	split	the	background	into	screen-sized	image

segments,	which	are	repositioned	every	frame	to

create	the	illusion	of	scrolling.

As	with	animated	sprites,	it	makes	sense	to	create	a

subclass	of	SpriteComponent	for	backgrounds.	Listing

2.8	shows	the	declaration	of	BGSpriteComponent.

Listing	2.8	BGSpriteComponent	Declaration

Click	here	to	view	code	image

class	BGSpriteComponent	:	public	SpriteComponent

{

public:

			//	Set	draw	order	to	default	to	lower	(so	it's	in	the	background)

			BGSpriteComponent(class	Actor*	owner,	int	drawOrder	=	10);

			//	Update/draw	overriden	from	parent

			void	Update(float	deltaTime)	override;

			void	Draw(SDL_Renderer*	renderer)	override;

			//	Set	the	textures	used	for	the	background

			void	SetBGTextures(const	std::vector<SDL_Texture*>&	textures);

			//	Get/set	screen	size	and	scroll	speed

			void	SetScreenSize(const	Vector2&	size)	{	mScreenSize	=	size;	}

			void	SetScrollSpeed(float	speed)	{	mScrollSpeed	=	speed;	}

			float	GetScrollSpeed()	const	{	return	mScrollSpeed;	}

private:

			//	Struct	to	encapsulate	each	BG	image	and	its	offset

			struct	BGTexture

			{

						SDL_Texture*	mTexture;

						Vector2	mOffset;

			};

			std::vector<BGTexture>	mBGTextures;

			Vector2	mScreenSize;

			float	mScrollSpeed;

};

The	BGTexture	struct	associates	each	background

texture	with	its	corresponding	offset.	The	offsets	update

every	frame	to	create	the	scrolling	effect.	You	need	to

initialize	the	offsets	in	SetBGTextures,	positioning

each	background	to	the	right	of	the	previous	one:

Click	here	to	view	code	image

void	BGSpriteComponent::SetBGTextures(const	std::vector<SDL_Texture*>&	textures)

{

			int	count	=	0;

			for	(auto	tex	:	textures)

			{

						BGTexture	temp;

						temp.mTexture	=	tex;

						//	Each	texture	is	screen	width	in	offset

						temp.mOffset.x	=	count	*	mScreenSize.x;

						temp.mOffset.y	=	0;

						mBGTextures.emplace_back(temp);

						count++;

			}

}

This	code	assumes	that	each	background	image	has	a

width	corresponding	to	the	screen	width,	but	it’s

certainly	possible	to	modify	the	code	to	account	for

variable	sizes.	The	Update	code	updates	the	offsets	of

each	background,	taking	to	account	when	one	image

moves	all	the	way	off	the	screen.	This	allows	the	images

to	infinitely	repeat:

Click	here	to	view	code	image

void	BGSpriteComponent::Update(float	deltaTime)

{

			SpriteComponent::Update(deltaTime);

			for	(auto&	bg	:	mBGTextures)

			{

						//	Update	the	x	offset

						bg.mOffset.x	+=	mScrollSpeed	*	deltaTime;

						//	If	this	is	completely	off	the	screen,	reset	offset	to

						//	the	right	of	the	last	bg	texture

						if	(bg.mOffset.x	<	-mScreenSize.x)

						{

									bg.mOffset.x	=	(mBGTextures.size()	-	1)	*	mScreenSize.x	-	1;

						}

			}

}

The	Draw	function	simply	draws	each	background

texture	using	SDL_RenderCopy,	making	sure	to	adjust

the	position	based	on	the	owner’s	position	and	the	offset

of	that	background.	This	achieves	the	simple	scrolling

behavior.

Some	games	also	implement	parallax	scrolling.	In	this

approach,	you	use	multiple	layers	for	the	background.

Each	layer	scrolls	at	different	speeds,	which	gives	an

illusion	of	depth.	For	example,	a	game	might	have	a

cloud	layer	and	a	ground	layer.	If	the	cloud	layer	scrolls

more	slowly	than	the	ground	layer,	it	gives	the

impression	that	the	clouds	are	farther	away	than	the

ground.	Traditional	animation	has	used	this	technique

for	nearly	a	century,	and	it	is	effective.	Typically,	only

three	layers	are	necessary	to	create	a	believable	parallax

effect,	as	illustrated	in	Figure	2.5.	Of	course,	more	layers

add	more	depth	to	the	effect.

Figure	2.5	Space	scene	broken	into	three	layers	to

facilitate	parallax	scrolling

To	implement	the	parallax	effect,	attach	multiple

BGSpriteComponents	to	a	single	actor	and	specify

different	draw	order	values.	Then	you	can	use	a	different

scroll	speed	for	each	background	to	complete	the	effect.

GAME	PROJECT
Unfortunately,	you	have	not	learned	about	enough

new	topics	to	make	a	game	with	noticeably	more

complex	mechanics	than	the	Pong	clone	created	in

Chapter	1,	“Game	Programming	Overview.”	And	it

wouldn’t	be	particularly	interesting	to	just	add

sprites	to	the	previous	chapter’s	game.	So	in	lieu	of	a

complete	game,	this	chapter’s	game	project

demonstrates	the	new	techniques	covered	in	this

chapter.	The	code	is	available	in	the	book’s	GitHub

repository,	in	the	Chapter02	directory.	Open

Chapter02-windows.sln	on	Windows	and

Chapter02-mac.xcodeproj	on	Mac.	Figure	2.6

shows	the	game	project	in	action.	Jacob	Zinman-

Jeanes	created	the	sprite	images,	which	are	licensed

under	the	CC	BY	license.

Figure	2.6	Side-scroller	project	in	action

The	code	includes	an	implementation	of	the	hybrid

Actor/Component	model,	SpriteComponent,

AnimSpriteComponent,	and	parallax	scrolling.	It	also

includes	a	subclass	of	Actor	called	Ship.	The	Ship

class	contains	two	speed	variables	to	control	the

left/right	speed	and	the	up/down	speed,	respectively.

Listing	2.9	shows	the	declaration	of	Ship.

Listing	2.9	Ship	Declaration

Click	here	to	view	code	image

class	Ship	:	public	Actor

{

public:

			Ship(class	Game*	game);

			void	UpdateActor(float	deltaTime)	override;

			void	ProcessKeyboard(const	uint8_t*	state);

			float	GetRightSpeed()	const	{	return	mRightSpeed;	}

			float	GetDownSpeed()	const	{	return	mDownSpeed;	}

private:

			float	mRightSpeed;

			float	mDownSpeed;

};

The	Ship	constructor	initializes	mRightSpeed	and

mDownSpeed	to	0,	and	also	creates	an

AnimSpriteComponent	attached	to	the	ship,	with	the

associated	textures:

Click	here	to	view	code	image

AnimSpriteComponent*	asc	=	new	AnimSpriteComponent(this);

std::vector<SDL_Texture*>	anims	=	{

			game->GetTexture("Assets/Ship01.png"),

			game->GetTexture("Assets/Ship02.png"),

			game->GetTexture("Assets/Ship03.png"),

			game->GetTexture("Assets/Ship04.png"),

};

asc->SetAnimTextures(anims);

The	keyboard	input	directly	affects	the	speed	of	the	ship.

The	game	uses	the	W	and	S	keys	to	move	the	ship	up	and

down	and	the	A	and	D	keys	to	move	the	ship	left	and

right.	The	ProcessKeyboard	function	takes	in	these

inputs	and	updates	mRightSpeed	and	mDownSpeed	as

appropriate.

The	Ship::UpdateActor	function	implements	the

ship’s	movement,	using	techniques	similar	to	those

shown	in	Chapter	1:

Click	here	to	view	code	image

void	Ship::UpdateActor(float	deltaTime)

{

			Actor::UpdateActor(deltaTime);

			//	Update	position	based	on	speeds	and	delta	time

			Vector2	pos	=	GetPosition();

			pos.x	+=	mRightSpeed	*	deltaTime;

			pos.y	+=	mDownSpeed	*	deltaTime;

			//	Restrict	position	to	left	half	of	screen

			//	...

			SetPosition(pos);

}

Movement	is	such	a	common	feature	for	games	that	it

makes	a	lot	of	sense	to	implement	it	as	a	component,	as

opposed	to	in	the	UpdateActor	function.	Chapter	3,

“Vectors	and	Basics	Physics,”	discusses	how	to	create	a

MoveComponent	class.

The	background	is	a	generic	Actor	(not	a	subclass)	that

has	two	BGSpriteComponents.	The	different	scroll

speeds	of	these	two	backgrounds	create	a	parallax	effect.

All	these	actors,	including	the	ship,	are	created	in	the

Game::LoadData	function.

SUMMARY
There	are	many	ways	to	represent	game	objects.	The

simplest	approach	is	to	use	a	monolithic	hierarchy

with	one	base	class	that	every	game	object	inherits

from,	but	this	can	quickly	grow	out	of	hand.	With	a

component-based	model,	you	can	instead	define	the

functionality	of	a	game	object	in	terms	of	the

components	it	contains.	This	book	uses	a	hybrid

approach	that	has	a	shallow	hierarchy	of	game

objects	but	components	that	implement	some

behaviors,	such	as	drawing	and	movement.

The	very	first	games	used	2D	graphics.	Although	many

games	today	are	in	3D,	2D	games	still	are	very	popular.

Sprites	are	the	primary	visual	building	block	of	any	2D

game,	whether	animated	or	not.	SDL	supports	loading

and	drawing	textures	via	a	simple	interface.

Many	2D	games	implement	flipbook	animation,	drawing

different	images	in	rapid	succession	to	make	the	sprite

appear	to	animate.	You	can	use	other	techniques	to

implement	a	scrolling	background	layer,	and	you	can	use

the	parallax	effect	to	create	the	illusion	of	depth.

ADDITIONAL	READING
Jason	Gregory	dedicates	several	pages	to	different

types	of	game	object	models,	including	the	model

used	at	Naughty	Dog.	Michael	Dickheiser’s	book

contains	an	article	on	implementing	a	pure

component	model.

Dickheiser,	Michael,	Ed.	Game

Programming	Gems	6.	Boston:	Charles

River	Media,	2006.

Gregory,	Jason.	Game	Engine	Architecture,

2nd	edition.	Boca	Raton:	CRC	Press,	2014.

EXERCISES
The	first	exercise	of	this	chapter	is	a	thought

experiment	on	the	different	types	of	game	object

models.	In	the	second	exercise	you	add	functionality

to	the	AnimSpriteComponent	class.	The	final

exercise	involves	adding	support	for	tile	maps,	a

technique	for	generating	2D	scenes	from	tiles.

Exercise	2.1

Consider	an	animal	safari	game	where	the	player	can

drive	around	in	different	vehicles	to	observe	animals

in	the	wild.	Think	about	the	different	types	of

creatures,	plants,	and	vehicles	that	might	exist	in

such	a	game.	How	might	you	implement	these

objects	in	a	monolithic	class	hierarchy	object	model?

Now	consider	the	same	game	but	implemented	with	a

component	game	object	model.	How	might	you

implement	this?	Which	of	these	two	approaches	seems

more	beneficial	for	this	game?

Exercise	2.2

The	AnimSpriteComponent	class	currently

supports	only	a	single	animation,	composed	of	all	the

sprites	in	the	vector.	Modify	the	class	to	support

several	different	animations.	Define	each	animation

as	a	range	of	textures	in	the	vector.	Use	the

CharacterXX.png	files	in	the

Chapter02/Assets	directory	for	testing.

Now	add	support	for	non-looping	animations.	When

defining	an	animation	as	a	range	of	textures,	also	allow

specification	of	looping	or	non-looping.	When	a	non-

looping	animation	finishes,	it	should	not	wrap	back	to

the	initial	texture.

Exercise	2.3

One	approach	to	generate	a	2D	scene	is	via	a	tile

map.	In	this	approach,	an	image	file	(called	a	tile

set)	contains	a	series	of	uniformly	sized	tiles.	Many

of	these	tiles	combine	to	form	a	2D	scene.	Tiled

(http://www.mapeditor.org),	which	is	a	great

program	for	generating	tile	sets	and	tile	maps,

generated	the	tile	maps	for	this	exercise.	Figure	2.7

illustrates	what	a	portion	of	the	tile	set	looks	like.

Figure	2.7	A	portion	of	the	tile	set	used	in	Exercise

2.3

In	this	case,	the	tile	maps	are	in	CSV	files.	Use	the

MapLayerX.csv	files	in	Chapter02/Assets,	where

there	are	three	different	layers	(Layer	1	being	the	closest

and	Layer	3	the	farthest).	Tiles.png	contains	the	tile

set.	Each	row	in	the	CSV	file	contains	a	series	of

numbers,	like	this:

-1,0,5,5,5,5

http://www.mapeditor.org

-1	means	there	is	no	image	for	that	tile	(so	you	should

render	nothing	for	that	tile).	Every	other	number

references	a	specific	tile	from	the	tile	set.	The	numbering

goes	left	to	right	and	then	up	to	down.	So,	in	this	tile	set,

tile	8	is	the	leftmost	tile	on	the	second	row.

Create	a	new	component	called	TileMapComponent

that	inherits	from	SpriteComponent.	This	class	needs

a	function	to	load	and	read	in	a	tile	map	CSV	file.	Then

override	Draw	to	draw	each	tile	from	the	tile	set	texture.

In	order	to	draw	only	part	of	a	texture,	instead	of	the

entire	texture,	use	the	srcrect	parameter	of

SDL_RenderCopyEx.	This	can	then	draw	only	a	single

tile	square	from	the	tile	set	texture	rather	than	the	entire

tile	set.

CHAPTER	3

VECTORS	AND	BASIC
PHYSICS

Vectors	are	a	fundamental	mathematical

concept	that	game	programmers	use	every

day.	This	chapter	first	explores	all	the

different	ways	vectors	can	be	used	to	solve

problems	in	games.	Next,	it	shows	how	to

implement	basic	movement	through	a

MoveComponent	and	control	it	with	the

keyboard	via	an	InputComponent.	This

chapter	then	briefly	explores	the	basics	of

Newtonian	physics	before	ending	with	a

discussion	of	how	to	detect	collisions

between	objects.	This	chapter’s	game	project

uses	some	of	these	techniques	to	implement

a	version	of	the	classic	game	Asteroids.

VECTORS
A	mathematical	vector	(not	to	be	confused	with

std::vector)	represents	both	a	magnitude	and

direction	in	an	n-dimensional	space,	with	one

component	per	dimension.	This	means	that	a	two-

dimensional	(2D)	vector	has	x	and	y	components.	To

a	game	programmer,	a	vector	is	one	of	the	most

important	mathematical	tools.	You	can	use	vectors	to

solve	many	different	problems	in	games,	and

understanding	vectors	is	especially	important	when

you’re	working	with	3D	games.	This	section	covers

both	the	properties	of	vectors	and	how	to	use	them	in

games.

This	book	uses	an	arrow	above	a	variable	name	to	denote

that	the	variable	is	a	vector.	This	book	also	denotes	each

component	of	a	vector	with	a	subscript	for	each

dimension.	For	example,	this	is	the	notation	for	the	2D

vector	 :

A	vector	has	no	concept	of	a	position.	This	seems

confusing,	given	that	Chapters	1,	“Game	Programming

Overview,”	and	2,	“Game	Objects	and	2D	Graphics,”	use

a	Vector2	variable	to	represent	positions.	(You’ll	learn

why	this	is	the	case	in	a	moment.)

If	vectors	have	no	position,	this	means	that	two	vectors

are	equivalent	if	they	have	the	same	magnitude	(or

length)	and	point	in	the	same	direction.	Figure	3.1

shows	many	vectors	in	a	vector	field.	Even	though	the

diagram	shows	many	vectors	drawn	in	different

locations,	because	all	the	vectors	have	the	same

magnitude	and	direction,	they	are	equivalent.

Figure	3.1	A	vector	field	in	which	all	vectors	are

equivalent

Even	though	where	you	draw	a	vector	doesn’t	change	its

value,	it	often	simplifies	solving	vector	problems	to	draw

the	vector	such	that	its	start,	or	tail,	is	at	the	origin.	You

can	then	think	of	the	arrow	part	of	the	vector	(the	head)

as	“pointing	at”	a	specific	point	in	space.	When	drawn	in

this	manner,	the	position	that	the	vector	“points	at”	has

the	same	components	as	the	vector.	For	example,	if	you

draw	the	2D	vector	<1,	2>	such	that	it	starts	at	the	origin,

its	head	points	at	(1,	2),	as	shown	in	Figure	3.2.

Figure	3.2	The	2D	vector	<1,	2>	drawn	with	its	tail

at	the	origin	and	its	head	“pointing	at”	(1,	2)

Because	a	vector	can	represent	a	direction,	you	often	use

vectors	in	games	to	describe	the	orientation	of	an	object.

The	forward	vector	of	an	object	is	the	vector	that

represents	the	“straight	ahead”	direction	for	the	object.

For	example,	an	object	facing	straight	down	the	x-axis

has	a	forward	vector	of	<1,	0>.

You	can	compute	many	different	vector	operations.	In

general,	game	programmers	use	a	library	to	perform	all

these	different	computations.	Because	of	this,	it’s	better

to	know	which	vector	computations	solve	which

problems	than	to	simply	memorize	the	equations.	The

remainder	of	this	section	explores	some	of	the	basic

vector	use	cases.

This	book’s	source	code	uses	a	custom-written	vector

library	in	the	provided	Math.h	header	file,	included	in

the	code	for	each	game	project	from	this	chapter	onward.

The	Math.h	header	file	declares	Vector2	and	Vector3

classes,	as	well	as	implementations	of	many	operators

and	member	functions.	Note	that	the	x	and	y

components	are	public	variables,	so	you	can	write	code

like	this:

Vector2	myVector;

myVector.x	=	5;

myVector.y	=	10;

Although	the	diagrams	and	examples	in	this	section

almost	universally	use	2D	vectors,	almost	every

operation	outlined	also	works	for	3D	vectors;	there	is

simply	one	more	component	in	3D.

Getting	a	Vector	between	Two	Points:
Subtraction

With	vector	subtraction,	you	subtract	each

component	of	one	vector	from	the	corresponding

component	of	the	other	vector,	which	yields	a	new

vector.	For	example,	in	2D	you	subtract	the	x

components	of	the	vector	separately	from	the	y

components:

To	visualize	the	subtraction	of	two	vectors,	draw	the

vectors	such	that	their	tails	start	from	the	same	position,

as	in	Figure	3.3(a).	Then	construct	a	vector	from	the

head	of	one	vector	to	the	head	of	the	other.	Because

subtraction	isn’t	commutative	(that	is,	a	−	b	is	not	the

same	as	b	−	a),	the	order	is	significant.	A	mnemonic	that

helps	remember	the	correct	order	is	that	a	vector	from	

to	 	is	 .

Figure	3.3	Vector	subtraction	(a)	and	subtraction

between	two	points	represented	as	vectors	(b)

You	can	use	subtraction	to	construct	a	vector	between

two	points.	For	example,	suppose	that	a	space	game

allows	a	ship	to	fire	a	laser	at	a	target.	You	can	represent

the	position	of	the	ship	with	point	s	and	the	position	of

the	target	with	point	t.	Suppose	that	s	=	(5,2)	and	t	=

(3,5).

What	if	you	instead	thought	of	these	points	as	the	vectors

	and	 ,	drawn	with	their	tails	at	the	origin	and	their

heads	“pointing	at”	their	respective	points?	As	previously

discussed,	the	value	of	the	x	and	y	components	of	these

vectors	are	identical	to	the	points.	However,	if	they	are

vectors,	you	can	construct	a	vector	between	the	two	by

using	subtraction,	as	in	Figure	3.8(b).	Because	the	laser

should	point	from	the	ship	to	the	target,	this	is	the

subtraction:

In	the	provided	Math.h	library,	the	–	operator	subtracts

two	vectors:

Vector2	a,	b;

Vector2	result	=	a	-	b;

Scaling	a	Vector:	Scalar	Multiplication

You	can	multiply	a	vector	by	a	scalar	(a	single	value).

To	do	so,	simply	multiply	each	component	of	the

vector	by	the	scalar:

Multiplying	a	vector	by	a	positive	scalar	only	changes	the

magnitude	of	the	vector,	while	multiplying	by	a	negative

scalar	also	inverts	the	direction	of	the	vector	(meaning

the	head	becomes	the	tail	and	vice	versa).	Figure	3.4

illustrates	the	result	of	multiplying	the	vector	 	by	two

different	scalars.

Figure	3.4	Scalar	multiplication

In	the	provided	Math.h	library,	the	*	operator	performs

scalar	multiplication:

Click	here	to	view	code	image

Vector2	a;

Vector2	result	=	5.0f	*	a;	//	Scaled	by	5

Combining	Two	Vectors:	Addition

With	vector	addition,	you	add	the	components	of	two

vectors,	which	yields	a	new	vector:

To	visualize	addition,	draw	the	vectors	such	that	the

head	of	one	vector	touches	the	tail	of	the	other	vector.

The	result	of	the	addition	is	the	vector	from	the	tail	of

one	vector	to	the	head	of	the	other,	as	shown	in	Figure

3.5.

Figure	3.5	Vector	addition

Note	that	the	order	of	the	addition\	doesn’t	change	the

result.	This	is	because	vector	addition	is	commutative,

just	like	addition	between	two	real	numbers:

You	can	use	vector	addition	in	a	variety	of	ways.	For

example,	suppose	the	player	is	at	point	p,	and	the

player’s	forward	vector	is	 .	The	point	that	is	150	units

“in	front”	of	the	player	is	then	 .

In	the	provided	Math.h	library,	the	+	operator	adds	two

vectors:

Vector2	a,	b;

Vector2	result	=	a	+	b;

Determining	a	Distance:	Length

As	mentioned	earlier	in	this	chapter,	a	vector

represents	both	a	magnitude	and	direction.	You	use

two	vertical	bars	on	either	side	of	a	vector	variable	to

denote	computing	the	magnitude	(or	length)	of	the

vector.	For	example,	you	write	the	magnitude	of	 	as	

.	To	calculate	the	length	of	a	vector,	take	the

square	root	of	the	sum	of	the	squares	of	each

component:

This	may	seem	very	similar	to	the	Euclidean	distance

formula,	and	that’s	because	it	is	just	a	simplification	of

the	Euclidean	distance	formula!	If	you	draw	the	vector

such	that	it	starts	at	the	origin,	the	formula	calculates	the

distance	from	the	origin	to	the	point	the	vector	“points

at.”

You	can	use	the	magnitude	to	compute	the	distance

between	two	arbitrary	points.	Given	points	p	and	q,	treat

them	as	vectors	and	perform	vector	subtraction.	The

magnitude	of	the	result	of	the	subtraction	is	equal	to	the

distance	between	the	two	points:

The	square	root	in	this	length	formula	is	a	relatively

expensive	calculation.	If	you	absolutely	must	know	the

length,	there’s	no	way	to	avoid	this	square	root.

However,	in	some	cases,	it	may	seem	that	you	need	to

know	the	length,	but	you	might	actually	be	able	to	avoid

the	square	root.

For	example,	suppose	you	want	to	determine	whether

the	player	is	closer	to	object	A	or	object	B.		You	first

construct	a	vector	from	object	A	to	the	player,	or	 .

Similarly,	you	construct	a	vector	from	object	B	to	the

player,	or	 .	It	might	seem	natural	to	calculate	the

length	of	each	vector	and	compare	the	two	to	figure	out

which	object	is	closer.	However,	you	can	simplify	the

math	somewhat.	Assuming	that	you	have	no	imaginary

numbers,	the	length	of	a	vector	must	be	positive.	In	this

case,	comparing	the	length	of	these	two	vectors	is

logically	equivalent	to	comparing	the	length	squared

(the	square	of	the	length)	of	each	vector	or,	in	other

words:

So	for	cases	in	which	you	merely	need	a	relative

comparison,	you	can	use	the	length	squared	instead	of

the	length:

In	the	provided	Math.h	library,	the	Length()	member

function	computes	the	length	of	a	vector:

Vector2	a;

float	length	=	a.Length();

Similarly,	the	LengthSquared()	member	function

computes	the	length	squared.

Determining	Directions:	Unit	Vectors	and
Normalization

A	unit	vector	is	a	vector	with	a	length	of	one.	The

notation	for	unit	vectors	is	to	write	a	“hat”	above	the

vector’s	symbol,	such	as	û.	You	can	convert	a	vector

with	a	non-unit	length	into	a	unit	vector	through

normalization.	To	normalize	a	vector,	divide	each

component	by	the	length	of	the	vector:

In	some	cases,	using	unit	vectors	simplifies	calculations.

However,	normalizing	a	vector	causes	it	to	lose	any	of	its

original	magnitude	information.	You	must	be	careful,

then,	which	vectors	you	normalize	and	when.

warningwarning

DIVIDE	BY	ZERO:	If	a	vector	has	zeros	for	all	its	components,	the	length	of
this	vector	is	also	zero.	In	this	case,	the	normalization	formula	has	a	division
by	zero.	For	floating-point	variables,	dividing	by	zero	yields	the	error	value
NaN	(not	a	number).	Once	a	calculation	has	NaNs,	it’s	impossible	to	get	rid
of	them	because	any	operation	on	NaN	also	yields	NaN.

A	common	workaround	for	this	is	to	make	a	“safe”	normalize	function	that
first	tests	whether	the	length	of	the	vector	if	close	to	zero.	If	it	is,	then	you
simply	don’t	perform	the	division,	thus	avoiding	the	division	by	zero.

A	good	rule	of	thumb	is	to	always	normalize	vectors	if

you	need	only	the	direction.	Some	examples	are	the

direction	an	arrow	points	or	the	forward	vector	of	an

actor.	However,	if	the	distance	also	matters,	such	as	for	a

radar	showing	distances	of	objects,	then	normalizing

would	wipe	away	this	information.

You	usually	normalize	vectors	such	as	the	forward	vector

(which	way	is	an	object	facing?)	and	the	up	vector

(which	way	is	up?).	However,	you	may	not	want	to

normalize	other	vectors.	For	example,	normalizing	a

gravity	vector	causes	the	loss	of	the	magnitude	of	the

gravity.

The	Math.h	library	provides	two	different

Normalize()	functions.	First,	there’s	a	member

function	that	normalizes	a	given	vector	in	place

(overwriting	its	unnormalized	version):

Click	here	to	view	code	image

Vector2	a;

a.Normalize();	//	a	is	now	normalized

There	also	is	a	static	function	that	normalizes	a	vector

passed	as	a	parameter	and	returns	the	normalized

vector:

Click	here	to	view	code	image

Vector2	a;

Vector2	result	=	Vector2::Normalize(a);

Converting	from	an	Angle	to	a	Forward
Vector

Recall	that	the	Actor	class	from	Chapter	2	has	a

rotation	represented	by	an	angle	in	radians.	This

allows	you	to	rotate	the	way	an	actor	faces.	Because

the	rotations	are	in	2D	for	now,	the	angle	directly

corresponds	to	an	angle	on	the	unit	circle,	as	in

Figure	3.6.

Figure	3.6	Unit	circle

The	equation	of	the	unit	circle	in	terms	of	an	angle,	theta,

is:

You	can	directly	use	these	equations	to	convert	the

actor’s	angle	into	a	forward	vector:

Click	here	to	view	code	image

Vector3	Actor::GetForward()	const

{

			return	Vector2(Math::Cos(mRotation),	Math::Sin(mRotation));

}

Here,	the	Math::Cos	and	Math::Sin	functions	are

wrappers	for	the	C++	standard	library’s	sine	and	cosine

functions.	Notice	that	you	don’t	explicitly	normalize	the

vector.	This	is	because	the	circle	equation	always	returns

a	unit	length	vector	because	the	unit	circle	has	a	radius	of

one.

Keep	in	mind	that	the	unit	circle	has	+y	as	up,	whereas

SDL	2D	graphics	use	+y	down.	So	for	the	correct	forward

vector	in	SDL,	you	must	negate	the	y-component	value:

Click	here	to	view	code	image

Vector3	Actor::GetForward()	const

{

			//	Negate	y-component	for	SDL

			return	Vector2(Math::Cos(mRotation),	-Math::Sin(mRotation));

}

Converting	a	Forward	Vector	to	an	Angle:
Arctangent

Now	suppose	you	have	a	problem	opposite	the

problem	described	the	previous	section.	Given	a

forward	vector,	you	want	to	convert	it	into	an	angle.

Recall	that	the	tangent	function	takes	in	an	angle	and

returns	the	ratio	between	the	opposite	and	adjacent

sides	of	a	triangle.

Now	imagine	that	you	calculate	a	new	“desired”	forward

vector	for	an	actor,	but	you	need	to	convert	this	to	the

angle	for	its	rotation	member	variable.	In	this	case,	you

can	form	a	right	triangle	with	this	new	forward	vector	

and	the	x-axis,	as	shown	in	Figure	3.7.	For	this	triangle,

the	x	component	of	the	forward	vector	is	the	length	of

the	adjacent	side	of	the	triangle,	and	the	y	component	of

the	forward	vector	is	the	length	of	the	opposite	side	of

the	triangle.	Given	this	ratio,	you	can	then	use	the

arctangent	function	to	calculate	the	angle	θ.

Figure	3.7	Right	triangle	between	the	x-axis	and	a

vector

In	programming,	the	preferred	arctangent	function	is	the

atan2	function,	which	takes	two	parameters	(the

opposite	length	and	the	adjacent	length)	and	returns	an

angle	in	the	range	[–π,π].	A	positive	angle	means	the

triangle	is	in	the	first	or	second	quadrant	(a	positive	y

value),	and	a	negative	angle	means	the	triangle	is	in	the

third	or	fourth	quadrant.

For	example,	suppose	you	want	a	ship	to	face	toward	an

asteroid.	You	can	first	construct	the	vector	from	the	ship

to	the	asteroid	and	normalize	this	vector.	Next,	use

atan2	to	convert	the	new	forward	vector	to	an	angle.

Finally,	set	the	ship	actor’s	rotation	to	this	new	angle.

Note	that	you	must	negate	the	y	component	to	account

for	+y	down	in	SDL’s	2D	coordinate	system.	This	yields

the	following	code:

Click	here	to	view	code	image

//	(ship	and	asteroid	are	Actors)

Vector2	shipToAsteroid	=	asteroid->GetPosition()	-	ship->GetPosition();

shipToAsteroid.Normalize();

//	Convert	new	forward	to	angle	with	atan2	(negate	y-component	for	SDL)

float	angle	=	Math::Atan2(-shipToAsteroid.y,	shipToAsteroid.x);

ship->SetRotation(angle);

This	arctangent	approach	works	very	well	for	2D	games.

However,	it	only	works	in	this	form	for	2D	games

because	all	objects	remain	on	the	x-y	plane.	For	3D

games,	it’s	often	preferable	to	use	the	dot	product

approach	outlined	in	the	next	section.

Determining	the	Angle	Between	Two
Vectors:	Dot	Product

The	dot	product	between	two	vectors	results	in	a

single	scalar	value.	One	of	the	most	common	uses	of

the	dot	product	in	games	is	to	find	the	angle	between

two	vectors.	The	following	equation	calculates	the

dot	product	between	vectors	 	and	 :

The	dot	product	also	has	a	relationship	to	the	cosine	of

an	angle,	and	you	can	use	the	dot	product	to	compute	the

angle	between	two	vectors:

This	formulation,	illustrated	in	Figure	3.8,	is	based	on

the	Law	of	Cosines.	Given	this	formula,	you	can	then

solve	for	θ:

Figure	3.8	Computing	the	angle	between	two	unit

vectors

If	the	two	vectors	 	and	 	are	unit	vectors,	you	can	omit

the	division	because	the	length	of	each	vector	is	one:

This	is	one	reason	it’s	helpful	to	normalize	vectors	in

advance	if	only	the	direction	matters.

For	example,	consider	a	player	at	position	p	with	a

forward	vector	of	 .	A	new	enemy	appears	at	position	e.

Suppose	you	need	the	angle	between	the	original	forward

vector	and	the	vector	from	p	to	e.	First,	compute	the

vector	from	p	to	e,	using	the	vector	representations	of	the

points:

Next,	because	only	the	direction	matters	in	this	case,

normalize	 :

Finally,	use	the	dot	product	equations	to	determine	the

angle	between	 	and	 :

Because	the	dot	product	can	calculate	an	angle	between

two	vectors,	a	couple	of	special	cases	are	important	to

remember.	If	the	dot	product	between	two	unit	vectors	is

0,	it	means	that	they	are	perpendicular	to	each	other

because	cos(π/2)=	0.	Furthermore,	a	dot	product	of	1

means	the	two	vectors	are	parallel	and	face	the	same

direction.	Finally,	a	dot	product	of	−1	means	they	are

antiparallel,	meaning	the	vectors	are	parallel	and	face

in	the	opposite	direction.

One	drawback	of	using	the	dot	product	to	calculate	the

angle	is	that	the	arccosine	function	returns	an	angle	in

the	range	[0,	π].	This	means	that	while	the	arccosine

gives	the	minimum	angle	of	rotation	between	the	two

vectors,	it	doesn’t	say	whether	this	rotation	is	clockwise

or	counterclockwise.

As	with	multiplication	between	two	real	numbers,	the

dot	product	is	commutative,	distributive	over	addition,

and	associative:

Another	useful	tip	is	that	the	length	squared	calculation

is	equivalent	to	taking	the	dot	product	of	a	vector	with

itself:

The	Math.h	library	defines	a	static	Dot	function	for

both	Vector2	and	Vector3.	For	example,	to	find	the

angle	between	origForward	and	newForward,	you

could	use:

Click	here	to	view	code	image

float	dotResult	=	Vector2::Dot(origForward,	newForward);

float	angle	=	Math::Acos(dotResult);

Calculating	a	Normal:	Cross	Product

A	normal	is	a	vector	perpendicular	to	a	surface.

Calculating	the	normal	of	a	surface	(such	as	a

triangle)	is	a	very	useful	calculation	in	3D	games.	For

example,	the	lighting	models	covered	in	Chapter	6,

“3D	Graphics,”	require	calculating	normal	vectors.

Given	two	3D	vectors	that	are	not	parallel,	there	is	a

single	plane	that	contains	both	vectors.	The	cross

product	finds	a	vector	perpendicular	to	that	plane,	as	in

Figure	3.9.

Figure	3.9	Cross	product	in	a	left-handed

coordinate	system

The	cross	product	does	not	work	with	2D	vectors.

However,	to	convert	a	2D	vector	into	a	3D	vector,	just

add	a	z	component	of	0.

The	×	symbol	denotes	a	cross	product	between	two

vectors:

Note	that	there’s	technically	a	second	vector

perpendicular	to	the	plane	in	Figure	3.9:	 .	This

illustrates	an	important	property	of	the	cross	product.

It’s	not	commutative	but	instead	anticommutative:

Using	the	left-hand	rule	is	a	quick	way	to	figure	out	the

direction	the	cross	product	result	faces.	Take	your	left

hand	and	point	the	index	finger	down	 	and	then	take

your	middle	finger	and	point	it	down	 ,	rotating	your

wrist	as	needed.	The	natural	position	of	your	thumb

points	in	the	direction	of	 .	Here,	you	use	the	left	hand

because	this	book’s	coordinate	system	is	left-handed.

(You’ll	learn	more	about	coordinate	systems	in	Chapter

5,	“OpenGL.”)	A	right-handed	coordinate	system	instead

uses	the	right-hand	rule.

The	numeric	calculation	of	the	cross	product	is	as

follows:

A	popular	mnemonic	to	remember	the	cross	product

calculation	is	“xyzzy.”	This	mnemonic	helps	you

remember	the	order	of	the	subscripts	for	the	x-

component	of	the	cross	product	result:

Then,	the	y	and	z	components	are	the	subscripts	rotated

in	the	order	x	→	y	→	z	→	x,	yielding	the	next	two

components	of	the	cross	product	result:

As	with	the	dot	product,	there’s	a	special	case	to

consider.	If	the	cross	product	returns	the	vector	〈0,0,0〉,

this	means	that	 	and	 	are	collinear.	Two	collinear

vectors	cannot	form	a	plane,	and	therefore	there’s	no

normal	for	the	cross	product	to	return.

Because	a	triangle	lies	on	a	single	plane,	the	cross

product	can	determine	the	normal	of	the	triangle.	Figure

3.10	shows	triangle	ABC.	To	calculate	the	normal,	first

construct	two	vectors	for	edges	of	the	triangle:

Figure	3.10	Normal	to	triangle	ABC

Then	take	the	cross	product	between	these	two	vectors

and	normalize	the	result.	This	yields	the	normal	vector	of

the	triangle:

The	Math.h	library	provides	a	static	Cross	function.

For	example,	the	following	calculates	the	cross	product

between	vectors	a	and	b:

Vector3	c	=	Vector3::Cross(a,	b);

BASIC	MOVEMENT
Recall	that	Chapter	2’s	game	project	overrides	the

UpdateActor	function	for	Ship	(a	subclass	of

Actor)	to	make	the	ship	move.	However,	movement

is	such	a	common	feature	for	a	game	that	it	makes

sense	to	instead	encapsulate	this	behavior	in	a

component.	This	section	first	explores	how	to	create

a	MoveComponent	class	that	can	move	actors

around	the	game	world.	You’ll	leverage	this	class	to

create	asteroids	that	move	around	the	screen.	Next,

this	section	shows	how	to	create	a	subclass	of

MoveComponent	called	InputComponent	that	you

can	hook	up	directly	to	keyboard	inputs.

Creating	a	Basic	MoveComponent	Class

At	a	basic	level,	MoveComponent	should	allow

actors	to	move	forward	at	a	certain	speed.	To	support

this,	you	first	need	a	function	to	calculate	the	forward

vector	for	an	actor,	as	implemented	in	the

“Converting	from	an	Angle	to	a	Forward	Vector”

section,	earlier	in	this	chapter.	Once	you	have	the

forward	vector	of	the	actor,	you	can	move	forward

based	on	a	speed	(in	units	per	second)	and	delta

time,	as	in	this	pseudocode:

Click	here	to	view	code	image

position	+=	GetForward()	*	forwardSpeed	*	deltaTime;

You	can	use	a	similar	mechanism	to	update	the	rotation

(angle)	of	the	actor,	except	in	this	case	you	don’t	need	a

forward	vector.	You	just	need	angular	speed	(in	rotations

per	second)	and	delta	time:

Click	here	to	view	code	image

rotation	+=	angularSpeed	*	deltaTime;

This	way,	the	actor	can	both	move	forward	and	rotate

based	on	the	respective	speeds.	To	implement

MoveComponent	as	a	subclass	of	Component,	you	first

declare	the	class	as	in	Listing	3.1.	It	has	separate	speeds

to	implement	both	forward	and	rotational	movement,	as

well	as	getter/setter	functions	for	these	speeds.	It	also

overrides	the	Update	function,	which	will	contain	the

code	that	moves	the	actor.	Note	that	the	constructor	of

MoveComponent	specifies	a	default	update	order	of	10.

Recall	that	the	update	order	determines	the	order	in

which	the	actor	updates	its	components.	Because	the

default	update	order	for	other	components	is	100,

MoveComponent	will	update	before	most	other

components	do.

Listing	3.1	MoveComponent	Declaration

Click	here	to	view	code	image

class	MoveComponent	:	public	Component

{

public:

			//	Lower	update	order	to	update	first

			MoveComponent(class	Actor*	owner,	int	updateOrder	=	10);

			void	Update(float	deltaTime)	override;

			float	GetAngularSpeed()	const	{	return	mAngularSpeed;	}

			float	GetForwardSpeed()	const	{	return	mForwardSpeed;	}

			void	SetAngularSpeed(float	speed)	{	mAngularSpeed	=	speed;	}

			void	SetForwardSpeed(float	speed)	{	mForwardSpeed	=	speed;	}

private:

			//	Controls	rotation	(radians/second)

			float	mAngularSpeed;

			//	Controls	forward	movement	(units/second)

			float	mForwardSpeed;

};

The	implementation	of	Update,	shown	in	Listing	3.2,

simply	converts	the	movement	pseudocode	into	actual

code.	Recall	that	a	Component	class	can	access	its

owning	actor	through	the	mOwner	member	variable.	You

use	this	mOwner	pointer	to	then	access	the	position,

rotation,	and	forward	of	the	owning	actor.	Also	note	the

use	of	the	Math::NearZero	function	here.	This

function	compares	the	absolute	value	of	the	parameter

with	some	small	epsilon	amount	to	determine	whether

the	value	is	“near”	zero.	In	this	specific	case,	you	don’t

bother	updating	the	rotation	or	position	of	the	actor	if

the	corresponding	speed	is	near	zero.

Listing	3.2	MoveComponent::Update

Implementation

Click	here	to	view	code	image

void	MoveComponent::Update(float	deltaTime)

{

			if	(!Math::NearZero(mAngularSpeed))

			{

						float	rot	=	mOwner->GetRotation();

						rot	+=	mAngularSpeed	*	deltaTime;

						mOwner->SetRotation(rot);

			}

			if	(!Math::NearZero(mForwardSpeed))

			{

						Vector2	pos	=	mOwner->GetPosition();

						pos	+=	mOwner->GetForward()	*	mForwardSpeed	*	deltaTime;

						mOwner->SetPosition(pos);

			}

}

Because	this	chapter’s	game	project	is	a	version	of	the

classic	Asteroids	game,	you	also	need	code	for	screen

wrapping.	This	means	if	an	asteroid	goes	off	the	left	side

of	the	screen,	it	will	teleport	to	the	right	side	of	the

screen.	(We	omit	this	code	here	because	it’s	not

something	desired	for	a	generic	MoveComponent.

However,	the	source	code	for	this	chapter	does	include

this	modification	for	screen	wrapping.)

With	the	basic	MoveComponent,	you	can	then	declare

Asteroid	as	a	subclass	of	Actor.	Asteroid	doesn’t

need	an	overloaded	UpdateActor	function	to	move.

Instead,	you	can	simply	construct	a	MoveComponent	in

its	constructor,	along	with	a	SpriteComponent	to

display	the	asteroid	image,	as	in	Listing	3.3.	The

constructor	also	sets	the	speed	of	the	asteroid	to	a	fixed

150	units/second	(which	in	this	case,	corresponds	to	150

pixels/second).

Listing	3.3	Asteroid	Constructor

Click	here	to	view	code	image

Asteroid::Asteroid(Game*	game)

			:Actor(game)

{

			//	Initialize	to	random	position/orientation

			Vector2	randPos	=	Random::GetVector(Vector2::Zero,

						Vector2(1024.0f,	768.0f));

			SetPosition(randPos);

			SetRotation(Random::GetFloatRange(0.0f,	Math::TwoPi));

			//	Create	a	sprite	component,	and	set	texture

			SpriteComponent*	sc	=	new	SpriteComponent(this);

			sc->SetTexture(game->GetTexture("Assets/Asteroid.png"));

			//	Create	a	move	component,	and	set	a	forward	speed

			MoveComponent*	mc	=	new	MoveComponent(this);

			mc->SetForwardSpeed(150.0f);

}

One	other	new	item	in	this	Asteroid	constructor	is	the

use	of	the	Random	static	functions.	The	implementation

of	these	functions	isn’t	particularly	interesting:	They

simply	wrap	the	built-in	C++	random	number	generators

to	get	a	vector	or	float	within	a	range	of	values.	The

Random	functions	here	make	sure	that	each	asteroid	gets

a	random	position	and	orientation.

With	this	Asteroid	class,	you	can	then	create	several

asteroids	in	the	Game::LoadData	function	by	using	the

following	code:

Click	here	to	view	code	image

const	int	numAsteroids	=	20;

for	(int	i	=	0;	i	<	numAsteroids;	i++)

{

			new	Asteroid(this);

}

This	results	in	several	moving	asteroids	onscreen	(see

Figure	3.11).

Figure	3.11	Asteroids	moving	with	move

components

Creating	an	InputComponent	Class

The	base	MoveComponent	is	fantastic	for	objects

like	the	asteroids	that	the	player	doesn’t	control.

However,	if	you	want	a	ship	that	the	player	can

control	with	the	keyboard,	you	have	a	dilemma.	One

idea	is	to	create	a	custom	function	for	input	in	the

Ship	class,	as	in	the	Chapter	2	game	project.

However,	because	hooking	up	input	to	an	actor	or	a

component	is	a	common	need,	it’s	sensible	to

incorporate	this	into	the	game	object	model.	In	other

words,	you	want	overridable	functions	in	both	Actor

and	Component	that	subclasses	can	redefine	for

input	as	needed.

To	support	this,	you	first	add	a	virtual	ProcessInput

function	to	Component,	with	an	empty	default

implementation:

Click	here	to	view	code	image

virtual	void	ProcessInput(const	uint8_t*	keyState)	{}

Then	in	Actor,	you	declare	two	functions:	a	non-virtual

ProcessInput	and	a	virtual	ActorInput	function.

The	idea	here	is	that	actor	subclasses	that	want	custom

input	can	override	ActorInput	but	not	ProcessInput

(like	how	there	are	separate	Update	and	UpdateActor

functions):

Click	here	to	view	code	image

//	ProcessInput	function	called	from	Game	(not	overridable)

void	ProcessInput(const	uint8_t*	keyState);

//	Any	actor-specific	input	code	(overridable)

virtual	void	ActorInput(const	uint8_t*	keyState);

The	Actor::ProcessInput	function	first	checks	if	the

actor’s	state	is	active.	If	it	is,	you	first	call

ProcessInput	on	all	components	and	then	call

ActorInput	for	any	actor-overridable	behavior:

Click	here	to	view	code	image

void	Actor::ProcessInput(const	uint8_t*	keyState)

{

			if	(mState	==	EActive)

			{

						for	(auto	comp	:	mComponents)

						{

									comp->ProcessInput(keyState);

						}

						ActorInput(keyState);

			}

}

Finally,	in	Game::ProcessInput,	you	can	loop	over	all

actors	and	call	ProcessInput	on	each	one:

Click	here	to	view	code	image

mUpdatingActors	=	true;

for	(auto	actor	:	mActors)

{

			actor->ProcessInput(keyState);

}

mUpdatingActors	=	false;

You	set	the	mUpdatingActors	bool	to	true	before	the

loop	to	handle	an	actor	or	component	trying	to	create

another	actor	inside	ProcessInput.	In	this	case,	you

must	add	to	the	mPendingActors	vector	instead	of

mActors.	This	is	the	same	technique	used	in	Chapter	2

to	ensure	that	you	don’t	modify	mActors	while	iterating

over	the	vector.

With	this	glue	code	in	place,	you	can	then	declare	a

subclass	of	MoveComponent	called	InputComponent,

as	in	Listing	3.4.	The	main	idea	of	InputComponent	is

that	you	can	set	up	specific	keys	to	control	both

forward/backward	movement	and	rotation	of	the	owning

actor.	In	addition,	because	the	overridden

ProcessInput	directly	sets	the	forward/angular	speeds

of	MoveComponent,	you	need	to	specify	the	“maximum”

speeds	to	calculate	the	correct	speed	values	based	on	the

keyboard	input.

Listing	3.4	InputComponent	Declaration

Click	here	to	view	code	image

class	InputComponent	:	public	MoveComponent

{

public:

			InputComponent(class	Actor*	owner);

			void	ProcessInput(const	uint8_t*	keyState)	override;

			//	Getters/setters	for	private	variables

			//	...

private:

			//	The	maximum	forward/angular	speeds

			float	mMaxForwardSpeed;

			float	mMaxAngularSpeed;

			//	Keys	for	forward/back	movement

			int	mForwardKey;

			int	mBackKey;

			//	Keys	for	angular	movement

			int	mClockwiseKey;

			int	mCounterClockwiseKey;

};

Listing	3.5	shows	the	implementation	of

InputComponent::ProcessInput.	You	first	set	the

forward	speed	to	zero	and	then	determine	the	correct

forward	speed	based	on	the	keys	pressed.	You	then	pass

this	speed	into	the	inherited	SetForwardSpeed

function.	Note	that	if	the	user	presses	both	forward	and

back	keys	or	neither	of	the	keys,	the	forward	speed

becomes	zero.	You	use	similar	code	for	setting	the

angular	speed.

Listing	3.5	InputComponent::ProcessInput

Implementation

Click	here	to	view	code	image

void	InputComponent::ProcessInput(const	uint8_t*	keyState)

{

			//	Calculate	forward	speed	for	MoveComponent

			float	forwardSpeed	=	0.0f;

			if	(keyState[mForwardKey])

			{

						forwardSpeed	+=	mMaxForwardSpeed;

			}

			if	(keyState[mBackKey])

			{

						forwardSpeed	-=	mMaxForwardSpeed;

			}

			SetForwardSpeed(forwardSpeed);

			//	Calculate	angular	speed	for	MoveComponent

			float	angularSpeed	=	0.0f;

			if	(keyState[mClockwiseKey])

			{

						angularSpeed	+=	mMaxAngularSpeed;

			}

			if	(keyState[mCounterClockwiseKey])

			{

						angularSpeed	-=	mMaxAngularSpeed;

			}

			SetAngularSpeed(angularSpeed);

}

With	this	in	place,	you	can	then	add	keyboard-controlled

movement	to	Ship	by	simply	creating	an

InputComponent	instance.	(We	omit	the	code	for	the

Ship	constructor	here,	but	it	essentially	sets	the	various

InputComponent	member	variables	for	the	keys	and

maximum	speed.)	You	also	create	a	SpriteComponent

and	assign	it	a	texture.	This	yields	a	user-controllable

ship	(see	Figure	3.12).

Figure	3.12	Ship	controlled	with	the	keyboard

This	is	an	excellent	first	pass	of	a	more	flexible	system

for	input.	We	explore	input	in	much	greater	detail	in

Chapter	8,	“Input	Systems.”

NEWTONIAN	PHYSICS
Although	the	basic	movement	approach	used	so	far

in	this	chapter	works	for	some	games,	for	movement

that	more	closely	resembles	the	real	world,	you	need

a	physically	accurate	approach.	Luckily,	Isaac

Newton	(among	others)	developed	Newtonian

physics	(or	classical	mechanics)	to	describe	laws	of

motion.	Games	commonly	utilize	Newtonian	physics

because	its	laws	hold	if	objects	are	not	moving	near

the	speed	of	light	and	objects	are	larger	than

quantum	particles.	Because	games	typically	don’t

feature	objects	in	those	edge	cases,	Newtonian

physics	works	well.

There	are	several	different	aspects	to	Newtonian	physics.

This	book	considers	only	the	most	basic:	movement

without	rotational	forces,	or	linear	mechanics.	For

deeper	discussions	of	other	components	of	Newtonian

physics,	consult	either	Ian	Millington’s	book,	listed	in

this	chapter’s	“Additional	Reading”	section,	or	any

college-level	physics	textbook.

Linear	Mechanics	Overview

The	two	cornerstones	of	linear	mechanics	are	force

and	mass.	Force	is	an	influence	that	can	cause	an

object	to	move.	Because	force	has	a	magnitude	and

direction,	it’s	natural	to	represent	force	with	a	vector.

Mass	is	a	scalar	that	represents	the	quantity	of

matter	contained	in	an	object.	It’s	common	to

confuse	mass	with	weight,	but	mass	is	independent

of	any	gravity,	whereas	weight	is	not.	The	greater	the

mass	of	an	object,	the	more	difficult	it	is	to	change

the	movement	of	that	object.

If	you	apply	sufficient	force	to	an	object,	it	will	start

moving.	Newton’s	second	law	of	motion

encapsulates	this	idea:

In	this	equation,	F	is	force,	m	is	mass,	and	a	is

acceleration,	or	the	rate	at	which	the	velocity	of	an

object	increases.	Because	force	equals	mass	times

acceleration,	it’s	also	true	that	acceleration	is	force

divided	by	mass.	This	is	the	usual	approach	in	games:	An

arbitrary	object	in	the	game	has	a	mass,	and	you	can

apply	forces	to	that	object.	From	this,	you	can	then

compute	the	acceleration	of	the	object.

In	a	physics	course,	the	typical	symbolic	representation

of	linear	mechanics	is	that	position,	velocity,	and

acceleration	are	functions	over	time.	Then,	with	calculus,

you	can	calculate	the	velocity	function	as	the	derivative

of	the	position	function	and	the	acceleration	function	as

the	derivative	of	the	velocity	function.

However,	this	standard	formulation	in	terms	of	symbolic

equations	and	derivatives	is	not	particularly	applicable	in

a	game.	A	game	needs	to	apply	a	force	to	an	object	and,

from	that	force,	determine	the	acceleration	over	time.

Once	you	have	an	object’s	acceleration,	you	can	compute

the	change	in	the	object’s	velocity.	Finally,	given	a

velocity,	you	can	compute	the	change	in	the	object’s

position.	A	game	only	needs	to	compute	this	in	terms	of

the	discrete	time	step	of	delta	time.	It	doesn’t	need	a

symbolic	equation.	This	requires	using	integration—but

not	symbolic	integration.	Instead,	you	must	use

numeric	integration,	which	approximates	the

symbolic	integral	over	a	fixed	time	step.	Although	this

sounds	very	complex,	luckily,	you	can	accomplish

numeric	integration	with	only	a	few	lines	of	code.

Computing	Positions	with	Euler
Integration

Numeric	integration	allows	a	game	to	update	the

velocity	based	on	the	acceleration	and	then	update

the	position	based	on	the	velocity.	However,	to

compute	the	acceleration	of	an	object,	the	game

needs	to	know	the	mass	of	the	object	as	well	as	the

forces	applied	to	the	object.

There	are	multiple	types	of	forces	to	consider.	Some

forces,	such	as	gravity,	are	constant	and	should	apply	on

every	frame.	Other	forces	may	instead	be	impulses,	or

forces	that	apply	only	for	a	single	frame.

For	example,	when	a	character	jumps,	an	impulse	force

allows	the	player	to	get	off	the	ground.	However,	the

character	will	eventually	return	to	the	ground	because	of

the	constant	force	of	gravity.	Because	multiple	forces	can

act	on	an	object	simultaneously,	and	forces	are	vectors,

adding	up	all	the	forces	gives	the	total	force	applied	to	an

object	for	that	frame.	Dividing	the	sum	of	forces	by	mass

yields	acceleration:

Click	here	to	view	code	image

acceleration	=	sumOfForces	/	mass;

Next,	you	can	use	the	Euler	integration	method	of

numeric	integration	to	compute	the	velocity	and	the

position:

Click	here	to	view	code	image

//	(Semi-Implicit)	Euler	Integration

//	Update	velocity

velocity	+=	acceleration	*	deltaTime;

//	Update	position

position	+=	velocity	*	deltaTime;

Note	that	force,	acceleration,	velocity,	and	position	are

all	represented	as	vectors	in	these	calculations.	Because

these	calculation	depend	on	the	delta	time,	you	can	put

them	in	the	Update	function	of	a	component	that

simulates	physics.

Issues	with	Variable	Time	Steps

For	games	that	rely	on	physics	simulation,	variable

frame	times	(or	time	steps)	can	cause	problems.

This	is	because	the	accuracy	of	numeric	integration

depends	on	the	size	of	the	time	step.	The	smaller	the

time	step,	the	more	accurate	the	approximation.

If	the	frame	rate	varies	from	frame	to	frame,	so	does	the

accuracy	of	the	numeric	integration.	The	accuracy

changing	could	affect	the	behavior	in	very	noticeable

ways.	Imagine	playing	Super	Mario	Bros.,	where	the

distance	Mario	can	jump	varies	depending	on	the	frame

rate.	The	lower	the	frame	rate,	the	further	Mario	can

jump.	This	is	because	the	error	amount	in	numeric

integration	increases	with	a	lower	frame	rate,	which

results	in	an	exaggerated	jump	arc.	This	means	that	the

game	played	on	a	slower	machine	allows	Mario	to	jump

farther	than	the	game	played	on	a	fast	machine.	Figure

3.13	illustrates	an	example	where	the	actual	simulated

arc	diverges	from	the	intended	arc	due	to	a	large	time

step.

Figure	3.13	The	actual	jump	arc	diverges	from	an

intended	jump	arc	due	to	a	large	time	step

For	this	reason,	any	game	that	uses	physics	to	calculate

the	positions	of	objects	should	not	use	a	variable	frame

rate—at	least	not	for	the	physics	simulation	code.

Instead,	you	can	use	the	frame-limiting	approach,	as	in

Chapter	1,	which	works	if	the	frame	rate	doesn’t	go	below

the	target	frame	rate.	A	more	complex	alternative	is	to

divide	the	larger	time	step	into	multiple	fixed-size

physics	time	steps.

BASIC	COLLISION	DETECTION
Collision	detection	is	how	a	game	determines

whether	two	objects	in	the	game	world	touch	each

other.	In	Chapter	1,	you	implemented	a	form	of

collision	detection	to	determine	whether	the	ball

collided	with	the	wall	or	paddles.	However,	for	the

Asteroids	game	project	in	this	chapter,	you	need

slightly	more	complex	calculations	to	decide	whether

the	lasers	the	ship	fires	should	collide	with	the

asteroids	in	the	game	world.

A	key	concept	in	collision	detection	is	simplification	of

the	problem.	For	example,	the	asteroid	image	is	circular

but	not	exactly	a	circle.	While	it	is	more	accurate	to	test

collision	against	the	actual	contours	of	the	asteroid,	it’s

far	more	efficient	to	consider	the	asteroid	as	a	circle	for

the	purposes	of	collision	detection.	If	you	similarly

simplify	the	laser	into	a	circle,	you	then	only	need	to

determine	whether	these	two	circles	collide.

Circle-Versus-Circle	Intersection

Two	circles	intersect	with	each	other	if	and	only	if	the

distance	between	their	centers	is	less	than	or	equal	to

the	sum	of	their	radii.	Figure	3.14	demonstrates	this

between	two	circles.	In	the	first	case,	the	two	circles

are	far	enough	apart	that	they	do	not	intersect.	In

this	case,	the	distance	between	their	centers	is

greater	than	the	sum	of	the	radii.	However,	in	the

second	case,	where	the	circles	do	intersect,	the

distance	between	their	centers	is	less	than	the	sum	of

their	radii.

Figure	3.14	Testing	intersection	between	two

circles

You	can	perform	this	intersection	test	by	first	creating	a

vector	between	the	two	centers	and	calculating	the

magnitude	of	this	vector.	Then,	compare	this	distance

against	the	sum	of	the	circle’s	radii:

Recall	the	discussion	earlier	in	the	chapter	regarding

length	versus	length	squared.	In	the	case	of	circle

intersection,	all	you	need	is	a	comparison	between	the

distance	and	the	sum	of	the	radii.	Because	you	know	the

distances	and	the	radii	cannot	be	negative,	you	can

square	both	sides	of	the	equation	while	preserving	the

inequality:

>

notenote

The	approach	covered	in	this	section	also	works	for	spheres	because	the
same	principle	applies.

Creating	a	CircleComponent	Subclass

To	support	collision	detection	of	actors,	you	can

create	a	CircleComponent	and	a	method	to	test	for

intersection	between	two	circle	components.	You	can

then	add	a	CircleComponent	to	any	actor	that

needs	collision.

First,	declare	CircleComponent	as	a	subclass	of

Component,	as	in	Listing	3.6.	The	only	member	data

CircleComponent	needs	is	a	radius	because	the	center

of	the	circle	is	simply	the	position	of	the	owning	actor.

Listing	3.6	CircleComponent	Declaration

Click	here	to	view	code	image

class	CircleComponent	:	public	Component

{

public:

			CircleComponent(class	Actor*	owner);

			void	SetRadius(float	radius)	{	mRadius	=	radius;	}

			float	GetRadius()	const;

			const	Vector2&	GetCenter()	const;

private:

			float	mRadius;

};

Next,	declare	a	global	Intersect	function	that	takes	in

two	circle	components	by	reference	and	returns	true	if

the	two	circles	intersect	with	each	other,	as	in	Listing	3.7.

Note	that	the	implementation	directly	mirrors	the

equations	from	the	previous	section.	You	first	calculate

the	distance	squared	between	the	two	centers	and	then

compare	that	to	the	sum	of	the	radii	squared.

Listing	3.7	CircleComponent	Intersection

Click	here	to	view	code	image

bool	Intersect(const	CircleComponent&	a,	const	CircleComponent&	b)

{

			//	Calculate	distance	squared

			Vector2	diff	=	a.GetCenter()	-	b.GetCenter();

			float	distSq	=	diff.LengthSq();

			//	Calculate	sum	of	radii	squared

			float	radiiSq	=	a.GetRadius()	+	b.GetRadius();

			radiiSq	*=	radiiSq;

			return	distSq	<=	radiiSq;

}

You	can	then	create	a	CircleComponent	just	like	any

other	component.	For	example,	the	following	two	lines	of

code	adds	a	CircleComponent	to	an	Asteroid	object

(where	mCircle	is	a	member	variable	pointer	to	a

CircleComponent):

Click	here	to	view	code	image

mCircle	=	new	CircleComponent(this);

mCircle->SetRadius(40.0f);

Because	each	laser	fired	by	the	ship	needs	to	check	for

collision	against	all	the	asteroids,	you	can	add	a

std::vector	of	Asteroid	pointers	to	Game.	Then,	in

Laser::UpdateActor,	you	can	easily	test	for

intersection	against	each	of	these	asteroids:

Click	here	to	view	code	image

void	Laser::UpdateActor(float	deltaTime)

{

			//	Do	you	intersect	with	an	asteroid?

			for	(auto	ast	:	GetGame()->GetAsteroids())

			{

						if	(Intersect(*mCircle,	*(ast->GetCircle())))

						{

									//	If	this	laser	intersects	with	an	asteroid,

									//	set	ourselves	and	the	asteroid	to	dead

									SetState(EDead);

									ast->SetState(EDead);

									break;

						}

			}

}

The	GetCircle	function	that	is	called	on	each	asteroid

is	simply	a	public	function	that	returns	the	pointer	to	the

asteroid’s	CircleComponent.	Similarly,	the	mCircle

variable	is	the	laser’s	CircleComponent.

CircleComponent	works	well	in	the	case	of	Asteroids

because	you	can	approximate	the	collision	of	all	objects

in	the	game	with	circles.	However,	circles	don’t	work	well

for	all	types	of	objects,	and	certainly	not	in	3D.	Chapter

10,	“Collision	Detection,”	dives	into	the	topic	of	collision

detection	in	much	greater	detail.

GAME	PROJECT

This	chapter’s	game	project	implements	a	basic

version	of	the	classic	game	Asteroids.	The	earlier

sections	of	this	chapter	cover	most	of	the	new	code

used	in	the	game	project.	The	project	implements

movement	with	MoveComponent	and

InputComponent.	The	CircleComponent	code

tests	if	the	ship’s	laser	collides	against	asteroids.	A

notable	feature	that’s	missing	in	the	game	project	is

that	the	asteroids	do	not	collide	with	the	ship

(though	you	will	add	that	in	Exercise	3.2).	The	game

project	also	does	not	implement	Newtonian	physics

(though	you	will	add	that	in	Exercise	3.3).	The	code

is	available	in	the	book’s	GitHub	repository,	in	the

Chapter03	directory.	Open	Chapter03-

windows.sln	in	Windows	and	Chapter03-

mac.xcodeproj	on	Mac.

One	game	feature	not	covered	earlier	in	the	chapter	is

how	to	create	lasers	when	the	player	presses	the

spacebar.	Because	detecting	the	spacebar	input	is	unique

to	Ship,	it	follows	that	you	should	override	the

ActorInput	function.	However,	if	the	player	holds

down	the	spacebar	(or	presses	it	rapidly),	you	don’t	want

to	create	so	many	lasers	that	it	trivializes	the	game.

Instead,	you	want	a	cooldown	where	the	ship	can	fire	a

laser	only	once	every	half	second.	To	implement	this,

first	create	a	float	mLaserCooldown	member

variable	in	Ship	and	initialize	it	to	0.0f.	Next,	in

ActorInput,	check	if	the	player	presses	the	spacebar

and	mLaserCooldown	is	less	than	or	equal	to	zero.	If

both	conditions	are	met,	you	create	the	laser,	set	its

position	and	rotation	to	the	ship’s	(so	it	starts	at	the	ship

and	faces	the	direction	the	ship	faces),	and	set

mLaserCooldown	to	0.5f:

Click	here	to	view	code	image

void	Ship::ActorInput(const	uint8_t*	keyState)

{

			if	(keyState[SDL_SCANCODE_SPACE]	&&	mLaserCooldown	<=	0.0f)

			{

						//	Create	a	laser	and	set	its	position/rotation	to	mine

						Laser*	laser	=	new	Laser(GetGame());

						laser->SetPosition(GetPosition());

						laser->SetRotation(GetRotation());

						//	Reset	laser	cooldown	(half	second)

						mLaserCooldown	=	0.5f;

			}

}

Then,	override	UpdateActor	to	decrement

mLaserCooldown	by	delta	time:

Click	here	to	view	code	image

void	Ship::UpdateActor(float	deltaTime)

{

			mLaserCooldown	-=	deltaTime;

}

This	way,	mLaserCooldown	keeps	track	of	the	amount

of	time	until	the	player	can	fire	again.	And	because

ActorInput	doesn’t	create	a	laser	if	the	timer	hasn’t

run	out,	you	make	sure	the	player	can’t	fire	more	often

than	desired.	With	lasers	firing,	you	can	then	shoot	and

destroy	asteroids	with	the	previously	covered	collision

code	(see	Figure	3.15).

Figure	3.15	Shooting	lasers	at	asteroids

You	can	use	a	similar	float	variable	in	Laser	to	force	the

laser	to	die	(and	be	deleted	from	the	game	world)	after

one	second,	even	if	the	laser	doesn’t	collide	with	an

asteroid.

SUMMARY
A	vector	represents	a	magnitude	and	a	direction.	You

can	use	vectors	for	many	different	computations,

including	creating	a	vector	between	two	points	(using

subtraction),	calculating	the	distance	between	two

points	(using	subtraction	and	length),	finding	the

angle	between	two	vectors	(using	the	dot	product),

and	calculating	a	normal	to	a	surface	(with	the	cross

product).

For	basic	movement,	this	chapter	shows	how	to	create	a

MoveComponent	that	allows	actors	to	move	in	the

forward	direction	as	well	as	rotate.	For	forward

movement,	you	multiply	the	forward	vector	of	the	actor

by	movement	speed	and	delta	time.	Adding	this	to	the

current	position	of	the	actor	yields	the	new	position	of

the	actor	after	the	time	step.	In	this	chapter	you	also

learned	how	to	add	support	for	overridable	input

behavior	in	actors	and	components,	and	how	to	leverage

this	to	create	an	InputComponent	that	inherits	from

MoveComponent.

In	Newtonian	physics,	the	acceleration	of	an	object	is

force	applied	to	the	object	divided	by	the	object’s	mass.

You	can	use	Euler	integration	to	calculate	the	change	in

velocity	and	position	on	every	frame.

Finally,	collision	detection	is	how	a	game	decides	if	two

objects	touch	each	other.	For	some	types	of	games,	such

as	this	chapter’s	game	project,	you	can	use	circles	to

represent	the	collisions	of	objects.	Two	circles	are

considered	to	intersect	if	the	distance	between	their

centers	is	less	than	the	sum	of	their	radii.	As	an

optimization,	you	can	square	both	sides	of	this	equation.

ADDITIONAL	READING
Eric	Lengyel	provides	an	in-depth	look	at	all	the

different	mathematical	concepts	used	in	3D	game

programming.	Aspiring	graphics	programmers

especially	should	review	the	more	advanced	material

in	his	book.	The	Gaffer	on	Games	site,	maintained	by

Glenn	Fielder,	has	several	articles	on	the	basics	of

physics	in	games,	including	articles	on	different

forms	of	numeric	integration	and	why	fixing	a	time

step	is	important.	Finally,	Ian	Millington	covers	how

to	implement	Newtonian	physics	in	games	in	detail.

Fielder,	Glenn.	Gaffer	on	Games.	Accessed

July	18,	2016.	http://gafferongames.com/.

Lengyel,	Eric.	Mathematics	for	3D	Game

Programming	and	Computer	Graphics,

3rd	edition.	Boston:	Cengage,	2011.

Millington,	Ian.	Game	Physics	Engine

Development,	2nd	edition.	Boca	Raton:

CRC	Press,	2010.

http://gafferongames.com/

EXERCISES
The	first	exercise	for	this	chapter	is	a	series	of	short

problems	that	give	you	practice	using	the	various

vector	techniques	covered	in	this	chapter.	The	next

two	exercises	look	at	adding	features	to	the	chapter’s

game	project.

Exercise	3.1
1.	Given	the	vectors	 	and	 ,	and	the

scalar	value	s=2,	calculate	the	following:

(a)	

(b)	

(c)	

2.	Given	the	triangle	in	Figure	3.16	and	the	following

points:

A=〈−,1〉

B=〈2,4〉

C=〈3,3〉

Calculate	the	θ	using	the	vector	operations	discussed

in	this	chapter.

Figure	3.16	Triangle	for	problem	2	of	Exercise	3.1

3.	Suppose	a	2D	game	features	an	arrow	that	points

from	the	player	to	the	next	objective.

When	the	game	first	begins,	the	arrow	points	down

the	x-axis	〈1,0〉.

The	player’s	initial	position	is	at	(4,0).

You	create	a	new	object	at	the	position	(5,6).

a.	What	is	the	unit	vector	from	the	player’s	initial

position	to	the	new	waypoint?

b.	Calculate	the	angle	of	rotation	between	the	initial

arrow	direction	and	the	vector	calculated	in	part

(a).

c.	Calculate	the	vector	perpendicular	to	the	plane

created	by	the	initial	arrow	direction	and	the	vector

calculated	in	part	(a).

Exercise	3.2

Currently,	the	ship	does	not	collide	against	asteroids

in	the	chapter	game	project.	Add	collision	for	the

ship.	To	do	so,	you	first	need	to	create	a

CollisionComponent	in	Ship	and	specify	a

radius.	Next,	in	Ship::UpdateActor,	you	need	to

test	against	the	collision	of	all	asteroids	(much	the

way	the	laser	does).	If	the	ship	collides	with	an

asteroid,	force	it	to	reset	in	the	center	of	the	screen

with	a	rotation	of	zero.

As	an	extra	feature,	make	it	so	the	ship	disappears	for	a

second	or	two	after	colliding	with	an	asteroid.	The	ship

should	then	reappear	in	the	center	after	this	delay.

Exercise	3.3

Modify	MoveComponent	so	that	it	uses	Newtonian

physics.	Specifically,	change	it	to	have	a	mass,	a	sum

of	forces,	and	a	velocity	as	member	variables.	Then

in	Update,	change	the	code	for	forward	movement

so	it	instead	calculates	an	acceleration	from	the

forces,	a	velocity	from	the	acceleration,	and	a

position	from	the	velocity.

Then,	you	need	some	method	to	set	forces	on	the

component.	One	approach	is	to	add	an	AddForce

function	that	takes	in	a	Vector2	and	adds	that	to	the

sum	of	forces	variable.	You	can	additionally	clear	the

sum	of	forces	on	every	frame	after	calculating

acceleration.	This	way,	for	an	impulse	you	just	call

AddForce	once.	And	for	a	constant	force,	you	simply

call	AddForce	for	that	force	on	every	frame.

Finally,	change	InputComponent,	Asteroid,	and

Ship	so	that	they	work	correctly	with	this	new

MoveComponent	that	supports	Newtonian	physics.

CHAPTER	4

ARTIFICIAL
INTELLIGENCE

Artificial	intelligence	(AI)	algorithms	are

used	to	determine	the	actions	of	computer-

controlled	entities	in	games.	This	chapter

covers	three	useful	game	AI	techniques:

changing	behaviors	with	state	machines,

computing	paths	for	entities	to	move

through	the	world	(pathfinding),	and	making

decisions	in	two-player	turn-based	games

(minimax	and	game	trees).	The	chapter

shows	you	how	to	apply	some	of	these	AI

techniques	to	create	a	tower	defense	game

project.

STATE	MACHINE	BEHAVIORS
For	very	simple	games,	the	AI	always	has	the	same

behavior.	For	instance,	an	AI	for	two-player	Pong

tracks	the	position	of	the	ball	as	it	moves.	Because

this	behavior	doesn’t	change	throughout	the	game,

it’s	stateless.	But	for	more	complex	games,	the	AI

behaves	differently	at	different	points	in	time.	In

Pac-Man,	each	ghost	has	three	different	behaviors:

chasing	the	player,	scattering	away	(where	the	ghost

returns	to	a	set	“home	area”),	or	running	away	from

the	player.	One	way	to	represent	these	changes	in

behaviors	is	with	a	state	machine,	where	each

behavior	corresponds	to	a	state.

Designing	a	State	Machine

States	by	themselves	only	partially	define	a	state

machine.	Equally	important	is	how	the	state	machine

decides	to	change,	or	transition	between,	states.

Furthermore,	each	state	can	have	actions	that	occur

on	entry	or	exit	of	the	state.

When	implementing	a	state	machine	for	a	game

character’s	AI,	it’s	prudent	to	plan	the	different	states

and	how	they	interconnect.	Take	the	example	of	a	basic

guard	character	in	a	stealth	game.	By	default,	the	guard

patrols	on	a	predefined	path.	If	the	guard	detects	the

player	while	on	patrol,	it	starts	attacking	the	player.	And,

if	at	any	point	in	time,	the	guard	receives	fatal	damage,	it

dies.	In	this	example,	the	guard	AI	has	three	different

states:	Patrol,	Attack,	and	Death.

Next,	you	need	to	define	the	transitions	for	each	state.

The	Death	state	transition	is	simple:	When	the	guard

takes	fatal	damage,	it	transitions	to	Death.	This	happens

regardless	of	the	current	state.	The	guard	enters	the

Attack	state	if,	during	the	Patrol	state,	the	guard	spots

the	player.	The	state	machine	diagram	in	Figure	4.1

represents	this	combination	of	states	and	transitions.

Figure	4.1	Basic	stealth	AI	state	machine

Although	this	AI	is	functional,	AI	characters	in	most

stealth	games	are	more	complex.	Suppose	the	guard

hears	a	suspicious	sound	while	in	the	Patrol	state.	The

current	state	machine	dictates	that	the	guard	continue

patrolling.	Ideally,	the	sound	should	startle	the	guard

and	cause	the	guard	to	search	for	the	player.	An

Investigate	state	can	represent	this	behavior.

Furthermore,	in	this	state	machine	example,	the	guard

always	attacks	when	detecting	the	player.	But	for	variety,

maybe	the	guard	occasionally	triggers	an	alarm	instead.

An	Alert	state	can	represent	this	behavior.	The	Alert

state	randomly	transitions	out	to	either	Attack	or

another	new	state,	Alarm.	Adding	these	refinements

makes	the	state	machine	more	complex,	as	shown	in

Figure	4.2.

Figure	4.2	More	complex	stealth	AI	state	machine

From	the	Alert	state	you	have	two	transitions:	75%	and

25%.	These	transitions	refer	to	the	probability	of	the

transition.	So,	there’s	a	75%	chance	that	when	in	the

Alert	state,	the	AI	will	transition	to	the	Attack	state.	In

the	Alarm	state,	the	Complete	transition	means	that	after

the	AI	finishes	triggering	the	alarm	(perhaps	by

interacting	with	some	object	in	the	game	world),	the	AI

transitions	into	the	Attack	state.

Further	refinements	to	the	state	machine	are	possible.

But	the	principles	of	designing	an	AI	state	machine	are

the	same	regardless	of	the	number	of	states.	In	any

event,	after	defining	a	state	machine,	the	next	step	is	to

implement	it	in	code.

Basic	State	Machine	Implementation

There	are	several	ways	to	implement	a	state	machine.

Minimally,	the	code	must	update	the	behavior	of	the

AI	based	on	the	current	state,	and	it	must	support

enter	and	exit	actions.	An	AIComponent	class	can

encapsulate	this	state	behavior.

If	there	are	only	two	states,	a	simple	Boolean	check	in

Update	would	work,	though	it	isn’t	very	robust.	A	more

flexible	implementation	is	to	use	an	enum	to	represent

the	different	states.	For	the	state	machine	in	Figure	4.1,

this	is	the	enum	declaration:

enum	AIState

{

			Patrol,

			Death,

			Attack

};

Then,	you	create	an	AIComponent	class	that	has	an

instance	of	AIState	as	member	data.	You	also	define

separate	update	functions	for	each	state:

UpdatePatrol,	UpdateDeath,	and	UpdateAttack.

The	AIComponent::Update	function	then	has	a	switch

on	the	AIState	member	variable	and	calls	the	update

function	that	corresponds	to	the	current	state:

Click	here	to	view	code	image

void	AIComponent::Update(float	deltaTime)

{

			switch	(mState)

			{

			case	Patrol:

						UpdatePatrol(deltaTime);

						break;

			case	Death:

						UpdateDeath(deltaTime);

						break;

			case	Attack:

						UpdateAttack(deltaTime);

						break;

			default:

						//	Invalid

						break;

			}

}

You	can	handle	the	state	machine	transitions	in	a

separate	ChangeState	function.	This	way,	the	various

update	functions	can	initiate	a	transition	just	by	calling

ChangeState.	You	can	implement	ChangeState	as

follows:

Click	here	to	view	code	image

void	AIComponent::ChangeState(State	newState)

{

			//	Exit	current	state

			//	(Use	switch	to	call	corresponding	Exit	function)

			//	...

			mState	=	newState;

			//	Enter	current	state

			//	(Use	switch	to	call	corresponding	Enter	function)

			//	...

}

Although	this	implementation	is	simple,	there	are	issues.

First,	it	doesn’t	scale	well;	adding	more	states	reduces

the	readability	of	both	Update	and	ChangeState.	Also,

having	so	many	separate	Update,	Enter,	and	Exit

functions	also	makes	the	code	harder	to	follow.

It’s	also	not	easy	to	mix	and	match	functionality	between

multiple	AIs.	Two	different	AIs	with	different	state

machines	need	separate	enums	and,	therefore,	separate

AI	components.	But	many	AI	characters	may	share	some

functionality.	Suppose	two	AIs	have	mostly	different

state	machines,	but	both	have	a	Patrol	state.	With	this

basic	implementation,	it	isn’t	easy	to	share	the	Patrol

code	between	both	AI	components.

States	as	Classes

An	alternative	approach	to	the	one	just	described	is

to	use	classes	to	represent	each	state.	First,	define	a

base	class	for	all	states	called	AIState:

Click	here	to	view	code	image

class	AIState

{

public:

			AIState(class	AIComponent*	owner)

						:mOwner(owner)

			{	}

			//	State-specific	behavior

			virtual	void	Update(float	deltaTime)	=	0;

			virtual	void	OnEnter()	=	0;

			virtual	void	OnExit()	=	0;

			//	Getter	for	string	name	of	state

			virtual	const	char*	GetName()	const	=	0;

protected:

			class	AIComponent*	mOwner;

};

The	base	class	includes	several	virtual	functions	to

control	the	state:	Update	updates	the	state,	OnEnter

implements	any	entry	transition	code,	and	OnExit

implements	any	exit	transition	code.	The	GetName

function	simply	returns	a	human-readable	name	for	the

state.	You	also	associate	AIState	with	a	specific

AIComponent	through	the	mOwner	member	variable.

Next,	declare	the	AIComponent	class,	as	follows:

Click	here	to	view	code	image

class	AIComponent	:	public	Component

{

public:

			AIComponent(class	Actor*	owner);

	

			void	Update(float	deltaTime)	override;

			void	ChangeState(const	std::string&	name);

	

			//	Add	a	new	state	to	the	map

			void	RegisterState(class	AIState*	state);

private:

			//	Maps	name	of	state	to	AIState	instance

			std::unordered_map<std::string,	class	AIState*>	mStateMap;

			//	Current	state	we're	in

			class	AIState*	mCurrentState;

};

Notice	how	AIComponent	has	a	hash	map	of	state

names	to	AIState	instance	pointers.	It	also	has	a

pointer	to	the	current	AIState.	The	RegisterState

function	takes	in	a	pointer	to	an	AIState	and	adds	the

state	to	the	map:

Click	here	to	view	code	image

void	AIComponent::RegisterState(AIState*	state)

{

			mStateMap.emplace(state->GetName(),	state);

}

The	AIComponent::Update	function	is	also

straightforward.	It	simply	calls	Update	on	the	current

state,	if	it	exists:

Click	here	to	view	code	image

void	AIComponent::Update(float	deltaTime)

{

			if	(mCurrentState)

			{

						mCurrentState->Update(deltaTime);

			}

}

However,	the	ChangeState	function	does	several

things,	as	shown	in	Listing	4.1.	First,	it	calls	OnExit	on

the	current	state.	Next,	it	tries	to	find	the	state	you’re

changing	to	in	the	map.	If	it	finds	this	state,	it	changes

mCurrentState	to	the	new	state	and	calls	OnEnter	on

this	new	state.	If	it	can’t	find	the	next	state	in	the	map,	it

outputs	an	error	message	and	sets	mCurrentState	to

null.

Listing	4.1	AIComponent::ChangeState

Implementation

Click	here	to	view	code	image

void	AIComponent::ChangeState(const	std::string&	name)

{

			//	First	exit	the	current	state

			if	(mCurrentState)

			{

						mCurrentState->OnExit();

			}

	

			//	Try	to	find	the	new	state	from	the	map

			auto	iter	=	mStateMap.find(name);

			if	(iter	!=	mStateMap.end())

			{

						mCurrentState	=	iter->second;

						//	We're	entering	the	new	state

						mCurrentState->OnEnter();

			}

			else

			{

						SDL_Log("Could	not	find	AIState	%s	in	state	map",	name.c_str());

						mCurrentState	=	nullptr;

			}

}

You	can	use	this	pattern	by	first	declaring	subclasses	of

AIState,	like	this	AIPatrol	class:

Click	here	to	view	code	image

class	AIPatrol	:	public	AIState

{

public:

			AIPatrol(class	AIComponent*	owner);

	

			//	Override	with	behaviors	for	this	state

			void	Update(float	deltaTime)	override;

			void	OnEnter()	override;

			void	OnExit()	override;

	

			const	char*	GetName()	const	override

			{	return	"Patrol";	}

};

You	then	implement	any	special	behaviors	in	Update,

OnEnter,	and	OnExit.	Suppose	you	want	AIPatrol	to

change	to	the	AIDeath	state	when	the	character	dies.	To

initiate	the	transition,	you	need	to	call	ChangeState	on

the	owning	component,	passing	in	the	name	of	the	new

state:

Click	here	to	view	code	image

void	AIPatrol::Update(float	deltaTime)

{

			//	Do	some	other	updating

			//	...

			bool	dead	=	/*	Figure	out	if	I'm	dead	*/;

			if	(dead)

			{

						//	Tell	the	ai	component	to	change	states

						mOwner->ChangeState("Death");

			}

}

On	the	ChangeState	call,	the	AIComponent	looks	into

its	state	map,	and	if	it	finds	a	state	named	Death,	it

transitions	into	this	state.	You	can	similarly	declare

AIDeath	and	AIAttack	classes	to	complete	the	basic

state	machine	from	Figure	4.1.

To	hook	up	the	states	into	an	AIComponent’s	state	map,

first	create	an	actor	and	its	AIComponent	and	then	call

Register	on	any	states	you	wish	to	add	to	the	state

machine:

Click	here	to	view	code	image

Actor*	a	=	new	Actor(this);

//	Make	an	AIComponent

AIComponent*	aic	=	new	AIComponent(a);

//	Register	states	with	AIComponent

aic->RegisterState(new	AIPatrol(aic));

aic->RegisterState(new	AIDeath(aic));

aic->RegisterState(new	AIAttack(aic));

To	then	set	the	AIComponent	to	an	initial	patrol	state,

you	call	ChangeState,	as	follows:

aic->ChangeState("Patrol");

Overall,	this	approach	is	useful	because	each	state’s

implementation	is	in	a	separate	subclass,	which	means

the	AIComponent	remains	simple.	It	also	makes	it

significantly	easier	to	reuse	the	same	states	for	different

AI	characters.	You	simply	need	to	register	whichever

states	you	want	with	the	new	actor’s	AIComponent.

PATHFINDING
A	pathfinding	algorithm	finds	a	path	between	two

points,	avoiding	any	obstacles	in	the	way.	The

complexity	of	this	problem	stems	from	the	fact	that

there	might	be	a	large	set	of	paths	between	two

points,	but	only	a	small	number	of	these	paths	are

the	shortest.	For	example,	Figure	4.3	shows	two

potential	routes	between	points	A	and	B.	An	AI

traveling	along	the	solid	path	is	not	particularly

intelligent	because	the	dashed	path	is	shorter.	Thus,

you	need	a	method	to	efficiently	search	through	all

the	possible	paths	to	find	one	with	the	shortest

distance.

Figure	4.3	Two	paths	from	A	to	B

Graphs

Before	you	can	solve	the	pathfinding	problem,	you

first	need	a	way	to	represent	the	parts	of	the	game

world	that	the	AI	can	path	through.	A	popular	choice

is	the	graph	data	structure.	A	graph	contains	a	set	of

nodes	(also	called	vertices).	These	nodes	connect	to

each	other	via	edges.	These	edges	can	be

undirected,	meaning	they	are	traversable	in	both

directions,	or	directed,	meaning	they	are

traversable	in	only	one	direction.	You	might	use	a

directed	edge	for	a	case	where	the	AI	can	jump	down

from	a	platform	but	can’t	jump	back	up.	You	could

represent	this	connection	with	a	directed	edge	from

the	platform	to	the	ground.

Optionally,	edges	may	have	weights	associated	with

them,	representing	the	cost	of	traversing	the	edge.	In	a

game,	the	weight	minimally	accounts	for	the	distance

between	the	nodes.	However,	you	might	modify	the

weight	based	on	the	difficulty	of	traversing	the	edge.

For	example,	if	an	edge	moves	over	quicksand	in	the

game	world,	it	should	have	a	higher	weight	than	an	edge

of	the	same	length	that	moves	over	concrete.	A	graph

without	edge	weights	(an	unweighted	graph)

effectively	is	a	graph	where	the	weight	of	every	edge	is	a

constant	value.	Figure	4.4	illustrates	a	simple	undirected

and	unweighted	graph.

Figure	4.4	A	sample	graph

There	are	multiple	ways	to	represent	a	graph	in	memory,

but	this	book	uses	adjacency	lists.	In	this

representation,	each	node	has	a	collection	of	adjacent

nodes	(using	std::vector).	For	an	unweighted	graph,

this	adjacency	list	contains	pointers	to	adjacent	nodes.

The	graph	is	then	just	a	collection	of	such	nodes:

Click	here	to	view	code	image

struct	GraphNode

{

			//	Each	node	has	pointers	to	adjacent	nodes

			std::vector<GraphNode*>	mAdjacent;

};

struct	Graph

{

			//	A	graph	contains	nodes

			std::vector<GraphNode*>	mNodes;

};

For	a	weighted	graph,	instead	of	a	list	of	connected

nodes,	each	node	stores	its	outgoing	edges:

Click	here	to	view	code	image

struct	WeightedEdge

{

			//	Which	nodes	are	connected	by	this	edge?

			struct	WeightedGraphNode*	mFrom;

			struct	WeightedGraphNode*	mTo;

			//	Weight	of	this	edge

			float	mWeight;

};

struct	WeightedGraphNode

{

			//	Stores	outgoing	edges

			std::vector<WeightedEdge*>	mEdges;

};

//	(A	WeightedGraph	has	WeightedGraphNodes)

By	referencing	both	the	“from”	and	“to”	nodes	in	each

edge,	you	can	support	a	directed	edge	from	node	A	to	B

by	adding	an	edge	to	node	A’s	mEdges	vector	but	not	to

node	B’s.	If	you	want	an	undirected	edge,	you	simply	add

two	directed	edges,	one	in	each	direction	(for	example,

from	A	to	B	and	from	B	to	A).

Different	games	represent	the	game	world	via	graphs	in

different	manners.	Partitioning	a	world	into	a	grid	of

squares	(or	hexes)	is	the	simplest	approach.	This

approach	is	very	popular	for	turn-based	strategy	games

such	as	Civilization	or	XCOM.	However,	for	many	other

types	of	games,	it	isn’t	feasible	to	use	this	approach.	For

simplicity,	most	of	this	section	sticks	with	a	grid	of

squares.	However,	you	will	learn	about	other	possible

representations	later	in	this	chapter.

Breadth-First	Search

Suppose	a	game	takes	place	in	a	maze	designed	in	a

square	grid.	The	game	only	allows	movement	in	the

four	cardinal	directions.	Because	each	move	in	the

maze	is	uniform	in	length,	an	unweighted	graph	can

represent	this	maze.	Figure	4.5	shows	a	sample	maze

and	its	corresponding	graph.

Figure	4.5	A	maze	on	a	square	grid	and	its

corresponding	graph

Now	imagine	that	a	mouse	AI	character	starts	at	some

square	in	the	maze	(the	start	node)	and	wants	to	find

the	shortest	path	to	a	piece	of	cheese	in	the	maze	(the

goal	node).	One	approach	is	to	first	check	all	squares

one	move	away	from	the	start.	If	none	of	these	squares

contains	the	cheese,	you	then	check	all	squares	two

moves	away	from	the	start.	Repeat	this	process	until

either	the	cheese	is	found	or	there	are	no	valid	moves

left.	Because	this	algorithm	only	considers	the	further

nodes	once	the	closer	nodes	are	exhausted,	it	won’t	miss

the	shortest	path	to	the	cheese.	This	describes	what

happens	in	a	breadth-first	search	(BFS).	The	BFS

algorithm	guarantees	to	find	the	shortest	path	when

either	the	edges	are	unweighted	or	every	edge	has	the

same	positive	weight.

With	some	minor	bookkeeping	during	BFS,	it’s	possible

to	reconstruct	the	path	with	the	minimal	number	of

moves.	Once	it’s	computed,	AI	characters	can	then	follow

along	this	path.

During	BFS,	each	node	needs	to	know	the	node	visited

immediately	before	it.	That	node,	called	the	parent

node,	helps	reconstruct	the	path	after	BFS	completes.

While	you	could	add	this	data	to	the	GraphNode	struct,

it’s	better	to	separate	the	data	that	doesn’t	change	(the

graph	itself)	from	the	parents.	This	is	because	the

parents	will	change	depending	on	the	start	and	goal

nodes	selected.	Separating	these	pieces	of	data	also

means	that	if	you	want	to	compute	several	paths

simultaneously	across	multiple	threads,	the	searches

won’t	interfere	with	each	other.

To	support	this,	first	define	a	type	of	map	called	a

NodeToPointerMap,	which	simply	is	an	unordered

map	where	both	the	key	and	value	are	GraphNode

pointers	(the	pointers	are	const	because	you	don’t	need

to	modify	the	graph	nodes):

Click	here	to	view	code	image

using	NodeToParentMap	=

			std::unordered_map<const	GraphNode*,	const	GraphNode*>;

With	this	type	of	map,	you	can	then	implement	BFS	as	in

Listing	4.2.	The	simplest	way	to	implement	BFS	is	with	a

queue.	Recall	that	a	queue	uses	FIFO	(first-in,	first-out)

behavior	when	adding	and	removing	nodes.	You	can	add

a	node	to	a	queue	via	an	enqueue	operation	and	remove

a	node	via	dequeue.	To	begin,	you	enqueue	the	start	node

and	enter	a	loop.	In	each	iteration,	you	dequeue	a	node

and	enqueue	its	neighbors.	You	can	avoid	adding	the

same	node	multiple	times	to	the	queue	by	checking	the

parent	map.	A	node’s	parent	is	null	only	if	the	node

hasn’t	been	enqueued	before	or	it’s	the	start	node.

When	you	use	the	square	brackets	on	the	outMap,	one	of

two	things	happens.	If	the	key	already	exists	in	the	map,

you	can	just	access	its	parent.	Otherwise,	if	the	key	does

not	exist	in	the	map,	the	map	by	default	constructs	a

value	for	that	key.	In	this	case,	if	you	access	outMap	and

the	node	requested	isn’t	in	the	map,	you	initialize	that

node’s	parent	to	nullptr.

Even	if	no	path	exists	between	the	start	and	the	goal,	the

loop	will	eventually	terminate.	This	is	because	the

algorithm	checks	all	nodes	that	are	reachable	from	start.

Once	all	possibilities	are	exhausted,	the	queue	becomes

empty	and	the	loop	ends.

Listing	4.2	Breadth-First	Search

Click	here	to	view	code	image

bool	BFS(const	Graph&	graph,	const	GraphNode*	start,

									const	GraphNode*	goal,	NodeToParentMap&	outMap)

{

			//	Whether	we	found	a	path

			bool	pathFound	=	false;

			//	Nodes	to	consider

			std::queue<const	GraphNode*>	q;

			//	Enqueue	the	first	node

			q.emplace(start);

			while	(!q.empty())

			{

						//	Dequeue	a	node

						const	GraphNode*	current	=	q.front();

						q.pop();

						if	(current	==	goal)

						{

									pathFound	=	true;

									break;

						}

			

						//	Enqueue	adjacent	nodes	that	aren't	already	in	the	queue

						for	(const	GraphNode*	node	:	current->mAdjacent)

						{

									//	If	the	parent	is	null,	it	hasn't	been	enqueued

									//	(except	for	the	start	node)

									const	GraphNode*	parent	=	outMap[node];

									if	(parent	==	nullptr	&&	node	!=	start)

									{

												//	Enqueue	this	node,	setting	its	parent

												outMap[node]	=	current;

												q.emplace(node);

									}

						}

			}

			return	pathFound;

}

Assuming	that	you	have	a	Graph	g,	you	can	then	run

BFS	between	two	GraphNodes	in	the	graph	with	the

following	two	lines:

Click	here	to	view	code	image

NodeToParentMap	map;

bool	found	=	BFS(g,	g.mNodes[0],	g.mNodes[9],	map);

If	BFS	succeeds,	you	can	reconstruct	the	path	by	using

the	parent	pointers	in	the	outMap.	This	is	because	the

goal’s	parent	points	to	the	preceding	node	on	the	path.

Similarly,	the	parent	of	the	node	preceding	the	goal	node

is	two	moves	away	from	the	goal.	Following	this	chain	of

parent	pointers	eventually	leads	back	to	the	start	node,

yielding	a	path	from	goal	to	start.

Unfortunately,	you	want	the	path	in	the	opposite

direction:	from	start	to	goal.	One	solution	is	to	reverse

the	path	with	a	stack,	but	a	more	intelligent	approach	is

to	reverse	the	search.	For	example,	instead	of	passing	in

the	mouse	node	as	start	and	the	cheese	node	as	goal,	do

the	opposite.	Then,	following	the	parent	pointers	from

the	goal	node	yields	the	desired	path.

BFS	always	finds	a	path	between	the	start	and	goal	nodes

if	one	exists.	But	for	weighted	graphs,	BFS	doesn’t

guarantee	to	find	the	shortest	path.	This	is	because	BFS

doesn’t	look	at	the	weight	of	the	edges	at	all;	every	edge

traversal	is	equivalent.	In	Figure	4.6,	the	dashed	path	has

the	shortest	distance,	but	BFS	returns	the	solid	path	as	it

requires	only	two	moves.

Figure	4.6	BFS	finds	the	solid	path	even	though	the

dashed	path	is	shorter

Another	issue	with	BFS	is	that	it	tests	nodes	even	if	they

are	in	the	opposite	direction	of	the	goal.	By	using	a	more

complex	algorithm,	it’s	possible	to	reduce	the	number	of

nodes	you	test	on	the	way	to	finding	the	optimal

solution.

Most	other	pathfinding	algorithms	used	in	games	have

an	overall	structure	like	BFS.	On	every	iteration,	you	pick

one	node	to	inspect	next	and	add	its	neighbors	to	a	data

structure.	What	changes	is	that	different	pathfinding

algorithms	evaluate	nodes	in	different	orders.

Heuristics

Many	search	algorithms	rely	on	a	heuristic,	which

is	a	function	that	approximates	an	expected	result.	In

pathfinding,	the	heuristic	is	the	estimated	cost	from

a	given	node	to	the	goal	node.	A	heuristic	can	help

you	more	quickly	find	a	path.	For	example,	on	each

iteration	of	BFS,	you	dequeue	the	next	node	in	the

queue,	even	if	that	node	sends	you	in	a	direction

pointing	away	from	the	goal.	With	a	heuristic,	you

can	estimate	how	close	you	think	a	specific	node	is	to

the	goal	and	then	choose	to	look	at	the	“closer”	nodes

first.	This	way,	the	pathfinding	algorithm	is	likely	to

terminate	with	fewer	iterations.

The	notation	h(x)	denotes	the	heuristic,	where	x	is	a

node	in	the	graph.	So,	h(x)	is	the	estimated	cost	from

node	x	to	the	goal	node.

A	heuristic	function	is	admissible	if	it	is	always	less

than	or	equal	to	the	actual	cost	from	node	x	to	the	goal.	If

the	heuristic	occasionally	overestimates	the	actual	cost,

it’s	inadmissible,	and	you	shouldn’t	use	it.	The	A*

algorithm,	discussed	later	in	this	section,	requires	an

admissible	heuristic	to	guarantee	the	shortest	path.

For	a	grid	of	squares,	there	are	two	common	ways	to

compute	the	heuristic.	For	example,	in	Figure	4.7,	the

checkered	node	represents	the	goal	and	the	solid	node

represents	the	start.	The	gray	squares	in	this	figure

denote	squares	that	are	impassible.

Figure	4.7	Manhattan	heuristic	(left)	and	Euclidean

heuristic	(right)

The	Manhattan	distance	heuristic,	illustrated	in

Figure	4.7	(left),	is	akin	to	traveling	along	city	blocks	in	a

sprawling	metropolis.	A	building	might	be	“five	blocks

away,”	but	there	may	be	multiple	routes	five	blocks	in

length.	Manhattan	distance	assumes	that	diagonal

movements	are	invalid.	If	diagonal	movements	are	valid,

Manhattan	distance	often	overestimates	the	cost,	making

the	heuristic	inadmissible.

For	a	2D	grid,	the	following	formula	calculates

Manhattan	distance:

A	second	type	of	heuristic	is	Euclidean	distance,

illustrated	in	Figure	4.7	(right).	You	use	the	standard

distance	formula	to	calculate	this	heuristic,	which

estimates	an	“as	the	crow	flies”	route.	Unlike	Manhattan

distance,	Euclidean	distance	can	easily	work	for	worlds

more	complex	than	a	square	grid.	In	2D,	the	Euclidean

distance	equation	is	as	follows:

The	Euclidean	distance	function	is	almost	always

admissible,	even	in	cases	where	the	Manhattan	distance

is	inadmissible.	This	means	that	Euclidean	distance	is

usually	the	recommended	heuristic	function.	However,

the	Manhattan	heuristic	is	more	efficient	to	compute

because	it	doesn’t	involve	a	square	root.

The	only	case	where	a	Euclidean	distance	heuristic

overestimates	the	true	cost	is	if	the	game	allows	non-

Euclidean	movement	such	as	teleporting	between	two

nodes	across	the	level.

Notice	that	in	Figure	4.7	both	heuristic	h(x)	functions

end	up	underestimating	the	actual	cost	of	traveling	from

the	start	node	to	the	goal	node.	This	happens	because	the

heuristic	function	knows	nothing	about	the	adjacency

lists,	so	it	doesn’t	know	whether	certain	areas	are

impassible.	This	is	fine	because	the	heuristic	is	the	lower

bound	of	how	close	node	x	is	to	the	goal	node;	the

heuristic	guarantees	that	node	x	is	at	least	that	distance

away.	This	is	more	useful	in	a	relative	sense:	The

heuristic	can	help	estimate	whether	node	A	or	node	B	is

closer	to	the	goal	node.	And	then	you	can	use	this

estimate	to	help	decide	whether	to	explore	node	A	or

node	B	next.

The	following	section	shows	how	to	use	the	heuristic

function	to	create	a	more	complex	pathfinding

algorithm.

Greedy	Best-First	Search

BFS	uses	a	queue	to	consider	nodes	in	a	FIFO

manner.	Greedy	best-first	search	(GBFS)

instead	uses	the	h(x)	heuristic	function	to	decide

which	node	to	consider	next.	Although	this	seems

like	a	reasonable	pathfinding	algorithm,	GBFS

cannot	guarantee	a	minimal	path.	Figure	4.8	shows

the	resultant	path	from	a	sample	GBFS	search.

Nodes	in	gray	are	impassible.	Note	that	the	path

makes	four	additional	moves	from	the	start	rather

than	going	straight	down.

Figure	4.8	Greedy	best-first	path

notenote

Although	GBFS	does	not	guarantee	optimality,	it’s	useful	to	understand
because	it	requires	only	a	couple	modifications	to	become	A*.	The	A*

algorithm	does	guarantee	the	shortest	path	if	the	heuristic	is	admissible.	So
before	moving	on	to	A*,	it’s	important	to	understand	the	GBFS
implementation.

Instead	of	using	a	single	queue,	GBFS	uses	two	sets	of

nodes	during	the	search.	The	open	set	contains	the

nodes	that	are	under	consideration.	Once	chosen	for

evaluation,	a	node	moves	into	the	closed	set.	When	a

node	is	in	the	closed	set,	GBFS	need	not	investigate	it

further.	There’s	no	guarantee	that	a	node	in	the	open	or

closed	set	will	ultimately	be	on	the	path;	these	sets	just

help	prune	nodes	from	consideration.

Selecting	data	structures	for	the	open	set	and	the	closed

set	presents	an	interesting	dilemma.	For	the	open	set,

the	two	operations	you	need	are	removing	the	node	with

the	lowest	cost	and	testing	for	membership.	The	closed

set	only	needs	a	membership	test.	To	speed	up	the

membership	test,	you	can	simply	use	Booleans	in	scratch

data	to	track	if	a	specific	node	is	a	member	of	the	open

set	or	the	closed	set.	And	because	the	closed	set	just

needed	this	membership	test,	you	don’t	use	an	actual

collection	for	the	closed	set.

For	the	open	set,	one	popular	data	structure	is	a	priority

queue.	However,	in	the	interest	of	simplicity,	this	chapter

uses	a	vector	for	the	open	set.	With	a	vector,	you	can	just

use	a	linear	search	to	find	the	element	in	the	open	set

with	the	lowest	cost.

As	with	BFS,	each	node	needs	additional	scratch	data

during	the	GBFS	search.	Because	you	now	have	multiple

pieces	of	scratch	data	per	node,	it	makes	sense	to	define

a	struct	to	encapsulate	it.	To	use	a	weighted	graph,	the

parent	is	an	incoming	edge	as	opposed	to	a	preceding

node.	In	addition,	each	node	tracks	its	heuristic	value

and	its	membership	in	the	open	and	closed	sets:

Click	here	to	view	code	image

struct	GBFSScratch

{

			const	WeightedEdge*	mParentEdge	=	nullptr;

			float	mHeuristic	=	0.0f;

			bool	mInOpenSet	=	false;

			bool	mInClosedSet	=	false;

};

Then,	define	a	map	where	the	key	is	a	pointer	to	the	node

and	the	value	is	an	instance	of	GBFSScratch:

Click	here	to	view	code	image

using	GBFSMap	=

			std::unordered_map<const	WeightedGraphNode*,	GBFSScratch>;

Now	you	have	the	necessary	components	for	a	greedy

best-first	search.	The	GBFS	function	takes	in	a

WeightedGraph,	the	start	node,	the	goal	node,	and	a

reference	to	a	GBFSMap:

Click	here	to	view	code	image

bool	GBFS(const	WeightedGraph&	g,	const	WeightedGraphNode*	start,

										const	WeightedGraphNode*	goal,	GBFSMap&	outMap);

At	the	start	of	the	GBFS	function,	you	define	a	vector	for

the	open	set:

Click	here	to	view	code	image

std::vector<const	WeightedGraphNode*>	closedSet;

Next,	you	need	a	variable	to	track	the	current	node,

which	is	the	node	under	evaluation.	This	updates	as	the

algorithm	progresses.	Initially,	current	is	the	start

node,	and	you	“add”	it	to	the	closed	set	by	marking	it	as

closed	in	the	scratch	map:

Click	here	to	view	code	image

const	WeightedGraphNode*	current	=	start;

outMap[current].mInClosedSet	=	true;

Next,	you	enter	the	main	loop	of	GBFS.	This	main	loop

does	several	things.	First,	it	looks	at	all	nodes	adjacent	to

the	current	node.	It	only	considers	nodes	that	aren’t

already	in	the	closed	set.	These	nodes	have	their	parent

edge	set	to	the	edge	incoming	from	the	current	node.	For

nodes	not	already	in	the	open	set,	the	code	computes	the

heuristic	(from	the	node	to	the	goal)	and	adds	the	node

to	the	open	set:

Click	here	to	view	code	image

do

{

			//	Add	adjacent	nodes	to	open	set

			for	(const	WeightedEdge*	edge	:	current->mEdges)

			{

						//	Get	scratch	data	for	this	node

						GBFSScratch&	data	=	outMap[edge->mTo];

						//	Add	it	only	if	it's	not	in	the	closed	set

						if	(!data.mInClosedSet)

						{

									//	Set	the	adjacent	node's	parent	edge

									data.mParentEdge	=	edge;

									if	(!data.mInOpenSet)

									{

												//	Compute	the	heuristic	for	this	node,	and	add	to	open	set

												data.mHeuristic	=	ComputeHeuristic(edge->mTo,	goal);

												data.mInOpenSet	=	true;

												openSet.emplace_back(edge->mTo);

									}

						}

			}

The	ComputeHeuristic	function	can	use	any	heuristic

h(x)	function,	such	as	Manhattan	or	Euclidean	distance.

In	practice,	this	may	require	additional	information

stored	in	each	node	(such	as	the	position	of	the	node	in

the	world).

After	processing	the	nodes	adjacent	to	the	current	node,

you	need	to	look	at	the	open	set.	If	it’s	empty,	this	means

there	are	no	nodes	left	to	evaluate.	This	happens	only	if

there	is	no	path	from	start	to	goal:

Click	here	to	view	code	image

			if	(openSet.empty())

			{

						break;	//	Break	out	of	outer	loop

			}

Alternatively,	if	there	are	still	nodes	in	the	open	set,	the

algorithm	continues.	You	need	to	find	the	node	in	the

open	set	with	the	lowest	heuristic	cost	and	move	it	to	the

closed	set.	This	node	becomes	the	new	current	node:

Click	here	to	view	code	image

			//	Find	lowest	cost	node	in	open	set

			auto	iter	=	std::min_element(openSet.begin(),	openSet.end(),

						[&outMap](const	WeightedGraphNode*	a,	const	WeightedGraphNode*	b)

			{

									return	outMap[a].mHeuristic	<	outMap[b].mHeuristic;

			});

			//	Set	to	current	and	move	from	open	to	closed

			current	=	*iter;

			openSet.erase(iter);

			outMap[current].mInOpenSet	=	false;

			outMap[current].mInClosedSet	=	true;

To	code	to	find	the	lowest	element,	uses	the

std::min_element	function	from	the	<algorithm>

header.	For	its	third	parameter,	min_element	takes	in	a

special	type	of	function	(called	a	lambda	expression)	to

specify	how	to	decide	whether	one	element	is	less	than

another.	The	min_element	function	returns	an	iterator

to	the	minimum	element.

Finally,	the	main	loop	continues	if	the	current	node	is

not	the	goal	node:

}	while	(current	!=	goal);

The	loop	terminates	either	when	the	above	while

condition	fails	or	when	you	hit	the	earlier	break

statement	(for	when	the	open	set	is	empty).	You	can	then

figure	out	if	GBFS	found	a	path	based	on	whether	the

current	node	equals	the	goal	node:

Click	here	to	view	code	image

return	(current	==	goal)	?	true	:	false;

Figure	4.9	shows	the	first	two	iterations	of	GBFS	applied

to	a	sample	data	set.	In	Figure	4.9(a),	the	start	node	(A2)

is	in	the	closed	set,	and	its	adjacent	nodes	are	in	the	open

set.	To	make	the	figure	easy	to	read,	it	uses	the

Manhattan	distance	heuristic.	The	arrows	point	from

children	back	to	their	parent	node.	The	next	step	is	to

select	the	node	with	the	lowest	heuristic	cost,	which	is

the	node	with	h	=	3.	This	node	becomes	the	new	current

node	and	moves	into	the	closed	set.	Figure	4.9(b)	shows

the	next	iteration,	where	C2	is	now	the	node	with	the

lowest	cost	in	the	open	set.

Figure	4.9	Greedy	best-first	snapshots:	(a)	first

iteration	and	(b)	second	iteration

Keep	in	mind	that	just	because	a	node	in	the	open	set	has

the	lowest	heuristic	cost	doesn’t	mean	it’s	on	the	optimal

path.	For	example,	in	Figure	4.9(b),	the	node	C2	is	not

on	the	optimal	path.	Unfortunately,	the	GBFS	algorithm

still	selects	C2	for	its	path.	Clearly,	you	need	to	do	some

refinement	to	fix	this	issue.

Listing	4.3	shows	the	complete	code	for	the	greedy	best-

first	search	function.

Listing	4.3	Greedy	Best-First	Search

Click	here	to	view	code	image

bool	GBFS(const	WeightedGraph&	g,	const	WeightedGraphNode*	start,

								const	WeightedGraphNode*	goal,	GBFSMap&	outMap)

{

			std::vector<const	WeightedGraphNode*>	openSet;

			//	Set	current	node	to	start,	and	mark	in	closed	set

			const	WeightedGraphNode*	current	=	start;

			outMap[current].mInClosedSet	=	true;

			do

			{

						//	Add	adjacent	nodes	to	open	set

						for	(const	WeightedEdge*	edge	:	current->mEdges)

						{

									//	Get	scratch	data	for	this	node

									GBFSScratch&	data	=	outMap[edge->mTo];

									//	Consider	it	only	if	it's	not	in	the	closed	set

									if	(!data.mInClosedSet)

									{

												//	Set	the	adjacent	node's	parent	edge

												data.mParentEdge	=	edge;

												if	(!data.mInOpenSet)

												{

															//	Compute	the	heuristic	for	this	node,	and	add	to	open	set

															data.mHeuristic	=	ComputeHeuristic(edge->mTo,	goal);

															data.mInOpenSet	=	true;

															openSet.emplace_back(edge->mTo);

												}

									}

						}

	

						if	(openSet.empty())

						{	break;	}

			

						//	Find	lowest	cost	node	in	open	set

						auto	iter	=	std::min_element(openSet.begin(),	openSet.end(),

									[&outMap](const	WeightedGraphNode*	a,	const	WeightedGraphNode*	b)

						{

												return	outMap[a].mHeuristic	<	outMap[b].mHeuristic;

						});

						//	Set	to	current	and	move	from	open	to	closed

						current	=	*iter;

						openSet.erase(iter);

						outMap[current].mInOpenSet	=	false;

						outMap[current].mInClosedSet	=	true;

			}	while	(current	!=	goal);

	

			//	Did	you	find	a	path?

			return	(current	==	goal)	?	true	:	false;

}

A*	Search

The	downside	of	GBFS	is	that	it	can’t	guarantee	an

optimal	path.	Luckily,	with	some	modifications	to

GBFS,	you	can	transform	it	into	the	A*	search

(pronounced	“A-star”).	A*	adds	a	path-cost

component,	which	is	the	actual	cost	from	the	start

node	to	a	given	node.	The	notation	g(x)	denotes	the

path-cost	of	a	node	x.	When	selecting	a	new	current

node,	A*	selects	the	node	with	the	lowest	f(x)	value,

which	is	just	the	sum	of	the	g(x)	path-cost	and	the

h(x)	heuristic	for	that	node:

There	are	a	few	conditions	for	A*	to	find	an	optimal	path.

Of	course,	there	must	be	some	path	between	the	start

and	goal.	Furthermore,	the	heuristic	must	be	admissible

(so	it	can’t	overestimate	the	actual	cost).	Finally,	all	edge

weights	must	be	greater	than	or	equal	to	zero.

To	implement	A*,	you	first	define	an	AStarScratch

struct,	as	you	do	for	GBFS.	The	only	difference	is	that	the

AStarScratch	struct	also	has	a	float	member

mActualFromStart	to	store	the	g(x)	value.

There	are	additional	differences	between	the	GBFS	code

and	the	A*	code.	When	adding	a	node	to	the	open	set,	A*

must	also	compute	the	path-cost	g(x).	And	when

selecting	the	minimum	node,	A*	selects	the	node	with

the	lowest	f(x)	cost.	Finally,	A*	is	pickier	about	which

nodes	become	parents,	using	a	process	called	node

adoption.

In	the	GBFS	algorithm,	adjacent	nodes	always	have	their

parents	set	to	the	current	node.	But	in	A*,	the	g(x)	path-

cost	value	of	a	node	is	dependent	on	the	g(x)	value	of	its

parent.	This	is	because	the	path-cost	value	for	node	x	is

simply	its	parent’s	path-cost	value	plus	the	cost	of

traversing	the	edge	from	the	parent	to	node	x.	So	before

assigning	a	new	parent	to	a	node	x,	A*	first	makes	sure

the	g(x)	value	will	improve.

Figure	4.10(a)	once	again	uses	the	Manhattan	heuristic

function.	The	current	node	(C3)	checks	its	adjacent

nodes.	The	node	to	its	left	has	g	=	2	and	B2	as	its	parent.

If	that	node	instead	had	C3	as	its	parent,	it	would	have	g

=	4,	which	is	worse.	So,	A*	will	not	change	B2’s	parent	in

this	case.

Figure	4.10	(a)	Current	node	adoption	fails;	(b)

final	A*	path

Figure	4.10(b)	shows	the	final	path	as	computed	by	A*,

which	clearly	is	superior	to	the	GBFS	solution.

Apart	from	node	adoption,	the	code	for	A*	ends	up	being

very	similar	to	the	GBFS	code.	Listing	4.4	shows	the	loop

over	the	adjacent	nodes,	which	contains	most	of	the	code

changes.	The	only	other	change	not	shown	in	the	text	is

the	code	that	selects	the	lowest-cost	node	in	the	open	set

based	on	f(x)	instead	of	just	h(x).	The	game	project	for

this	chapter	provides	the	code	for	the	full	A*

implementation.

Listing	4.4	Loop	over	the	Adjacent	Nodes	in	an	A*

Search

Click	here	to	view	code	image

for	(const	WeightedEdge*	edge	:	current->mEdges)

{

			const	WeightedGraphNode*	neighbor	=	edge->mTo;

			//	Get	scratch	data	for	this	node

			AStarScratch&	data	=	outMap[neighbor];

			//	Only	check	nodes	that	aren't	in	the	closed	set

			if	(!data.mInClosedSet)

			{

						if	(!data.mInOpenSet)

						{

									//	Not	in	the	open	set,	so	parent	must	be	current

									data.mParentEdge	=	edge;

									data.mHeuristic	=	ComputeHeuristic(neighbor,	goal);

									//	Actual	cost	is	the	parent's	plus	cost	of	traversing	edge

									data.mActualFromStart	=	outMap[current].mActualFromStart	+

												edge->mWeight;

									data.mInOpenSet	=	true;

									openSet.emplace_back(neighbor);

						}

						else

						{

									//	Compute	what	new	actual	cost	is	if	current	becomes	parent

									float	newG	=	outMap[current].mActualFromStart	+	edge->mWeight;

									if	(newG	<	data.mActualFromStart)

									{

												//	Current	should	adopt	this	node

												data.mParentEdge	=	edge;

												data.mActualFromStart	=	newG;

									}

						}

			}

}

notenote

Optimizing	A*	to	run	as	efficiently	as	possible	is	a	complex	topic.	One
consideration	is	what	happens	if	there	are	a	lot	of	ties	in	the	open	set.	This	is
bound	to	happen	in	a	square	grid,	especially	if	you	use	the	Manhattan
heuristic.	If	there	are	too	many	ties,	when	it’s	time	to	select	a	node,	you	have
a	high	probability	of	selecting	one	that	doesn’t	end	up	on	the	path.	This
ultimately	means	you	need	to	explore	more	nodes	in	the	graph,	which	makes
A*	run	more	slowly.

One	way	to	help	eliminate	ties	is	to	add	a	weight	to	the	heuristic	function,
such	as	arbitrarily	multiplying	the	heuristic	by	0.75.	This	gives	more	weight	to
the	path-cost	g(x)	function	over	the	heuristic	h(x)	function,	which	means
you’re	more	likely	to	explore	nodes	further	from	the	start	node.

From	an	efficiency	standpoint,	A*	actually	is	a	poor	choice	for	grid-based
pathfinding.		Other	pathfinding	algorithms	are	far	more	efficient	for	grids.	One
of	them	is	the	JPS+	algorithm,	outlined	in	Steve	Rabin’s	Game	AI	Pro	2	(see
the	“Additional	Reading”	section).	However,	A*	works	on	any	graph,	whereas
JPS+	works	only	on	grids.

Dijkstra’s	Algorithm

Let’s	return	to	the	maze	example	but	now	suppose

that	the	maze	has	multiple	pieces	of	cheese	in	it,	and

you	want	the	mouse	to	move	toward	the	closest

cheese.	A	heuristic	could	approximate	which	cheese

is	closest,	and	A*	could	find	a	path	to	that	cheese.

But	there’s	a	chance	that	the	cheese	you	select	with

the	heuristic	isn’t	actually	the	closest	because	the

heuristic	is	only	an	estimate.

In	Dijkstra’s	algorithm,	there	is	a	source	node	but	no

goal	node.	Instead,	Dijkstra’s	computes	the	distance

from	the	source	node	to	every	other	reachable	node	in

the	graph.	In	the	maze	example,	Dijkstra’s	would	find	the

distance	of	all	reachable	nodes	from	the	mouse,	yielding

the	actual	cost	of	travel	to	every	piece	of	cheese	and

allowing	the	mouse	to	move	to	the	closest	one.

It’s	possible	to	convert	the	A*	code	from	the	previous

section	into	Dijkstra’s.	First,	you	remove	the	h(x)

heuristic	component.	This	is	equivalent	to	a	heuristic

function	of	h(x)	=	0,	which	is	admissible	because	it’s

guaranteed	to	be	less	than	or	equal	to	the	actual	cost.

Next,	you	remove	the	goal	node	and	make	the	loop

terminate	only	when	the	open	set	is	empty.	This	then

computes	the	g(x)	path-cost	for	every	node	reachable

from	the	start.

The	original	formulation	of	the	algorithm	by	Edsger

Dijkstra	is	slightly	different.	But	the	approach	proposed

in	this	section	is	functionally	equivalent	to	the	original.

(AI	textbooks	sometimes	call	this	approach	uniform

cost	search).	Interestingly,	the	invention	of	Dijkstra’s

algorithm	predates	GBFS	and	A*.	However,	games

usually	prefer	heuristic-guided	approaches	such	as	A*

because	they	generally	search	far	fewer	nodes	than

Dijkstra’s.

Following	a	Path

Once	the	pathfinding	algorithm	generates	a	path,	the

AI	needs	to	follow	it.	You	can	abstract	the	path	as	a

sequence	of	points.	The	AI	then	just	moves	from

point	to	point	in	this	path.	You	can	implement	this	in

a	subclass	of	MoveComponent	called

NavComponent.	Because	MoveComponent	can

already	move	an	actor	forward,	NavComponent	only

needs	to	rotate	the	actor	to	face	the	correct	direction

as	the	actor	moves	along	the	path.

First,	the	TurnTo	function	in	NavComponent	rotates

the	actor	to	face	a	point:

Click	here	to	view	code	image

void	NavComponent::TurnTo(const	Vector2&	pos)

{

			//	Vector	from	me	to	pos

			Vector2	dir	=	pos	-	mOwner->GetPosition();

			//	New	angle	is	just	atan2	of	this	dir	vector

			//	(Negate	y	because	+y	is	down	on	screen)

			float	angle	=	Math::Atan2(-dir.y,	dir.x);

			mOwner->SetRotation(angle);

}

Next,	NavComponent	has	a	mNextPoint	variable	that

tracks	the	next	point	in	the	path.	The	Update	function

tests	whether	the	actor	reaches	mNextPoint:

Click	here	to	view	code	image

void	NavComponent::Update(float	deltaTime)

{

			//	If	you've	reached	the	next	point,	advance	along	path

			Vector2	diff	=	mOwner->GetPosition()	-	mNextPoint;

			if	(diff.Length()	<=	2.0f)

			{

						mNextPoint	=	GetNextPoint();

						TurnTo(mNextPoint);

			}

			//	This	moves	the	actor	forward

			MoveComponent::Update(deltaTime);

}

This	assumes	that	the	GetNextPoint	function	returns

the	next	point	on	the	path.	Assuming	that	the	actor	starts

at	the	first	point	on	the	path,	initializing	mNextPoint	to

the	second	point	as	well	as	setting	a	linear	speed	gets	the

actor	moving	along	the	path.

There’s	one	issue	with	updating	the	movement	along	the

path	in	this	way:	It	assumes	that	the	actor	is	not	moving

so	fast	that	it	jumps	too	far	past	a	node	in	one	step.	If

this	happens,	the	distance	between	the	two	will	never	be

close	enough,	and	the	actor	will	get	lost.

Other	Graph	Representations

For	a	game	with	real-time	action,	non-player

characters	(NPCs)	usually	don’t	move	from	square	to

square	on	a	grid.	This	makes	it	more	complex	to

represent	the	world	with	a	graph.	This	section

discusses	two	alternative	approaches:	using	path

nodes	and	using	navigation	meshes.

Path	nodes	(also	called	waypoint	graphs)	became

popular	with	the	advent	of	first-person	shooter	(FPS)

games	in	the	early	1990s.	With	this	approach,	a	designer

places	path	nodes	at	locations	in	the	game	world	that	the

AI	can	path	to.	These	path	nodes	directly	translate	into

nodes	in	the	graph.

Typically,	you	generate	the	edges	between	path	nodes

automatically.	The	algorithm	works	as	follows:	For	each

path	node,	test	whether	there	are	obstructions	between	it

and	nearby	nodes.	Any	paths	without	obstructions	yield

edges.	A	line	segment	cast	or	similar	collision	test	can

determine	if	there	are	obstructions.	Chapter	10,

“Collision	Detection,”	covers	how	to	implement	line

segment	casts.

The	primary	drawback	of	using	path	nodes	is	that	the	AI

can	only	move	to	locations	on	the	nodes	or	edges.	This	is

because	even	if	path	nodes	form	a	triangle,	there	is	no

guarantee	that	the	interior	of	the	triangle	is	a	valid

location.	There	may	be	an	obstruction	in	the	way,	so	the

pathfinding	algorithm	must	assume	that	any	location	not

on	a	node	or	an	edge	is	invalid.

In	practice,	this	means	that	either	there’s	a	lot	of	space	in

the	world	that’s	off-limits	to	AI	or	you	need	many	path

nodes.	The	first	is	undesirable	because	it	results	in	less

believable	behavior	from	the	AI,	and	the	second	is	simply

inefficient.	The	more	nodes	and	more	edges	there	are,

the	longer	it	takes	a	pathfinding	algorithm	to	arrive	at	a

solution.	This	presents	a	trade-off	between	performance

and	accuracy.

Other	games	use	a	navigation	mesh	(or	nav	mesh).	In

this	approach,	each	node	in	the	graph	corresponds	to	a

convex	polygon.	Adjacent	nodes	are	any	adjacent	convex

polygons.	This	means	that	a	handful	of	convex	polygons

can	represent	entire	regions	in	the	game	world.	With	a

navigation	mesh,	the	AI	can	safely	travel	to	any	location

inside	a	convex	polygon	node.	This	means	the	AI	has

improved	maneuverability.	Figure	4.11	compares	the

path	node	and	navigation	mesh	representations	of	a

location	in	a	game.

Figure	4.11	Path	node	(a)	and	navigation	mesh	(b)

representations	of	a	room

Navigation	meshes	also	better	support	characters	of

different	sizes.	Suppose	a	game	has	both	cows	and

chickens	walking	around	a	farm.	Given	that	chickens	are

smaller	than	cows,	there	are	some	areas	that	are

accessible	to	chickens	but	not	to	cows.	Therefore,	a	path

node	network	designed	for	chickens	won’t	work	correctly

for	cows.	This	means	that	if	the	game	uses	path	nodes,	it

needs	two	separate	graphs:	one	for	each	type	of	creature.

In	contrast,	each	node	in	a	navigation	mesh	is	a	convex

polygon,	so	it’s	possible	to	calculate	whether	a	character

fits	in	a	specific	area.	Therefore,	the	game	can	use	a

single	navigation	mesh	for	both	chickens	and	cows.

Most	games	that	use	navigation	meshes	automatically

generate	them.	This	is	useful	because	designers	can

change	a	level	without	worrying	much	about	the	effect	on

AI	pathing.	However,	navigation	mesh	generation

algorithms	are	complex.	Luckily,	there	are	open	source

libraries	that	implement	nav	mesh	generation.	The	most

popular,	Recast,	generates	a	navigation	mesh	given	the

triangle	geometry	of	a	3D	level.	See	the	“Additional

Reading”	section	at	the	end	of	this	chapter	for	more

information	on	Recast.

GAME	TREES
Games	such	as	tic-tac-toe	or	chess	are	very	different

from	most	real-time	games.	First,	the	game	has	two

players,	and	each	player	alternates	taking	a	turn.

Second,	the	game	is	adversarial,	meaning	that	the

two	players	are	playing	against	each	other.	The	AI

needs	for	these	types	of	games	are	very	different

from	those	of	real-time	games.	These	types	of	games

require	some	representation	of	the	overall	game

state,	and	this	state	informs	the	AI’s	decisions.	One

approach	is	to	use	a	tree	called	a	game	tree.	In	a

game	tree,	the	root	node	represents	the	current	state

of	the	game.	Each	edge	represents	a	move	in	the

game	and	leads	to	a	new	game	state.

Figure	4.12	shows	a	game	tree	for	an	in-progress	game	of

tic-tac-toe.	Starting	at	the	root	node,	the	current	player

(called	the	max	player)	can	select	from	three	different

moves.	After	the	max	player	makes	a	move,	the	game

state	transitions	to	a	node	in	the	first	level	of	the	tree.

The	opponent	(called	the	min	player)	then	selects	a

move	leading	to	the	second	level	of	the	tree.	This	process

repeats	until	reaching	a	leaf	node,	which	represents	an

end	state	of	the	game.

Figure	4.12	Partial	game	tree	for	tic-tac-toe

In	tic-tac-toe,	there	are	only	three	outcomes:	win,	lose,	or

draw.	The	numeric	values	assigned	to	the	leaf	nodes	in

Figure	4.12	reflect	these	outcomes.	These	values	are

scores	from	the	perspective	of	the	max	player:	1	means

the	max	player	wins,	-1	means	the	min	player	wins,	and	0

means	a	tie.

Different	games	have	different	state	representations.	For

tic-tac-toe,	the	state	is	simply	a	2D	array	of	the	board:

Click	here	to	view	code	image

struct	GameState

{

			enum	SquareState	{	Empty,	X,	O	};

			SquareState	mBoard[3][3];

};

A	game	tree	node	stores	both	a	list	of	children	as	well	as

the	game	state	at	that	node:

Click	here	to	view	code	image

struct	GTNode

{

			//	Children	nodes

			std::vector<GTNode*>	mChildren;

			//	State	of	game	at	this	node

			GameState	mState;

};

To	generate	a	complete	game	tree,	you	set	the	root	node

to	the	current	game	state	and	create	children	for	each

possible	first	move.	Then	you	repeat	this	process	for	each

node	in	the	first	level	and	continue	until	all	moves	are

exhausted.

The	size	of	a	game	tree	grows	exponentially	based	on	the

number	of	potential	moves.	For	tic-tac-toe,	the	upper

bound	of	the	game	tree	is	9!,	or	362,880	nodes.	This

means	it’s	possible	to	generate	and	evaluate	a	complete

game	tree	for	tic-tac-toe.	But	for	chess,	a	complete	game

tree	would	have	10 	nodes,	which	makes	it	impossible

to	fully	evaluate	(both	in	terms	of	time	and	space

complexity).	For	now,	let’s	assume	we	have	a	complete

game	tree.	Later,	we’ll	discuss	how	to	manage	an

incomplete	tree.

Minimax

The	minimax	algorithm	evaluates	a	two-player

game	tree	to	determine	the	best	move	for	the	current

player.	Minimax	assumes	that	each	player	will	make

the	choice	most	beneficial	to	herself.	Because	scores

are	from	the	perspective	of	the	max	player,	this

means	the	max	player	tries	to	maximize	her	score,

while	the	min	player	strives	to	minimize	the	score	of

the	max	player.

For	example,	in	Figure	4.12	the	max	player	(X	in	this

case)	has	three	possible	moves.	If	max	selects	either	top-

mid	or	bottom-mid,	the	min	player	(O)	can	win	with

bottom-right.	The	min	player	would	take	this	winning

120

play	when	available.	Thus,	the	max	player	selects

bottom-right	to	maximize	her	potential	final	score.

If	the	max	player	selects	bottom-right,	the	min	player

can	select	either	top-mid	or	bottom-mid.	The	choice	here

is	between	a	score	of	1	or	0.	Because	the	min	player	aims

to	minimize	the	max	player’s	score,	min	selects	bottom-

mid.	This	means	the	game	ends	in	a	tie,	which	is	the

expected	result	of	a	game	of	tic-tac-toe	where	both

players	play	optimally.

The	implementation	of	minimax	in	Listing	4.5	uses	a

separate	function	for	the	min	and	max	players’	behavior.

Both	functions	first	test	if	the	node	is	a	leaf	node,	in

which	case	the	GetScore	function	computes	the	score.

Next,	both	functions	determine	the	best	possible	subtree

using	recursion.	For	the	max	player,	the	best	subtree

yields	the	highest	value.	Likewise,	the	min	player	finds

the	subtree	with	the	lowest	value.

Listing	4.5	MaxPlayer	and	MinPlayer	Functions

Click	here	to	view	code	image

float	MaxPlayer(const	GTNode*	node)

{

			//	If	this	is	a	leaf,	return	score

			if	(node->mChildren.empty())

			{

						return	GetScore(node->mState);

			}

			//	Find	the	subtree	with	the	maximum	value

			float	maxValue	=	-std::numeric_limits<float>::infinity();

			for	(const	GTNode*	child	:	node->mChildren)

			{

						maxValue	=	std::max(maxValue,	MinPlayer(child));

			}

			return	maxValue;

}

float	MinPlayer(const	GTNode*	node)

{

			//	If	this	is	a	leaf,	return	score

			if	(node->mChildren.empty())

			{

						return	GetScore(node->mState);

			}

			//	Find	the	subtree	with	the	minimum	value

			float	minValue	=	std::numeric_limits<float>::infinity();

			for	(const	GTNode*	child	:	node->mChildren)

			{

						minValue	=	std::min(minValue,	MaxPlayer(child));

			}

			return	minValue;

}

Calling	MaxPlayer	on	the	root	node	returns	the	best

possible	score	for	the	max	player.	However,	this	doesn’t

specify	which	next	move	is	optimal,	which	the	AI	player

also	wants	to	know.	The	code	for	determining	the	best

move	is	in	a	separate	MinimaxDecide	function,	given	in

Listing	4.6.	MinimaxDecide	resembles	the	MaxPlayer

function,	except	it	tracks	which	child	yields	the	best

value.

Listing	4.6	MinimaxDecide	Implementation

Click	here	to	view	code	image

const	GTNode*	MinimaxDecide(const	GTNode*	root)

{

			//	Find	the	subtree	with	the	maximum	value,	and	save	the	choice

			const	GTNode*	choice	=	nullptr;

			float	maxValue	=	-std::numeric_limits<float>::infinity();

			for	(const	GTNode*	child	:	root->mChildren)

			{

						float	v	=	MinPlayer(child);

						if	(v	>	maxValue)

						{

									maxValue	=	v;

									choice	=	child;

						}

			}

			return	choice;

}

Handling	Incomplete	Game	Trees

As	mentioned	earlier	in	this	chapter,	it’s	not	always

viable	to	generate	a	complete	game	tree.	Luckily,	it’s

possible	to	modify	the	minimax	code	to	account	for

incomplete	game	trees.	First,	the	functions	must

operate	on	a	game	state	as	opposed	to	a	node.	Next,

rather	than	iterate	over	child	nodes,	the	code	iterates

over	the	next	possible	moves	from	a	given	state.

These	modifications	mean	the	minimax	algorithm

generates	the	tree	during	execution	rather	than

beforehand.

If	the	tree	is	too	large,	such	as	in	chess,	it’s	still	not

possible	to	generate	the	entire	tree.	Much	as	how	an

expert	chess	player	can	see	only	eight	moves	ahead,	the

AI	needs	to	limit	the	depth	of	its	game	tree.	This	means

the	code	treats	some	nodes	as	leaves	even	though	they

are	not	terminal	states	of	the	game.

To	make	informed	decisions,	minimax	needs	to	know

how	good	these	nonterminal	states	are.	But	unlike	with

terminal	states,	it’s	impossible	to	know	the	exact	score.

Thus,	the	scoring	function	needs	a	heuristic	component

that	approximates	the	quality	of	nonterminal	states.	This

also	means	that	scores	are	now	ranges	of	values,	unlike

the	{-1,	0,	1}	ternary	choice	for	tic-tac-toe.

Importantly,	adding	the	heuristic	component	means

minimax	cannot	guarantee	to	make	the	best	decision.

The	heuristic	tries	to	approximate	the	quality	of	a	game

state,	but	it’s	unknown	how	accurate	this	approximation

is.	With	an	incomplete	game	tree,	it’s	possible	that	the

move	selected	by	minimax	is	suboptimal	and	eventually

leads	to	a	loss.

Listing	4.7	provides	the	MaxPlayerLimit	function.

(You	would	need	to	modify	the	other	functions

similarly.)	This	code	assumes	that	GameState	has	three

member	functions:	IsTerminal,	GetScore,	and

GetPossibleMoves.	IsTerminal	returns	true	if	the

state	is	an	end	state.	GetScore	returns	either	the

heuristic	for	nonterminal	states	or	the	score	for	terminal

states.	GetPossibleMoves	returns	a	vector	of	the	game

states	that	are	one	move	after	the	current	state.

Listing	4.7	MaxPlayerLimit	Implementation

Click	here	to	view	code	image

float	MaxPlayerLimit(const	GameState*	state,	int	depth)

{

			//	If	this	is	terminal	or	we've	gone	max	depth

			if	(depth	==	0	||	state->IsTerminal())

			{

						return	state->GetScore();

			}

			//	Find	the	subtree	with	the	max	value

			float	maxValue	=	-std::numeric_limits<float>::infinity();

			for	(const	GameState*	child	:	state->GetPossibleMoves())

			{

						maxValue	=	std::max(maxValue,	MinPlayer(child,	depth	-	1));

			}

			return	maxValue;

}

The	heuristic	function	varies	depending	on	the	game.	For

example,	a	simple	chess	heuristic	might	count	the

number	of	pieces	each	player	has,	weighting	the	pieces

by	power.	However,	a	drawback	of	such	a	simple

heuristic	is	that	sometimes	sacrificing	a	piece	in	the	short

term	is	better	for	the	long	term.	Other	heuristics	might

look	at	control	of	the	board’s	center,	the	safety	of	the

king,	or	the	mobility	of	the	queen.	Ultimately,	several

different	factors	affect	the	heuristic.

More	complex	heuristics	require	more	calculations.	Most

games	institute	some	sort	of	time	limit	for	AI	moves.	For

example,	a	chess	game	AI	might	have	only	10	seconds	to

decide	its	next	move.	This	makes	it	necessary	to	strike	a

balance	between	the	depth	explored	and	heuristic

complexity.

Alpha-Beta	Pruning

Alpha-beta	pruning	is	an	optimization	of	the

minimax	algorithm	that,	on	average,	reduces	the

number	of	nodes	evaluated.	In	practice,	this	means

it’s	possible	to	increase	the	maximum	depth	explored

without	increasing	the	computation	time.

Figure	4.13	shows	a	game	tree	simplified	by	alpha-beta

pruning.	Assuming	a	left-to-right	order	of	evaluation	for

siblings,	the	max	player	first	inspects	subtree	B.	The	min

player	then	sees	the	leaf	with	value	5,	which	means	the

min	player	has	a	choice	between	5	and	other	values.	If

these	other	values	are	greater	than	5,	the	min	player

obviously	selects	5.	This	means	that	the	upper	bound	of

subtree	B	is	5,	but	the	lower	bound	is	negative	infinity.

The	min	player	continues	and	sees	the	leaf	with	value	0

and	selects	this	leaf	because	the	min	player	wants	the

minimum	possible	score.

Figure	4.13	A	game	tree	simplified	by	alpha-beta

pruning

Control	returns	to	the	max	player	function,	which	now

knows	that	subtree	B	has	a	value	of	0.		Next,	the	max

player	inspects	subtree	C.	The	min	player	first	sees	the

leaf	with	value	-3.	As	before,	this	means	the	upper	bound

of	subtree	C	is	-3.	However,	you	already	know	that

subtree	B	has	a	value	of	0,	which	is	better	than	-3.	This

means	that	there’s	no	way	subtree	C	can	be	better	for	the

max	player	than	subtree	B.	Alpha-beta	pruning

recognizes	this	and,	as	a	result,	does	not	inspect	any

other	children	of	C.

Alpha-beta	pruning	adds	two	additional	variables,	called

alpha	and	beta.	Alpha	is	the	best	score	guaranteed	for

the	max	player	at	the	current	level	or	higher.	Conversely,

beta	is	the	best	score	guaranteed	for	the	min	player	at

the	current	level	or	higher.	In	other	words,	alpha	and

beta	are	the	lower	and	upper	bounds	of	the	score.

Initially,	alpha	is	negative	infinity	and	beta	is	positive

infinity—the	worst	possible	values	for	both	players.

AlphaBetaDecide,	in	Listing	4.8,	initializes	alpha	and

beta	to	these	values	and	then	recurses	by	calling

AlphaBetaMin.

Listing	4.8	AlphaBetaDecide	Implementation

Click	here	to	view	code	image

const	GameState*	AlphaBetaDecide(const	GameState*	root,	int	maxDepth)

{

			const	GameState*	choice	=	nullptr;

			//	Alpha	starts	at	negative	infinity,	beta	at	positive	infinity

			float	maxValue	=	-std::numeric_limits<float>::infinity();

			float	beta	=	std::numeric_limits<float>::infinity();

			for	(const	GameState*	child	:	root->GetPossibleMoves())

			{

						float	v	=	AlphaBetaMin(child,	maxDepth	-	1,	maxValue,	beta);

						if	(v	>	maxValue)

						{

									maxValue	=	v;

									choice	=	child;

						}

			}

			return	choice;

}

The	implementation	of	AlphaBetaMax,	shown	in

Listing	4.9,	builds	on	MaxPlayerLimit.	If	on	any

iteration	the	max	value	is	greater	than	or	equal	to	beta,	it

means	the	score	can	be	no	better	than	the	previous	upper

bound.	This	makes	it	unnecessary	to	test	the	remaining

siblings,	and	so	the	function	returns.	Otherwise,	the	code

increases	the	alpha	lower	bound	if	the	max	value	is

greater	than	alpha.

Listing	4.9	AlphaBetaMax	Implementation

Click	here	to	view	code	image

float	AlphaBetaMax(const	GameState*	node,	int	depth,	float	alpha,

																			float	beta)

{

			if	(depth	==	0	||	node->IsTerminal())

			{

						return	node->GetScore();

			}

			float	maxValue	=	-std::numeric_limits<float>::infinity();

			for	(const	GameState*	child	:	node->GetPossibleMoves())

			{

						maxValue	=	std::max(maxValue,

									AlphaBetaMin(child,	depth	-	1,	alpha,	beta));

						if	(maxValue	>=	beta)

						{

									return	maxValue;	//	Beta	prune

						}

						alpha	=	std::max(maxValue,	alpha);	//	Increase	lower	bound

			}

			return	maxValue;

}

Similarly,	AlphaBetaMin,	shown	in	Listing	4.10,	checks

whether	the	min	value	is	less	than	or	equal	to	alpha.	In

this	case,	the	score	can	be	no	better	than	the	lower

bound,	so	the	function	returns.	Then	the	code	decreases

the	beta	upper	bound	as	necessary.

Listing	4.10	AlphaBetaMin	Implementation

Click	here	to	view	code	image

float	AlphaBetaMin(const	GameState*	node,	int	depth,	float	alpha,

																			float	beta)

{

			if	(depth	==	0	||	node->IsTerminal())

			{

						return	node->GetScore();

			}

			float	minValue	=	std::numeric_limits<float>::infinity();

			for	(const	GameState*	child	:	node->GetPossibleMoves())

			{

						minValue	=	std::min(minValue,

									AlphaBetaMax(child,	depth	-	1,	alpha,	beta));

						if	(minValue	<=	alpha)

						{

									return	minValue;	//	Alpha	prune

						}

						beta	=	std::min(minValue,	beta);	//	Decrease	upper	bound

			}

			return	minValue;

}

Note	that	the	order	of	evaluation	for	children	affects	the

number	of	nodes	pruned.	This	means	that	even	with	a

consistent	depth	limit,	different	starting	states	yield

different	execution	times.	This	can	be	problematic	if	the

AI	has	a	fixed	time	limit;	an	incomplete	search	means

the	AI	has	no	idea	which	move	to	take.	One	solution	is

iterative	deepening,	which	runs	the	algorithm

multiple	times	at	increasing	depth	limits.	For	example,

first	run	alpha-beta	pruning	with	a	depth	limit	of	three,

which	yields	some	baseline	move.	Then	run	with	a	depth

limit	of	four,	then	five,	and	so	on,	until	time	runs	out.	At

this	point,	the	code	returns	the	move	from	the	previous

iteration.	This	guarantees	that	some	move	is	always

available,	even	when	time	runs	out.

GAME	PROJECT
This	chapter’s	game	project,	shown	in	Figure	4.14,	is

a	tower	defense	game.	In	this	style	of	game,	the

enemies	try	to	move	from	the	start	tile	on	the	left	to

an	end	tile	on	the	right.	Initially,	the	enemies	move

in	a	straight	line	from	left	to	right.	However,	the

player	can	build	towers	on	squares	in	the	grid,	even

where	the	path	is,	which	causes	the	path	to	redirect

around	these	towers	as	needed.	The	code	is	available

in	the	book’s	GitHub	repository,	in	the	Chapter04

directory.	Open	Chapter04-windows.sln	on

Windows	and	Chapter04-mac.xcodeproj	on

Mac.

Figure	4.14	Chapter	4	game	project

Use	the	mouse	to	click	on	and	select	tiles.	After	selecting

a	tile,	use	the	B	key	to	build	a	tower.	The	enemy	airplanes

path	around	the	towers	using	the	A*	pathfinding

algorithm.	Each	new	tower	built	changes	the	path	as

necessary.	To	ensure	that	the	player	can’t	fully	block	in

the	enemies,	when	the	player	requests	to	build	a	tower,

the	code	first	ensures	that	a	path	would	still	exist	for	the

enemies.	If	a	tower	would	completely	block	the	path,	the

game	doesn’t	let	the	player	build	it.

As	a	simplification,	the	Tile	class	in	the	game	project

contains	all	the	graph	information,	as	well	as	the	scratch

data	used	by	the	A*	search.	The	code	that	creates	all	the

tiles	and	initializes	the	graph	is	in	the	constructor	of	the

Grid	class.	The	Grid	class	also	contains	the	FindPath

function	that	runs	the	actual	A*	search.

For	completeness,	the	source	code	for	this	chapter	also

includes	the	versions	of	the	search	and	minimax

algorithms	covered	in	the	text	in	a	separate	Search.cpp

file.	It	also	includes	the	implementation	of	AIState	and

AIComponent,	even	though	no	actors	in	the	game

project	use	these	features.

SUMMARY
Artificial	intelligence	is	a	deep	topic	with	many

different	sub-areas.	Using	state	machines	is	an

effective	way	to	give	behaviors	to	AI-controlled

characters	in	a	game.	While	a	switch	is	the	simplest

implementation	of	a	state	machine,	the	state	design

pattern	adds	flexibility	by	making	each	state	a

separate	class.

Pathfinding	algorithms	find	the	shortest	path	between

two	points	in	the	game	world.	First,	you	formulate	a

graph	representation	for	the	game	world.	For	a	square

grid,	this	is	simple,	but	other	games	use	path	nodes	or

navigation	meshes.	For	unweighted	graphs,	breadth-first

search	(BFS)	guarantees	to	find	the	shortest	path	if	one

exists.	But	for	weighted	graphs,	you	need	other

algorithms,	such	as	A*	or	Dijkstra’s,	to	find	the	shortest

path.

For	two-player	adversarial	turn-based	games	such	as

checkers	or	chess,	a	game	tree	represents	the	sequence	of

possible	moves	from	the	current	game	state.	The

minimax	algorithm	assumes	that	the	current	player	aims

to	maximize	his	or	her	score,	and	the	opponent	aims	to

minimize	the	current	player’s	score.	Alpha-beta	pruning

optimizes	minimax,	though	for	most	games	the	tree	must

have	a	depth	limit.

ADDITIONAL	READING
Many	resources	cover	AI	techniques.	Stuart	Russell

and	Peter	Norvig’s	book	is	a	popular	AI	text	that

covers	many	techniques,	though	only	some	are

applicable	to	games.	Mat	Buckland’s	book,	although

dated,	covers	many	useful	game	AI	topics.	Steve

Rabin’s	Game	AI	Pro	series	has	many	interesting

articles	written	by	different	game	AI	developers.

For	navigation	meshes,	Stephen	Pratt’s	in-depth	web

article	covers	the	steps	to	generate	a	navigation	mesh

from	level	geometry.	The	Recast	project	provides	an

open	source	implementation	of	both	navigation	mesh

generation	and	pathfinding	algorithms.

Buckland,	Mat.	Programming	Game	AI	by

Example.	Plano:	Wordware	Publishing,

2005.

Mononen,	Mikko.	“Recast	Navigation	Mesh

Toolkit.”	Accessed	July	7,	2017.

https://github.com/recastnavigation.

https://github.com/recastnavigation

Pratt,	Stephen.	“Study:	Navigation	Mesh

Generation.”	Accessed	July	7,	2017.

http://critterai.org/projects/nmgen_study/index.html.

Rabin,	Steve,	Ed.	Game	AI	Pro	3:	Collected

Wisdom	of	Game	AI	Professionals.		Boca

Raton:	CRC	Press,	2017.

Russell,	Stuart,	and	Peter	Norvig.	Artificial

Intelligence:	A	Modern	Approach,		3rd

edition.	Upper	Saddle	River:	Pearson,

2009.

EXERCISES
The	two	exercises	for	this	chapter	implement

techniques	not	used	in	this	chapter’s	game	project.

The	first	looks	at	state	machines,	and	the	second	uses

alpha-beta	pruning	for	a	four-in-a-row	game.

Exercise	4.1

Given	this	chapter’s	game	project	code,	update	either

the	Enemy	or	Tower	class	(or	both!)	to	use	an	AI

state	machine.	First,	consider	which	behaviors	the	AI

should	have	and	design	the	state	machine	graph.

Next,	use	the	provided	AIComponent	and	AIState

base	classes	to	implement	these	behaviors.

Exercise	4.2

In	a	four-in-a-row	game,	players	have	a	vertical	grid

of	six	rows	and	seven	columns.	The	two	players	take

http://critterai.org/projects/nmgen_study/index.html

turns	putting	a	piece	at	the	top	of	a	column,	and	then

the	piece	slides	down	to	the	lowest	free	position	in

the	column.	The	game	continues	until	one	player	gets

four	in	a	row	horizontally,	vertically,	or	diagonally.

The	starting	code	in	Exercises/4.2	allows	the	human

player	to	click	to	make	a	move.	In	the	starting	code,	the

AI	randomly	selects	a	move	from	the	set	of	valid	moves.

Modify	the	AI	code	to	instead	use	alpha-beta	pruning

with	a	depth	cutoff.

CHAPTER	5

OPENGL

This	chapter	provides	an	in-depth

introduction	on	how	to	use	OpenGL	for

graphics	in	games.	It	covers	many	topics,

including	initializing	OpenGL,	using

triangles,	writing	shader	programs,	using

matrices	for	transforms,	and	adding	support

for	textures.	The	game	project	for	this

chapter	converts	the	game	project	from

Chapter	3,	“Vectors	and	Basic	Physics,”	to

use	OpenGL	for	all	its	graphics	rendering.

INITIALIZING	OPENGL
Although	the	SDL	renderer	supports	2D	graphics,	it

does	not	support	3D.	Thus,	to	switch	to	3D,	which	is

used	in	every	subsequent	chapter	in	this	book,	you

need	to	switch	from	SDL	2D	graphics	to	a	different

library	that	supports	both	2D	and	3D	graphics.

This	book	uses	the	OpenGL	library.	OpenGL	is	an

industry-standard	library	for	cross-platform	2D/3D

graphics	that’s	been	around	for	25	years.	Unsurprisingly,

the	library	has	been	around	so	long	that	it	has	evolved	in

many	ways	over	the	years.	The	set	of	functions	the

original	version	of	OpenGL	used	is	very	different	from

the	set	in	modern	OpenGL.	This	book	uses	functions

defined	up	to	and	including	OpenGL	3.3.

warningwarning

OLDER	VERSIONS	OF	OPENGL	ARE	VERY	DIFFERENT:	Be	careful	when
consulting	any	online	OpenGL	references,	as	many	refer	to	older	versions	of
OpenGL.

The	goal	of	this	chapter	is	to	convert	the	game	project

from	Chapter	3	from	SDL	graphics	to	OpenGL	graphics.

You	need	to	take	a	lot	of	steps	to	get	there.	This	section

walks	through	the	steps	of	configuring	and	initializing

OpenGL	and	a	helper	library	called	GLEW.

Setting	Up	the	OpenGL	Window

To	use	OpenGL,	you	must	drop	usage	of	the

SDL_Renderer	from	the	earlier	chapters.	You

therefore	need	to	remove	all	references	to

SDL_Renderer,	including	the	mRenderer	variable

in	Game,	the	call	to	SDL_CreateRenderer,	and	any

calls	to	the	SDL	functions	in	GenerateOuput.	This

also	means	that	the	SpriteComponent	code	(which

relies	on	SDL_Renderer)	won’t	work	without

changes.	For	now,	all	the	code	in

Game::GenerateOutput	is	commented	out	until

OpenGL	is	up	and	running.

In	SDL,	when	you	create	a	window,	you	can	request	a

window	for	OpenGL	usage	by	passing	in	the

SDL_WINDOW_OPENGL	flag	as	the	final	parameter	of	the

SDL_CreateWindow	call:

Click	here	to	view	code	image

mWindow	=	SDL_CreateWindow("Game	Programming	in	C++	(Chapter	5)",	100,	100,

			1024,	768,	SDL_WINDOW_OPENGL);

Prior	to	creating	the	OpenGL	window,	you	can	request

attributes	such	as	the	version	of	OpenGL,	the	color

depth,	and	several	other	parameters.	To	configure	these

parameters,	you	use	the	SDL_GL_SetAttribute

function:

Click	here	to	view	code	image

//	Set	OpenGL	window's	attributes	(use	prior	to	creating	the	window)

//	Returns	0	if	successful,	otherwise	a	negative	value

SDL_GL_SetAttribute(

			SDL_GLattr	attr,		//	Attribute	to	set

			int	value									//	Value	for	this	attribute

);

There	are	several	different	attributes	in	the	SDL_GLattr

enum,	but	this	chapter	uses	only	some	of	them.	To	set

the	attributes,	you	add	the	code	in	Listing	5.1	prior	to	the

call	of	SDL_CreateWindow	inside

Game::Initialize.	This	code	sets	several	attributes.

First,	it	requests	the	core	OpenGL	profile.

notenote

There	are	three	main	profiles	supported	by	OpenGL:	core,	compatibility,	and
ES.	The	core	profile	is	the	recommended	default	profile	for	a	desktop
environment.	The	only	difference	between	the	core	and	compatibility	profiles
is	that	the	compatibility	profile	allows	the	program	to	call	OpenGL	functions
that	are	deprecated	(no	longer	intended	for	use).	The	OpenGL	ES	profile	is
for	mobile	development.

Listing	5.1	Requesting	OpenGL	Attributes

Click	here	to	view	code	image

//	Use	the	core	OpenGL	profile

SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK,

																				SDL_GL_CONTEXT_PROFILE_CORE);

//	Specify	version	3.3

SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION,	3);

SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION,	3);

//	Request	a	color	buffer	with	8-bits	per	RGBA	channel

SDL_GL_SetAttribute(SDL_GL_RED_SIZE,	8);

SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE,	8);

SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE,	8);

SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE,	8);

//	Enable	double	buffering

SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER,	1);

//	Force	OpenGL	to	use	hardware	acceleration

SDL_GL_SetAttribute(SDL_GL_ACCELERATED_VISUAL,	1);

The	next	two	attributes	request	OpenGL	version	3.3.

Although	there	are	newer	versions	of	OpenGL,	the	3.3

version	supports	all	the	required	features	for	this	book

and	has	a	feature	set	closely	aligned	with	the	ES	profile.

Thus,	most	of	the	code	in	this	book	should	also	work	on

current	mobile	devices.

The	next	attributes	specify	the	bit	depth	of	each	channel.

In	this	case,	the	program	requests	8	bits	per	RGBA

channel,	for	a	total	of	32	bits	per	pixel.	The	second-to-

last	attribute	asks	to	enable	double	buffering.	The	final

attribute	asks	to	run	OpenGL	with	hardware

acceleration.	This	means	that	the	OpenGL	rendering	will

run	on	graphics	hardware	(a	GPU).

The	OpenGL	Context	and	Initializing
GLEW

Once	the	OpenGL	attributes	are	set	and	you’ve

created	the	window,	the	next	step	is	to	create	an

OpenGL	context.	Think	of	a	context	as	the	“world”

of	OpenGL	that	contains	every	item	that	OpenGL

knows	about,	such	as	the	color	buffer,	any	images	or

models	loaded,	and	any	other	OpenGL	objects.

(While	it	is	possible	to	have	multiple	contexts	in	one

OpenGL	program,	this	book	sticks	to	one.)

To	create	the	context,	first	add	the	following	member

variable	to	Game:

SDL_GLContext	mContext;

Next,	immediately	after	creating	the	SDL	window	with

SDL_CreateWindow,	add	the	following	line	of	code,

which	creates	an	OpenGL	context	and	saves	it	in	the

member	variable:

Click	here	to	view	code	image

mContext	=	SDL_GL_CreateContext(mWindow);

As	with	creating	and	deleting	the	window,	you	need	to

delete	the	OpenGL	context	in	the	destructor.	To	do	this,

add	the	following	line	of	code	to	Game::Shutdown,

right	before	the	call	to	SDL_DeleteWindow:

Click	here	to	view	code	image

SDL_GL_DeleteContext(mContext);

Although	the	program	now	creates	an	OpenGL	context,

there	is	one	final	hurdle	you	must	pass	to	gain	access	to

the	full	set	of	OpenGL	3.3	features.	OpenGL	supports

backward	compatibility	with	an	extension	system.

Normally,	you	must	query	any	extensions	you	want

manually,	which	is	tedious.	To	simplify	this	process,	you

can	use	an	open	source	library	called	the	OpenGL

Extension	Wrangler	Library	(GLEW).	With	one	simple

function	call,	GLEW	automatically	initializes	all

extension	functions	supported	by	the	current	OpenGL

context’s	version.	So	in	this	case,	GLEW	initializes	all

extension	functions	supported	by	OpenGL	3.3	and

earlier.

To	initialize	GLEW,	you	add	the	following	code

immediately	after	creating	the	OpenGL	context:

Click	here	to	view	code	image

//	Initialize	GLEW

glewExperimental	=	GL_TRUE;

if	(glewInit()	!=	GLEW_OK)

{

			SDL_Log("Failed	to	initialize	GLEW.");

			return	false;

}

//	On	some	platforms,	GLEW	will	emit	a	benign	error	code,

//	so	clear	it

glGetError();

The	glewExperimental	line	prevents	an	initialization

error	that	may	occur	when	using	the	core	context	on

some	platforms.	Furthermore,	because	some	platforms

emit	a	benign	error	code	when	initializing	GLEW,	the

call	to	glGetError	clears	this	error	code.

notenote

Some	old	PC	machines	with	integrated	graphics	(from	2012	or	earlier)	may
have	issues	running	OpenGL	version	3.3.	In	this	case,	you	can	try	two
things:	updating	to	newer	graphics	drivers	or	requesting	OpenGL	version	3.1.

Rendering	a	Frame

You	now	need	to	convert	the	clear,	draw	scene,	and

swap	buffers	process	in	Game::GenerateOutput

to	use	OpenGL	functions:

Click	here	to	view	code	image

//	Set	the	clear	color	to	gray

glClearColor(0.86f,	0.86f,	0.86f,	1.0f);

//	Clear	the	color	buffer

glClear(GL_COLOR_BUFFER_BIT);

//	TODO:	Draw	the	scene

//	Swap	the	buffers,	which	also	displays	the	scene

SDL_GL_SwapWindow(mWindow);

This	code	first	sets	the	clear	color	to	86%	red,	86%	green,

86%	blue,	and	100%	alpha,	which	yields	a	gray	color.	The

glClear	call	with	the	GL_COLOR_BUFFER_BIT

parameter	clears	the	color	buffer	to	the	specified	color.

Finally,	the	SDL_GL_SwapWindow	call	swaps	the	front

buffer	and	back	buffer.	At	this	point,	running	the	game

yields	a	gray	screen	because	you	aren’t	drawing	the

SpriteComponents	yet.

TRIANGLE	BASICS
The	graphical	needs	of	2D	and	3D	games	couldn’t

seem	more	different.	As	discussed	in	Chapter	2,

“Game	Objects	and	2D	Graphics,”	most	2D	games

use	sprites	for	their	2D	characters.	On	the	other

hand,	a	3D	game	features	a	simulated	3D

environment	that	you	somehow	flatten	into	a	2D

image	that	you	show	onscreen.

Early	2D	games	could	simply	copy	sprite	images	into	the

desired	locations	of	the	color	buffer.	This	process,	called

blitting,	was	efficient	on	sprite-based	consoles	such	as

the	Nintendo	Entertainment	System	(NES).	However,

modern	graphical	hardware	is	inefficient	at	blitting	but	is

very	efficient	at	polygonal	rendering.	Because	of	this,

nearly	all	modern	games,	whether	2D	or	3D,	ultimately

use	polygons	for	their	graphical	needs.

Why	Polygons?

There	are	many	ways	a	computer	could	simulate	a

3D	environment.	Polygons	are	popular	in	games	for	a

multitude	of	reasons.	Compared	to	other	3D	graphics

techniques,	polygons	do	not	require	as	many

calculations	at	runtime.	Furthermore,	polygons	are

scalable:	A	game	running	on	less-powerful	hardware

could	simply	use	3D	models	with	fewer	polygons.

And,	importantly,	you	can	represent	most	3D	objects

with	polygons.

Triangles	are	the	polygon	of	choice	for	most	games.

Triangles	are	the	simplest	polygon,	and	you	need	only

three	points	(or	vertices)	to	create	a	triangle.

Furthermore,	a	triangle	can	only	lie	on	a	single	plane.	In

other	words,	the	three	points	of	a	triangle	must	be

coplanar.	Finally,	triangles	tessellate	easily,	meaning

it’s	relatively	simple	to	break	any	complex	3D	object	into

many	triangles.	The	remainder	of	this	chapter	talks

about	triangles,	but	the	techniques	discussed	here	also

work	for	other	polygons	(such	as	quads),	provided	that

they	maintain	the	coplanar	property.

2D	games	use	triangles	to	represent	sprites	by	drawing	a

rectangle	and	filling	in	the	rectangle	with	colors	from	an

image	file.	We	discuss	this	in	much	greater	detail	later	in

the	chapter.

Normalized	Device	Coordinates

To	draw	a	triangle,	you	must	specify	the	coordinates

of	its	three	vertices.	Recall	that	in	SDL,	the	top-left

corner	of	the	screen	is	(0,	0),	positive	x	is	to	the	right,

and	positive	y	is	down.	More	generally,	a

coordinate	space	specifies	where	the	origin	is	and

in	which	direction	its	coordinates	increase.	The

basis	vectors	of	the	coordinate	space	are	the

direction	in	which	the	coordinates	increase.

An	example	of	a	coordinate	space	from	basic	geometry	is

a	Cartesian	coordinate	system	(see	Figure	5.1).	In	a

2D	Cartesian	coordinate	system,	the	origin	(0,	0)	has	a

specific	point	(usually	the	center),	positive	x	is	to	the

right,	and	positive	y	is	up.

Figure	5.1	A	point	drawn	at	(2,	3)	in	a	Cartesian

coordinate	system

Normalized	device	coordinates	(NDC)	is	the

default	coordinate	system	used	with	OpenGL.	Given	an

OpenGL	window,	the	center	of	the	window	is	the	origin

in	normalized	device	coordinates.	Furthermore,	the

bottom-left	corner	is	(–1,	–1),	and	the	top-right	corner	is

(1,	1).	This	is	regardless	of	the	width	and	height	of	the

window	(hence	normalized	device	coordinates).

Internally,	the	graphics	hardware	then	converts	these

NDC	into	the	corresponding	pixels	in	the	window.

For	example,	to	draw	a	square	with	sides	of	unit	length

in	the	center	of	the	window,	you	need	two	triangles.	The

first	triangle	has	the	vertices	(–0.5,	0.5),	(0.5,	0.5),	and

(0.5,	–0.5),	and	the	second	triangle	has	the	vertices	(0.5,

–0.5),	(–0.5,	–0.5),	and	(–0.5,	0.5).	Figure	5.2	illustrates

this	square.	Keep	in	mind	that	if	the	length	and	width	of

the	window	are	not	uniform,	a	square	in	normalized

device	coordinates	will	not	look	like	a	square	onscreen.

Figure	5.2	A	square	drawn	in	2D	normalized	device

coordinates

In	3D,	the	z	component	of	normalized	device	coordinates

also	ranges	from	[–1,	1],	with	a	positive	z	value	going	into

the	screen.	For	now,	we	stick	with	a	z	value	of	zero.	We’ll

explore	3D	in	much	greater	detail	in	Chapter	6,	“3D

Graphics.”

Vertex	and	Index	Buffers

Suppose	you	have	a	3D	model	comprised	of	many

triangles.	You	need	some	way	to	store	the	vertices	of

these	triangles	in	memory.	The	simplest	approach	is

to	directly	store	the	coordinates	of	each	triangle	in	a

contiguous	array	or	buffer.	For	example,	assuming

3D	coordinates,	the	following	array	contains	the

vertices	of	the	two	triangles	shown	in	Figure	5.2:

float	vertices[]	=	{

			-0.5f,		0.5f,	0.0f,

				0.5f,		0.5f,	0.0f,

				0.5f,	-0.5f,	0.0f,

				0.5f,	-0.5f,	0.0f,

			-0.5f,	-0.5f,	0.0f,

			-0.5f,		0.5f,	0.0f,

};

Even	in	this	simple	example,	the	array	of	vertices	has

some	duplicate	data.	Specifically,	the	coordinates	(–0.5,

0.5,	0.0)	and	(0.5,	–0.5,	0.0)	appear	twice.	If	there	were

a	way	to	remove	these	duplicates,	you	would	cut	the

number	of	values	stored	in	the	buffer	by	33%.	Rather

than	having	12	values,	you	would	have	only	8.	Assuming

single-precision	floats	that	use	4	bytes	each,	you’d	save

24	bytes	of	memory	by	removing	the	duplicates.	This

might	seem	insignificant,	but	imagine	a	much	larger

model	with	20,000	triangles.	In	this	case,	the	amount	of

memory	wasted	due	to	duplicate	coordinates	would	be

high.

The	solution	to	this	issue	has	two	parts.	First,	you	create

a	vertex	buffer	that	contains	only	the	unique

coordinates	used	by	the	3D	geometry.	Then,	to	specify

the	vertices	of	each	triangle,	you	index	into	this	vertex

buffer	(much	like	indexing	into	an	array).	The	aptly

named	index	buffer	contains	the	indices	for	each

individual	triangle,	in	sets	of	three.	For	this	example’s

sample	square,	you’d	need	the	following	vertex	and	index

buffers:

Click	here	to	view	code	image

float	vertexBuffer[]	=	{

			-0.5f,			0.5f,	0.0f,	//	vertex	0

				0.5f,			0.5f,	0.0f,	//	vertex	1

				0.5f,		-0.5f,	0.0f,	//	vertex	2

				-0.5f,	-0.5f,	0.0f		//	vertex	3

};

unsigned	short	indexBuffer[]	=	{

			0,	1,	2,

			2,	3,	0

};

For	example,	the	first	triangle	has	the	vertices	0,	1,	and	2,

which	corresponds	to	the	coordinates	(–0.5,	0.5,	0.0),

(0.5,	0.5,	0.0),	and	(0.5,	–0.5,	0.0).	Keep	in	mind	that

the	index	is	the	vertex	number,	not	the	floating-point

element	(for	example,	vertex	1	instead	of	“index	2”	of	the

array).	Also	note	that	this	code	uses	an	unsigned	short

(typically	16	bits)	for	the	index	buffer,	which	reduces	the

memory	footprint	of	the	index	buffer.	You	can	use

smaller	bit	size	integers	to	save	memory	in	the	index

buffer.

In	this	example,	the	vertex/index	buffer	combination

uses	12	×	4	+	6	×	2,	or	60	total	bytes.	On	the	other	hand,

if	you	just	used	the	original	vertices,	you’d	need	72	bytes.

While	the	savings	in	this	example	is	only	20%,	a	more

complex	model	would	save	much	more	memory	by	using

the	vertex/index	buffer	combination.

To	use	the	vertex	and	index	buffers,	you	must	let

OpenGL	know	about	them.	OpenGL	uses	a	vertex

array	object	to	encapsulate	a	vertex	buffer,	an	index

buffer,	and	the	vertex	layout.	The	vertex	layout

specifies	what	data	you	store	for	each	vertex	in	the

model.	For	now,	assume	the	vertex	layout	is	a	3D

position	(you	can	just	use	a	z	component	of	0.0f	if	you

want	something	2D).	Later	in	this	chapter	you’ll	add

other	data	to	each	vertex.

Because	any	model	needs	a	vertex	array	object,	it	makes

sense	to	encapsulate	its	behavior	in	a	VertexArray

class.	Listing	5.2	shows	the	declaration	of	this	class.

Listing	5.2	VertexArray	Declaration

Click	here	to	view	code	image

class	VertexArray

{

public:

			VertexArray(const	float*	verts,	unsigned	int	numVerts,

						const	unsigned	int*	indices,	unsigned	int	numIndices);

			~VertexArray();

			//	Activate	this	vertex	array	(so	we	can	draw	it)

			void	SetActive();

			unsigned	int	GetNumIndices()	const	{	return	mNumIndices;	}

			unsigned	int	GetNumVerts()	const	{	return	mNumVerts;	}

private:

			//	How	many	vertices	in	the	vertex	buffer?

			unsigned	int	mNumVerts;

			//	How	many	indices	in	the	index	buffer

			unsigned	int	mNumIndices;

			//	OpenGL	ID	of	the	vertex	buffer

			unsigned	int	mVertexBuffer;

			//	OpenGL	ID	of	the	index	buffer

			unsigned	int	mIndexBuffer;

			//	OpenGL	ID	of	the	vertex	array	object

			unsigned	int	mVertexArray;

};

The	constructor	for	VertexArray	takes	in	pointers	to

the	vertex	and	index	buffer	arrays	so	that	it	can	hand	off

the	data	to	OpenGL	(which	will	ultimately	load	the	data

on	the	graphics	hardware).	Note	that	the	member	data

contains	several	unsigned	integers	for	the	vertex	buffer,

index	buffer,	and	vertex	array	object.	This	is	because

OpenGL	does	not	return	pointers	to	objects	that	it

creates.	Instead,	you	merely	get	back	an	integral	ID

number.	Keep	in	mind	that	the	ID	numbers	are	not

unique	across	different	types	of	objects.	It’s	therefore

very	possible	to	have	an	ID	of	1	for	both	the	vertex	and

index	buffers	because	OpenGL	considers	them	different

types	of	objects.

The	implementation	of	the	VertexArray	constructor	is

complex.	First,	create	the	vertex	array	object	and	store	its

ID	in	the	mVertexArray	member	variable:

Click	here	to	view	code	image

glGenVertexArrays(1,	&mVertexArray);

glBindVertexArray(mVertexArray);

Once	you	have	a	vertex	array	object,	you	can	create	a

vertex	buffer:

Click	here	to	view	code	image

glGenBuffers(1,	&mVertexBuffer);

glBindBuffer(GL_ARRAY_BUFFER,	mVertexBuffer);

The	GL_ARRAY_BUFFER	parameter	to	glBindBuffer

means	that	you	intend	to	use	the	buffer	as	a	vertex

buffer.

Once	you	have	a	vertex	buffer,	you	need	to	copy	the

verts	data	passed	into	the	VertexArray	constructor

into	this	vertex	buffer.	To	copy	the	data,	use

glBufferData,	which	takes	several	parameters:

Click	here	to	view	code	image

glBufferData(

			GL_ARRAY_BUFFER,														//	The	active	buffer	type	to	write	to

			numVerts	*	3	*	sizeof(float),	//	Number	of	bytes	to	copy

			verts,																								//	Source	to	copy	from	(pointer)

			GL_STATIC_DRAW																//	How	will	we	use	this	data?

);

Note	that	you	don’t	pass	in	the	object	ID	to

glBufferData;	instead,	you	specify	a	currently	bound

buffer	type	to	write	to.	In	this	case,	GL_ARRAY_BUFFER

means	use	the	vertex	buffer	just	created.

For	the	second	parameter,	you	pass	in	the	number	of

bytes,	which	is	the	amount	of	data	for	each	vertex

multiplied	by	the	number	of	vertices.	For	now,	you	can

assume	that	each	vertex	contains	three	floats	for	(x,	y,	z).

The	usage	parameter	specifies	how	you	want	to	use	the

buffer	data.	A	GL_STATIC_DRAW	usage	means	you	only

want	to	load	the	data	once	and	use	it	frequently	for

drawing.

Next,	create	an	index	buffer.	This	is	very	similar	to

creating	the	vertex	buffer,	except	you	instead	specify	the

GL_ELEMENT_ARRAY_BUFFER	type,	which	corresponds

to	an	index	buffer:

Click	here	to	view	code	image

glGenBuffers(1,	&mIndexBuffer);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,	mIndexBuffer);

Then	copy	the	indices	data	into	the	index	buffer:

Click	here	to	view	code	image

glBufferData(

			GL_ELEMENT_ARRAY_BUFFER,											//	Index	buffer

			numIndices	*	sizeof(unsigned	int),	//	Size	of	data

			indices,	GL_STATIC_DRAW);

Note	that	the	type	here	is

GL_ELEMENT_ARRAY_BUFFER,	and	the	size	is	the

number	of	indices	multiplied	by	an	unsigned	int	because

that’s	the	type	used	for	indices	here.

Finally,	you	must	specify	a	vertex	layout,	also	called	the

vertex	attributes.	As	mentioned	earlier,	the	current

layout	is	a	position	with	three	float	values.

To	enable	the	first	vertex	attribute	(attribute	0),	use

glEnableVertexAttribArray:

glEnableVertexAttribArray(0);

You	then	use	glVertexAttribPointer	to	specify	the

size,	type,	and	format	of	the	attribute:

Click	here	to	view	code	image

glVertexAttribPointer(

			0,																	//	Attribute	index	(0	for	first	one)

			3,																	//	Number	of	components	(3	in	this	case)

			GL_FLOAT,										//	Type	of	the	components

			GL_FALSE,										//	(Only	used	for	integral	types)

			sizeof(float)	*	3,	//	Stride	(usually	size	of	each	vertex)

			0																		//	Offset	from	start	of	vertex	to	this	attribute

);

The	first	two	parameters	are	0	and	3	because	the

position	is	attribute	0	of	the	vertex,	and	there	are	three

components	(x,	y,	z).	Because	each	component	is	a	float,

you	specify	the	GL_FLOAT	type.	The	fourth	parameter	is

only	relevant	for	integral	types,	so	here	you	set	it	to

GL_FALSE.	Finally,	the	stride	is	the	byte	offset	between

consecutive	vertices’	attributes.	But	assuming	you	don’t

have	padding	in	the	vertex	buffer	(which	you	usually

don’t),	the	stride	is	just	the	size	of	the	vertex.	Finally,	the

offset	is	0	because	this	is	the	only	attribute.	For

additional	attributes,	you	have	to	pass	in	a	nonzero	value

for	the	offset.

The	VertexArray’s	destructor	destroys	the	vertex

buffer,	index	buffer,	and	vertex	array	object:

Click	here	to	view	code	image

VertexArray::~VertexArray()

{

			glDeleteBuffers(1,	&mVertexBuffer);

			glDeleteBuffers(1,	&mIndexBuffer);

			glDeleteVertexArrays(1,	&mVertexArray);

}

Finally,	the	SetActive	function	calls

glBindVertexArray,	which	just	specifies	which	vertex

array	you’re	currently	using:.

Click	here	to	view	code	image

void	VertexArray::SetActive()

{

			glBindVertexArray(mVertexArray);

}

The	following	code	in	Game::InitSpriteVerts

allocates	an	instance	of	VertexArray	and	saves	it	in	a

member	variable	of	Game	called	mSpriteVerts:

Click	here	to	view	code	image

mSpriteVerts	=	new	VertexArray(vertexBuffer,	4,	indexBuffer,	6);

The	vertex	and	index	buffer	variables	here	are	the	arrays

for	the	sprite	quad.	In	this	case,	there	are	4	vertices	in

the	vertex	buffer	and	6	indices	in	the	index	buffer

(corresponding	to	the	2	triangles	in	the	quad).	You	will

use	this	member	variable	later	in	this	chapter	to	draw

sprites,	as	all	sprites	will	ultimately	use	the	same

vertices.

SHADERS
In	a	modern	graphics	pipeline,	you	don’t	simply	feed

in	the	vertex/index	buffers	and	have	triangles	draw.

Instead,	you	specify	how	you	want	to	draw	the

vertices.	For	example,	should	the	triangles	be	a	fixed

color,	or	should	they	use	a	color	from	a	texture?	Do

you	want	to	perform	lighting	calculations	for	every

pixel	you	draw?

Because	there	are	many	techniques	you	may	want	to	use

to	display	the	scene,	there	is	no	truly	one-size-fits-all

method.	To	allow	for	more	customization,	graphics	APIs

including	OpenGL	support	shader	programs—small

programs	that	execute	on	the	graphics	hardware	to

perform	specific	tasks.	Importantly,	shaders	are	separate

programs,	with	their	own	separate	main	functions.

notenote

Shader	programs	do	not	use	the	C++	programming	language.	This	book
uses	the	GLSL	programming	language	for	shader	programs.	Although	GLSL
superficially	looks	like	C,	there	are	many	semantics	specific	to	GLSL.	Rather
than	present	all	the	details	of	GLSL	at	once,	this	book	introduces	the
concepts	as	needed.

Because	shaders	are	separate	programs,	you	write	them

in	separate	files.	Then	in	your	C++	code,	you	need	to	tell

OpenGL	when	to	compile	and	load	these	shader

programs	and	specify	what	you	want	OpenGL	to	use

these	shader	programs	for.

Although	you	can	use	several	different	types	of	shaders

in	games,	this	book	focuses	on	the	two	most	important

ones:	the	vertex	shader	and	the	fragment	(or	pixel)

shader.

Vertex	Shaders

A	vertex	shader	program	runs	once	for	every

vertex	of	every	triangle	drawn.	The	vertex	shader

receives	the	vertex	attribute	data	as	an	input.	The

vertex	shader	can	then	modify	these	vertex	attributes

as	it	sees	fit.	While	it	may	seem	unclear	why	you’d

want	to	modify	vertex	attributes,	it’ll	become	more

apparent	as	this	chapter	continues.

Given	that	triangles	have	three	vertices,	you	can	think	of

a	vertex	shader	as	running	three	times	per	triangle.

However,	if	you	use	vertex	and	index	buffers,	then	you

will	invoke	the	vertex	shader	less	often	because	some

triangles	share	vertices.	This	is	an	additional	advantage

of	using	a	vertex	and	index	buffer	instead	just	a	vertex

buffer.	Note	that	if	you	draw	the	same	model	multiple

times	per	frame,	the	vertex	shader	calls	for	each	time	you

draw	it	are	independent	of	each	other.

Fragment	Shaders

After	the	vertices	of	a	triangle	have	gone	through	the

vertex	shader,	OpenGL	must	determine	which	pixels

in	the	color	buffer	correspond	to	the	triangle.	This

process	of	converting	the	triangle	into	pixels	is

rasterization.	There	are	many	different

rasterization	algorithms,	but	today’s	graphics

hardware	does	rasterization	for	us.

The	job	of	a	fragment	shader	(or	pixel	shader)	is	to

determine	the	color	of	each	pixel,	and	so	the	fragment

shader	program	executes	at	least	once	for	every	pixel.

This	color	may	take	into	account	properties	of	the

surface,	such	as	textures,	colors,	and	materials.	If	the

scene	has	any	lighting,	the	fragment	shader	might	also

do	lighting	calculations.	Because	there	are	so	many

potential	calculations,	the	average	3D	game	has	a	lot

more	code	in	the	fragment	shader	than	in	the	vertex

shader.

Writing	Basic	Shaders

Although	you	could	load	in	the	shader	programs

from	hard-coded	strings	in	C++	code,	it’s	much

better	to	put	them	in	separate	files.	This	book	uses

the	.vert	extension	for	vertex	shader	files	and	the

.frag	extension	for	fragment	shader	files.

Because	these	source	files	are	in	a	different	programming

language,	they	are	in	the	Shaders	subdirectory	for	the

chapter.	For	example,	Chapter05/Shaders	contains

the	source	files	for	the	shaders	in	this	chapter.

The	Basic.vert	File
Basic.vert	contains	the	vertex	shader	code.

Remember	that	this	code	is	not	C++	code.

Every	GLSL	shader	file	first	must	specify	the	version	of

the	GLSL	programming	language	used.	The	following

line	represents	the	version	of	GLSL	corresponding	to

OpenGL	3.3:

#version	330

Next,	because	this	is	a	vertex	shader,	you	must	specify

the	vertex	attributes	for	each	vertex.	These	attributes

should	match	the	attributes	of	the	vertex	array	object

created	earlier,	and	are	the	input	to	the	vertex	shader.

However,	in	GLSL	the	main	function	does	not	receive

any	parameters.	Instead,	the	shader	inputs	look	like

global	variables,	marked	with	a	special	in	keyword.

For	now,	you	only	have	one	input	variable—the	3D

position.	The	following	line	declares	this	input	variable:

in	vec3	inPosition;

The	type	of	inPosition	variable	is	vec3,	which

corresponds	to	a	vector	of	three	floating-point	values.

This	will	contain	the	x,	y,	and	z	components

corresponding	to	the	vertex’s	position.	You	can	access

each	component	of	the	vec3	via	dot	syntax;	for	example,

inPosition.x	accesses	the	x	component	of	the	vector.

As	with	a	C/C++	program,	a	shader	program	has	a	main

function	as	its	entry	point:

Click	here	to	view	code	image

void	main()

{

			//	TODO:	Shader	code	goes	here

}

Note	that	the	main	function	here	returns	void.	GLSL

also	uses	global	variables	to	define	the	outputs	of	the

shader.	In	this	case,	you’ll	use	a	built-in	variable	called

gl_Position	to	store	the	vertex	position	output	of	the

shader.

For	now,	the	vertex	shader	directly	copies	the	vertex

position	from	inPosition	to	gl_Position.	However,

gl_Position	expects	four	components:	the	normal	(x,

y,	z)	coordinates	plus	a	fourth	component	called	the	w

component.	We’ll	look	at	what	this	w	represents	later

in	this	chapter.	For	now,	assume	that	w	is	always	1.0.	To

convert	inPosition	from	vec3	to	vec4,	you	can	use

the	following	syntax:

Click	here	to	view	code	image

gl_Position	=	vec4(inPosition,	1.0);

Listing	5.3	shows	the	complete	Basic.vert	code,	which

simply	copies	along	the	vertex	position	without	any

modification.

Listing	5.3	Basic.vert	Code

Click	here	to	view	code	image

//	Request	GLSL	3.3

#version	330

//	Any	vertex	attributes	go	here

//	For	now,	just	a	position.

in	vec3	inPosition;

void	main()

{

			//	Directly	pass	along	inPosition	to	gl_Position

			gl_Position	=	vec4(inPosition,	1.0);

}

The	Basic.frag	File
The	job	of	the	fragment	shader	is	to	compute	an

output	color	for	the	current	pixel.	For	Basic.frag,

you’ll	hard-code	a	blue	output	color	for	all	pixels.

As	with	the	vertex	shader,	the	fragment	shader	always

begin	with	a	#version	line.	Next,	you	declare	a	global

variable	to	store	the	output	color,	using	the	out	variable

specifier:

out	vec4	outColor;

The	outColor	variable	is	a	vec4	corresponding	to	the

four	components	of	the	RGBA	color	buffer.

Next,	you	declare	the	entry	point	of	the	fragment	shader

program.	Inside	this	function,	you	set	outColor	to	the

desired	color	for	the	pixel.	The	RGBA	value	of	blue	is

(0.0,	0.0,	1.0,	1.0),	which	means	you	use	the	following

assignment:

Click	here	to	view	code	image

outColor	=	vec4(0.0,	0.0,	1.0,	1.0);

Listing	5.4	gives	the	full	source	code	for	Basic.frag.

Listing	5.4	Basic.frag	Code

Click	here	to	view	code	image

//	Request	GLSL	3.3

#version	330

//	This	is	output	color	to	the	color	buffer

out	vec4	outColor;

void	main()

{

			//	Set	to	blue

			outColor	=	vec4(0.0,	0.0,	1.0,	1.0);

}

Loading	Shaders

Once	you	have	the	separate	shader	files	written,	you

must	load	in	these	shaders	in	the	game’s	C++	code	to

let	OpenGL	know	about	them.	At	a	high	level,	you

need	to	follow	these	steps:

1.	Load	and	compile	the	vertex	shader.

2.	Load	and	compile	the	fragment	shader.

3.	Link	the	two	shaders	together	into	a	“shader

program.”

There	are	many	steps	to	loading	a	shader,	so	it	is	a	good

idea	to	declare	a	separate	Shader	class,	as	in	Listing	5.5.

Listing	5.5	Initial	Shader	Declaration

Click	here	to	view	code	image

class	Shader

{

public:

			Shader();

			~Shader();

			//	Load	the	vertex/fragment	shaders	with	the	given	names

			bool	Load(const	std::string&	vertName,

													const	std::string&	fragName);

			//	Set	this	as	the	active	shader	program

			void	SetActive();

private:

			//	Tries	to	compile	the	specified	shader

			bool	CompileShader(const	std::string&	fileName,

																						GLenum	shaderType,	GLuint&	outShader);

			//	Tests	whether	shader	compiled	successfully

			bool	IsCompiled(GLuint	shader);

			//	Tests	whether	vertex/fragment	programs	link

			bool	IsValidProgram();

			//	Store	the	shader	object	IDs

			GLuint	mVertexShader;

			GLuint	mFragShader;

			GLuint	mShaderProgram;

};

Note	how	the	member	variables	here	correspond	to

shader	object	IDs.	They	have	object	IDs	much	like	the

vertex	and	index	buffers.	(GLuint	is	simply	OpenGL’s

version	of	unsigned	int.)

You	declare	CompileShader,	IsCompiled,	and

IsValidProgram	in	the	private	section	because	they

are	helper	functions	used	by	Load.	This	reduces	the	code

duplication	in	Load.

The	 	Function
CompileShader	takes	three	parameters:	the	name

of	the	shader	file	to	compile,	the	type	of	shader,	and

a	reference	parameter	to	store	the	ID	of	the	shader.

The	return	value	is	a	bool	that	denotes	whether

CompileShader	succeeded.

Listing	5.6	shows	the	implementation	of

CompileShader,	which	has	several	steps.	First,	create

an	ifstream	to	load	in	the	file.	Next,	use	a	string

stream	to	load	the	entire	contents	of	the	file	into	a	single

string,	contents,	and	get	the	C-style	string	pointer	with

the	c_str	function.

Next,	the	glCreateShader	function	call	creates	an

OpenGL	shader	object	corresponding	to	the	shader	(and

saves	this	ID	in	outShader).	The	shaderType

parameter	can	be	GL_VERTEX_SHADER,

GL_FRAGMENT_SHADER,	or	a	few	other	shader	types.

The	glShaderSource	call	specifies	the	string

containing	the	shader	source	code,	and

glCompileShader	compiles	the	code.	You	then	use	the

IsCompiled	helper	function	(implemented	in	a

moment)	to	validate	that	the	shader	compiles.

In	the	event	of	any	errors,	including	being	unable	to	load

the	shader	file	or	failing	to	compile	it,	CompileShader

outputs	an	error	message	and	returns	false.

Listing	5.6	Shader::CompileShader

Implementation

Click	here	to	view	code	image

bool	Shader::CompileShader(const	std::string&	fileName,

			GLenum	shaderType,

			GLuint&	outShader)

{

			//	Open	file

			std::ifstream	shaderFile(fileName);

			if	(shaderFile.is_open())

			{

						//	Read	all	the	text	into	a	string

						std::stringstream	sstream;

						sstream	<<	shaderFile.rdbuf();

						std::string	contents	=	sstream.str();

						const	char*	contentsChar	=	contents.c_str();

						//	Create	a	shader	of	the	specified	type

						outShader	=	glCreateShader(shaderType);

						//	Set	the	source	characters	and	try	to	compile

						glShaderSource(outShader,	1,	&(contentsChar),	nullptr);

						glCompileShader(outShader);

						if	(!IsCompiled(outShader))

						{

									SDL_Log("Failed	to	compile	shader	%s",	fileName.c_str());

									return	false;

						}

			}

			else

			{

						SDL_Log("Shader	file	not	found:	%s",	fileName.c_str());

						return	false;

			}

			return	true;

}

The	 	Function
The	IsCompiled	function,	shown	in	Listing	5.7,

validates	whether	a	shader	object	compiled,	and	if	it

didn’t,	it	outputs	the	compilation	error	message.	This

way,	you	can	get	some	information	about	why	a

shader	fails	to	compile.

Listing	5.7	Shader::IsCompiled	Implementation

Click	here	to	view	code	image

bool	Shader::IsCompiled(GLuint	shader)

{

			GLint	status;

			//	Query	the	compile	status

			glGetShaderiv(shader,	GL_COMPILE_STATUS,	&status);

			if	(status	!=	GL_TRUE)

			{

						char	buffer[512];

						memset(buffer,	0,	512);

						glGetShaderInfoLog(shader,	511,	nullptr,	buffer);

						SDL_Log("GLSL	Compile	Failed:\n%s",	buffer);

						return	false;

			}

			return	true;

}

The	glGetShaderiv	function	queries	the	compilation

status,	which	the	function	returns	as	an	integral	status

code.	If	this	status	is	not	GL_TRUE,	there	was	an	error.	In

the	event	of	an	error,	you	can	get	a	human-readable

compile	error	message	with	glGetShaderInfoLog.

The	 	Function
The	Load	function	in	Listing	5.8	takes	in	the

filenames	of	both	the	vertex	and	fragment	shaders

and	then	tries	to	compile	and	link	these	shaders

together.

As	shown	in	Listing	5.8,	you	compile	both	the	vertex	and

fragment	shaders	using	CompileShader	and	then	save

their	objects	IDs	in	mVertexShader	and

mFragShader,	respectively.	If	either	of	the

CompileShader	calls	fail,	Load	returns	false.

Listing	5.8	Shader::Load	Implementation

Click	here	to	view	code	image

bool	Shader::Load(const	std::string&	vertName,

																		const	std::string&	fragName)

{

			//	Compile	vertex	and	fragment	shaders

			if	(!CompileShader(vertName,	GL_VERTEX_SHADER,	mVertexShader)	||

						!CompileShader(fragName,	GL_FRAGMENT_SHADER,	mFragShader))

			{

						return	false;

			}

			//	Now	create	a	shader	program	that

			//	links	together	the	vertex/frag	shaders

			mShaderProgram	=	glCreateProgram();

			glAttachShader(mShaderProgram,	mVertexShader);

			glAttachShader(mShaderProgram,	mFragShader);

			glLinkProgram(mShaderProgram);

			//	Verify	that	the	program	linked	successfully

			if	(!IsValidProgram())

			{

						return	false;

			}

			return	true;

}

After	you’ve	compiled	both	the	fragment	and	vertex

shader,	you	link	them	together	in	a	third	object,	called	a

shader	program.	When	it’s	time	to	draw	an	object,

OpenGL	uses	the	currently	active	shader	program	to

render	the	triangles.

You	create	a	shader	program	with	glCreateProgram,

which	returns	the	object	ID	to	the	new	shader	program.

Next,	use	glAttachShader	to	add	the	vertex	and

fragment	shaders	to	the	combined	shader	program.	Then

use	glLinkProgram	to	link	together	all	attached

shaders	into	the	final	shader	program.

As	with	shader	compilation,	figuring	out	whether	the	link

was	successful	requires	additional	function	calls,	which

you	can	place	in	the	IsValidProgram	helper	function.

The	 	Function
The	code	for	IsValidProgram	is	very	similar	to	the

code	for	IsCompiled.	There	are	only	two

differences.	First,	instead	of	calling

glGetShaderiv,	call	glGetProgramiv:

Click	here	to	view	code	image

glGetProgramiv(mShaderProgram,	GL_LINK_STATUS,	&status);

Next,	instead	of	calling	glGetShaderInfoLog,	call

glGetProgramInfoLog:

Click	here	to	view	code	image

glGetProgramInfoLog(mShaderProgram,	511,	nullptr,	buffer);

The	SetActive	Function
The	SetActive	function	sets	a	shader	program	as

the	active	one:

void	Shader::SetActive()

{

			glUseProgram(mShaderProgram);

}

OpenGL	uses	the	active	shader	when	drawing	triangles.

The	Unload	Function
The	Unload	function	simply	deletes	the	shader

program,	the	vertex	shader,	and	the	pixel	shader:

Click	here	to	view	code	image

void	Shader::Unload()

{

			glDeleteProgram(mShaderProgram);

			glDeleteShader(mVertexShader);

			glDeleteShader(mFragShader);

}

Adding	a	Shader	to	the	Game
With	the	Shader	class,	you	can	now	add	a	Shader

pointer	as	a	member	variable	to	Game:

class	Shader*	mSpriteShader;

This	variable	is	called	mSpriteShader	because,

ultimately,	you’ll	use	it	to	draw	sprites.	The

LoadShaders	function	loads	in	the	shader	files	and	sets

the	shader	as	active:

Click	here	to	view	code	image

bool	Game::LoadShaders()

{

			mSpriteShader	=	new	Shader();

			if	(!mSpriteShader->Load("Shaders/Basic.vert",	"Shaders/Basic.frag"))

			{

						return	false;

			}

			mSpriteShader->SetActive();

}

You	call	LoadShaders	in	Game::Initialize

immediately	after	finishing	initialization	of	OpenGL	and

GLEW	(and	before	you	create	the	mSpriteVerts	vertex

array	object).

After	you’ve	created	simple	vertex	and	pixel	shaders	and

loaded	in	triangles,	you	can	finally	try	to	draw	some

triangles.

Drawing	Triangles

As	mentioned	earlier,	you	can	draw	sprites	with

triangles	by	drawing	rectangles	onscreen.	You’ve

already	loaded	in	the	unit	square	vertices	and	a	basic

shader	that	can	draw	blue	pixels.	As	before,	you	want

to	draw	sprites	in	the	Draw	function	in

SpriteComponent.

First,	you	change	the	declaration	of

SpriteComponent::Draw	so	that	it	takes	in	Shader*

instead	of	SDL_Renderer*.	Next,	draw	a	quad	with	a

call	to	glDrawElements:

Click	here	to	view	code	image

void	SpriteComponent::Draw(Shader*	shader)

{

			glDrawElements(

						GL_TRIANGLES,				//	Type	of	polygon/primitive	to	draw

						6,															//	Number	of	indices	in	index	buffer

						GL_UNSIGNED_INT,	//	Type	of	each	index

						nullptr										//	Usually	nullptr

);

}

The	first	parameter	to	glDrawElements	specifies	the

type	of	element	you’re	drawing	(in	this	case,	triangles).

The	second	parameter	is	the	number	of	indices	in	the

index	buffer;	in	this	case,	because	the	index	buffer	for	the

unit	square	has	six	elements,	you	pass	in	6	as	the

parameter.	The	third	parameter	is	the	type	of	each	index,

established	earlier	as	unsigned	int.	The	last

parameter	is	nullptr.

The	glDrawElements	call	requires	both	an	active

vertex	array	object	and	an	active	shader.	On	every	frame,

you	need	to	activate	both	the	sprite	vertex	array	object

and	shader	before	drawing	any	SpriteComponents.

You	do	this	in	the	Game::GenerateOutput	function,

as	shown	in	Listing	5.9.	Once	you’ve	set	the	shader	and

vertex	array	as	active,	you	call	Draw	once	for	each	sprite

in	the	scene.

Listing	5.9	Game::GenerateOutput	Attempting	to

Draw	Sprites

Click	here	to	view	code	image

void	Game::GenerateOutput()

{

			//	Set	the	clear	color	to	gray

			glClearColor(0.86f,	0.86f,	0.86f,	1.0f);

			//	Clear	the	color	buffer

			glClear(GL_COLOR_BUFFER_BIT);

			//	Set	sprite	shader	and	vertex	array	objects	active

			mSpriteShader	->SetActive();

			mSpriteVerts	->SetActive();

			//	Draw	all	sprites

			for	(auto	sprite	:	mSprites)

			{

						sprite	->Draw(mSpriteShader);

			}

			//	Swap	the	buffers

			SDL_GL_SwapWindow(mWindow);

			return	true;

}

What	happens	when	you	run	this	code	now?	Well,	first,

the	fragment	shader	only	writes	out	a	blue	color.	So	it’s

reasonable	to	expect	that	you’d	see	blue	squares	for	each

SpriteComponent.	However,	there’s	another	issue:	For

every	sprite,	you	use	the	same	sprite	verts.	These	sprite

verts	define	a	unit	square	in	normalized	device

coordinates.	This	means	that	for	every

SpriteComponent,	you	merely	draw	the	same	unit

square	in	NDC.	Thus,	if	you	run	the	game	right	now,

you’ll	see	only	a	gray	background	and	a	rectangle,	as	in

Figure	5.3.

Figure	5.3	Drawing	many	NDC	unit	squares	(even

though	it	looks	like	one	rectangle)

It	may	seem	like	the	solution	is	to	define	different	vertex

arrays	for	each	sprite.	However,	it	turns	out	that	with

only	this	one	vertex	array,	you	can	draw	whichever

sprites	you	want	to.	The	key	is	to	take	advantage	the

vertex	shader’s	ability	to	transform	vertex	attributes.

TRANSFORMATION	BASICS
Suppose	a	game	has	10	asteroids	moving	around.

You	could	represent	these	10	asteroids	individually

with	different	vertex	array	objects.	However,	you

need	these	asteroids	to	show	up	in	different	locations

onscreen.	This	means	the	triangles	you	draw	for	each

asteroid	need	different	normalized	device

coordinates.

A	naïve	idea	is	to	create	10	different	vertex	buffers,	1	for

each	of	the	10	asteroids,	and	recompute	the	vertex

positions	in	these	vertex	buffers	as	needed.	But	this	is

wasteful	both	in	terms	of	memory	usage	and	in	terms	of

computation.	Changing	vertices	in	vertex	buffers	and

resubmitting	them	to	OpenGL	is	not	efficient.

Instead,	think	of	a	sprite	in	an	abstract	sense.	Every

sprite	is	ultimately	just	a	rectangle.	Different	sprites	may

have	different	locations	on	the	screen,	different	sizes,	or

different	rotations,	but	they’re	still	rectangles.

Thinking	of	it	this	way,	a	more	efficient	solution	is	to

have	a	single	vertex	buffer	for	the	rectangle	and	just

reuse	it.	Every	time	you	draw	the	rectangle,	you	may

have	a	position	offset,	scale,	or	rotation.	But	given	the

NDC	unit	square,	you	can	change,	or	transform,	it	such

that	it	is	an	arbitrary	rectangle	with	an	arbitrary	position,

scale,	and/or	orientation.

This	same	concept	of	reusing	a	single	vertex	buffer	for	a

type	of	object	also	extends	to	3D.	For	example,	a	game

taking	place	in	the	forest	might	have	hundreds	of	trees,

many	of	which	are	only	slight	variations	of	each	other.

It’s	inefficient	to	have	a	separate	vertex	buffer	for	every

single	instance	of	the	same	tree.	Instead,	you	could

create	a	single	tree	vertex	buffer,	and	the	game	could

draw	many	instances	of	this	same	tree	with	some

variation	in	position,	scale,	and	orientation.

Object	Space

When	you	create	a	3D	object	(such	as	in	a	3D

modeling	program),	you	generally	don’t	express

vertex	positions	in	normalized	device	coordinates.

Instead,	the	positions	are	relative	to	an	arbitrary

origin	of	the	object	itself.	This	origin	is	often	in	the

center	of	the	object,	but	it	does	not	have	to	be.	This

coordinate	space	relative	to	the	object	itself	is	object

space,	or	model	space.

As	discussed	earlier	in	this	chapter,	defining	a	coordinate

space	requires	knowing	both	the	origin	of	the	coordinate

space	and	the	direction	in	which	the	various	components

increase	(the	basis	vectors).	For	example,	some	3D

modeling	programs	use	+y	as	up,	whereas	others	use	+z

as	up.	These	different	basis	vectors	define	different

object	spaces	for	the	objects.	Figure	5.4	illustrates	a	2D

square	where	the	center	of	the	square	is	its	object	space

origin,	+y	moves	up,	and	+x	moves	right.

Figure	5.4	A	quad	relative	to	its	object	space	origin

Now	imagine	a	game	that	takes	place	in	an	office

building.	You’d	need	models	for	computer	monitors,

keyboards,	desks,	office	chairs,	and	so	on.	You’d	create

each	of	these	individual	models	in	its	own	object	space,

which	means	each	object’s	vertex	positions	are	relative	to

that	model’s	unique	object	space	origin.

At	runtime,	you	load	each	unique	model	into	its	own

vertex	array	object	(VAO).	For	example,	you	might	have

a	VAO	for	the	monitor,	one	for	the	keyboard,	and	so	on.

When	it’s	time	to	render	the	scene,	each	vertex	of	each

object	you	draw	goes	to	the	vertex	shader.	If	you	just

directly	passed	along	the	vertex	positions,	as	in

Basic.vert,	then	you’re	saying	that	these	vertex

positions	are	in	normalized	device	coordinates.

This	is	a	problem	because	the	coordinates	for	the	models

are	not	in	NDC	but	instead	are	relative	to	each	object’s

unique	object	space.	Passing	through	the	vertex	positions

as	is	would	yield	garbage	output.

World	Space

To	solve	the	problem	with	different	objects	having

different	object	space	coordinates,	you	first	define	a

coordinate	space	for	the	game	world	itself.	This

coordinate	space,	called	world	space,	has	its	own

origin	and	basis	vectors.	For	the	game	in	the	office

building,	the	origin	of	world	space	might	be	in	the

center	of	the	building	on	the	ground	floor.

Much	as	an	office	planner	might	place	the	desks	and

chairs	at	different	positions	and	orientations	in	the

office,	you	can	think	of	the	objects	in	the	game	as	having

arbitrary	positions,	scales,	or	orientations	relative	to	the

world	space	origin.	For	example,	if	there	are	five

instances	of	the	same	desk	placed	in	the	office,	each	of

these	instances	needs	information	describing	how	the

object	appears	in	world	space.

When	you	draw	each	instance	of	the	desk,	you	use	the

same	vertex	array	object	for	each	desk.	However,	each

instance	now	needs	some	additional	information,

specifying	how	you	want	to	transform	the	object	space

coordinates	into	world	space.	You	can	send	this	extra

data	to	the	vertex	shader	when	drawing	an	instance,

which	allows	the	vertex	shader	to	adjust	the	vertex

positions	as	needed.	Of	course,	the	graphics	hardware

ultimately	needs	the	coordinates	in	NDC	to	draw	them,

so	you	still	have	an	additional	step	after	transforming	the

vertices	into	world	space.	For	now,	let’s	look	at	how	to

transform	vertices	from	their	object	space	into	world

space.

Transforming	to	World	Space

When	transforming	between	coordinate	spaces,	you

need	to	know	whether	the	basis	vectors	between	the

two	coordinate	spaces	are	the	same.	For	example,

consider	the	point	(0,	5)	in	object	space.	If	you	define

object	space	with	+y	as	up,	this	means	that	the	point

(0,	5)	is	five	units	“above”	the	origin.	However,	if	you

choose	to	define	world	space	such	that	+y	is	to	the

right,	(0,	5)	is	instead	five	units	to	the	right.

For	now,	assume	that	the	basis	vectors	in	object	and

world	space	are	the	same.	Because	the	game	currently	is

2D,	you	can	assume	that	+y	is	up	and	+x	is	to	the	right

for	both	object	space	and	world	space.

notenote

The	2D	coordinate	system	used	here	is	different	from	the	SDL	coordinate
system	where	+y	is	down!	This	means	the	code	for	Actor::GetForward
no	longer	negates	the	y	component.	Furthermore,	if	you	use	atan2	for	any
calculations,	you	no	longer	negate	the	first	parameter.

Now	consider	a	unit	square	centered	around	the	object

space	origin,	as	in	Figure	5.4.	Assume	that	the	world

space	origin	is	the	center	of	the	game	window.	The	goal

is	to	take	the	unit	square	centered	around	its	object

space	origin	and	express	it	as	a	rectangle	with	an

arbitrary	position,	scale,	or	orientation	relative	to	the

world	space	origin.

For	example,	suppose	one	instance	of	the	rectangle

should	appear	in	world	space	such	that	it’s	double	in	size

and	is	50	units	to	the	right	of	the	world	space	origin.	You

can	accomplish	this	by	applying	mathematical

operations	to	each	vertex	of	the	rectangle.

One	approach	is	to	use	algebra	equations	to	compute	the

correct	vertex	positions.	Although	you	ultimately	won’t

approach	it	in	this	manner,	this	is	a	useful	bridge	to

understanding	the	preferred	solution.	This	chapter

focuses	on	2D	coordinate	systems,	though	the	same

method	outlined	here	would	also	work	in	3D	(just	with

an	additional	z	component).

Translation
Translation	takes	a	point	and	translates,	or	moves,

it	by	an	offset.	Given	the	point	(x,	y),	you	can

translate	it	by	the	offset	(a,	b)	by	using	the	following

equations:

For	example,	you	could	translate	the	point	(1,	3)	by	the

offset	(20,	15)	as	follows:

If	you	apply	the	same	translation	to	every	vertex	of	a

triangle,	you	translate	the	entire	triangle.

Scale

When	applied	to	each	vertex	in	a	triangle,	scale

increases	or	decreases	the	size	of	the	triangle.	In	a

uniform	scale,	you	scale	each	component	by	the

same	scale	factor,	s:

So	you	can	uniformly	scale	(1,	3)	by	5	as	follows:

Scaling	each	vertex	in	the	triangle	by	5	would	quintuple

the	size	of	the	triangle.

In	a	non-uniform	scale,	there	are	separate	scale

factors	(s ,	s)	for	each	component:

For	the	example	of	transforming	a	unit	square,	a	non-

uniform	scale	results	in	a	rectangle	instead	of	a	square.

Rotation
Recall	the	discussion	of	the	unit	circle	from	Chapter

4,	“Vectors	and	Basic	Physics.”	The	unit	circle	begins

at	the	point	(1,	0).	A	rotation	of	90˚,	or	 	radians,	is

counterclockwise	to	the	point	(0,	1),	a	rotation	of

180˚,	or	π	radians,	is	the	point	(–1,	0),	and	so	on.

This	is	technically	a	rotation	about	the	z-axis,	even

though	you	don’t	draw	the	z-axis	in	a	typical	unit

x y

circle	diagram.

Using	sine	and	cosine,	you	can	rotate	an	arbitrary	point

(x,	y)	by	the	angle	θ	as	follows:

Notice	that	both	equations	depend	on	the	original	x	and

y	values.	For	example,	rotating	(5,	0)	by	270˚	is	as

follows:

As	with	the	unit	circle,	the	angle	θ	represents	a

counterclockwise	rotation.

Keep	in	mind	that	this	is	a	rotation	about	the	origin.

Given	a	triangle	centered	around	the	object	space	origin,

rotating	each	vertex	would	rotate	the	triangle	about	the

origin.

Combining	Transformations
Although	the	preceding	equations	apply	each

transformation	independently,	it’s	common	to

require	multiple	transformations	on	the	same	vertex.

For	example,	you	might	want	to	both	translate	and

rotate	a	quad.	It’s	important	to	combine	these

transformations	in	the	correct	order.

Suppose	a	triangle	has	the	following	points:

This	original	triangle	points	straight	up,	as	in	Figure

5.5(a).	Now	suppose	you	want	to	translate	the	triangle	by

(5,	0)	and	rotate	it	by	90˚.	If	you	rotate	first	and

translate	second,	you	get	this:

This	results	in	the	triangle	rotated	so	that	it	points	to	the

left	and	translated	to	the	right,	as	in	Figure	5.5(b).

If	you	reverse	the	order	of	the	transformations	so	that

you	evaluate	the	translation	first,	you	end	up	with	this

calculation:

In	the	case	of	translation	first,	rotation	second,	you	end

up	with	a	triangle	still	facing	to	the	left	but	positioned

several	units	above	the	origin,	as	in	Figure	5.5(c).	This

happens	because	you	first	move	the	triangle	to	the	right,

and	then	you	rotate	about	the	origin.	Usually,	this

behavior	is	undesirable.

Figure	5.5	(a)	Initial	triangle,	(b)	rotating	then

translating,	and	(c)	translating	then	rotating

Because	the	order	of	transformations	matter,	it’s

important	to	have	a	consistent	order.	For	the

transformation	from	object	space	to	world	space,	always

apply	the	transformations	in	the	order	scale,	then

rotation,	then	translation.	Keeping	this	in	mind,	you

could	combine	all	three	separate	equations	for	scale,

rotation,	and	translation	into	one	set	of	equations	to

scale	by	(s ,	s),	rotate	by	θ,	and	translate	by	(a,	b):

Issues	with	Combining	Equations
The	combined	equations	derived	in	the	previous

section	may	seem	like	a	solution	to	the	problem:

Take	an	arbitrary	vertex	in	object	space,	apply	the

equations	to	each	component,	and	you	now	have	the

vertex	transformed	into	world	space	with	an

arbitrary	scale,	rotation,	and	position.

However,	as	alluded	to	earlier,	this	only	transforms	the

vertices	from	object	space	to	world	space.	Because	world

space	is	not	normalized	to	device	coordinates,	you	still

have	more	transformations	to	apply	in	the	vertex	shader.

These	additional	transformations	typically	do	not	have

equations	as	simple	as	the	equations	covered	thus	far.

This	is	especially	because	the	basis	vectors	between	these

different	coordinate	spaces	might	be	different.

Combining	these	additional	transformations	into	one

equation	would	become	unnecessarily	complex.

The	solution	to	these	issues	is	to	not	use	separate

equations	for	each	component.	Instead,	you	use	matrices

to	describe	the	different	transformations,	and	you	can

easily	combine	these	transformations	with	matrix

x y

multiplication.

MATRICES	AND
TRANSFORMATIONS
A	matrix	is	a	grid	of	values,	with	2×2	columns.	For

example,	you	could	write	a	2×2	matrix	as	follows,

with	a	through	d	representing	individual	values	in

the	matrix:

You	use	matrices	to	represent	transformations	in

computer	graphics.	All	the	transformations	from	the

preceding	section	have	corresponding	matrix

representations.	If	you	are	experienced	in	linear	algebra,

you	might	recall	that	matrices	can	be	used	to	solve

systems	of	linear	equations.	Thus,	it’s	natural	that	you

can	represent	the	system	of	equations	in	the	previous

section	as	matrices.

This	section	explores	some	of	the	basic	use	cases	of

matrices	in	game	programming.	As	with	vectors,	it’s

most	important	to	understand	how	and	when	to	use

these	matrices	in	code.	This	book’s	custom	Math.h

header	file	defines	Matrix3	and	Matrix4	classes,	along

with	operators,	member	functions,	and	static	functions

that	implement	all	the	necessary	features.

Matrix	Multiplication

Much	as	with	scalars,	you	can	multiply	two	matrices

together.	Suppose	you	have	the	following	matrices:

The	result	of	the	multiplication	C	=	AB	is:

In	other	words,	the	top-left	element	of	C	is	the	dot

product	of	the	first	row	of	A	with	the	first	column	of	B.

Matrix	multiplication	does	not	require	matrices	to	have

identical	dimensions,	but	the	number	of	columns	in	the

left	matrix	must	be	equal	to	the	number	of	rows	in	the

right	matrix.	For	instance,	the	following	multiplication	is

also	valid:

Matrix	multiplication	is	not	commutative,	though	it	is

associative:

Transforming	a	Point	by	Using	a	Matrix

A	key	aspect	of	transformations	is	that	you	can

represent	an	arbitrary	point	as	a	matrix.	For

example,	you	can	represent	the	point	p=(x,	y)	as	a

single	row	(called	a	row	vector):

You	can	instead	represent	p	as	a	single	column	(called	a

column	vector):

Either	representation	works,	but	it’s	important	to

consistently	use	one	approach.	This	is	because	whether

the	point	is	a	row	or	a	column	determines	whether	the

point	appears	on	the	left-	or	right-hand	side	of	the

multiplication.

Suppose	you	have	a	transformation	matrix	T:

With	matrix	multiplication,	you	can	transform	the	point

p	by	this	matrix,	yielding	the	transformed	point	(x′,y′).

However,	whether	p	is	a	single	row	or	a	single	column

gives	different	results	when	multiplied	by	T.

If	p	is	a	row,	the	multiplication	is	as	follows:

But	if	p	is	a	column,	the	multiplication	would	yield	the

following:

This	gives	two	different	values	for	x′	and	y′,	but	only	one

is	the	correct	answer—because	the	definition	of	a

transform	matrix	relies	on	whether	you’re	using	row

vectors	or	column	vectors.

Whether	to	use	row	or	column	vectors	is	somewhat

arbitrary.	Most	linear	algebra	textbooks	use	column

vectors.	However,	in	computer	graphics	there	is	a	history

of	using	either	row	or	column	vectors,	depending	on	the

resource	and	graphics	API.	This	book	uses	row	vectors,

mainly	because	the	transformations	apply	in	a	left-to-

right	order	for	a	given	point.	For	example,	when	using

row	vectors,	the	following	equation	transforms	the	point

q	by	matrix	T	first	and	then	by	matrix	R:

You	can	switch	between	row	and	column	vectors	by

taking	the	transpose	of	each	transform	matrix.	The

transpose	of	the	matrix	rotates	the	matrix	such	that	the

first	row	of	the	original	matrix	becomes	the	first	column

of	the	result:

If	you	wanted	to	switch	the	equation	to	transform	q

using	column	vectors,	you	would	calculate	as	follows:

The	matrices	in	the	remainder	of	this	book	assume	that

you	are	using	row	vectors.	However,	a	simple	transpose

of	these	matrices	converts	them	to	work	with	column

vectors.

Finally,	the	identity	matrix	is	a	special	type	of	matrix

represented	by	an	uppercase	l.	An	identity	matrix	always

has	an	equal	number	of	rows	and	columns.	All	values	in

the	identity	matrix	are	0,	except	for	the	diagonal,	which

is	all	1s.	For	example,	the	3×3	identity	matrix	is	as

follows:

Any	arbitrary	matrix	multiplied	by	the	identity	matrix

does	not	change.	In	other	words:

Transforming	to	World	Space,	Revisited

You	can	represent	the	scale,	rotation,	and	translation

transformations	with	matrices.	To	combine	the

transformations,	instead	of	deriving	a	combined

equation,	multiply	the	matrices	together.	Once	you

have	a	combined	world	transform	matrix,	you	can

transform	every	vertex	of	the	object	by	this	world

transform	matrix.

As	before,	let’s	focus	on	2D	transformations	first.

Scale	Matrix
You	can	use	a	2×2	scale	matrix	to	apply	the	scale

transformation:

For	example,	this	would	scale	(1,3)	by	(5,2):

Rotation	Matrix
A	2D	rotation	matrix	represents	a	rotation	(about	the

z-axis)	by	angle	θ:

So,	you	can	rotate	(0,3)	by	90˚	with	the	following:

Translation	Matrices
You	can	represent	2D	scale	and	rotation	matrices

with	2×2	matrices.	However,	there’s	no	way	to	write

a	generic	2D	translation	matrix	of	size	2×2.	The	only

way	to	express	the	translation	T(a,b)	is	with	a	3×3

matrix:

However,	you	can’t	multiply	a	1×2	matrix	representing	a

point	by	a	3×3	matrix	because	the	1×2	matrix	doesn’t

have	enough	columns.	The	only	way	you	can	multiply

these	together	is	if	you	add	an	additional	column	to	the

row	vector,	making	it	a	1×3	matrix.	This	requires	adding

an	extra	component	to	the	point.	Homogenous

coordinates	use	n+1	components	to	represent	an	n-

dimensional	space.	So,	for	a	2D	space,	homogeneous

coordinates	use	three	components.

Although	it	might	seem	reasonable	to	call	this	third

component	the	z	component,	it’s	a	misnomer.	That’s

because	you’re	not	representing	a	3D	space,	and	you

want	to	reserve	the	z	component	for	3D	spaces.	Thus	this

special	homogeneous	coordinate	is	the	w	component.

You	use	w	for	both	2D	and	3D	homogeneous

coordinates.	So,	a	2D	point	represented	in	homogeneous

coordinates	is	(x,y,w),	while	a	3D	point	represented	in

homogeneous	coordinates	is	(x,y,z,w).

For	now,	you	will	only	use	a	value	of	1	for	the	w

component.	For	example,	you	can	represent	the	point	p=

(x,y)	with	the	homogeneous	coordinate	(x,y,1).	To

understand	how	homogeneous	coordinates	work,

suppose	you	wish	to	translate	the	point	(1,3)	by	(20,15).

First,	you	represent	the	point	as	a	homogeneous

coordinate	with	a	w	component	of	1	and	then	you

multiply	the	point	by	the	translation	matrix:

Note	that,	in	this	calculation,	the	w	component	remains

1.	However,	you’ve	translated	the	x	and	y	components	by

the	desired	amount.

Combining	Transformations
As	mentioned	earlier,	you	can	combine	multiple

transform	matrices	by	multiplying	them	together.

However,	you	can’t	multiply	a	2×2	matrix	with	a	3×3

matrix.	Thus,	you	must	represent	the	scale	and

rotation	transforms	with	3×3	matrices	that	work

with	homogeneous	coordinates:

Now	that	you’ve	represented	the	scale,	rotation,	and

translation	matrices	as	3×3	matrices,	you	can	multiply

them	together	into	one	combined	transform	matrix.	This

combined	matrix	that	transforms	from	object	space	to

world	space	is	the	world	transform	matrix.	To

compute	the	world	transform	matrix,	multiply	the	scale,

rotation,	and	translation	matrices	in	the	following	order:

This	order	of	multiplication	corresponds	to	the	order	in

which	you	wish	to	apply	the	transformations	(scale,	then

rotate,	then	translate).	You	can	then	pass	this	world

transform	matrix	to	the	vertex	shader	and	use	it	to

transform	every	vertex	of	an	object	by	its	world

transform	matrix.

Adding	World	Transforms	to	Actor

Recall	that	the	declaration	of	the	Actor	class	already

has	a	Vector2	for	position,	a	float	for	scale,	and	a

float	for	the	angle	rotation.	You	now	must	combine

these	different	attributes	into	a	world	transform

matrix.

First,	add	two	member	variables	to	Actor,	a	Matrix4

and	a	bool:

Click	here	to	view	code	image

Matrix4	mWorldTransform;

bool	mRecomputeWorldTransform;

The	mWorldTransform	variable	obviously	stores	the

world	transform	matrix.	The	reason	you	use	a	Matrix4

here	instead	of	a	Matrix3	is	because	the	vertex	layout

assumes	that	all	vertices	have	a	z	component	(even

though	in	2D,	you	don’t	actually	need	the	z	component).

Since	the	homogenous	coordinates	for	3D	are	(x,	y,	z,	w),

you	need	a	4×4	matrix.

The	Boolean	tracks	whether	you	need	to	recalculate	the

world	transform	matrix.	The	idea	is	that	you	want	to

recalculate	the	world	transform	only	if	the	actor’s

position,	scale,	or	rotation	changes.	In	each	of	the	setter

functions	for	the	position,	scale,	and	rotation	of	the

actor,	you	set	mRecomputeWorldTransform	to	true.

This	way,	whenever	you	change	these	component

properties,	you’ll	be	sure	to	compute	the	world	transform

again.

You	also	initialize	mRecomputeWorldTransform	to

true	in	the	constructor,	which	guarantees	to	compute

the	world	transform	at	least	once	for	each	actor.

Next,	implement	a	CreateWorldTransform	function,

as	follows:

Click	here	to	view	code	image

void	Actor::ComputeWorldTransform()

{

			if	(mRecomputeWorldTransform)

			{

						mRecomputeWorldTransform	=	false;

						//	Scale,	then	rotate,	then	translate

						mWorldTransform	=	Matrix4::CreateScale(mScale);

						mWorldTransform	*=	Matrix4::CreateRotationZ(mRotation);

						mWorldTransform	*=	Matrix4::CreateTranslation(

									Vector3(mPosition.x,	mPosition.y,	0.0f));

}

Note	that	you	use	various	Matrix4	static	functions	to

create	the	component	matrices.	CreateScale	creates	a

uniform	scale	matrix,	CreateRotationZ	creates	a

rotation	matrix	about	the	z-axis,	and

CreateTranslation	creates	a	translation	matrix.

You	call	ComputeWorldTransform	in

Actor::Update,	both	before	you	update	any

components	and	after	you	call	UpdateActor	(in	case	it

changes	in	the	interim):

Click	here	to	view	code	image

void	Actor::Update(float	deltaTime)

{

			if	(mState	==	EActive)

			{

						ComputeWorldTransform();

						UpdateComponents(deltaTime);

						UpdateActor(deltaTime);

						ComputeWorldTransform();

			}

}

Next,	add	a	call	to	ComputeWorldTransform	in

Game::Update	to	make	sure	any	“pending”	actors

(actors	created	while	updating	other	actors)	have	their

world	transform	calculated	in	the	same	frame	where

they’re	created:

Click	here	to	view	code	image

//	In	Game::Update	(move	any	pending	actors	to	mActors)

for	(auto	pending	:	mPendingActors)

{

			pending	->ComputeWorldTransform();

			mActors.emplace_back(pending);

}

It	would	be	nice	to	have	a	way	to	notify	components

when	their	owner’s	world	transform	gets	updated.	This

way,	the	component	can	respond	as	needed.	To	support

this,	first	add	a	virtual	function	declaration	to	the	base

Component	class:

Click	here	to	view	code	image

virtual	void	OnUpdateWorldTransform()	{	}

Next,	call	OnUpdateWorldTransform	on	each	of	the

actor’s	components	inside	the

ComputeWorldTransform	function.	Listing	5.10	shows

the	final	version	of	ComputeWorldTransform.

Listing	5.10	Actor::ComputeWorldTransform

Implementation

Click	here	to	view	code	image

void	Actor::ComputeWorldTransform()

{

			if	(mRecomputeWorldTransform)

			{

						mRecomputeWorldTransform	=	false;

						//	Scale,	then	rotate,	then	translate

						mWorldTransform	=	Matrix4::CreateScale(mScale);

						mWorldTransform	*=	Matrix4::CreateRotationZ(mRotation);

						mWorldTransform	*=	Matrix4::CreateTranslation(

									Vector3(mPosition.x,	mPosition.y,	0.0f));

						//	Inform	components	world	transform	updated

						for	(auto	comp	:	mComponents)

						{

									comp	->OnUpdateWorldTransform();

						}

			}

}

For	now,	you	won’t	implement

OnUpdateWorldTransform	for	any	components.

However,	you	will	use	it	for	some	components	in

subsequent	chapters.

Although	actors	now	have	world	transform	matrices,	you

aren’t	using	the	matrices	in	the	vertex	shader	yet.

Therefore,	running	the	game	with	the	code	as	discussed

so	far	would	just	yield	the	same	visual	output	as	in

Figure	5.3.	Before	you	can	use	the	world	transform

matrices	in	the	shader,	we	need	to	discuss	one	other

transformation.

Transforming	from	World	Space	to	Clip
Space

With	the	world	transform	matrix,	you	can	transform

vertices	into	world	space.	The	next	step	is	to

transform	the	vertices	into	clip	space,	which	is	the

expected	output	for	the	vertex	shader.	Clip	space	is

a	close	relative	of	normalized	device	coordinates.	The

only	difference	is	that	clip	space	also	has	a	w

component.	This	was	why	you	created	a	vec4	to	save

the	vertex	position	in	the	gl_Position	variable.

The	view-projection	matrix	transforms	from	world

space	to	clip	space.	As	might	be	apparent	from	the	name,

the	view-projection	matrix	has	two	component	matrices:

the	view	and	the	projection.	The	view	accounts	for	how

a	virtual	camera	sees	the	game	world,	and	the

projection	specifies	how	to	convert	from	the	virtual

camera’s	view	to	clip	space.	Chapter	6,	“3D	Graphics,”

talks	about	both	matrices	in	much	greater	detail.	For

now,	because	the	game	is	2D,	you	can	use	a	simple	view-

projection	matrix.

Recall	that	in	normalized	device	coordinates,	the

bottom-left	corner	of	the	screen	is	(–1,	–1)	and	the	top-

right	corner	of	the	screen	is	(1,	1).	Now	consider	a	2D

game	that	does	not	have	scrolling.	A	simple	way	to	think

of	the	game	world	is	in	terms	of	the	window’s	resolution.

For	example,	if	the	game	window	is	1024×768,	why	not

make	the	game	world	that	big,	also?

In	other	words,	consider	a	view	of	world	space	such	that

the	center	of	the	window	is	the	world	space	origin,	and

there’s	a	1:1	ratio	between	a	pixel	and	a	unit	in	world

space.	In	this	case,	moving	up	by	1	unit	in	world	space	is

the	same	as	moving	up	by	1	pixel	in	the	window.

Assuming	a	1024×768	resolution,	this	means	that	the

bottom-left	corner	of	the	window	corresponds	to	(–512,

–384)	in	world	space,	and	the	top-right	corner	of	the

window	corresponds	to	(512,	384),	as	in	Figure	5.6.

Figure	5.6	The	view	of	a	world	where	the	screen

resolution	is	1024×768	and	there’s	a	1:1	ratio

between	a	pixel	and	a	unit	in	world	space

With	this	view	of	the	world,	it’s	not	too	difficult	to

convert	from	world	space	into	clip	space.	Simply	divide

the	x-coordinate	by	width	/	2	and	divide	the	y-

coordinate	by	height	/	2.	In	matrix	form,	assuming	2D

homogeneous	coordinates,	this	simple	view	projection

matrix	is	as	follows:

For	example,	given	the	1024×768	resolution	and	the

point	(256,192)	in	world	space,	if	you	multiply	the	point

by	SimpleViewProjection,	you	get	this:

The	reason	this	works	is	that	you	normalize	the	range	[–

512,	512]	of	the	x-axis	to	[–1,	1],	and	the	range	of	[–384,

384]	on	the	y-axis	[–1,	1],	just	as	with	normalized	device

coordinates!

Combining	the	SimpleViewProjection	matrix	with	the

world	transform	matrix,	you	can	transform	an	arbitrary

vertex	v	from	its	object	space	into	clip	space	with	this:

This	is	precisely	what	you	will	calculate	in	the	vertex

shader	for	every	single	vertex,	at	least	until

SimpleViewProjection	has	outlived	its	usefulness.

Updating	Shaders	to	Use	Transform
Matrices

In	this	section,	you’ll	create	a	new	vertex	shader	file

called	Transform.vert.	It	starts	initially	as	a	copy

of	the	Basic.vert	shader	from	Listing	5.3.	As	a

reminder,	you	write	this	shader	code	in	GLSL,	not

C++.

First,	you	declare	two	new	global	variables	in

Transform.vert	with	the	type	specifier	uniform.	A

uniform	is	a	global	variable	that	typically	stays	the

same	between	numerous	invocations	of	the	shader

program.	This	contrasts	in	and	out	variables,	which	will

change	every	time	the	shader	runs	(for	example,	once	per

vertex	or	pixel).	To	declare	a	uniform	variable,	use	the

keyword	uniform,	followed	by	the	type,	followed	by	the

variable	name.

In	this	case,	you	need	two	uniforms	for	the	two	different

matrices.	You	can	declare	these	uniforms	as	follows:

uniform	mat4	uWorldTransform;

uniform	mat4	uViewProj;

Here,	the	mat4	type	corresponds	to	a	4×4	matrix,	which

is	needed	for	a	3D	space	with	homogeneous	coordinates.

Then	you	change	the	code	in	the	vertex	shader’s	main

function.	First,	convert	the	3D	inPosition	into

homogeneous	coordinates:

Click	here	to	view	code	image

vec4	pos	=	vec4(inPosition,	1.0);

Remember	that	this	position	is	in	object	space.	So	you

next	multiply	it	by	the	world	transform	matrix	to

transform	it	into	world	space,	and	then	multiply	it	by	the

view-projection	matrix	to	transform	it	into	clip	space:

Click	here	to	view	code	image

gl_Position	=	pos	*	uWorldTransform	*	uViewProj;

These	changes	yield	the	final	version	of

Transform.vert,	shown	in	Listing	5.11.

Listing	5.11	Transform.vert	Vertex	Shader

Click	here	to	view	code	image

#version	330

//	Uniforms	for	world	transform	and	view-proj

uniform	mat4	uWorldTransform;

uniform	mat4	uViewProj;

//	Vertex	attributes

in	vec3	inPosition;

void	main()

{

			vec4	pos	=	vec4(inPosition,	1.0);

			gl_Position	=	pos	*	uWorldTransform	*	uViewProj;

}

You	then	change	the	code	in	Game::LoadShaders	to

use	the	Transform.vert	vertex	shader	instead	of

Basic.vert:

Click	here	to	view	code	image

if	(!mSpriteShader	->Load("Shaders/Transform.vert",	"Shaders/Basic.frag"))

{

			return	false;

}

Now	that	you	have	uniforms	in	the	vertex	shader	for	the

world	transform	and	view-projection	matrices,	you	need

a	way	to	set	these	uniforms	from	C++	code.	OpenGL

provides	functions	to	set	uniform	variables	in	the	active

shader	program.	It	makes	sense	to	add	wrappers	for

these	functions	to	the	Shader	class.	For	now,	you	can

add	a	function	called	SetMatrixUniform,	shown	in

Listing	5.12,	to	Shader.

Listing	5.12	Shader::SetMatrixUniform

Implementation

Click	here	to	view	code	image

void	Shader::SetMatrixUniform(const	char*	name,	const	Matrix4&	matrix)

{

			//	Find	the	uniform	by	this	name

			GLuint	loc	=	glGetUniformLocation(mShaderProgram,	name);

			//	Send	the	matrix	data	to	the	uniform

			glUniformMatrix4fv(

						loc,						//	Uniform	ID

						1,								//	Number	of	matrices	(only	1	in	this	case)

						GL_TRUE,		//	Set	to	TRUE	if	using	row	vectors

						matrix.GetAsFloatPtr()	//	Pointer	to	matrix	data

);

}

Notice	that	SetMatrixUniform	takes	in	a	name	as	a

string	literal,	as	well	as	a	matrix.	The	name	corresponds

to	the	variable	name	in	the	shader	file.	So,	for

uWorldTransform,	the	parameter	would	be

"uWorldTransform".	The	second	parameter	is	the

matrix	to	send	to	the	shader	program	for	that	uniform.

In	the	implementation	of	SetMatrixUniform,	you	get

the	location	ID	of	the	uniform	with

glGetUniformLocation.	Technically,	you	don’t	have

to	query	the	ID	every	single	time	you	update	the	same

uniform	because	the	ID	doesn’t	change	during	execution.

You	could	improve	the	performance	of	this	code	by

caching	the	values	of	specific	uniforms.

Next,	the	glUniformMatrix4fv	function	assigns	a

matrix	to	the	uniform.	The	third	parameter	of	this

function	must	be	set	to	GL_TRUE	when	using	row

vectors.	The	GetAsFloatPtr	function	is	simply	a

helper	function	in	Matrix4	that	returns	a	float*

pointer	to	the	underlying	matrix.

notenote

OpenGL	has	a	newer	approach	to	setting	uniforms,	called	uniform	buffer
objects	(abbreviated	UBOs).	With	UBOs,	you	can	group	together	multiple
uniforms	in	the	shader	and	send	them	all	at	once.	For	shader	programs	with
many	uniforms,	this	generally	is	more	efficient	than	individually	setting	each
uniform’s	value.

With	uniform	buffer	objects,	you	can	split	up	uniforms	into	multiple	groups.
For	example,	you	may	have	a	group	for	uniforms	that	update	once	per	frame
and	uniforms	that	update	once	per	object.	The	view-projection	won’t	change
more	than	once	per	frame,	while	every	actor	will	have	a	different	world
transform	matrix.	This	way,	you	can	update	all	per-frame	uniforms	in	just	one
function	call	at	the	start	of	the	frame.	Likewise,	you	can	update	all	per-object
uniforms	separately	for	each	object.	To	implement	this,	you	must	change
how	you	declare	uniforms	in	the	shader	and	how	you	mirror	that	data	in	the
C++	code.

However,	at	this	writing,	some	hardware	still	has	spotty	support	for	UBOs.
Specifically,	the	integrated	graphics	chips	of	some	laptops	don’t	fully	support
uniform	buffer	objects.	On	other	hardware,	UBOs	may	even	run	more	slowly
than	uniforms	set	the	old	way.	Because	of	this,	this	book	does	not	use
uniform	buffer	objects.	However,	the	concept	of	buffer	objects	is	prevalent	in
other	graphics	APIs,	such	as	DirectX	11	and	higher.

Now	that	you	have	a	way	to	set	the	vertex	shader’s	matrix

uniforms,	you	need	to	set	them.	Because	the	simple	view-

projection	won’t	change	throughout	the	course	of	the

program,	you	only	need	to	set	it	once.	However,	you	need

to	set	the	world	transform	matrix	once	for	each	sprite

component	you	draw	because	each	sprite	component

draws	with	the	world	transform	matrix	of	its	owning

actor.

In	Game::LoadShaders,	add	the	following	two	lines	to

create	and	set	the	view-projection	matrix	to	the	simple

view	projection,	assuming	a	screen	width	of	1024×768:

Click	here	to	view	code	image

Matrix4	viewProj	=	Matrix4::CreateSimpleViewProj(1024.f,	768.f);

mShader.SetMatrixUniform("uViewProj",	viewProj);

The	world	transform	matrix	for	SpriteComponent	is	a

little	more	complex.	The	actor’s	world	transform	matrix

describes	the	position,	scale,	and	orientation	of	the	actor

in	the	game	world.	However,	for	a	sprite,	you	also	want

to	scale	the	size	of	the	rectangle	based	on	the	size	of	the

texture.	For	example,	if	an	actor	has	a	scale	of	1.0f,	but

the	texture	image	corresponding	to	its	sprite	is	128×128,

you	need	to	scale	up	the	unit	square	to	128×128.	For

now,	assume	that	you	have	a	way	to	load	in	the	textures

(as	you	did	in	SDL)	and	that	the	sprite	component	knows

the	dimensions	of	these	textures	via	the	mTexWidth	and

mTexHeight	member	variables.

Listing	5.13	shows	the	implementation	of

SpriteComponent::Draw	(for	now).	First,	create	a

scale	matrix	to	scale	by	the	width	and	height	of	the

texture.	You	then	multiply	this	by	the	owning	actor’s

world	transform	matrix	to	create	the	desired	world

transform	matrix	for	the	sprite.	Next,	call

SetMatrixUniform	to	set	the	uWorldTransform	in

the	vertex	shader	program.	Finally,	you	draw	the

triangles	as	before,	with	glDrawElements.

Listing	5.13	Current	Implementation	of
SpriteComponent::Draw

Click	here	to	view	code	image

void	SpriteComponent::Draw(Shader*	shader)

{

			//	Scale	the	quad	by	the	width/height	of	texture

			Matrix4	scaleMat	=	Matrix4::CreateScale(

						static_cast<float>(mTexWidth),

						static_cast<float>(mTexHeight),

						1.0f);

			Matrix4	world	=	scaleMat	*	mOwner	->GetWorldTransform();

			//	Set	world	transform

			shader	->SetMatrixUniform("uWorldTransform",	world);

			//	Draw	quad

			glDrawElements(GL_TRIANGLES,	6,	GL_UNSIGNED_INT,	nullptr);

}

With	the	world	transform	and	view-projection	matrices

added	to	the	shader,	you	now	can	see	the	individual

sprite	components	in	the	world	at	arbitrary	positions,

scales,	and	rotations,	as	in	Figure	5.7.	Of	course,	all	the

rectangles	are	just	a	solid	color	for	now	because

Basic.frag	just	outputs	blue.	This	is	the	last	thing	to

fix	to	achieve	feature	parity	with	the	SDL	2D	rendering

from	the	previous	chapters.

Figure	5.7	Drawing	sprite	components	with

different	world	transform	matrices

TEXTURE	MAPPING
Texture	mapping	is	a	technique	for	rendering	a

texture	(image)	on	the	face	of	a	triangle.	It	allows

you	to	use	colors	from	a	texture	when	drawing	a

triangle	instead	of	using	just	a	solid	color.

To	use	texture	mapping,	you	need	an	image	file.	Next,

you	need	to	decide	how	to	apply	textures	to	each	triangle.

If	you	have	just	the	sprite	rectangle,	it	makes	sense	that

the	top-left	corner	of	the	rectangle	should	correspond	to

the	top-left	corner	of	the	texture.	However,	you	can	use

texture	mapping	with	arbitrary	3D	objects	in	the	game.

For	example,	to	correctly	apply	a	texture	to	a	character’s

face,	you	need	to	know	which	parts	of	the	texture	should

correspond	to	which	triangles.

To	support	this,	you	need	an	additional	vertex	attribute

for	every	vertex	in	the	vertex	buffer.	Previously,	the

vertex	attributes	only	stored	a	3D	position	in	each	vertex.

For	texture	mapping,	each	vertex	also	needs	a	texture

coordinate	that	specifies	the	location	in	the	texture	that

corresponds	to	that	vertex.

Texture	coordinates	typically	are	normalized

coordinates.	In	OpenGL,	the	coordinates	are	such	that

the	bottom-left	corner	of	the	texture	is	(0,	0)	and	the

top-right	corner	is	(1,	1),	as	shown	in	Figure	5.8.	The	U

component	defines	the	right	direction	of	the	texture,

and	the	V	component	defines	the	up	direction	of	the

texture.	Thus,	many	use	the	term	UV	coordinates	as	a

synonym	for	texture	coordinates.

Figure	5.8	UV	coordinates	for	a	texture	in	OpenGL

Because	OpenGL	specifies	the	bottom	left	of	the	texture

as	its	origin,	it	also	expects	the	image	pixel	data	format

as	one	row	at	a	time,	starting	at	the	bottom	row.

However,	a	big	issue	with	this	is	that	most	image	file

formats	store	their	data	starting	at	the	top	row.	Not

accounting	for	this	discrepancy	results	in	textures	that

appear	upside	down.	There	are	multiple	ways	to	solve

this	problem:	invert	the	V-component,	load	the	image

upside	down,	or	store	the	image	on	disk	upside	down.

This	book	simply	inverts	the	V	component—that	is,

assumes	that	the	top-left	corner	is	(0,	0).	This

corresponds	to	the	texture	coordinate	system	that

DirectX	uses.

Each	vertex	of	a	triangle	has	its	own	separate	UV

coordinates.	Once	you	know	the	UV	coordinates	for	each

vertex	of	a	triangle,	you	can	fill	in	every	pixel	in	the

triangle	by	blending	(or	interpolating)	the	texture

coordinate,	based	on	the	distance	from	each	of	the	three

vertices.	For	example,	a	pixel	exactly	in	the	center	of	the

triangle	corresponds	to	a	UV	coordinate	that’s	the

average	of	the	three	vertices’	UV	coordinates,	as	in

Figure	5.9.

Figure	5.9	Texture	mapping	applied	to	a	triangle

Recall	that	a	2D	image	is	just	a	grid	of	pixels	with

different	colors.	So,	once	you	have	a	texture	coordinate

for	a	specific	pixel,	you	need	to	convert	this	UV

coordinate	to	correspond	to	a	specific	pixel	in	the

texture.	This	“pixel	in	the	texture”	is	a	texture	pixel,	or

texel.	The	graphics	hardware	uses	a	process	called

sampling	to	select	a	texel	corresponding	to	a	specific

UV	coordinate.

One	complication	of	using	normalized	UV	coordinates	is

that	two	slightly	different	UV	coordinates	may	end	up

closest	to	the	same	texel	in	the	image	file.	The	idea	of

selecting	the	texel	closest	to	a	UV	coordinate	and	using

that	for	the	color	is	called	nearest-neighbor	filtering.

However,	nearest-neighbor	filtering	has	some	issues.

Suppose	you	map	a	texture	to	a	wall	in	a	3D	world.	As

the	player	gets	closer	to	the	wall,	the	wall	appears	larger

and	larger	onscreen.	This	looks	like	zooming	in	on	an

image	file	in	a	paint	program,	and	the	texture	appears

blocky	or	pixelated	because	each	individual	texel	is	very

large	onscreen.

To	solve	this	pixelation,	you	can	instead	use	bilinear

filtering.	With	bilinear	filtering,	you	select	a	color	based

on	the	blending	of	each	texel	neighboring	the	nearest

neighbor.	If	you	use	bilinear	filtering	for	the	wall

example,	as	the	player	gets	closer,	the	wall	seems	to	blur

instead	of	appearing	pixelated.	Figure	5.10	shows	a

comparison	between	nearest-neighbor	and	bilinear

filtering	of	part	of	the	star	texture.

Figure	5.10	Nearest-neighbor	filtering	(left)	and

bilinear	filtering	(right)

We	explore	the	idea	of	improving	the	quality	of	textures

further	in	Chapter	13,	“Intermediate	Graphics.”	For	now,

let’s	enable	bilinear	filtering	for	all	textures.

To	use	texture	mapping	in	OpenGL,	there	are	three

things	you	need	to	do:

Load	image	files	(textures)	and	create	OpenGL	texture	objects.

Update	the	vertex	format	to	include	texture	coordinates.

Update	the	shaders	to	use	the	textures.

Loading	the	Texture

Although	you	can	use	the	SDL	Image	library	to	load

images	for	OpenGL,	the	Simple	OpenGL	Image

Library	(SOIL)	is	a	little	easier	to	use.	SOIL	can	read

in	several	file	formats,	including	PNG,	BMP,	JPG,

TGA,	and	DDS.	As	it’s	designed	to	work	with

OpenGL,	it	slots	in	easily	with	the	other	OpenGL

code	needed	for	creating	a	texture	object.

Listing	5.14	gives	the	declaration	of	a	Texture	class	that

encapsulates	loading	in	a	texture	file	and	using	it	with

OpenGL.	The	names	of	the	functions	and	member

variables	are	mostly	self-explanatory;	for	example,	Load

loads	the	texture	from	the	file.	For	member	variables,

you	have	a	width	and	height	of	the	texture	and	an

OpenGL	texture	ID.

Listing	5.14	Texture	Declaration

Click	here	to	view	code	image

class	Texture

{

public:

			Texture();

			~Texture();

			bool	Load(const	std::string&	fileName);

			void	Unload();

			void	SetActive();

			int	GetWidth()	const	{	return	mWidth;	}

			int	GetHeight()	const	{	return	mHeight;	}

private:

			//	OpenGL	ID	of	this	texture

			unsigned	int	mTextureID;

			//	Width/height	of	the	texture

			int	mWidth;

			int	mHeight;

};

The	implementation	of	Load	contains	the	bulk	of	the

Texture	class	code.	You	first	declare	a	local	variable	to

store	the	number	of	channels	and	then	call

SOIL_load_image	to	load	in	the	texture:

Click	here	to	view	code	image

int	channels	=	0;

unsigned	char*	image	=	SOIL_load_image(

			fileName.c_str(),	//	Name	of	file

			&mWidth,										//	Stores	width

			&mHeight,									//	Stores	height

			&channels,								//	Stores	number	of	channels

			SOIL_LOAD_AUTO				//	Type	of	image	file,	or	auto	for	any

);

If	SOIL	fails	to	load	the	image	file,	SOIL_load_image

returns	nullptr.	Therefore,	you	should	add	a	check	to

make	sure	the	image	loaded.

Then	you	need	to	determine	whether	the	image	is	RGB

or	RGBA.	You	can	assume	that	this	is	based	on	the

number	of	channels	(three	means	RGB,	four	means

RGBA):

int	format	=	GL_RGB;

if	(channels	==	4)

{

			format	=	GL_RGBA;

}

Next,	use	glGenTextures	to	create	an	OpenGL	texture

object	(saving	the	ID	in	mTextureID)	and

glBindTexture	to	set	the	texture	as	active:

Click	here	to	view	code	image

glGenTextures(1,	&mTextureID);

glBindTexture(GL_TEXTURE_2D,	mTextureID);

The	GL_TEXTURE_2D	target	passed	to	glBindTexture

is	by	far	the	most	common	texture	target,	but	there	are

other	choices	for	advanced	types	of	textures.

Once	you	have	an	OpenGL	texture	object,	the	next	step	is

to	copy	the	raw	image	data	into	it	with	the

glTexImage2D	function,	which	takes	quite	a	few

parameters:

Click	here	to	view	code	image

glTexImage2D(

			GL_TEXTURE_2D,			//	Texture	target

			0,															//	Level	of	detail	(for	now,	assume	0)

			format,										//	Color	format	OpenGL	should	use

			mWidth,										//	Width	of	texture

			mHeight,									//	Height	of	texture

			0,															//	Border	–	"this	value	must	be	0"

			format,										//	Color	format	of	input	data

			GL_UNSIGNED_BYTE,//	Bit	depth	of	input	data

																				//	Unsigned	byte	specifies	8-bit	channels

			image												//	Pointer	to	image	data

);

Once	you’ve	copied	the	image	data	to	OpenGL,	you	can

tell	SOIL	to	free	the	image	from	memory:

SOIL_free_image_data(image);

Finally,	use	the	glTexParameteri	function	to	enable

bilinear	filtering:

Click	here	to	view	code	image

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MIN_FILTER,	GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MAG_FILTER,	GL_LINEAR);

For	now,	don’t	worry	about	the	parameters	passed	to

glTexParameteri.	(They	are	discussed	further	in

Chapter	13,	“Intermediate	Graphics.”)

Listing	5.15	shows	the	final	version	of	Texture::Load.

Listing	5.15	Texture::Load	Implementation

Click	here	to	view	code	image

bool	Texture::Load(const	std::string&	fileName)

{

			int	channels	=	0;

			unsigned	char*	image	=	SOIL_load_image(fileName.c_str(),

						&mWidth,	&mHeight,	&channels,	SOIL_LOAD_AUTO);

			if	(image	==	nullptr)

			{

						SDL_Log("SOIL	failed	to	load	image	%s:	%s",

									fileName.c_str(),	SOIL_last_result());

						return	false;

			}

			int	format	=	GL_RGB;

			if	(channels	==	4)

			{

						format	=	GL_RGBA;

			}

			glGenTextures(1,	&mTextureID);

			glBindTexture(GL_TEXTURE_2D,	mTextureID);

			glTexImage2D(GL_TEXTURE_2D,	0,	format,	mWidth,	mHeight,	0,	format,

													GL_UNSIGNED_BYTE,	image);

			SOIL_free_image_data(image);

			//	Enable	bilinear	filtering

			glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MIN_FILTER,	GL_LINEAR);

			glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MAG_FILTER,	GL_LINEAR);

			return	true;

}

The	Texture::Unload	and	Texture::SetActive

functions	are	each	just	a	single	line.	Unload	deletes	the

texture	object,	and	SetActive	calls	glBindTexture:

Click	here	to	view	code	image

void	Texture::Unload()

{

			glDeleteTextures(1,	&mTextureID);

}

void	Texture::SetActive()

{

			glBindTexture(GL_TEXTURE_2D,	mTextureID);

}

You	can	then	load	textures	into	a	map	in	Game,	much	as

you	did	for	SDL_Texture	previously.	The

Game::GetTexture	function	then	returns	a	Texture*

for	the	requested	texture.	Next,	SpriteComponent

needs	a	Texture*	member	variable	instead	of

SDL_Texture*.

Finally,	in	SpriteComponent::Draw,	add	a	call	to

SetActive	on	mTexture,	right	before	drawing	the

vertices.	This	means	you	can	now	set	a	different	active

texture	for	each	sprite	component	you	draw:

Click	here	to	view	code	image

//	In	SpriteComponent::Draw...

//	Set	current	texture

mTexture	->SetActive();

//	Draw	quad

glDrawElements(GL_TRIANGLES,	6,

			GL_UNSIGNED_INT,	nullptr);

Updating	the	Vertex	Format

To	use	texture	mapping,	the	vertices	need	to	have

texture	coordinates,	so	you	need	to	update	the	sprite

VertexArray:

Click	here	to	view	code	image

float	vertices[]	=	{

			-0.5f,		0.5f,	0.f,	0.f,	0.f,	//	top	left

				0.5f,		0.5f,	0.f,	1.f,	0.f,	//	top	right

				0.5f,	-0.5f,	0.f,	1.f,	1.f,	//	bottom	right

			-0.5f,	-0.5f,	0.f,	0.f,	1.f		//	bottom	left

};

Remember	that	the	V	texture	coordinate	is	flipped	to

account	for	OpenGL’s	idiosyncrasy	with	how	it	expects

the	image	data.

For	each	vertex,	the	first	three	floating-point	values	are

the	position	and	the	next	two	floating-point	values	are

the	texture	coordinates.	Figure	5.11	shows	the	memory

layout	of	this	new	vertex	format.

Figure	5.11	Vertex	memory	layout	with	position	and

texture	coordinates

Because	you’re	changing	the	vertex	layout,	you	must

change	code	in	the	VertexArray	constructor.	For

simplicity,	assume	that	all	vertices	must	have	a	3D

position	and	2D	texture	coordinates.	(You’ll	change	this

in	subsequent	chapters.)

Because	the	size	of	each	vertex	has	changed,	you	need	to

update	the	glBufferData	call	to	specify	that	each

vertex	now	has	five	floats	per	vertex:

Click	here	to	view	code	image

glBufferData(GL_ARRAY_BUFFER,	numVerts	*	5	*	sizeof(float),

			verts,	GL_STATIC_DRAW);

Because	the	index	buffer	is	still	the	same,	the

glBufferData	call	for	that	doesn’t	change.	However,

you	must	change	vertex	attribute	0	to	specify	that	the

stride	of	the	vertex	is	now	five	floats:

Click	here	to	view	code	image

glEnableVertexAttribArray(0);

glVertexAttribPointer(0,	3,	GL_FLOAT,	GL_FALSE,

			sizeof(float)	*	5,	//	The	stride	is	now	5	floats

			0);																//	Vertex	position	is	still	offset	0

This	only	fixes	the	position	vertex	attribute.	However,

because	you	now	have	a	second	vertex	attribute	for	the

texture	coordinate,	you	must	enable	vertex	attribute	1

and	specify	its	format:

Click	here	to	view	code	image

glEnableVertexAttribArray(1);

glVertexAttribPointer(

			1,																	//	Vertex	attribute	index

			2,																	//	Number	of	components	(2	because	UV)

			GL_FLOAT,										//	Type	of	each	component

			GL_FALSE,										//	Not	used	for	GL_FLOAT

			sizeof(float)	*	5,	//	Stride	(usually	size	of	each	vertex)

			reinterpret_cast<void*>(sizeof(float)	*	3)	//	Offset	pointer

);

The	last	parameter	to	this	glVertexAttribPointer

call	is	rather	ugly.	OpenGL	needs	to	know	the	number	of

bytes	from	the	start	of	a	vertex	to	this	attribute.	That’s

where	the	sizeof(float)	*	3	comes	from.	However,

OpenGL	wants	this	as	an	offset	pointer.	Thus,	you	must

use	reinterpret_cast	to	coerce	the	type	into	a

void*	pointer.

tiptip

If	you	use	a	struct	in	C++	code	to	represent	the	format	of	the	vertices,	you
can	use	the	offsetof	macro	to	determine	the	offsets	to	a	vertex	attribute
rather	than	manually	computing	them.	This	is	especially	helpful	if	there	is
padding	between	vertex	elements.

Updating	the	Shaders

Because	the	vertex	format	now	uses	texture

coordinates,	you	should	create	two	new	shaders:

Sprite.vert	(initially	a	copy	of

Transform.vert)	and	Sprite.frag	(initially	a

copy	of	Basic.frag).

The	 	Shader
There	previously	was	only	one	vertex	attribute,	so

you	could	just	declare	position	as	an	in	variable,	and

GLSL	knew	which	vertex	attribute	it	corresponded

to.	However,	now	that	there	are	multiple	vertex

attributes,	you	must	specify	which	attribute	slot

corresponds	to	which	in	variable.	This	changes	the

variable	declarations	to	the	following:

Click	here	to	view	code	image

layout(location=0)	in	vec3	inPosition;

layout(location=1)	in	vec2	inTexCoord;

The	layout	directive	specifies	which	attribute	slot

corresponds	to	which	in	variable.	Here,	you	specify	that

there’s	a	3D	vector	of	floats	for	vertex	attribute	slot	0	and

a	2D	vector	of	floats	for	vertex	attribute	slot	1.	This

corresponds	to	the	slot	numbers	in	the

glVertexAttribPointer	calls.

Next,	although	the	texture	coordinates	are	an	input	to

the	vertex	shader	(because	it’s	in	the	vertex	layout),	the

fragment	shader	also	needs	to	know	the	texture

coordinates.	This	is	because	the	fragment	shader	needs

to	know	the	texture	coordinates	to	determine	the	color	at

the	pixel.	Luckily,	you	can	pass	data	from	the	vertex

shader	to	the	fragment	shader	by	declaring	a	global	out

variable	in	the	vertex	shader:

out	vec2	fragTexCoord;

Then,	inside	the	vertex	shader’s	main	function,	add	the

following	line,	which	copies	the	texture	coordinates

directly	from	the	vertex	input	variable	to	the	output

variable:

fragTexCoord	=	inTexCoord;

The	reason	this	ultimately	works	is	that	OpenGL

automatically	interpolates	vertex	shader	outputs	across

the	face	of	the	triangle.	Therefore,	even	though	a	triangle

has	only	three	vertices,	any	arbitrary	pixel	on	the	face	of

a	triangle	will	know	its	corresponding	texture

coordinates	in	the	fragment	shader.

For	completeness,	Listing	5.16	gives	the	full	source	code

for	Sprite.vert.

Listing	5.16	Sprite.vert	Implementation

Click	here	to	view	code	image

#version	330

//	Uniforms	for	world	transform	and	view-proj

uniform	mat4	uWorldTransform;

uniform	mat4	uViewProj;

//	Attribute	0	is	position,	1	is	tex	coords.

layout(location	=	0)	in	vec3	inPosition;

layout(location	=	1)	in	vec2	inTexCoord;

//	Add	texture	coordinate	as	output

out	vec2	fragTexCoord;

void	main()

{

			//	Convert	position	to	homogeneous	coordinates

			vec4	pos	=	vec4(inPosition,	1.0);

			//	Transform	position	to	world	space,	then	clip	space

			gl_Position	=	pos	*	uWorldTransform	*	uViewProj;

			//	Pass	along	the	texture	coordinate	to	frag	shader

			fragTexCoord	=	inTexCoord;

}

The	Sprite.frag	Shader
As	a	rule,	any	out	variables	in	the	vertex	shader

should	have	a	corresponding	in	in	the	fragment

shader.	The	name	and	type	of	the	in	variable	in	the

fragment	shader	must	have	the	same	name	and	type

as	the	corresponding	out	variable	in	the	vertex

shader:

in	vec4	fragTexCoord;

Next,	you	need	to	add	a	uniform	for	a	texture	sampler

(that	can	get	the	color	from	a	texture	given	a	texture

coordinate):

uniform	sampler2D	uTexture;

The	sampler2D	type	is	a	special	type	that	can	sample

2D	textures.	Unlike	with	the	world	transform	and	view-

projection	uniforms	in	the	vertex	shader,	you	currently

don’t	need	any	code	in	C++	to	bind	this	sampler

uniform.	This	is	because	you	currently	bind	only	one

texture	at	a	time,	so	OpenGL	automatically	knows	that

the	only	texture	sampler	in	the	shader	corresponds	to	the

active	texture.

Finally,	replace	the	outColor	assignment	in	the	main

function	with	the	following:

Click	here	to	view	code	image

outColor	=	texture(uTexture,	fragTexCoord);

This	samples	the	color	from	the	texture,	using	the	texture

coordinates	received	from	the	vertex	shader	(after	the

coordinates	interpolate	across	the	face	of	the	triangle).

Listing	5.17	shows	the	full	source	code	for

Sprite.frag.

Listing	5.17	Sprite.frag	Implementation

Click	here	to	view	code	image

#version	330

//	Tex	coord	input	from	vertex	shader

in	vec2	fragTexCoord;

//	Output	color

out	vec4	outColor;

//	For	texture	sampling

uniform	sampler2D	uTexture;

void	main()

{

			//	Sample	color	from	texture

			outColor	=	texture(uTexture,	fragTexCoord);

}

You	then	change	the	code	in	Game:LoadShaders	to

now	load	Sprite.vert	and	Sprite.frag.	The

previous	code	inside	the	various	actors	that	set	textures

on	SpriteComponents	now	also	successfully	loads	the

textures	with	SOIL.	With	this	code,	you	can	now	draw

sprites	with	texture	mapping,	as	shown	in	Figure	5.12.

Unfortunately,	there’s	still	one	last	issue	to	fix.	Right

now,	the	code	is	drawing	black	for	pixels	that	should	be

transparent.

Figure	5.12	Texture-mapped	sprites

Alpha	Blending

Alpha	blending	determines	how	to	blend	pixels

with	transparency	(an	alpha	channel	less	than	1).

Alpha	blending	uses	an	equation	in	the	following

form	to	calculate	the	pixel	color:

In	this	equation,	the	source	color	is	the	color	for	the

new	source	you’re	drawing	(from	the	fragment	shader),

and	the	destination	color	is	the	color	that’s	already	in	the

color	buffer.	You	can	customize	the	alpha	blending

function	by	specifying	the	factor	parameters.

To	get	the	desired	alpha	blending	result	for

transparency,	you	set	the	source	factor	to	the	alpha	of	the

pixel	you’re	drawing	(the	source	alpha)	and	the

destination	factor	to	one	minus	source	alpha:

For	example,	suppose	you	have	8	bits	per	color,	and	the

color	buffer	at	some	pixel	is	red.	In	this	case,	this	is	the

destination	color:

Next,	say	that	you	want	to	draw	a	pixel	that’s	blue;	this	is

the	source	color:

Now	suppose	the	source	alpha	is	zero,	meaning	the	pixel

is	completely	transparent.	In	this	case,	our	equation

evaluates	to	the	following:

This	is	the	result	you	want	for	a	fully	transparent	pixel.

You	completely	ignore	the	source	color	if	the	alpha	is

zero	and	just	use	whatever	color	is	already	in	the	color

buffer.

To	enable	this	in	code,	add	the	following	to

Game::GenerateOuput,	right	before	drawing	all	the

sprites:

Click	here	to	view	code	image

glEnable(GL_BLEND);

glBlendFunc(

			GL_SRC_ALPHA,										//	srcFactor	is	srcAlpha

			GL_ONE_MINUS_SRC_ALPHA	//	dstFactor	is	1	-	srcAlpha

);

The	glEnable	call	says	to	turn	on	color	buffer	blending

(which	is	disabled	by	default).	Then	you	use

glBlendFunc	to	specify	the	srcFactor	and

dstFactor	that	you	want.

With	alpha	blending	in	place,	the	sprites	now	look

correct,	as	shown	in	Figure	5.13.	The	2D	OpenGL

rendering	code	now	has	feature	parity	with	the	previous

use	of	SDL	2D	rendering.	It	took	a	lot	of	work	to	get	here,

but	the	advantage	is	that	the	game	code	now	has	the

foundations	for	3D	graphics	support,	which	is	the	topic

of	Chapter	6.

Figure	5.13	Texture-mapped	sprites,	with	alpha

blending

GAME	PROJECT
This	chapter’s	game	project	demonstrates	all	the

code	to	convert	the	game	code	from	SDL	graphics	to

OpenGL.	It	converts	the	Asteroids	game	project	from

Chapter	3	to	instead	use	OpenGL.	The	controls	are

the	same	as	in	Chapter	3:	WASD	to	move	the	ship	and

spacebar	to	fire	lasers.	The	code	is	available	in	the

book’s	GitHub	repository,	in	the	Chapter05

directory.	Open	Chapter05-windows.sln	on

Windows	and	Chapter05-mac.xcodeproj	on

Mac.

SUMMARY

Because	graphics	hardware	is	optimized	for

polygons,	2D	and	3D	games	internally	use	polygons

(usually	triangles)	to	represent	all	graphical	objects

in	the	world.	Even	a	2D	sprite	that	you	might	think	of

as	an	image	is	a	rectangle	with	a	texture	mapped	to

it.	To	send	triangles	to	the	graphics	hardware,	you

must	declare	the	attributes	of	each	vertex	and	create

a	vertex	and	an	index	buffer.

All	modern	graphics	APIs	expect	a	programmer	to	use

vertex	and	fragment	(pixel)	shaders	to	specify	how

polygons	should	render.	You	write	these	shaders	as

separate	programs	in	a	shader	programming	language

(not	C++).	The	vertex	shader	minimally	outputs	the

vertex	position	in	clip	space,	while	the	fragment	shader

determines	the	final	color	at	a	pixel.

Transformations	allow	you	to	draw	several	instances	of

the	same	object	without	needing	separate	vertex	and

index	buffers	for	each	instance.	Object	space	is	the

coordinate	space	relative	to	the	origin	of	an	object,	while

world	space	is	the	coordinate	space	relative	to	the	game

world.

Games	use	matrices	to	represent	transformations,	and

there	are	several	different	matrices	for	transformations,

such	as	scale,	rotation,	and	translation.	Combining	these

transformations	in	the	order	scale,	rotate,	and	translate

yields	a	world	transform	matrix	that	can	transform	from

object	space	to	world	space.	To	convert	from	world	space

to	clip	space,	you	use	the	view-projection	matrix.	For	2D

games,	you	can	simplify	this	by	making	1	unit	in	world

space	equivalent	to	1	pixel	in	the	window.

Texture	mapping	applies	part	of	a	texture	to	the	face	of	a

triangle.	To	implement	this,	you	need	texture	(UV)

coordinates	as	a	vertex	attribute.	In	the	fragment	shader,

you	sample	the	texture	color	from	the	UV	coordinate.

This	can	either	be	based	on	the	color	of	the	texture	pixel

(texel)	nearest	to	the	UV	coordinate,	or	it	can	be	based

on	a	bilinear	filtering	that	considers	nearby	texels.

Finally,	even	though	the	task	seems	trivial,	displaying

sprites	in	OpenGL	requires	a	lot	of	code.	First,	you	must

initialize	OpenGL	and	GLEW.	Next,	to	render	any

triangles,	you	must	create	a	vertex	array	object,	specify	a

vertex	layout,	write	a	vertex	and	pixel	shader,	and	write

code	to	load	these	shader	programs.	To	transform	the

vertices	from	object	space	to	clip	space,	you	have	to	use

uniforms	to	specify	the	world	transform	and	view-

projection	matrices.	To	add	texture	mapping,	you	have	to

load	an	image,	change	the	vertex	layout	to	include	UV

coordinates,	and	update	the	shaders	to	sample	from	the

texture.

ADDITIONAL	READING
There	are	many	excellent	online	references	for

aspiring	OpenGL	developers.	The	official	OpenGL

reference	pages	are	useful	for	finding	out	what	the

parameters	for	each	function	do.	Of	all	the	OpenGL

tutorial	sites,	one	of	the	best	is	Learn	OpenGL.	For

an	extensive	look	at	the	graphical	techniques	used	in

game	development,	Real-Time	Rendering	by

Thomas	Akenine-Moller	et	al.	is	a	definitive

reference.

Akenine-Moller,	Thomas,	Eric	Haines,	and

Naty	Hoffman.	Real-Time	Rendering,	3rd

edition.	Natick:	A	K	Peters,	2008.

Learn	OpenGL.	Accessed	November	24,

2017.	http://learnopengl.com/.

OpenGL	Reference	Pages.	Accessed

November	24,	2017.

https://www.opengl.org/sdk/docs/man/.

EXERCISES
The	exercises	for	this	chapter	involve	making	some

modifications	to	this	chapter’s	game	project	to	gain

more	experience	using	various	OpenGL	functions.

Exercise	5.1

Modify	the	background	clear	color	so	that	it

smoothly	changes	between	colors.	For	example,

starting	from	black,	smoothly	change	over	several

seconds	to	blue.	Then	select	another	color	(such	as

red)	and	smoothly	change	over	several	seconds	to

this	other	color.	Think	about	how	you	can	use

deltaTime	in	Game::Update	to	facilitate	this

smooth	transition.

Exercise	5.2

http://learnopengl.com/
https://www.opengl.org/sdk/docs/man/

Modify	the	sprite	vertices	so	that	each	vertex	also	has

an	RGB	color	associated	with	it.	This	is	known	as	a

vertex	color.	Update	the	vertex	shader	to	take	the

vertex	color	as	an	input	and	pass	it	to	the	fragment

shader.	Then	change	the	fragment	shader	so	that

rather	than	simply	drawing	the	color	sampled	from

the	texture,	it	averages	the	color	between	the	vertex

color	and	texture	color.

CHAPTER	6

3D	GRAPHICS

This	chapter	covers	how	to	switch	from	a	2D

environment	to	a	full	3D	game,	which

requires	several	changes.	The	Actor

transform,	including	3D	rotations,	becomes

more	complex.	In	addition,	you	need	to	load

and	draw	3D	models.	Finally,	most	3D	games

have	some	type	of	lighting	applied	to	the

scene.	The	game	project	for	this	chapter

demonstrates	all	these	3D	techniques.

THE	ACTOR	TRANSFORM	IN	3D
The	representation	of	the	Actor	transform	you	have

used	so	far	in	this	book	works	for	2D	graphics.

However,	supporting	a	fully	3D	world	requires	some

modification.	Most	obviously,	the	position	Vector2

becomes	Vector3.	But	this	brings	up	an	important

question:	Which	directions	are	x,	y,	and	z	in	the

world?	Most	2D	games	use	a	coordinate	system

where	x	is	the	horizontal	direction	and	y	is	the

vertical	direction.	But	even	in	2D,	+y	might	be	up	or

down,	depending	on	the	implementation.	Adding	a

third	component	increases	the	possible

representations.	It’s	an	arbitrary	decision,	but	it

should	be	consistent.	In	this	book,	+x	is	forward,	+y

is	to	the	right,	and	+z	is	up.	Figure	6.1	illustrates	this

coordinate	system.

Figure	6.1	3D	coordinate	system	used	in	this	book

If	you	take	your	left	hand	and	pretend	that	the	thumb	is

up,	the	index	finger	is	forward,	and	the	middle	finger	is

right,	you	see	that	it	matches	the	coordinate	system	in

Figure	6.1	perfectly.	Thus,	this	type	of	coordinate	system

is	a	left-handed	coordinate	system.	It	would	be

right-handed	if	+y	were	instead	to	the	left.

Transform	Matrices	for	3D

Using	3D	coordinates	means	that	the	homogenous

coordinates	are	now	(x,y,z,w).	Recall	that	you	need

the	w	component	for	translation	matrices	to	work.

With	3D	coordinates,	the	translation	matrices

become	4×4	matrices.	This	modification	is	simple	for

translation	and	scale.

A	4×4	translation	matrix	translates	by	the	offset	(a,b,c):

Similarly,	the	scale	matrix	can	scale	by	up	to	three

factors:

However,	rotations	in	3D	are	not	as	simple.

Euler	Angles

Representing	rotations	in	3D	is	more	complex	than

in	2D.	Previously,	an	actor	only	needed	one	float	for

rotation.	This	represented	a	rotation	about	the	z-axis

because	that’s	the	only	rotation	possible	in	2D.	But	in

3D,	it’s	valid	to	rotate	about	any	of	the	three

coordinate	axes.	One	approach	for	3D	rotations	is

Euler	angles,	where	there	are	three	angles	(yaw,

pitch,	and	roll)	representing	rotation	about	each	axis.

The	names	yaw,	pitch,	and	roll	come	from	airplane

terminology.	Yaw	is	a	rotation	about	the	up	axis,

pitch	is	a	rotation	about	the	side	axis,	and	roll	is	a

rotation	about	the	forward	axis.	In	the	coordinate

from	Figure	6.1,	yaw	is	rotation	about	+z,	pitch	is

rotation	about	+y,	and	roll	is	rotation	about	+x.

When	you	have	three	different	rotation	angles,	you	can

combine	them	by	creating	a	separate	rotation	matrix	for

each	Euler	angle.	You	then	multiply	these	three	matrices,

and	the	order	of	multiplication	affects	the	final	rotation

of	the	object.	One	common	approach	is	roll,	then	pitch,

then	yaw:

However,	there	isn’t	any	one	“correct”	order	to	apply

these	Euler	angles.	You	simply	must	pick	one	order	and

stick	with	it.

With	Euler	angles,	it’s	difficult	to	derive	an	arbitrary

rotation.	Suppose	a	spaceship	faces	down	the	+x

(forward)	axis	in	object	space.	You	want	to	rotate	the

ship	so	it	points	toward	an	arbitrary	object	at	position	P.

Achieving	this	new	orientation	may	require	some

combination	of	yaw,	pitch,	and	roll,	and	computing	these

separate	angles	is	not	straightforward.

Furthermore,	suppose	you	have	an	object	with	an	initial

Euler	angle	orientation,	and	you	also	have	a	target	Euler

angle	orientation.	You	want	to	smoothly	transition,	or

interpolate	between,	these	two	orientations	over	some

period.	You	can	interpolate	Euler	angles	by	interpolating

each	angle	separately.	However,	in	various	situations,

this	interpolation	will	not	look	correct	because	when	you

interpolate	each	component	separately,	you	may

encounter	singularities	where	the	interpolation	appears

at	odd	orientations.

Although	it	is	possible	to	use	Euler	angles	in	a	game,	for

arbitrary	rotations	there’s	another	choice	that	tends	to

work	better.

Quaternions

Many	games	use	quaternions	instead	of	Euler

angles.	The	formal	mathematical	definition	of	a

quaternion	is	complex.	For	the	purposes	of	this	book,

think	of	a	quaternion	as	a	method	to	represent	a

rotation	about	an	arbitrary	axis	(not	just	x,	y,	or	z).

Basic	Definition
3D	graphics	use	unit	quaternions,	which	are

quaternions	with	a	magnitude	of	one.	A	quaternion

has	both	a	vector	and	a	scalar	component.	This	book

uses	the	following	notation	to	represent	a	quaternion

as	its	vector	and	scalar	components:

The	calculation	of	the	vector	and	scalar	components

depends	on	the	normalized	axis	of	rotation,	â,	and	the

angle	of	rotation,	θ:

This	equation	works	only	with	a	normalized	axis	of

rotation.	An	unnormalized	axis	yields	a	non-unit

quaternion	and	causes	shearing	(non-uniform

stretching)	of	objects	in	the	game.

To	crystalize	the	use	of	quaternions,	consider	the	earlier

problem	of	rotating	a	ship	to	face	an	arbitrary	object.

Remember	that	with	Euler	angles,	it’s	difficult	to

calculate	the	exact	yaw,	pitch,	and	roll	angles.	However,

quaternions	make	this	problem	easier.	Initially,	the	ship

is	at	position	S	with	an	initial	facing	down	the	x-axis.	Say

that	you	want	to	rotate	the	ship	to	instead	face	an

arbitrary	point	P.	First,	compute	the	vector	from	the	ship

to	the	new	point	and	normalize	this	vector:

Next,	compute	the	axis	of	rotation	between	the	original

facing	and	the	new	facing,	using	the	cross	product,	and

normalize	this	vector:

Then	compute	the	angle	of	rotation	using	the	dot	product

and	arccosine:

Finally,	plug	in	this	axis	and	angle	to	create	the

quaternion	representing	the	rotation	of	the	ship	such

that	it	faces	point	P.	This	works	wherever	P	is	in	the	3D

world.

One	edge	case	is	that	if	NewFacing	is	parallel	to	the

original	facing,	the	cross	product	yields	a	vector	of	all

zeros.	This	vector	has	a	length	of	zero,	and	so	dividing	by

zero	to	normalize	the	vector	corrupts	the	axis	of	rotation.

Thus,	any	code	doing	such	calculations	needs	to	verify

that	NewFacing	is	not	parallel	to	the	original	facing.	If

they	are	parallel,	this	means	the	object	already	faces	in

the	NewFacing	direction.	In	this	case,	the	quaternion	is

just	the	identity	quaternion,	which	applies	no	rotation.	If

the	vectors	are	antiparallel,	then	you	must	rotate	by	π

radians	about	up.

Combining	Rotations
Another	common	operation	is	applying	an	additional

rotation	to	an	existing	quaternion.	Given	two

quaternions,	p	and	q,	the	Grassmann	product	is

the	rotation	of	q	followed	by	p:

Note	that	even	though	the	multiplication	has	p	to	the	left

of	q,	the	rotation	applies	in	a	right-to-left	order.	Also,

because	the	Grassmann	product	uses	a	cross	product,	it

isn’t	commutative.	So,	swapping	p	and	q	will	reverse	the

order	of	rotation.

Much	like	a	matrix,	a	quaternion	has	an	inverse.	For	unit

quaternions,	the	inverse	of	a	quaternion	is	the	negation

of	its	vector	component:

Because	there’s	an	inverse,	there	is	also	an	identity

quaternion,	defined	as	follows:

Rotating	a	Vector	by	a	Quaternion
To	rotate	a	3D	vector,	v,	by	a	quaternion,	first

represent	v	as	the	following	quaternion,	r:

Next,	compute	r′	with	two	Grassmann	products:

The	rotated	vector	is	then	simply	the	vector	component

of	r′:

Spherical	Linear	Interpolation
Quaternions	support	a	more	accurate	form	of

interpolation	called	spherical	linear

interpolation	(Slerp).	The	Slerp	equation	takes	in

two	quaternions,	a	and	b,	as	well	as	the	fractional

value	in	the	range	[0,	1]	from	a	to	b.	For	example,	the

following	yields	a	quaternion	rotation	25%	of	the	way

from	a	to	b:

In	the	interest	of	brevity,	this	section	omits	the

calculations	for	Slerp.

Quaternion-to-Rotation	Matrix
Because	you	ultimately	still	need	a	world	transform

matrix,	you	need	to	eventually	convert	the

quaternion	rotation	into	a	matrix.	The	conversion	of

a	quaternion	into	a	matrix	has	quite	a	few	terms:

Quaternions	in	Code
As	with	vectors	and	matrices,	for	quaternions	the

custom	Math.h	header	file	has	a	Quaternion	class.

Listing	6.1	shows	the	most	useful	functions.	Because

the	order	of	multiplication	of	quaternions	often

confuses	game	programmers	(for	example,	to	rotate

p	followed	by	q,	you	multiply	q	by	p),	instead	of	using

the	multiplication	operator,	the	Math.h	library

declares	a	Concatenate	function.	This	function

simply	takes	in	the	quaternions	in	the	order	many

expect—so	the	rotation	“p	followed	by	q”	is	as

follows:

Click	here	to	view	code	image

Quaternion	result	=	Quaternion::Concatenate(q,	p);

Listing	6.1	Quaternion	Functions	of	Note

Click	here	to	view	code	image

class	Quaternion

{

public:

			//	Functions/data	omitted

			//	...

	

			//	Construct	the	quaternion	from	an	axis	and	angle

			explicit	Quaternion(const	Vector3&	axis,	float	angle);

			//	Spherical	Linear	Interpolation

			static	Quaternion	Slerp(const	Quaternion&	a,	const	Quaternion&	b,	float	f);

				//	Concatenate	(rotate	by	q	FOLLOWED	BY	p,	uses	Grassmann	product	pq)

			static	Quaternion	Concatenate(const	Quaternion&	q,	const	Quaternion&	p);

			//	v	=	(0,	0,	0);	s	=	1

			static	const	Quaternion	Identity;

};

	

//	In	Matrix4...

//	Create	Matrix4	from	Quaternion

static	Matrix4	CreateFromQuaternion(const	class	Quaternion&	q);

//	In	Vector3...

//	Transform	a	Vector3	by	a	Quaternion

static	Vector3	Transform(const	Vector3&	v,	const	class	Quaternion&	q);

New	Actor	Transform	in	Action

With	the	rotation	question	settled,	the	Actor	class

transformation	now	has	a	Vector3	for	position,	a

Quaternion	for	rotation,	and	a	float	for	scale:

Vector3	mPosition;

Quaternion	mRotation;

float	mScale;

With	this	new	transform	representation,	the	code	for

calculating	the	world	transform	matrix	in

ComputeWorldTransform	changes	to	this:

Click	here	to	view	code	image

//	Scale,	then	rotate,	then	translate

mWorldTransform	=	Matrix4::CreateScale(mScale);

mWorldTransform	*=	Matrix4::CreateFromQuaternion(mRotation);

mWorldTransform	*=	Matrix4::CreateTranslation(mPosition);

Getting	the	forward	vector	of	an	actor	now	requires

transforming	the	initial	forward	vector	(+x)	by	the

rotation	quaternion:

Click	here	to	view	code	image

Vector3	GetForward()	const

{

			return	Vector3::Transform(Vector3::UnitX,	mRotation);

}

You	then	need	to	fix	any	code	that	applied	rotations

using	a	single	angle,	such	as

MoveComponent::Update.	To	keep	things	simple	for

now,	MoveComponent	only	rotates	about	the	+z	axis

(yaw).	This	updated	code	is	in	Listing	6.2,	which	first

gets	the	existing	quaternion	rotation	of	the	owning	actor.

It	next	creates	a	new	quaternion	representing	the

additional	rotation	to	apply.	Finally,	it	concatenates	the

original	rotation	with	the	new	quaternion	to	get	the	final

rotation	quaternion.

Listing	6.2	MoveComponent::Update

Implementation	with	Quaternions

Click	here	to	view	code	image

void	MoveComponent::Update(float	deltaTime)

{

			if	(!Math::NearZero(mAngularSpeed))

			{

						Quaternion	rot	=	mOwner->GetRotation();

						float	angle	=	mAngularSpeed	*	deltaTime;

						//	Create	quaternion	for	incremental	rotation

						//	(Rotate	about	up	axis)

						Quaternion	inc(Vector3::UnitZ,	angle);

						//	Concatenate	old	and	new	quaternion

						rot	=	Quaternion::Concatenate(rot,	inc);

						mOwner->SetRotation(rot);

			}

			//	Updating	position	based	on	forward	speed	stays	the	same

			//	...

}

LOADING	3D	MODELS
For	sprite-based	games,	every	sprite	draws	with	a

single	quad,	which	means	it’s	okay	to	hard-code	the

vertex	and	index	buffers.	However,	for	a	full	3D

game,	there	are	a	lot	of	other	triangular	meshes.	For

example,	a	first-person	shooter	has	enemy	meshes,

weapon	meshes,	character	meshes,	meshes	for	the

environment,	and	so	on.	An	artist	creates	these

models	in	a	3D	modeling	program	such	as	Blender	or

Autodesk	Maya.	The	game	then	needs	code	to	load

these	models	into	vertex	and	index	buffers.

Choosing	a	Model	Format

Before	you	can	use	3D	models,	you	need	to	decide

how	to	store	the	models	in	files.	One	idea	is	to	choose

a	modeling	program	and	add	support	for	loading	that

program’s	proprietary	file	format.	However,	doing	so

has	several	drawbacks.	First,	the	feature	set	of	a	3D

modeling	program	is	significantly	higher	than	that	of

a	game.	Modeling	programs	support	many	other

types	of	geometry,	including	NURBS,	quads,	and	n-

gons.	Modeling	programs	also	support	complex

lighting	and	rendering	techniques,	including	ray-

tracing.	No	game	will	replicate	all	these	features.

Furthermore,	most	modeling	files	have	a	great	deal	of

data	that’s	unnecessary	at	runtime.	For	example,	the	file

format	might	store	the	undo	history	of	the	model.

Clearly,	the	game	doesn’t	need	access	to	this	when

running.	All	this	extra	information	means	that	a

modeling	file	format	is	large,	and	loading	it	at	runtime	is

a	performance	hit.

Furthermore,	modeling	file	formats	are	opaque	and,

depending	on	the	format,	may	not	have	any

documentation.	So	outside	of	reverse-engineering	the	file

format,	it	might	not	even	be	possible	to	load	it	into	the

game.

Finally,	choosing	one	modeling	format	ties	the	game

directly	to	one	specific	modeling	program.	What	if	a	new

artist	wants	to	use	an	entirely	different	modeling

program?	Using	a	proprietary	format	makes	this	difficult

if	there’s	no	easy	conversion	process.

Exchange	formats	aim	to	work	across	several

modeling	programs.	Among	the	most	popular	formats

are	FBX	and	COLLADA,	which	many	different	modeling

programs	support.	Even	though	SDKs	exist	for	loading

these	formats,	the	formats	still	suffer	from	having	way

more	data	than	needed	for	a	game	at	runtime.

It’s	useful	to	consider	how	a	commercial	engine	such	as

Unity	or	Epic’s	Unreal	Engine	works.	While	both	engines

support	importing	file	formats	such	as	FBX	into	their

editors,	the	runtime	doesn’t	use	these	formats.	Instead,

on	import	there’s	a	conversion	process	into	an	internal

engine	format.	The	game	runtime	then	loads	models	in

this	internal	format.

Other	engines	provide	exporter	plugins	for	popular

modeling	programs.	The	exporter	plugin	converts	the

modeling	program’s	format	into	a	custom	format

designed	for	the	game	runtime’s	consumption.

In	the	spirit	of	independence,	this	book	uses	a	custom

file	format.	While	a	binary	file	format	is	more	efficient

(and	what	most	real	games	use),	for	simplicity,	this

book’s	model	file	format	is	a	JSON	(JavaScript	Object

Notation)	text	format.	This	makes	it	very	easy	to

manually	edit	a	model	file	and	validate	that	the	model

file	loads	properly.	You	will	eventually	explore	how	to

use	a	binary	format	in	Chapter	14,	“Level	Files	and

Binary	Data.”

Listing	6.3	shows	the	representation	of	a	cube	in	the

gpmesh	file	format	this	book	uses.	The	first	entry

specifies	the	version,	which	currently	is	1.	The	next	line

specifies	the	vertex	format	for	the	model.	Recall	that	in

Chapter	5,	“OpenGL,”	you	used	three	floats	for	position

and	two	floats	for	texture	coordinates	as	the	vertex

format.	The	PosNormTex	format	specified	here	adds

three	floats	for	the	vertex	normal	in	between	the	position

and	texture	coordinates.	For	now,	don’t	worry	about

what	a	vertex	normal	is;	we	revisit	this	topic	in	the

lighting	discussion	later	in	this	chapter.

Listing	6.3	Cube.gpmesh

Click	here	to	view	code	image

{

			"version":1,

			"vertexformat":"PosNormTex",

			"shader":"BasicMesh",

			"textures":[

						"Assets/Cube.png"

],

			"vertices":[

						[1.0,1.0,-1.0,0.57,0.57,-0.57,0.66,0.33],

						[1.0,-1.0,-1.0,0.57,-0.57,-0.57,0.66,0.0],

						[-1.0,-1.0,-1.0,-0.57,-0.57,-0.57,1.0,0.33],

						[-1.0,1.0,-1.0,-0.57,0.57,-0.57,0.66,0.66],

						[1.0,0.99,1.0,0.57,0.57,0.57,0.33,0.33],

						[0.99,-1.0,1.0,0.57,-0.57,0.57,0.0,0.0],

						[-1.0,-1.0,1.0,-0.57,-0.57,0.57,0.66,0.33],

						[-1.0,1.0,1.0,-0.57,0.57,0.57,0.33,0.66]

],

			"indices":[

						[1,3,0],

						[7,5,4],

						[4,1,0],

						[5,2,1],

						[2,7,3],

						[0,7,4],

						[1,2,3],

						[7,6,5],

						[4,5,1],

						[5,6,2],

						[2,6,7],

						[0,3,7]

]

}

The	shader	entry	specifies	which	shader	program	you

should	use	for	drawing	the	model.	(You’ll	define	the

BasicMesh	shader	program	later	in	this	chapter.)	Next,

the	textures	array	specifies	a	list	of	textures	associated

with	the	model.

The	final	two	elements,	vertices	and	indices,	specify

the	vertex	and	index	buffers	for	the	model.	Each	row	in

vertices	is	one	individual	vertex,	while	each	row	in

indices	is	one	triangle.

Of	course,	a	model	file	format	isn’t	particularly	useful	if

there’s	no	way	to	create	a	model	of	that	format	in	a

modeling	program.	To	solve	this,	the	GitHub	code

repository	provides	two	exporters	in	the	Exporter

directory.	One	is	an	export	script	for	the	Blender

modeling	program,	and	it	supports	the	basic	style	of

mesh	used	throughout	most	of	this	book.	The	other	is	an

exporter	plug-in	for	Epic	Unreal	Engine,	which	can

export	not	only	meshes	but	also	the	animation	data	used

in	Chapter	12,	“Skeletal	Animation.”	The	code	for	these

exporters	is	very	specific	to	Blender	and	Unreal,

respectively,	so	we	omit	the	discussion	here.	However,

interested	readers	can	peruse	the	code	in	the	repository.

Each	exporter	also	includes	a	text	file	with	instructions

on	how	to	use	each	exporter	with	its	respective	program.

Updating	the	Vertex	Attributes

Because	the	gpmesh	file	uses	three	vertex	attributes

(position,	normal,	and	texture	coordinates)	for	each

vertex,	let’s	assume	that	all	meshes	use	this	format

for	now.	This	means	even	the	quad	mesh	will	need

normals.	Figure	6.2	shows	this	new	vertex	layout.

Figure	6.2	Vertex	layout	with	a	position,	normal,

and	texture	coordinates

Every	vertex	array	will	use	the	new	vertex	layout,	so	the

constructor	for	VertexArray	changes	to	specify	this

new	layout.	Most	notably,	the	size	of	each	vertex	is	now

eight	floats,	and	you	add	an	attribute	for	the	normal:

Click	here	to	view	code	image

//	Position	is	3	floats

glEnableVertexAttribArray(0);

glVertexAttribPointer(0,	3,	GL_FLOAT,	GL_FALSE,	8	*	sizeof(float),	0);

//	Normal	is	3	floats

glEnableVertexAttribArray(1);

glVertexAttribPointer(1,	3,	GL_FLOAT,	GL_FALSE,	8	*	sizeof(float),

			reinterpret_cast<void*>(sizeof(float)	*	3));

//	Texture	coordinates	is	2	floats

glEnableVertexAttribArray(2);

glVertexAttribPointer(2,	2,	GL_FLOAT,	GL_FALSE,	8	*	sizeof(float),

			reinterpret_cast<void*>(sizeof(float)	*	6))

Next,	you	change	the	Sprite.vert	to	also	reference	the

new	vertex	layout:

Click	here	to	view	code	image

//	Attribute	0	is	position,	1	is	normal,	2	is	tex	coords

layout(location	=	0)	in	vec3	inPosition;

layout(location	=	1)	in	vec3	inNormal;

layout(location	=	2)	in	vec2	inTexCoord;

Finally,	the	quad	created	in

Game::CreateSpriteVerts	adds	three	additional

floats	for	the	normals.	(They	can	be	zero	because	they

aren’t	used	by	the	sprite	shader	program.)	With	these

changes,	sprites	still	draw	correctly	with	the	new	vertex

layout.

Loading	a	gpmesh	File

Because	the	gpmesh	format	is	in	JSON,	there	are

many	libraries	you	can	use	to	parse	the	JSON.	This

book	uses	RapidJSON	(http://rapidjson.org),	which

supports	efficient	reading	of	JSON	files.	As	with

textures	in	Chapter	5,	here	you	encapsulate	mesh

loading	in	a	Mesh	class.	Listing	6.4	shows	the

declaration	of	Mesh.

http://rapidjson.org

Listing	6.4	Mesh	Declaration

Click	here	to	view	code	image

class	Mesh

{

public:

			Mesh();

			~Mesh();

			//	Load/unload	mesh

			bool	Load(const	std::string&	fileName,	class	Game*	game);

			void	Unload();

			//	Get	the	vertex	array	associated	with	this	mesh

			class	VertexArray*	GetVertexArray()	{	return	mVertexArray;	}

			//	Get	a	texture	from	specified	index

			class	Texture*	GetTexture(size_t	index);

			//	Get	name	of	shader

			const	std::string&	GetShaderName()	const	{	return	mShaderName;	}

			//	Get	object	space	bounding	sphere	radius

			float	GetRadius()	const	{	return	mRadius;	}

private:

			//	Textures	associated	with	this	mesh

			std::vector<class	Texture*>	mTextures;

			//	Vertex	array	associated	with	this	mesh

			class	VertexArray*	mVertexArray;

			//	Name	of	shader	specified	by	mesh

			std:string	mShaderName;

			//	Stores	object	space	bounding	sphere	radius

			float	mRadius;

};

As	before,	there	are	a	constructor	and	a	destructor	as

well	as	Load	and	Unload.	However,	notice	that	Load

also	takes	in	a	pointer	to	Game.	This	is	so	that	Mesh	can

access	any	textures	associated	with	the	meshes	because

the	game	has	a	map	of	the	loaded	textures.

The	member	data	of	Mesh	contains	a	vector	of	texture

pointers	(one	for	each	texture	specified	in	the	gpmesh

file),	a	VertexArray	pointer	(for	the	vertex/index

buffer),	and	a	radius	for	the	object	space	bounding

sphere.	This	bounding	sphere	radius	computes	as	the

mesh	file	loads.	The	radius	is	simply	the	distance

between	the	object	space	origin	and	the	point	farthest

away	from	the	origin.	Computing	this	on	load	means	that

later,	any	collision	components	that	require	an	object

space	radius	have	access	to	the	data.	Chapter	10,

“Collision	Detection,”	covers	collision	in	detail.	As	a

performance	improvement,	you	could	instead	compute

this	radius	in	the	gpmesh	exporter.

The	implementation	of	Mesh::Load	is	lengthy	but	not

especially	interesting.	It	constructs	two	temporary

vectors:	one	for	all	the	vertices	and	one	for	all	the

indices.	When	it’s	finished	reading	in	all	the	values

through	the	RapidJSON	library,	it	constructs	a

VertexArray	object.	To	see	the	full	implementation	of

Mesh::Load,	open	this	chapter’s	game	project	in	the

Chapter06	directory	on	GitHub.

You	also	create	a	map	of	loaded	meshes	and	a	GetMesh

function	in	Game.	As	with	textures,	GetMesh	determines

whether	a	mesh	is	already	in	the	map	or	you	need	to	load

it	from	disk.

DRAWING	3D	MESHES
Once	3D	meshes	are	loading,	the	next	step	is	to	draw

them.	However,	there	are	a	lot	of	topics	to	touch	on

before	the	3D	meshes	start	showing	up.

Before	we	dive	into	these	topics,	it’s	time	for	some

housekeeping.	The	amount	of	rendering-specific	code	in

Game	has	grown	to	the	point	that	it’s	difficult	to	separate

out	what’s	related	to	rendering	and	what	isn’t.	Adding

3D	mesh	drawing	is	only	going	to	compound	the	issue.

To	solve	this,	it	makes	sense	to	now	create	a	separate

Renderer	class	that	encapsulates	all	rendering	code.

This	is	the	same	code	that	was	previously	in	Game,	just

moved	into	a	separate	class.	Listing	6.5	provides	an

abbreviated	declaration	of	Renderer.

Listing	6.5	Abbreviated	Renderer	Declaration

Click	here	to	view	code	image

class	Renderer

{

public:

			Renderer();

			~Renderer();

			//	Initialize	and	shutdown	renderer

			bool	Initialize(float	screenWidth,	float	screenHeight);

			void	Shutdown();

			//	Unload	all	textures/meshes

			void	UnloadData();

	

			//	Draw	the	frame

			void	Draw();

	

			void	AddSprite(class	SpriteComponent*	sprite);

			void	RemoveSprite(class	SpriteComponent*	sprite);

			class	Texture*	GetTexture(const	std::string&	fileName);

			class	Mesh*	GetMesh(const	std::string&	fileName);

private:

			bool	LoadShaders();

			void	CreateSpriteVerts();

			//	Member	data	omitted

			//	...

};

The	Game	class	then	constructs	and	initializes	an

instance	of	Renderer	in	Game::Initialize.	Note

that	the	Initialize	function	takes	in	the	width/height

of	the	screen	and	saves	these	parameters	in	member

variables.	Next,	Game::GenerateOutput	calls	Draw

on	the	renderer	instance.	The	map	of	loaded	textures,

map	of	loaded	meshes,	and	vector	of

SpriteComponents	also	move	over	to	Renderer.	This

requires	some	changes	throughout	the	codebase.

However,	none	of	this	code	is	new;	it’s	just	moved.	From

this	point	forward,	all	rendering-related	code	will	go	in

Renderer	instead	of	Game.

Transforming	to	Clip	Space,	Revisited

Recall	that	with	the	OpenGL	2D	rendering

implemented	in	Chapter	5,	the	simple	view-

projection	matrix	scales	down	world	space

coordinates	into	clip-space	coordinates.	For	a	3D

game,	this	type	of	view-projection	matrix	is

insufficient.	Instead,	you	need	to	decompose	the

view-projection	matrix	into	separate	view	and

projection	matrices.

View	Matrix
The	view	matrix	represents	the	position	and

orientation	of	the	camera,	or	“eye”	in	the	world.

Chapter	9,	“Cameras,”	covers	several	different

implementations	of	cameras,	but	for	now	let’s	keep	it

simple.	At	a	minimum,	a	look-at	matrix	represents

the	position	and	orientation	of	the	camera.

In	the	typical	construction	of	a	look-at	matrix,	there	are

three	parameters:	the	position	of	the	eye,	the	target

position	the	eye	“looks	at,”	and	the	up	direction.	Given

these	parameters,	you	first	compute	four	different

vectors:

These	vectors	then	define	the	elements	of	the	look-at

matrix	as	follows:

A	quick	way	to	make	the	camera	move	is	to	create	an

actor	for	the	camera.	The	position	of	this	actor

represents	the	eye	position.	The	target	position	is	then

some	point	in	front	of	the	camera	actor.	For	the	up

direction,	+z	works	if	the	actor	can’t	flip	upside	down

(which	currently	is	the	case).	Pass	in	these	parameters	to

Matrix4::CreateLookAt,	and	you	have	a	valid	view

matrix.

For	example,	if	the	camera	actor	is	mCameraActor,	the

following	code	constructs	a	view	matrix:

Click	here	to	view	code	image

//	Location	of	camera

Vector3	eye	=	mCameraActor->GetPosition();

//	Point	10	units	in	front	of	camera

Vector3	target	=	mCameraActor->GetPosition()	+

			mCameraActor->GetForward()	*	10.0f;

Matrix4	view	=	Matrix4::CreateLookAt(eye,	target,	Vector3::UnitZ);

Projection	Matrix
The	projection	matrix	determines	how	the	3D

world	flattens	into	the	2D	world	drawn	onscreen.

Two	types	of	projection	matrices	are	common	in	3D

games:	orthographic	and	perspective.

In	an	orthographic	projection,	objects	farther	away

from	the	camera	are	the	same	size	as	objects	closer	to	the

camera.	This	means	that	players	will	not	be	able	to

perceive	whether	objects	are	closer	or	farther	away	from

the	camera.	Most	2D	games	use	an	orthographic

projection.	Figure	6.3	illustrates	a	scene	rendered	with

an	orthographic	projection.

Figure	6.3	(a)	Top-down	view	of	an	orthographic

projection	and	(b)	the	resulting	2D	image	onscreen

In	a	perspective	projection,	objects	farther	away	from

the	camera	are	smaller	than	closer	ones.	Thus,	players

perceive	that	there’s	depth	in	the	scene.	Most	3D	games

use	this	sort	of	projection,	and	you’ll	use	it	for	the	game

project	in	this	chapter.	Figure	6.4	shows	the	same	3D

scene	as	Figure	6.3,	except	this	time	using	a	perspective

projection.

Figure	6.4	(a)	Top-down	view	of	a	perspective

projection	and	(b)	the	resulting	2D	image	onscreen

Each	of	these	projections	has	a	near	plane	and	a	far

plane.	The	near	plane	is	typically	very	close	to	the

camera.	Anything	between	the	camera	and	the	near

plane	is	not	visible	onscreen.	This	is	why	games	have

objects	partially	disappear	if	the	camera	gets	too	close	to

them.	Similarly,	the	far	plane	is	far	away	from	the

camera,	and	anything	past	it	is	not	visible.	Games

sometimes	allow	the	player	to	reduce	the	“draw	distance”

to	improve	performance.	This	is	often	just	a	matter	of

pulling	in	the	far	plane.

The	orthographic	projection	matrix	has	four	parameters:

the	width	of	the	view,	the	height	of	the	view,	the	distance

to	the	near	plane,	and	the	distance	to	the	far	plane.	Given

these	parameters,	this	is	the	orthographic	projection

matrix:

Note	that	this	orthographic	projection	matrix	is	like	the

SimpleViewProjection	matrix	in	Chapter	5,	except	there

are	additional	terms	accounting	for	the	near	and	far

planes.

The	perspective	projection	has	an	additional	parameter

called	the	horizontal	field	of	view	(FOV).	This	is	the

horizontal	angle	around	the	camera	that’s	visible	in	the

projection.	Changing	the	field	of	view	determines	how

much	of	the	3D	world	is	visible.	This	is	the	perspective

matrix:

Note	that	the	perspective	matrix	changes	the	w

component	of	the	homogeneous	coordinate.	The

perspective	divide	divides	each	component	of	the

transformed	vertex	by	the	w	component,	so	that	the	w

component	becomes	1	again.	This	is	what	reduces	the

size	of	objects	as	they	get	farther	from	the	camera.

OpenGL	automatically	does	a	perspective	divide	behind

the	scenes.

notenote

We	omit	the	derivation	of	the	orthographic	and	perspective	matrices	here.

Both	types	of	protection	matrices	have	helper	functions

in	the	Math.h	library.	You	can	use

Matrix4::CreateOrtho	for	an	orthographic	matrix

and	Matrix4::CreatePerspectiveFOV	for	a

perspective	matrix.

Calculating	the	View-Projection
The	view-projection	matrix	is	just	the	product	of	the

separate	view	and	projection	matrices:

The	vertex	shader	then	uses	this	view-projection	matrix

to	transform	vertex	positions	from	world	space	into	clip

space.

Out	with	the	Painter’s	Algorithm,	in	with	Z-
Buffering

Chapter	2,	“Game	Objects	and	2D	Graphics,”

introduces	the	painter’s	algorithm.	Recall	that	the

painter’s	algorithm	draws	objects	from	back	to	front.

While	this	is	great	for	2D	games,	it	faces

complications	in	3D.

Painter’s	Algorithm	Blues
A	major	problem	with	the	painter’s	algorithm	for	3D

games	is	that	the	back-to-front	ordering	is	not	static.

As	the	camera	moves	and	rotates	through	the	scene,

which	object	is	in	front	or	behind	changes.	To	use	the

painter’s	algorithm	in	a	3D	scene,	you	must	sort	all

the	triangles	in	the	scene	from	back	to	front,

potentially	every	frame.	For	even	a	slightly	complex

scene,	this	perpetual	sorting	is	a	performance

bottleneck.

It	gets	even	worse	for	a	split-screen	game.	If	player	A	and

player	B	face	each	other,	the	back-	to-front	ordering	is

different	for	each	player.	To	solve	this,	you	must	sort	on

a	per-view	basis.

Another	issue	is	that	the	painter’s	algorithm	can	result	in

a	massive	amount	of	overdraw,	or	writing	the	color	of	a

single	pixel	more	than	once	per	frame.	This	happens	all

the	time	in	the	painter’s	algorithm,	as	objects	in	the	back

of	the	scene	have	pixels	overwritten	by	closer	objects.	In

a	modern	3D	game,	the	process	of	calculating	the	final

color	of	a	pixel	is	one	of	the	most	expensive	parts	of	the

rendering	pipeline.	This	is	because	the	fragment	shader

contains	code	for	texturing,	lighting,	and	many	other

advanced	techniques.	Every	pixel	overdrawn	is	an

execution	of	the	fragment	shader	wasted.	Thus,	3D

games	aim	to	eliminate	as	much	overdraw	as	possible.

Finally,	there’s	an	issue	with	overlapping	triangles.	Look

at	the	three	triangles	in	Figure	6.5.	Which	one	is	the

farthest	back?	The	answer	is	that	no	one	triangle	is	the

farthest	back.	In	this	case,	the	only	way	the	painter’s

algorithm	can	draw	these	triangles	correctly	is	by

splitting	one	triangle	in	half,	which	isn’t	ideal.	For	these

reasons,	3D	games	do	not	use	the	painter’s	algorithm	for

most	objects.

Figure	6.5	Overlapping	triangles	painter’s

algorithm	failure	case

Z-Buffering
Z-buffering	(or	depth	buffering)	uses	an	additional

memory	buffer	during	the	rendering	process.	This

buffer,	known	as	the	z-buffer	(or	depth	buffer),

stores	data	for	each	pixel	in	the	scene,	much	like	the

color	buffer.	But	while	the	color	buffer	stores	color

information,	the	z-buffer	stores	the	distance	from	the

camera,	or	depth,	at	each	pixel.	Collectively,	the	set

of	buffers	that	graphically	represent	the	frame

(including	the	color	buffer,	z-buffer,	and	others)	is

the	frame	buffer.

At	the	start	of	a	frame,	you	need	to	clear	the	z-buffer

(much	like	the	color	buffer).	Instead	of	clearing	to	a

color,	you	clear	each	pixel	to	the	maximum	depth	value

in	normalized	device	coordinates,	which	is	1.0.	During

rendering,	before	drawing	a	pixel,	z-buffering	computes

the	depth	at	the	pixel.	If	the	depth	at	the	pixel	is	less	than

the	current	depth	value	stored	in	the	z-buffer	(meaning

it’s	closer),	that	pixel	draws	to	the	color	buffer.	The	z-

buffer	then	updates	the	depth	value	for	that	pixel.

Figure	6.6	shows	a	visualization	of	the	z-buffer	for	a

scene.	Because	the	sphere	is	closer	than	the	cube,	its	z-

buffer	values	are	closer	to	zero	(and	thus	closer	to	black).

The	first	object	drawn	in	a	frame	will	always	have	all	its

pixels’	color	and	depth	information	written	into	the	color

and	z-buffers,	respectively.	But	when	drawing	the	second

object,	only	pixels	with	depths	closer	than	the	values	in

the	z-buffer	draw.	Listing	6.6	gives	pseudocode	for	the	z-

buffer	algorithm.

Figure	6.6	A	sample	scene	(left)	and	its

corresponding	z-buffer	(right)

Listing	6.6	Z-Buffering	Pseudocode

Click	here	to	view	code	image

//	zBuffer[x][y]	grabs	depth	at	that	pixel

foreach	MeshComponent	m	in	scene

			foreach	Pixel	p	in	m

						float	depth	=	p.Depth()

						if	zBuffer[p.x][p.y]	<	depth

									p.draw

						endif

			endfor

endfor

With	z-buffering,	drawing	the	scene	in	any	arbitrary

order	will	look	correct	if	there	are	no	objects	with

transparency.	This	is	not	to	say	that	the	order	is

irrelevant.	For	example,	drawing	a	scene	back-to-front

yields	the	same	amount	of	overdraw	as	the	painter’s

algorithm.	Conversely,	drawing	a	scene	front-to-back

yields	zero	overdraw.	But	the	gain	of	z-buffering	is	that

any	arbitrary	order	works.	And	because	z-buffering	is	on

a	per-pixel	basis,	not	a	per-object	or	per-triangle	basis,	it

will	work	even	for	the	overlapping	triangles	in	Figure	6.5.

Luckily,	z-buffering	is	not	something	a	graphics

programmer	implements	anymore;	you	merely	need	to

enable	it.	OpenGL	supports	depth	buffering	with

minimal	effort.	(OpenGL	uses	the	term	depth	buffer

instead	of	z-buffer.)	First,	prior	to	creating	the	OpenGL

context,	you	need	to	request	a	depth	buffer	(24-bit	is	a

typical	size):

Click	here	to	view	code	image

SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE,	24);

Then,	the	following	call	enables	depth	buffering:

glEnable(GL_DEPTH_TEST);

The	glClear	function	handles	clearing	the	depth	buffer.

One	call	can	clear	both	the	color	and	depth	buffers:

Click	here	to	view	code	image

glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT);

Although	z-buffering	works	well,	there	are	some	issues.

For	one,	transparent	objects	don’t	work	with	z-buffering

as	specified.	Suppose	a	game	has	semi-transparent

water,	and	under	this	water	is	a	rock.	In	z-buffering,

drawing	the	water	first	writes	to	the	z-buffer	and

prevents	the	rock	from	drawing,	since	the	rock	has	a

higher	depth.

The	solution	to	this	dilemma	is	to	render	opaque	objects

first,	using	z-buffering.	Then	disable	depth	buffer	writes

and	render	transparent	objects	back-to-front.	As	the

pixels	render,	you	should	test	the	depth	at	each	pixel	to

ensure	that	transparent	pixels	behind	opaque	objects

don’t	draw.	Although	this	means	the	transparent	objects

render	with	the	painter’s	algorithm,	the	number	of

transparent	objects	is	hopefully	very	small.

Although	you	don’t	need	to	use	transparent	3D	objects	in

this	book,	remember	that	sprite	rendering	uses	alpha

blending	to	support	textures	with	transparency.	Because

this	doesn’t	play	nicely	with	z-buffering,	you	must

disable	alpha	blending	for	3D	objects	and	then	reenable

it	for	sprites.	Likewise,	sprites	must	render	with	z-

buffering	disabled.

This	naturally	leads	to	rendering	in	two	phases:	First,

render	all	3D	objects	with	alpha	blending	disabled	and	z-

buffering	enabled.	Then	render	all	sprites	with	alpha

blending	enabled	and	z-buffering	disabled.	When	you	do

this,	all	2D	sprites	appear	on	top	of	the	3D	scene.	This	is

okay	because	a	3D	game	uses	2D	sprites	only	for	UI	or

HUD	elements.

The	BasicMesh	Shader

Recall	that	earlier	in	this	chapter,	you	modified	the

Sprite.vert	shader	file	to	include	support	for

vertex	normals	in	the	vertex	layout.	It	turns	out	that

this	modified	code	for	the	sprite	vertex	shader	and

the	original	code	for	the	Sprite.frag	shader	file

from	Chapter	5	also	works	for	full	3D	meshes.	You

set	the	view-projection	matrix	uniform	to	a	different

value	for	3D	meshes,	but	the	actual	vertex/fragment

shader	code	is	fine	as	is.	So	for	now,	the

BasicMesh.vert/BasicMesh.frag	shader	files

are	just	copies	of	the	Sprite.vert/Sprite.frag

shader	files.

Next,	add	a	Shader*	member	variable	for	the	mesh

shader	to	Renderer,	as	well	as	separate	Matrix4

variables	for	the	view	and	projection	matrices.

Renderer::InitShaders	then	loads	the	BasicMesh

shader	(with	code	very	similar	to	code	for	loading	the

sprite	shader)	and	initializes	the	view	and	projection

matrices.	You	initialize	the	view	matrix	to	a	look-at

matrix	facing	down	the	x-axis	and	the	projection	matrix

to	a	perspective	matrix:

Click	here	to	view	code	image

mMeshShader->SetActive();

//	Set	the	view-projection	matrix

mView	=	Matrix4::CreateLookAt(

			Vector3::Zero,		//	Camera	position

			Vector3::UnitX,	//	Target	position

			Vector3::UnitZ		//	Up

);

mProjection	=	Matrix4::CreatePerspectiveFOV(

			Math::ToRadians(70.0f),	//	Horizontal	FOV

			mScreenWidth,											//	Width	of	view

			mScreenHeight,										//	Height	of	view

			25.0f,																		//	Near	plane	distance

			10000.0f																//	Far	plane	distance

);

mMeshShader->SetMatrixUniform("uViewProj",	mView	*	mProjection);

For	simplicity,	we	assume	here	that	all	meshes	use	the

same	shader	(ignoring	the	shader	property	stored	in	the

gpmesh	file).	In	Exercise	6.1	you	add	support	for

different	mesh	shaders.

In	any	event,	now	that	there’s	a	shader	for	meshes,	the

next	step	is	to	create	a	MeshComponent	class	to	draw

3D	meshes.

The	MeshComponent	Class

Recall	that	all	the	code	for	transforming	vertices

from	object	space	into	clip	space	is	in	the	vertex

shader.	The	code	for	filling	in	the	color	of	each	pixel

is	in	the	fragment	shader.	This	means	that	the

MeshComponent	class	doesn’t	need	to	do	much	for

drawing.

Listing	6.7	provides	the	declaration	of	MeshComponent.

Note	that	unlike	SpriteComponent,	MeshComponent

does	not	have	a	draw	order	variable.	This	is	because	the

order	doesn’t	matter	because	3D	meshes	use	z-buffering.

The	only	member	data	is	a	pointer	to	the	associated

mesh	and	a	texture	index.	Because	a	gpmesh	can	have

multiple	associated	textures,	the	index	determines	which

texture	to	use	when	drawing	the	MeshComponent.

Listing	6.7	MeshComponent	Declaration

Click	here	to	view	code	image

class	MeshComponent	:	public	Component

{

public:

			MeshComponent(class	Actor*	owner);

			~MeshComponent();

			//	Draw	this	mesh	component	with	provided	shader

			virtual	void	Draw(class	Shader*	shader);

			//	Set	the	mesh/texture	index	used	by	mesh	component

			virtual	void	SetMesh(class	Mesh*	mesh);

			void	SetTextureIndex(size_t	index);

protected:

			class	Mesh*	mMesh;

			size_t	mTextureIndex;

};

The	Renderer	then	has	a	vector	of	MeshComponent

pointers	and	functions	to	add	and	remove	these

components.	The	constructor	and	destructor	of

MeshComponent	call	these		add/remove	functions.

The	Draw	function,	shown	in	Listing	6.8,	first	sets	the

world	transform	matrix	uniform.	MeshComponent

directly	uses	the	owning	actor’s	world	transform	matrix

because	there’s	no	extra	scale	needed,	as	there	is	in

SpriteComponent.	Next,	the	code	activates	the	texture

and	vertex	array	associated	with	the	mesh.	Finally,

glDrawElements	draws	the	triangles.	The	index	buffer

size	isn’t	hard-coded	here	because	different	meshes	have

different	numbers	of	indices.

Listing	6.8	MeshComponent::Draw	Implementation

Click	here	to	view	code	image

void	MeshComponent::Draw(Shader*	shader)

{

			if	(mMesh)

			{

						//	Set	the	world	transform

						shader->SetMatrixUniform("uWorldTransform",

									mOwner->GetWorldTransform());

						//	Set	the	active	texture

						Texture*	t	=	mMesh->GetTexture(mTextureIndex);

						if	(t)	{	t->SetActive();	}

						//	Set	the	mesh's	vertex	array	as	active

						VertexArray*	va	=	mMesh->GetVertexArray();

						va->SetActive();

						//	Draw

						glDrawElements(GL_TRIANGLES,	va->GetNumIndices(),

									GL_UNSIGNED_INT,	nullptr);

			}

}

Finally,	the	Renderer	needs	code	that	draws	all	the

mesh	components.	After	clearing	the	frame	buffer,	the

Renderer	first	draws	all	meshes	with	depth	buffering

enabled	and	alpha	blending	disabled.	It	next	draws	all

sprites	in	the	same	manner	as	before.	After	drawing

everything,	the	Renderer	swaps	the	front	and	back

buffers.	Listing	6.9	shows	only	the	new	code	for

rendering	meshes.	The	code	recalculates	the	view-

projection	matrix	every	frame	to	account	for	a	moving

camera.

Listing	6.9	Drawing	MeshComponents	in
Renderer::Draw

Click	here	to	view	code	image

//	Enable	depth	buffering/disable	alpha	blend

glEnable(GL_DEPTH_TEST);

glDisable(GL_BLEND);

//	Set	the	basic	mesh	shader	active

mMeshShader->SetActive();

//	Update	view-projection	matrix

mMeshShader->SetMatrixUniform("uViewProj",	mView	*	mProjection);

for	(auto	mc	:	mMeshComps)

{

			mc->Draw(mMeshShader);

}

Because	MeshComponent	is	just	like	any	other

component,	you	can	attach	it	to	an	arbitrary	actor	and

draw	meshes	for	the	actor.	Figure	6.7	shows

MeshComponent	in	action,	drawing	a	sphere	and	a	cube

mesh.

Figure	6.7	Drawing	a	simple	scene	with
MeshComponent

LIGHTING
So	far,	the	mesh	fragment	shader	directly	uses	the

texture	color	as	the	final	color	for	a	pixel.	However,

without	any	contrast,	the	scene	looks	dull.	To

approximate	concepts	such	as	the	sun	or	light	bulbs

or	simply	to	add	variety	to	the	scene,	you	need

lighting.

Revisiting	Vertex	Attributes

Lighting	meshes	require	more	vertex	attributes	than

just	the	vertex	position	and	UV	(texture)	coordinates.

They	also	need	vertex	normals.	You	added	this	vertex

attribute	earlier	in	this	chapter.	However,	the

concept	of	a	vertex	normal	requires	further

explanation.	It	seems	almost	nonsensical	because	a

normal	is	a	vector	perpendicular	to	a	surface,	but	a

single	point	is	not	a	surface,	so	how	can	there	be	a

normal	to	a	point?

You	can	compute	a	vertex	normal	by	averaging	the

normals	of	the	triangles	that	contain	that	vertex,	as	in

Figure	6.8(a).	This	works	well	for	smooth	models	but

doesn’t	quite	work	for	hard	edges.	For	example,

rendering	a	cube	with	averaged	vertex	normals	yields

rounded	corners.	To	solve	this,	the	artist	creates	multiple

vertices	for	the	corners	of	the	cube,	and	each	vertex	on

the	corner	has	a	different	normal.	Figure	6.8(b)	shows	a

cube	authored	in	this	manner.

Figure	6.8	(a)	Averaged	vertex	normals.	(b)	Vertex

A	on	the	cube	uses	one	of	three	different	normals,

depending	on	the	face

Remember	that	all	vertex	attributes	interpolate	across

the	triangle	when	sent	to	the	fragment	shader.	This

means	that	any	arbitrary	pixel	on	the	face	of	a	triangle

has	a	normal	value	that’s	the	interpolation	between	the

triangle’s	three	vertex	normals.

Types	of	Lights

While	there	are	many	potential	choices,	a	handful	of

light	types	consistently	see	use	in	3D	games.	Some

lights	globally	affect	the	entire	scene,	whereas	other

lights	affect	only	the	area	around	the	light.

Ambient	Light
Ambient	light	is	a	uniform	amount	of	light	applied

to	every	single	object	in	a	scene.	The	amount	of

ambient	light	might	differ	for	different	levels	in	a

game,	depending	on	the	time	of	day.	A	level	set	at

night	will	have	a	much	darker	and	cooler	ambient

light	than	a	level	set	in	the	daytime,	which	will	be

brighter	and	warmer.

Because	it	provides	an	even	amount	of	lighting,	ambient

light	does	not	light	different	sides	of	objects	differently.

It	is	a	global	amount	of	light	uniformly	applied	to	every

part	of	every	object	in	a	scene.	This	is	akin	to	the	sun	on

a	cloudy	day	in	nature,	as	in	Figure	6.9(a).

Figure	6.9	Examples	in	nature	of	ambient	light	(a)

and	directional	light	(b)

In	code,	the	simplest	representation	of	ambient	light	is

an	RGB	color	value	that	represents	both	the	color	and

intensity	of	the	light.	For	example,	(0.2,	0.2,	0.2)	is

darker	than	(0.5,	0.5,	0.5).

Directional	Light
A	directional	light	is	a	light	emitted	from	a	specific

direction.	Like	ambient	light,	directional	light	affects

an	entire	scene.	However,	because	a	directional	light

comes	from	a	specific	direction,	it	illuminates	one

side	of	objects	while	leaving	the	other	side	in

darkness.	An	example	of	a	directional	light	is	the	sun

on	a	sunny	day.	The	direction	of	the	light	depends	on

where	the	sun	is	at	that	time	of	day.	The	side	facing

the	sun	is	bright,	while	the	other	side	is	dark.	Figure

6.9(b)	shows	a	directional	light	at	Yellowstone

National	Park.	(Note	that	in	a	game,	shadowing	is

not	a	property	of	a	directional	light	itself.	Instead,

computing	shadows	requires	additional

calculations.)

Games	that	use	directional	lights	often	have	only	one

directional	light	for	the	entire	level,	representing	either

the	sun	or	the	moon.	But	this	isn’t	always	the	case.	For

example,	an	approximation	of	the	lighting	of	a	sports

stadium	at	night	could	use	multiple	directional	lights.

In	code,	a	directional	light	needs	both	an	RGB	color

value	(as	with	ambient	light)	and	a	normalized	vector	for

the	direction	of	the	light.

Point	Light
A	point	light	exists	at	a	specific	point	and	emanates

in	all	directions	from	that	point.	Because	it	starts	at	a

specific	point,	a	point	light	also	illuminates	only	one

side	of	an	object.	Usually,	a	point	light	also	has	a

radius	of	influence.	For	example,	think	of	a	light	bulb

in	a	dark	room,	as	in	Figure	6.10(a).	There’s	visible

light	in	the	area	immediately	around	the	light,	but	it

slowly	dissipates	until	it	no	longer	adds	light.	The

point	light	doesn’t	go	on	infinitely.

Figure	6.10	A	light	build	point	light	(a)	and	(b)	a

spotlight

In	code,	a	point	light	should	have	an	RGB	color,	a

position	of	the	light,	and	a	falloff	radius	that

determines	how	much	the	light	value	decreases	as	the

distance	from	the	light		increases.

Spotlight
A	spotlight	is	much	like	a	point	light,	except	that

instead	of	traveling	in	all	directions,	it’s	focused	in	a

cone.	To	simulate	a	spotlight,	you	need	all	the

parameters	of	a	point	light	and	additionally	the	angle

of	the	cone.	A	classic	example	of	a	spotlight	is	a

theater	spotlight,	but	another	example	is	a	flashlight

in	the	dark.	Figure	6.10(b)	illustrates	a	spotlight.

Phong	Reflection	Model

To	simulate	lights,	not	only	do	you	need	their

associated	data,	you	also	need	to	calculate	how	the

lights	affect	the	objects	in	the	scene.	A	tried-and-true

method	for	approximating	light	is	a	bidirectional

reflectance	distribution	function	(BRDF),

which	is	a	function	that	approximates	how	light

bounces	off	surfaces.	There	are	many	different	types

of	BRDFs,	but	a	classic	one	is	the	Phong	reflection

model.

The	Phong	model	is	a	local	lighting	model	because	it

doesn’t	calculate	secondary	reflections	of	light.	In	other

words,	the	reflection	model	lights	each	object	as	if	it’s	the

only	object	in	the	entire	scene.	In	the	real	world,	shining

a	red	light	on	a	white	wall	will	fill	the	rest	of	the	room

with	a	reddish	color.	However,	this	does	not	happen	in

the	Phong	model.

The	Phong	model	divides	light	into	three	distinct

components:	ambient,	diffuse,	and	specular.	Figure	6.11

illustrates	these	components.	All	three	components

consider	the	color	of	the	surface	as	well	as	the	color	of

the	light	affecting	the	surface.

Figure	6.11	Phong	reflection	model

The	ambient	component	is	the	overall	illumination	of

the	scene.	Thus,	it	makes	sense	to	directly	tie	the

ambient	component	to	the	ambient	light.	Because

ambient	light	applies	evenly	to	the	entire	scene,	the

ambient	component	is	independent	of	any	other	lights

and	the	camera.

The	diffuse	component	is	the	primary	reflection	of

light	off	the	surface.	Any	directional	lights,	point	lights,

or	spotlights	affecting	the	object	affect	the	diffuse

component.	The	diffuse	component	calculation	uses	both

the	normal	of	the	surface	and	a	vector	from	the	surface	to

the	light.	The	position	of	the	camera	does	not	affect	the

diffuse	component.

The	final	component	in	the	Phong	model	is	the

specular	component.	This	approximates	shiny

reflections	off	a	surface.	An	object	with	a	high	degree	of

specularity,	such	as	a	polished	metal	object,	has	stronger

highlights	than	an	object	painted	in	matte	black.	As	with

the	diffuse	component,	the	specular	component	depends

on	both	the	light	vector	and	the	normal	of	the	surface.

However,	specularity	also	depends	on	the	position	of	the

camera.	This	is	because	looking	at	a	shiny	object	from

different	angles	changes	the	perceived	reflections.

Figure	6.12	shows	the	Phong	reflection	from	a	side	view.

Computing	Phong	reflection	requires	a	series	of

calculations	that	include	several	variables:

—Normalized	surface	normal

—Normalized	vector	from	the	surface	to	the	light

—Normalized	vector	from	the	surface	to	the	camera	(eye)	position

—Normalized	reflection	of	– 	about	

α—Specular	power	(which	determines	the	shininess	of	the	object)

In	addition,	there	are	colors	for	the	lights:

k —Ambient	color

k —Diffuse	color

k —Specular	color

a

d

s

Figure	6.12	Diagram	of	Phong	reflection

calculations	(vectors	not	to	scale)

In	the	Phong	reflection	model,	you	calculate	the	light

applied	to	a	surface	as	follows:

Note	that	the	diffuse	and	specular	component	computes

for	all	lights	in	the	scene,	but	there’s	only	one	ambient

component.	The	 	test	ensures	that	the	light	affects

only	surfaces	facing	the	light.

In	any	event,	the	Phong	equation	as	described	here	yields

a	color	for	all	lights	in	the	scene.	The	final	color	of	the

surface	is	the	light	color	multiplied	by	the	color	of	the

surface.	Because	both	the	light	and	surface	color	are	RGB

values,	you	use	component-wise	multiplication.

A	more	complex	implementation	separates	the	surface

color	into	separate	ambient,	diffuse,	and	specular	colors.

In	this	implementation,	the	equations	change	to	multiply

each	separate	color	by	each	component	rather	than	only

one	multiplication	at	the	end.

One	remaining	question	is	how	frequently	to	compute

the	BRDF.	There	are	three	common	options:	once	per

surface	(flat	shading),	once	per	vertex	(Gouraud

shading),	or	once	per	pixel	(Phong	shading).

Although	per-pixel	lighting	is	more	computationally

expensive,	modern	graphics	hardware	can	easily	handle

it.	It’s	conceivable	that	some	games	might	choose	other

types	of	shading	for	aesthetic	reasons,	but	this	chapter

sticks	to	per-pixel	lighting.

Implementing	Lighting

This	section	covers	how	to	add	ambient	and

directional	lights	to	the	game.	Implementing	this

requires	changes	to	both	the	vertex	and	fragment

shaders.	The	BasicMesh.vert/.frag	shaders	are

a	starting	point	for	the	new	Phong.vert/.frag

shaders.	(Remember	that	this	shader	code	is	in

GLSL,	not	C++.)	You’ll	then	change	it	so	all	meshes

use	this	new	Phong	shader.

Because	the	lighting	is	per	pixel,	the	Phong	fragment

shader	needs	several	additional	uniforms:	a	camera

position,	an	ambient	light	color,	and	several	variables	for

a	directional	light	(see	Listing	6.10).

Listing	6.10	Phong.frag	Lighting	Uniforms

Click	here	to	view	code	image

//	Create	a	struct	for	directional	light

struct	DirectionalLight

{

			//	Direction	of	light

			vec3	mDirection;

			//	Diffuse	color

			vec3	mDiffuseColor;

			//	Specular	color

			vec3	mSpecColor;

};

	

//	Uniforms	for	lighting

//	Camera	position	(in	world	space)

uniform	vec3	uCameraPos;

//	Ambient	light	level

uniform	vec3	uAmbientLight;

//	Specular	power	for	this	surface

uniform	float	uSpecPower;

//	Directional	Light	(only	one	for	now)

uniform	DirectionalLight	uDirLight;

Note	the	declaration	of	a	DirectionalLight	struct.

GLSL	supports	struct	declarations,	much	like	those	in

C/C++.	Next,	you	declare	a	corresponding

DirectionalLight	struct	in	the	C++	code	and	add

two	member	variables	to	Renderer	for	the	ambient	light

and	directional	light.

Back	in	C++,	the	glUniform3fv	and	glUniform1f

functions	set	3D	vector	and	float		uniforms,	respectively.

You	create	two	new	functions	in	Shader,

SetVectorUniform	and	SetFloatUniform,	to	call

these	functions.	The	implementation	of	both	these

functions	is	like	that	of	the	SetMatrixUniform

function	in	Chapter	5.

A	new	function	in	Renderer	called

SetLightUniforms	handles	setting	the	new	uniform

values:

Click	here	to	view	code	image

void	Renderer::SetLightUniforms(Shader*	shader)

{

			//	Camera	position	is	from	inverted	view

			Matrix4	invView	=	mView;

			invView.Invert();

			shader->SetVectorUniform("uCameraPos",	invView.GetTranslation());

			//	Ambient	light

			shader->SetVectorUniform("uAmbientLight",	mAmbientLight);

			//	Directional	light

			shader->SetVectorUniform("uDirLight.mDirection",	mDirLight.mDirection);

			shader->SetVectorUniform("uDirLight.mDiffuseColor",

						mDirLight.mDiffuseColor);

			shader->SetVectorUniform("uDirLight.mSpecColor",	mDirLight.mSpecColor);

}

Note	that	this	function	uses	dot	notation	to	reference

specific	members	of	the	uDirLight	struct.

Extracting	the	camera	position	from	the	view	matrix

requires	inverting	the	view	matrix.	After	inverting	the

view	matrix,	the	first	three	components	of	the	fourth	row

(returned	by	the	GetTranslation	member	function)

correspond	to	the	world	space	position	of	the	camera.

Next,	you	update	the	gpmesh	file	format	so	that	you	can

specify	the	specular	power	of	a	mesh’s	surface	with	the

specularPower	property.	You	then	update	the

Mesh::Load	code	to	read	in	this	property,	and	set	the

uSpecPower	uniform	in	MeshComponent::Draw	right

before	drawing	the	mesh.

Back	in	GLSL,	you	must	make	some	changes	to	the

vertex	shader	in	Phong.vert.	Both	the	camera	position

and	the	directional	light’s	direction	are	in	world	space.

However,	the	gl_Position	computed	in	the	vertex

shader	is	in	clip	space.	Getting	the	correct	vector	from

the	surface	to	the	camera	requires	a	position	in	world

space.	Furthermore,	the	input	vertex	normals	are	in

object	space,	but	they	also	need	to	be	in	world	space.

This	means	the	vertex	shader	must	compute	both	the

world	space	normal	and	the	world	space	position	and

send	these	to	the	fragment	shader	via	out	variables:

//	Normal	(in	world	space)

out	vec3	fragNormal;

//	Position	(in	world	space)

out	vec3	fragWorldPos;

Similarly,	you	declare	fragNormal	and	fragWorldPos

as	in	variables	in	the	fragment	shader.	Next,	the	main

function	of	the	vertex	shader,	in	Listing	6.11,	computes

both	fragNormal	and	fragWorldPos.	The	.xyz

syntax,	known	as	a	swizzle,	is	a	shorthand	for	extracting

the	x,	y,	and	z	components	from	a	4D	vector	and	creating

a	new	3D	vector	with	those	values.	This	effectively

converts	between	a	vec4	and	vec3.

The	code	also	converts	the	normal	into	homogenous

coordinates	so	that	multiplication	by	the	world

transform	matrix	works.	However,	the	w	component

here	is	0	instead	of	1.	This	is	because	the	normal	is	not	a

position,	so	translating	the	normal	makes	no	sense.

Setting	the	w	component	to	0	means	the	translation

component	of	the	world	transform	matrix	zeros	out	in

the	multiplication.

Listing	6.11	Phong.vert	Main	Function

Click	here	to	view	code	image

void	main()

{

			//	Convert	position	to	homogeneous	coordinates

			vec4	pos	=	vec4(inPosition,	1.0);

			//	Transform	position	to	world	space

			pos	=	pos	*	uWorldTransform;

			//	Save	world	position

			fragWorldPos	=	pos.xyz;

			//	Transform	to	clip	space

			gl_Position	=	pos	*	uViewProj;

	

			//	Transform	normal	into	world	space	(w	=	0)

			fragNormal	=	(vec4(inNormal,	0.0f)	*	uWorldTransform).xyz;

	

			//	Pass	along	the	texture	coordinate	to	frag	shader

			fragTexCoord	=	inTexCoord;

}

The	fragment	shader,	in	Listing	6.12,	computes	the

Phong	reflection	model	as	outlined	in	the	equations	in

the	previous	section.	Note	that	you	must	normalize

fragNormal	because	OpenGL	interpolates	the	vertex

normal	across	the	face	of	the	triangle.	Interpolating	two

normalized	vectors	does	not	guarantee	a	normalized

vector	at	each	step	of	the	interpolation,	so	you	must

renormalize	it.

Because	the	directional	light	emits	from	a	direction,	the

vector	from	the	surface	to	the	light	is	just	the	negation	of

the	light’s	direction	vector.	The	fragment	shader	uses	a

handful	of	new	GLSL	functions.	The	dot	function

computes	a	dot	product,	reflect	computes	a	reflection

vector,	max	selects	the	maximum	of	two	values,	and	pow

computes	a	power.	The	clamp	function	restricts	the

value	of	each	component	of	the	passed	in	vector	to	the

range	specified.	In	this	case,	the	valid	light	values	are

from	0.0	(no	light)	to	1.0	(maximum	light	of	that	color).

The	final	color	is	the	texture	color	multiplied	by	the

Phong	light.

One	edge	case	occurs	when	the	dot	product	between	R

and	V	is	negative.	In	this	case,	the	specular	component

might	end	up	negative,	or	effectively	remove	light	from

the	scene.	The	max	function	call	prevents	this	because	if

the	dot	product	is	negative,	max	selects	0.

Listing	6.12	Phong.frag	Main	Function

Click	here	to	view	code	image

void	main()

{

			//	Surface	normal

			vec3	N	=	normalize(fragNormal);

			//	Vector	from	surface	to	light

			vec3	L	=	normalize(-uDirLight.mDirection);

			//	Vector	from	surface	to	camera

			vec3	V	=	normalize(uCameraPos	-	fragWorldPos);

			//	Reflection	of	-L	about	N

			vec3	R	=	normalize(reflect(-L,	N));

	

			//	Compute	phong	reflection

			vec3	Phong	=	uAmbientLight;

			float	NdotL	=	dot(N,	L);

			if	(NdotL	>	0)

			{

						vec3	Diffuse	=	uDirLight.mDiffuseColor	*	NdotL;

						vec3	Specular	=	uDirLight.mSpecColor	*

									pow(max(0.0,	dot(R,	V)),	uSpecPower);

						Phong	+=	Diffuse	+	Specular;

			}

	

			//	Final	color	is	texture	color	times	phong	light	(alpha	=	1)

			outColor	=	texture(uTexture,	fragTexCoord)	*	vec4(Phong,	1.0f);

}

Figure	6.13	shows	the	Phong	shader	in	action,	lighting

the	sphere	and	cube	from	Figure	6.10.	This	figure	uses

the	following	light	values:

Ambient	light—Dark	gray	(0.2,	0.2,	0.2)

Directional	direction—Down	and	to	the	left	(0,	-0.7,	-0.7)

Directional	diffuse	color—Green	(0,	1,	0)

Directional	specular	color—Bright	green	(0.5,	1,	0.5)

Figure	6.13	Phong	shader	in	action

In	Figure	6.13,	the	specular	power	of	the	sphere	is	10.0

and	the	specular	power	of	the	cube	is	100.0f	to	make	the

sphere	shinier	than	the	cube.

GAME	PROJECT
This	chapter’s	game	project	implements	most	of	the

topics	covered:	mesh	loading,	a	MeshComponent,

and	the	Phong	shader.	Figure	6.14	shows	the	final

version	of	this		chapter’s	game	project.	The	code	is

available	in	the	book’s	GitHub	repository,	in	the

Chapter06	directory.	Open	Chapter06-

windows.sln	on	Windows	and	Chapter06-

mac.xcodeproj	on	Mac.

Figure	6.14	Chapter	6	game	project

The	LoadData	function	in	Game	instantiates	several

different	actors	for	the	objects	in	the	world.	A	simple

CameraActor	allows	the	camera	to	move	through	the

world.	Use	the	W	and	S	keys	to	move	forward	and	back

and	the	A	and	D	keys	to	yaw	the	camera.	(Chapter

9		discusses	more	complex	cameras.	The	current	camera

is	a	simple	version	of	a	first-person	camera.)

The	sprite	elements	on	the	screen,	such	as	health	and

radar,	don’t	do	anything	yet.	They	are	onscreen	just	to

demonstrate	that	sprite	rendering	still	works.	Chapter	11,

“User	Interfaces,”	shows	how	to	implement	some	UI

features.

SUMMARY

This	chapter	covers	the	process	of	transitioning	from

a	2D	game	world	to	a	3D	game	world.	Actors	now

have	a	transform	with	a	3D	position	and	a

quaternion	for	rotations	about	an	arbitrary	axis.

A	3D	scene	also	needs	a	more	complex	view-projection

matrix.	Using	a	look-at	matrix	is	a	preferred	method	to

create	a	view	matrix.	A	projection	matrix	can	be	either

orthographic	or	perspective,	but	only	a	perspective

projection	gives	the	scene	depth.	3D	games	also	shy	away

from	using	the	painter’s	algorithm	and	instead	use	z-

buffering	to	determine	which	pixels	are	visible.

The	simple	gpmesh	file	format	contains	enough

information	to	create	vertex	and	index	buffers	for	3D

models	at	runtime—without	including	the	extraneous

data	of	a	complex	file	format.	The	MeshComponent	class

can	attach	to	any	actor	and	implements	3D	mesh

rendering	(through	the	shaders).

A	game	might	use	many	types	of	lights.	Ambient	and

directional	lights	affect	the	entire	scene,	while	point	and

spotlights	affect	only	certain	areas.	One	method	to

approximate	how	light	affects	the	scene	is	the	Phong

reflection	model.	The	Phong	model	has	three

components:	ambient,	diffuse,	and	specular.

ADDITIONAL	READING
Rendering	is	a	highly	specialized	area	of	game

programming,	and	excelling	in	rendering	requires	a

strong	foundation	in	mathematics.	There	are	many

excellent	resources	available.	Thomas	Akenine-

Moller’s	book,	although	somewhat	dated,	is	a

popular	reference	for	rendering	programmers—and

an	updated	fourth	edition	is	forthcoming.	Although

this	book	uses	OpenGL,	there	are	alternative

graphics	APIs.	For	PC	and	Xbox,	the	DirectX	API

dominates.	Frank	Luna’s	book	covers	how	to	use

DirectX	11.	Finally,	Matt	Pharr’s	text	is	an	excellent

overview	of	a	realistic	lighting	technique	called

physically	based	rendering.

Akenine-Moller,	Thomas,	Eric	Haines,	and

Naty	Hoffman.	Real-Time	Rendering,	3rd

edition.	Natick:	A	K	Peters,	2008.

Luna,	Frank.	Introduction	to	3D	Game

Programming	with	DirectX	11.	Dulles:

Mercury	Learning	and	Information,	2012.

Pharr,	Matt,	Wenzel	Jakob,	and	Greg

Humphreys.	Physically	Based	Rendering:

From	Theory	to	Implementation,	3rd

edition.	Cambridge:	Elsevier,	2017.

EXERCISES
This	chapter’s	exercises	involve	adding

improvements	to	the	game	project.	In	the	first

exercise	you	add	support	for	different	meshes

rendering	with	different	shaders.	In	the	second

exercise	you	add	point	lights,	which	provide	a	great

deal	of	flexibility	in	the	lighting	of	the	game.

Exercise	6.1

Modify	the	mesh	rendering	code	so	that	it’s	possible

to	draw	different	meshes	with	different	shaders.	This

means	storing	the	different	mesh	shaders	in	a	map

and	ensuring	that	each	shader	has	its	uniforms	set

properly.

However,	constantly	switching	between	shaders	is

inefficient.	To	solve	this,	group	mesh	components	by

their	corresponding	shader.	For	example,	if	there	are	10

meshes	drawn	with	the	BasicMesh	shader	and	5	drawn

with	the	Phong	shader,	the	code	shouldn’t	alternate

between	the	two	shaders	repeatedly.	Instead,	draw	all

meshes	that	use	BasicMesh	first	and	then	draw	all

meshes	that	use	Phong.

To	test	this,	modify	the	gpmesh	files	so	that	some	draw

with	BasicMesh	and	others	draw	with	Phong.	Remember

that	because	the	gpmesh	files	are	JSON,	you	can	use	any

text	editor	to	edit	them.

Exercise	6.2

Because	a	point	light	affects	a	limited	radius,	these

lights	can	add	a	lot	to	a	scene.	Modify	the	Phong

shader	so	that	it	also	supports	a	maximum	of	four

point	lights	in	the	scene.	Create	a	struct	for	point

lights	much	like	the	struct	for	directional	lights.	This

struct	needs	a	position	of	the	light,	diffuse	color,

specular	color,	specular	power,	and	a	radius	of

influence.	Then	create	an	array	of	point	lights	as	a

uniform.	(Arrays	work	in	GLSL	just	like	in	C/C++.)

The	Phong	equations	are	the	same,	except	the	code	now

needs	to	consider	all	lights	for	specular	and	diffuse.	In

addition,	a	point	light	should	affect	a	pixel	only	if	the

pixel	is	within	that	light’s	radius.	To	test	this,	create

different	point	lights	at	different	positions	and	with

different	colors.

CHAPTER	7

AUDIO

Though	sometimes	overlooked,	audio	is	an

important	part	of	games.	Whether	it’s	to

provide	audio	cues	for	gameplay	situations

or	enhance	the	overall	atmosphere,	quality

sound	adds	a	lot	to	games.

Leveraging	the	powerful	FMOD	API,	this

chapter	covers	how	to	bootstrap	an	audio

system	that	goes	well	beyond	simply	playing

sound	files.	Covered	topics	include	using

sound	events,	adding	positional	3D	audio,

mixing	sounds,	and	adding	effects.

BOOTSTRAPPING	AUDIO
A	rudimentary	game	audio	system	loads	and	plays

back	standalone	sound	files	(such	as	WAV	or	OGG

files)	as	needed.	Although	this	approach	is	functional

—and	might	be	perfectly	acceptable	for	a	simple	2D

game—it	has	limitations.	In	many	cases,	a	single

game	action	does	not	correspond	to	a	single	sound

file.	Suppose	a	game	features	a	character	that	runs

around.	Every	time	the	character’s	foot	hits	the

ground,	a	footstep	sound	should	play.	If	there	were

only	a	single	footstep	sound	file	played	repeatedly,	it

would	quickly	become	repetitive.

At	the	very	least,	rather	than	having	a	single	footstep

sound	file,	you	might	want	10	different	sound	files	for

variety.	Each	time	the	player	takes	a	step,	the	game

might	want	to	randomly	pick	one	of	these	10	footstep

sound	files.	Or	maybe	the	player	can	walk	on	different

surfaces,	and	a	footstep	on	grass	sounds	different	than	a

footstep	on	concrete.	In	this	case,	the	game	needs	a	way

to	choose	from	the	correct	set	of	footstep	sounds	based

on	the	surface	the	player	is	walking	on.

Another	consideration	is	that	the	game	can	only	play	a

limited	number	of	sounds	simultaneously.	You	use

sound	channels	to	track	the	sounds	that	are	playing,

and	there	is	some	limit	on	the	number	of	channels.

Imagine	a	game	where	there	are	several	enemies

onscreen	at	any	one	time.	If	each	enemy	individually

plays	footstep	sounds,	it	not	only	overwhelms	the	ear	of

the	player	but	may	also	take	up	all	available	channels.

Certain	sounds,	such	as	the	player	character	attacking

the	enemy,	are	far	more	important	than	an	enemy’s

footstep.	Different	sounds	might	therefore	need	different

priorities.

Now	consider	a	3D	game	with	a	fireplace.	Imagine	that

as	the	player	character	moves	through	the	game	world,

the	fireplace	sound	plays	at	the	same	volume	level	from

all	speakers.	It	doesn’t	matter	if	the	player	stands	right

next	to	the	fireplace	or	is	hundreds	of	feet	away;	the

sound	plays	at	the	same	level.	Not	only	is	this	annoying,

but	it’s	unrealistic.	The	game	needs	to	account	for	the

distance	between	the	player	and	the	fireplace	and

calculate	a	volume	based	on	this	distance.

So	even	though	games	need	sound	files	to	play	audio,

they	also	need	additional	information	to	play	these

sounds	correctly.	Ideally,	the	decision-making	power	of

what	sounds	“correct”	shouldn’t	be	the	audio

programmer’s.	Much	like	how	a	3D	artist	creates	models

in	a	specialized	modeling	program,	ideally	sound

designers	construct	dynamic	sounds	using	external	tools

designed	for	their	skill	sets.

FMOD

Designed	by	Firelight	Technologies,	FMOD

(https://fmod.com)	is	a	popular	sound	engine	for

video	games.	FMOD	supports	any	realistic	game

https://fmod.com

platform,	including	Windows,	Mac,	Linux,	iOS,

Android,	HTML5,	and	every	modern	console.	The

current	version	of	FMOD	has	two	distinct

components:	FMOD	Studio,	which	is	an	external

authoring	tool	for	sound	designers,	and	the	FMOD

API	(application	programming	interface),	which

integrates	into	games	that	use	FMOD.

The	FMOD	Studio	tool	grants	a	lot	of	power	to	sound

designers	and	can	implement	many	of	the	features

discussed	earlier.	A	sound	event	can	correspond	to	one

or	more	sound	files,	and	these	events	can	have

parameters	that	dynamically	drive	the	behavior	of	the

sound	events.	FMOD	Studio	also	allows	designers	to

control	how	the	different	sounds	mix	together.	For

example,	the	designer	can	place	music	and	sound	effects

on	separate	tracks	and	then	adjust	the	volume	of	the

tracks	separately.

notenote

This	chapter	doesn’t	cover	how	to	use	FMOD	Studio,	but	there	are	excellent
references	available	on	the	official	FMOD	website,	among	other	places.	For
interested	readers,	the	FMOD	Studio	project	file	used	for	the	audio	content	in
this	chapter	is	in	the	GitHub	repository,	in	the	FMODStudio/Chapter07
directory.

The	FMOD	API	has	two	parts.	The	FMOD	Low	Level	API

is	the	foundation	for	FMOD.	It	contains	functionality	to

load	and	play	sounds,	manage	channels,	update	sounds

in	a	3D	environment,	add	digital	effects	to	sound,	and

more.	It’s	possible	to	use	the	Low	Level	API	by	itself,	but

then	any	events	created	in	FMOD	Studio	are	not	usable.

Supporting	FMOD	Studio	requires	the	FMOD	Studio

API,	which	builds	on	the	Low	Level	API.	However,	using

the	FMOD	Studio	API	does	not	preclude	an	audio

programmer	from	accessing	the	Low	Level	API	if	needed.

For	the	most	part,	this	chapter	uses	the	FMOD	Studio

API.

Installing	FMOD

Because	of	FMOD’s	licensing	terms,	the	book’s

source	code	on	GitHub	does	not	include	the	FMOD

library	and	header	files.	Luckily,	FMOD	is	free	to

download	and	has	very	favorable	licensing	terms	for

commercial	projects.	(See	the	FMOD	site	for	details.)

To	download	the	FMOD	library,	go	to	the	FMOD	site

(https://fmod.com)	and	create	an	account.

Once	you	have	an	account	on	the	FMOD	website,	click

the	Download	link.	From	here,	find	the	downloads	for

the	FMOD	Studio	API.	Make	sure	you	select	the	version

1.09.09	from	the	Version	dropdown.	(Version	1.10.x	or

newer	may	not	work	with	this	chapter’s	code.)	Next,

select	Windows	if	you’re	developing	on	Windows	or	Mac

if	you’re	developing	on	Mac.

On	Windows,	run	the	installer	and	choose	the	default

installation	directories.	Choosing	a	different	directory

doesn’t	work	out	of	the	box	because	the	Visual	Studio

project	file	points	directly	to	the	default	directories.

However,	if	you	really	want	to	install	the	FMOD	API	to

another	directory,	you	can	change	the	project	file	(which

means	changing	the	include	directories,	the	library

directories,	and	the	post-build	step	that	copies	DLL	files

https://fmod.com

to	the	executable	directory).

On	Mac,	the	FMOD	API	download	is	a	DMG	package	file.

Open	this	package	file	and	copy	all	its	contents	into	the

External/FMOD	directory	in	your	copy	of	the	book’s

source	code.	You	should	end	up	with	an

External/FMOD/FMOD	Programmers	API	directory

after	copying.

To	make	sure	the	installation	worked	properly,	try

opening	the	Chapter07/Chapter07-Windows.sln

file	on	a	PC	or	Chapter07-mac.xcodeproj	on	a	Mac

and	make	sure	you	can	compile	and	run	the	code.

notenote

With	the	exception	of	Chapter	8,	“Input	Systems,”	every	chapter	after	this
one	also	uses	the	audio	code	from	this	chapter.	Therefore,	it’s	important	to
ensure	that	you	install	FMOD	properly,	or	none	of	the	subsequent	chapters’
projects	will	run.

Creating	an	Audio	System

Much	as	the	Renderer	class	is	separate	from	the

Game,	it’s	sensible	to	create	a	new	AudioSystem

class	that	handles	audio.	This	helps	ensure	that	the

FMOD	API	calls	aren’t	all	over	the	codebase.

Listing	7.1	shows	the	initial	declaration	of

AudioSystem.	The	declarations	of	the	Initialize,

Shutdown,	and	Update	functions	are	standard	at	this

point.	The	member	variables	include	pointers	to	the

FMOD	Studio	system	as	well	as	the	Low	Level	API

system.	You’ll	mostly	use	the	mSystem	pointer,	but	this

listing	includes	a	mLowLevelSystem	pointer	as	well.

Listing	7.1	Initial	AudioSystem	Declaration

Click	here	to	view	code	image

class	AudioSystem

{

public:

			AudioSystem(class	Game*	game);

			~AudioSystem();

	

			bool	Initialize();

			void	Shutdown();

			void	Update(float	deltaTime);

private:

			class	Game*	mGame;

			//	FMOD	studio	system

			FMOD::Studio::System*	mSystem;

			//	FMOD	Low-level	system	(in	case	needed)

			FMOD::System*	mLowLevelSystem;

};

The	header	fmod_studio.hpp	defines	the	FMOD

Studio	API	types.	However,	to	avoid	this	include,

AudioSystem.h	instead	creates	forward	declarations	of

the	FMOD	types.	This	way,	you	only	need	to	include	the

FMOD	header	in	AudioSystem.cpp.

Initializing	FMOD,	which	is	handled	in

AudioSystem::Initialize,	involves	several	steps.

First,	call	Debug_Initialize	to	set	up	error	logging:

Click	here	to	view	code	image

FMOD::Debug_Initialize(

			FMOD_DEBUG_LEVEL_ERROR,	//	Log	only	errors

			FMOD_DEBUG_MODE_TTY	//	Output	to	stdout

);

The	first	parameter	to	Debug_Initialize	controls	the

verbosity	of	the	logging	messages.	(The	default	is	quite

verbose.)	The	second	parameter	specifies	where	to	write

log	messages.	In	this	case,	log	messages	write	to	stdout.

For	games	that	have	custom	debug	code,	it’s	also

possible	to	declare	a	custom	callback	function	for	all

FMOD	log	messages.

notenote

Initializing	debug	logging	is	relevant	only	if	you’re	using	the	logging	build	of
FMOD,	as	is	the	case	in	this	chapter.	Enabling	error	logging	is	extremely
useful	during	development,	but	a	shipped	version	of	a	game	shouldn’t
include	logging.

Next,	construct	an	instance	of	an	FMOD	Studio	system

with	this	code:

Click	here	to	view	code	image

FMOD_RESULT	result;

result	=	FMOD::Studio::System::create(&mSystem);

if	(result	!=	FMOD_OK)

{

			SDL_Log("Failed	to	create	FMOD	system:	%s",

						FMOD_ErrorString(result));

			return	false;

}

Note	that	the	function	call	returns	an	FMOD_RESULT.	An

FMOD	function	always	returns	a	result	value	to	let	the

caller	know	if	everything	went	okay.	The

FMOD_ErrorString	function	converts	the	error	code

into	a	human-readable	message.	In	this	case,	if	the

system	fails	to	create,	AudioSystem::Initialize

returns	false.

After	constructing	the	system,	the	next	step	is	to	call

initialize	on	the	FMOD	system:

Click	here	to	view	code	image

result	=	mSystem->initialize(

			512,																					//	Max	number	of	concurrent	sounds

			FMOD_STUDIO_INIT_NORMAL,	//	Use	default	settings

			FMOD_INIT_NORMAL,								//	Use	default	settings

			nullptr																		//	Usually	null

);

//	Validate	result	==	FMOD_OK...

The	first	parameter	here	specifies	the	maximum	number

of	channels.	The	next	two	parameters	can	adjust	the

behavior	of	both	the	FMOD	Studio	and	FMOD	Low	Level

APIs.	For	now,	stick	to	the	default	parameters.	You	use

the	last	parameter	if	you	want	to	use	extra	driver	data,

but	because	you	usually	don’t,	this	parameter	usually	is

nullptr.

notenote

FMOD	uses	a	naming	convention	in	which	member	functions	begin	with	a
lowercase	letter.	This	is	different	from	this	book’s	naming	convention,	which
uses	an	uppercase	letter	for	the	first	letter	of	a	member	function.

Finally,	you	grab	and	save	the	Low	Level	system	pointer

to	complete	initialization:

Click	here	to	view	code	image

mSystem	->getLowLevelSystem(&mLowLevelSystem);

For	now,	AudioSystem’s	Shutdown	and	Update

functions	each	make	a	single	function	call.	Shutdown

calls	mSystem	->release(),	while	Update	calls

mSystem	->update().	FMOD	requires	calling	the

update	function	once	per	frame.	This	function	performs

actions	such	as	updating	3D	audio	calculations.

As	with	Renderer,	you	then	add	an	AudioSystem

pointer	as	a	member	variable	to	Game:

Click	here	to	view	code	image

class	AudioSystem*	mAudioSystem;

Game::Initialize	then	creates	and	calls

mAudioSystem	->Initialize(),	UpdateGame	calls

mAudioSystem	->Update(deltTime),	and

Shutdown	calls	mAudioSystem	->Shutdown.

For	convenience,	a	Game::GetAudioSystem	function

returns	the	AudioSystem	pointer.

With	these	functions,	FMOD	now	initializes	and	updates.

Of	course,	no	sounds	are	playing	yet.

Banks	and	Events

In	FMOD	Studio,	events	correspond	to	sounds

played	in	the	game.	An	event	can	have	multiple

associated	sound	files,	parameters,	information

about	the	event’s	timing,	and	so	on.	Rather	than	play

back	sound	files	directly,	the	game	plays	these

events.

A	bank	is	a	container	for	events,	sample	data,	and

streaming	data.	Sample	data	is	the	raw	audio	data	that

events	reference.	This	data	comes	from	the	sound	files

that	the	sound	designer	imports	into	FMOD	Studio	(such

as	WAV	or	OGG	files).	At	runtime,	sample	data	is	either

preloaded	or	loaded	on	demand.	However,	an	event

cannot	play	until	its	associated	sample	data	is	in

memory.	Most	in-game	sound	effects	use	sample	data.

Streaming	data	is	sample	data	that	streams	into

memory	in	small	pieces	at	a	time.	Events	using

streaming	data	can	start	playing	without	preloading	the

data.	Music	and	dialogue	files	typically	use	streaming

data.

A	sound	designer	creates	one	or	more	banks	in	FMOD

Studio.	Then	the	game	runtime	needs	to	load	in	these

banks.	After	it	loads	the	banks,	the	events	contained

within	are	accessible.

There	are	two	different	classes	associated	with	events	in

FMOD.	EventDescription	contains	information

about	an	event,	such	as	its	associated	sample	data,

volume	settings,	parameters,	and	so	on.

EventInstance	is	an	active	instance	of	an	event,	and	it

is	what	plays	the	event.	In	other	words,

EventDescription	is	like	a	type	of	event,	while

EventInstance	is	an	instance	of	that	type.	For

example,	if	there’s	an	explosion	event,	it	will	globally

have	one	EventDescription,	but	it	can	have	any

number	of	EventInstances	based	on	the	number	of

active	explosion	instances.

To	track	loaded	banks	and	events,	you	add	two	maps	to

the	private	data	in	AudioSystem:

Click	here	to	view	code	image

//	Map	of	loaded	banks

std::unordered_map<std::string,	FMOD::Studio::Bank*>	mBanks;

//	Map	of	event	name	to	EventDescription

std::unordered_map<std::string,	FMOD::Studio::EventDescription*>	mEvents;

Both	maps	have	strings	for	their	keys.	The	string	in

mBanks	is	the	filename	of	the	bank,	while	the	string	in

mEvents	is	the	name	assigned	by	FMOD	for	the	event.

FMOD	events	have	names	in	the	form	of	a	path—for

example,	event:/Explosion2D.

Loading/Unloading	Banks
Loading	a	bank	minimally	requires	calling	the

loadBank	function	on	the	mSystem	object.

However,	this	does	not	load	the	sample	data	and

does	not	give	easy	access	to	the	event	descriptions.	It

makes	sense	to	create	a	new	function	in

AudioSystem	called	LoadBank,	as	shown	in	Listing

7.2,	that	does	a	bit	more	than	the	minimum

loadBank	call.	Once	the	bank	loads,	you	add	the

bank	to	the	mBanks	map.	You	then	load	the	sample

data	for	the	bank.	Then	use	getEventCount	and

getEventList	to	get	the	list	of	all	event

descriptions	in	the	bank.	Finally,	you	add	each	of

these	event	descriptions	to	the	mEvents	map	so	they

are	easily	accessible.

Listing	7.2	AudioSystem::LoadBank

Implementation

Click	here	to	view	code	image

void	AudioSystem::LoadBank(const	std::string&	name)

{

			//	Prevent	double-loading

			if	(mBanks.find(name)	!=	mBanks.end())

			{

						return;

			}

	

			//	Try	to	load	bank

			FMOD::Studio::Bank*	bank	=	nullptr;

			FMOD_RESULT	result	=	mSystem	->loadBankFile(

						name.c_str(),	//	File	name	of	bank

						FMOD_STUDIO_LOAD_BANK_NORMAL,	//	Normal	loading

						&bank	//	Save	pointer	to	bank

);

			const	int	maxPathLength	=	512;

			if	(result	==	FMOD_OK)

			{

						//	Add	bank	to	map

						mBanks.emplace(name,	bank);

						//	Load	all	non-streaming	sample	data

						bank	->loadSampleData();

						//	Get	the	number	of	events	in	this	bank

						int	numEvents	=	0;

						bank	->getEventCount(&numEvents);

						if	(numEvents	>	0)

						{

									//	Get	list	of	event	descriptions	in	this	bank

									std::vector<FMOD::Studio::EventDescription*>	events(numEvents);

									bank	->getEventList(events.data(),	numEvents,	&numEvents);

									char	eventName[maxPathLength];

									for	(int	i	=	0;	i	<	numEvents;	i++)

									{

												FMOD::Studio::EventDescription*	e	=	events[i];

												//	Get	the	path	of	this	event	(like	event:/Explosion2D)

												e	->getPath(eventName,	maxPathLength,	nullptr);

												//	Add	to	event	map

												mEvents.emplace(eventName,	e);

									}

						}

			}

}

Similarly,	you	create	an	AudioSystem::UnloadBank

function.	This	function	first	removes	all	the	bank’s	events

from	the	mEvents	banks,	unloads	the	sample	data,

unloads	the	bank,	and	removes	the	bank	from	the

mBanks	map.

For	easy	cleanup,	you	also	create	an

AudioSystem::UnloadAllBanks	function.	This

function	just	unloads	all	banks	and	clears	out	mEvents

and	mBanks.

Every	FMOD	Studio	project	has	two	default	bank	files

named	"Master	Bank.bank"	and	"Master

Bank.strings.bank".	The	FMOD	Studio	runtime

does	not	have	access	to	any	other	banks	or	events	unless

it	loads	in	the	two	master	banks	first.	Because	the	master

banks	always	exist,	you	load	them	in

AudioSystem::Initialize	with	the	following	code:

Click	here	to	view	code	image

//	Load	the	master	banks	(strings	first)

LoadBank("Assets/Master	Bank.strings.bank");

LoadBank("Assets/Master	Bank.bank");

Note	how	the	code	loads	the	master	strings	bank	first.

The	master	strings	bank	is	a	special	bank	that	contains

the	human-readable	names	of	all	events	and	other	data

in	the	FMOD	Studio	project.	If	you	don’t	load	this	bank,

the	names	are	inaccessible	in	code.	Without	the	names,

the	code	needs	to	use	GUIDs	(globally	unique	IDs)	to

access	all	the	FMOD	Studio	data.	This	means	that,

technically,	loading	the	master	strings	bank	is	optional,

but	loading	the	strings	makes	the	AudioSystem	easier

to	implement.

Creating	and	Playing	Event	Instances
Given	an	FMOD	EventDescription,	the

createInstance	member	function	creates	an

FMOD	EventInstance	for	that	event.	Once	you

have	an	EventInstance,	the	start	function

begins	playing	it.	So,	a	first	pass	of	a	PlayEvent

function	in	AudioSystem	might	look	like	this:

Click	here	to	view	code	image

void	AudioSystem::PlayEvent(const	std::string&	name)

{

			//	Make	sure	event	exists

			auto	iter	=	mEvents.find(name);

			if	(iter	!=	mEvents.end())

			{

						//	Create	instance	of	event

						FMOD::Studio::EventInstance*	event	=	nullptr;

						iter	->second	->createInstance(&event);

						if	(event)

						{

									//	Start	the	event	instance

									event	->start();

									//	Release	schedules	destruction	of	the	event

									//	instance	when	it	stops.

									//	(Non-looping	events	automatically	stop.)

									event	->release();

						}

			}

}

Although	this	version	of	PlayEvent	is	simple	to	use,	it

does	not	expose	much	FMOD	functionality.	For	example,

if	the	event	is	a	looping	event,	there’s	no	way	to	stop	the

event.	There’s	also	no	way	to	set	any	event	parameters,

change	the	volume	of	the	event,	and	so	on.

It	might	be	tempting	to	return	the	EventInstance

pointer	directly	from	PlayEvent.	Then,	the	caller	can

access	all	the	FMOD	member	functions.	However,	this	is

not	ideal	because	it	exposes	FMOD	API	calls	outside	the

audio	system.	This	means	that	any	programmer	who

wants	to	simply	play	and	stop	sounds	would	need	some

knowledge	of	the	FMOD	API.

Exposing	the	raw	pointer	also	might	be	dangerous

because	of	the	way	FMOD	cleans	up	memory	for	event

instances.	After	calling	the	release	function,	FMOD

destroys	the	event	sometime	after	the	event	stops.	If	a

caller	has	access	to	the	EventInstance	pointer,

dereferencing	it	after	destruction	might	cause	a	memory

access	violation.	Skipping	the	release	call	is	also	not	a

great	idea	because	then	the	system	will	leak	memory

over	time.	Therefore,	you	need	a	more	robust	solution.

The	SoundEvent	Class

Rather	than	directly	return	an	EventInstance

pointer	from	PlayEvent,	you	can	track	each	active

event	instance	via	an	integer	ID.	Next,	you	can	create

a	new	class	called	SoundEvent	that	allows

manipulation	of	the	active	events,	using	the	integer

IDs	to	reference	events.	PlayEvent	then	returns	an

instance	of	SoundEvent.

To	track	event	instances,	AudioSystem	needs	a	new

map	of	unsigned	integers	to	event	instances:

Click	here	to	view	code	image

std::unordered_map<unsigned	int,

			FMOD::Studio::EventInstance*>	mEventInstances;

You	also	add	a	static	sNextID	variable	that’s	initialized

to	0.	Each	time	PlayEvent	creates	an	event	instance,	it

increments	sNextID	and	adds	the	event	instance	to	the

map	with	that	new	ID.	Then	PlayEvent	returns	a

SoundEvent	with	the	associated	ID,	as	in	Listing	7.3.

(The	declaration	of	SoundEvent	is	forthcoming.)

Listing	7.3	AudioSystem::PlayEvent

Implementation	with	Event	IDs

Click	here	to	view	code	image

SoundEvent	AudioSystem::PlayEvent(const	std::string&	name)

{

			unsigned	int	retID	=	0;

			auto	iter	=	mEvents.find(name);

			if	(iter	!=	mEvents.end())

			{

						//	Create	instance	of	event

						FMOD::Studio::EventInstance*	event	=	nullptr;

						iter->second->createInstance(&event);

						if	(event)

						{

									//	Start	the	event	instance

									event->start();

									//	Get	the	next	id,	and	add	to	map

	

									sNextID++;

									retID	=	sNextID;

									mEventInstances.emplace(retID,	event);

						}

			}

			return	SoundEvent(this,	retID);

}

Because	sNextID	is	an	unsigned	int,	IDs	start

repeating	after	more	than	4	billion	calls	to	PlayEvent.

This	should	not	be	an	issue,	but	it’s	something	to	keep	in

mind.

Note	that	PlayEvent	no	longer	calls	release	on	the

event	instance.	Instead,	AudioSystem::Update	now

handles	cleaning	up	event	instances	that	are	no	longer

needed.	Every	frame,	Update	checks	the	playback	state

of	each	event	instance	in	the	map	by	using

getPlayBackState.	It	releases	any	event	instances	in

the	stopped	state	and	then	removes	them	from	the	map.

This	assumes	that	stopping	an	event	means	freeing	it	is

okay.	A	caller	who	wants	to	keep	an	event	around	can

pause	it	instead	of	stopping	it.	Listing	7.4	shows	the

implementation	of	Update.

Listing	7.4	AudioSystem::Update	Implementation

with	Event	IDs

Click	here	to	view	code	image

void	AudioSystem::Update(float	deltaTime)

{

			//	Find	any	stopped	event	instances

			std::vector<unsigned	int>	done;

			for	(auto&	iter	:	mEventInstances)

			{

						FMOD::Studio::EventInstance*	e	=	iter.second;

						//	Get	the	state	of	this	event

						FMOD_STUDIO_PLAYBACK_STATE	state;

						e->getPlaybackState(&state);

						if	(state	==	FMOD_STUDIO_PLAYBACK_STOPPED)

						{

									//	Release	the	event	and	add	id	to	done

									e->release();

									done.emplace_back(iter.first);

						}

			}

			//	Remove	done	event	instances	from	map

			for	(auto	id	:	done)

			{

						mEventInstances.erase(id);

			}

			//	Update	FMOD

			mSystem->update();

}

Next,	you	add	a	GetEventInstance	helper	function	to

AudioSystem	that	takes	in	an	ID.	If	the	ID	exists	in	the

map,	this	function	returns	the	corresponding

EventInstance	pointer.	Otherwise,

GetEventInstance	returns	nullptr.	To	prevent

every	class	from	accessing	event	instances,

GetEventInstance	is	in	the	protected	section	of

AudioSystem.	But	because	SoundEvent	needs	access

to	this	function,	SoundEvent	is	declared	as	a	friend	of

AudioSystem.

Listing	7.5	gives	the	declaration	of	SoundEvent.	Most

notably,	its	member	data	includes	a	pointer	to	the

AudioSystem	and	the	ID.	Note	that	while	the	default

constructor	is	public,	the	constructor	with	parameters	is

protected.	Because	AudioSystem	is	a	friend	of

SoundEvent,	only	AudioSystem	has	access	to	this

constructor.	This	ensures	that	only	AudioSystem	can

assign	IDs	to	SoundEvents.	The	rest	of	the	functions	in

SoundEvent	are	wrappers	for	various	event	instance

functionality,	such	as	pausing	sound	events,	changing

their	volume,	and	setting	event	parameters.

Listing	7.5	SoundEvent	Declaration

Click	here	to	view	code	image

class	SoundEvent

{

public:

			SoundEvent();

			//	Returns	true	if	associated	FMOD	event	instance	exists

			bool	IsValid();

			//	Restart	event	from	beginning

			void	Restart();

			//	Stop	this	event

			void	Stop(bool	allowFadeOut	=	true);

			//	Setters

			void	SetPaused(bool	pause);

			void	SetVolume(float	value);

			void	SetPitch(float	value);

			void	SetParameter(const	std::string&	name,	float	value);

			//	Getters

			bool	GetPaused()	const;

			float	GetVolume()	const;

			float	GetPitch()	const;

			float	GetParameter(const	std::string&	name);

protected:

			//	Make	this	constructor	protected	and	AudioSystem	a	friend

			//	so	that	only	AudioSystem	can	access	this	constructor.

			friend	class	AudioSystem;

			SoundEvent(class	AudioSystem*	system,	unsigned	int	id);

private:

			class	AudioSystem*	mSystem;

			unsigned	int	mID;

};

The	implementations	for	most	of	the	SoundEvent

member	functions	have	very	similar	syntax.	They	call

GetEventInstance	to	get	an	EventInstance	pointer

and	then	call	some	function	on	the	EventInstance.

For	example,	the	implementation	of

SoundEvent::SetPaused	is	as	follows:

Click	here	to	view	code	image

void	SoundEvent::SetPaused(bool	pause)

{

			auto	event	=	mSystem	?

						mSystem->GetEventInstance(mID)	:	nullptr;

			if	(event)

			{

						event->setPaused(pause);

			}

}

Note	how	the	code	validates	that	both	the	mSystem	and

event	pointer	are	non-null.	This	ensures	that	even	if	the

ID	is	not	in	the	map,	the	function	will	not	crash.

Similarly,	the	SoundEvent::IsValid	function	returns

true	only	if	mSystem	is	non-null	and	the	ID	is	in	the

event	instance	map	in	AudioSystem.

With	this	code	hooked	up,	it’s	now	possible	to	control

events	after	they	start	playing.	For	example,	the

following	starts	playing	an	event	called	Music	and	saves

the	SoundEvent	in	mMusicEvent:

Click	here	to	view	code	image

mMusicEvent	=	mAudioSystem	->PlayEvent("event:/Music");

Elsewhere,	you	can	toggle	the	pause	state	of	the	music

event	with	this:

Click	here	to	view	code	image

mMusicEvent.SetPaused(!mMusicEvent.GetPaused());

With	the	addition	of	SoundEvent,	you	now	have	a

reasonable	integration	of	FMOD	for	2D	audio.

3D	POSITIONAL	AUDIO
For	3D	games,	most	sound	effects	are	positional.

This	means	that	an	object	in	the	world,	such	as	a

fireplace,	emits	a	sound.	The	game	has	a	listener,

or	a	virtual	microphone,	that	picks	up	this	sound.	For

example,	if	the	listener	faces	the	fireplace,	it	should

sound	like	the	fireplace	is	in	front.	Similarly,	if	the

listener	has	his	or	her	back	to	the	fireplace,	the

fireplace	should	sound	like	it’s	behind.

Positional	audio	also	means	that	as	the	listener	gets

farther	away	from	a	sound,	the	volume	of	the	sound

decreases,	or	attenuates.	A	falloff	function	describes

how	the	volume	of	the	sound	attenuates	as	the	listener

gets	farther	away.	In	FMOD	Studio,	3D	sound	events	can

have	user-configurable	falloff	functions.

The	effect	of	positional	audio	is	most	apparent	in	a

surround	sound	configuration	where	there	are	more

than	two	speakers	as	output	devices.	For	example,	the

common	5.1	configuration	(see	Figure	7.1)	features

front-left,	front-center,	front-right,	back-left,	and	back-

right	speakers	as	well	as	a	subwoofer	(or	LFE)	for	low

frequency	sounds.	For	the	example	of	the	in-game

fireplace,	if	the	player	faces	the	fireplace	on	screen,	he	or

she	expects	the	sound	to	come	out	of	the	front	speakers.

Figure	7.1	A	5.1	surround	sound	configuration

Luckily,	FMOD	has	built-in	support	for	positional	audio.

To	integrate	this	into	a	game,	you	must	provide	position

and	orientation	data	for	both	the	listener	and	any	active

3D	event	instances.	There	are	three	parts	to	this:	setting

up	the	listener,	adding	positional	functionality	to

SoundEvent,	and	creating	an	AudioComponent	to

associate	actors	with	sound	events.

Setting	Up	a	Basic	Listener

A	common	approach	is	to	use	the	camera	as	the

listener.	In	this	case,	the	position	of	the	listener	is	the

position	of	the	camera	in	the	world,	and	the

orientation	of	the	listener	is	the	orientation	of	the

camera.	This	approach	works	great	for	games	with	a

first-person	camera,	such	as	this	chapter’s	game

project.	However,	third-person	cameras	have

additional	issues	to	consider,	as	discussed	later	in

this	section.

A	trap	to	watch	out	for	when	using	any	3D	positional

audio	library	(not	just	FMOD)	is	that	the	library	may	use

a	different	coordinate	system	than	the	game.	For

example,	FMOD	uses	a	left-handed	coordinate	system

with	+z	forward,	+x	right,	and	+y	up.	However,	our	game

uses	a	left-handed	coordinate	system	with	+x	forward,

+y	right,	+z	up.	So,	when	passing	position	and	directions

from	the	game	to	FMOD,	you	must	convert	the

coordinates.	This	just	involves	switching	around	some

components	when	converting	between	a	Vector3	and

FMOD’s	vector	type,	FMOD_VECTOR.	To	help	with	this,

declare	a	VecToFMOD	helper	function:

Click	here	to	view	code	image

FMOD_VECTOR	VecToFMOD(const	Vector3&	in)

{

			//	Convert	from	our	coordinates	(+x	forward,	+y	right,	+z	up)

			//	to	FMOD	(+z	forward,	+x	right,	+y	up)

			FMOD_VECTOR	v;

			v.x	=	in.y;

			v.y	=	in.z;

			v.z	=	in.x;

			return	v;

}

Next,	you	add	a	function	called	SetListener	to

AudioSystem.	This	function,	as	shown	in	Listing	7.6,

takes	in	the	view	matrix	and	sets	the	listener’s	position,

forward,	and	up	vectors	from	the	view.	This	means	the

same	code	that	sets	the	renderer’s	view	matrix	can	also

call	SetListener.	This	process	involves	a	little	bit	of

math.	Recall	that	the	view	matrix	transforms	from	world

space	to	view	space.	However,	the	listener	requires	a

world	space	position	and	orientation.

Extracting	this	information	from	the	view	matrix

requires	several	steps.	First,	you	invert	the	view	matrix.

Given	this	inverted	view	matrix,	the	first	three

components	of	the	fourth	row	(returned	by

GetTranslation)	correspond	to	the	world	space

position	of	the	camera.	The	first	three	components	of	the

third	row	(returned	by	GetZAxis)	correspond	to	the

forward	vector,	and	the	first	three	components	of	the

second	row	(returned	by	GetYAxis)	correspond	to	the

up	vector.	You	use	VecToFMOD	on	all	three	of	these

vectors	to	convert	them	to	the	FMOD	coordinate	system.

Listing	7.6	AudioSystem::SetListener

Implementation

Click	here	to	view	code	image

void	AudioSystem::SetListener(const	Matrix4&	viewMatrix)

{

			//	Invert	the	view	matrix	to	get	the	correct	vectors

			Matrix4	invView	=	viewMatrix;

			invView.Invert();

			FMOD_3D_ATTRIBUTES	listener;

			//	Set	position,	forward,	up

			listener.position	=	VecToFMOD(invView.GetTranslation());

			//	In	the	inverted	view,	third	row	is	forward

			listener.forward	=	VecToFMOD(invView.GetZAxis());

			//	In	the	inverted	view,	second	row	is	up

			listener.up	=	VecToFMOD(invView.GetYAxis());

			//	Set	velocity	to	zero	(fix	if	using	Doppler	effect)

			listener.velocity	=	{0.0f,	0.0f,	0.0f};

			//	Send	to	FMOD	(0	=	only	one	listener)

			mSystem->setListenerAttributes(0,	&listener);

}

Note	that	SetListener	currently	sets	the	velocity

parameter	of	FMOD_3D_ATTRIBUTES	to	all	zeros.	The

velocity	parameter	matters	only	when	enabling	the

Doppler	effect	on	sound	events,	as	discussed	later	in	this

section.

Adding	Positional	Functionality	to
SoundEvent

Each	EventInstance	has	3D	attributes	that

describe	its	world	position	and	orientation.	It	makes

sense	to	integrate	this	into	the	existing	SoundEvent

class	with	two	new	functions,	Is3D	and

Set3DAttributes,	both	in	Listing	7.7.

When	you	create	a	sound	event	in	FMOD	Studio,	the

event	can	be	2D	or	3D.	The	Is3D	function	returns	true

if	the	event	is	3D,	and	it	returns	false	otherwise.

The	Set3DAttributes	function	takes	in	a	world

transform	matrix	and	converts	it	into	FMOD’s	3D

attributes.	This	makes	it	simple	to	pass	in	the	world

transform	matrix	of	an	Actor	to	update	the	position	and

orientation	of	the	event.	Note	that	this	function	does	not

need	to	invert	the	matrix	because	the	matrix	is	already	in

world	space.	However,	it’s	still	necessary	to	convert

between	the	game	and	FMOD	coordinate	systems.

Listing	7.7	SoundEvent’s	Is3D	and

Set3DAttributes	Implementation

Click	here	to	view	code	image

bool	SoundEvent::Is3D()	const

{

			bool	retVal	=	false;

			auto	event	=	mSystem	?	mSystem->GetEventInstance(mID)	:	nullptr;

			if	(event)

			{

						//	Get	the	event	description

						FMOD::Studio::EventDescription*	ed	=	nullptr;

						event->getDescription(&ed);

						if	(ed)

						{

									ed->is3D(&retVal);	//	Is	this	3D?

						}

			}

			return	retVal;

}

	

void	SoundEvent::Set3DAttributes(const	Matrix4&	worldTrans)

{

			auto	event	=	mSystem	?	mSystem->GetEventInstance(mID)	:	nullptr;

			if	(event)

			{

						FMOD_3D_ATTRIBUTES	attr;

						//	Set	position,	forward,	up

						attr.position	=	VecToFMOD(worldTrans.GetTranslation());

						//	In	world	transform,	first	row	is	forward

						attr.forward	=	VecToFMOD(worldTrans.GetXAxis());

						//	Third	row	is	up

						attr.up	=	VecToFMOD(worldTrans.GetZAxis());

						//	Set	velocity	to	zero	(fix	if	using	Doppler	effect)

						attr.velocity	=	{	0.0f,	0.0f,	0.0f	};

						event->set3DAttributes(&attr);

			}

}

Creating	an	AudioComponent	to	Associate
Actors	with	Sound	Events

The	premise	behind	an	AudioComponent	class	is	to

associate	sound	events	with	specific	actors.	This	way,

when	the	actor	moves,	AudioComponent	can

update	the	associated	event’s	3D	attributes.

Furthermore,	if	an	actor	dies,	any	sound	events

associated	with	the	actor	can	stop.

Listing	7.8	gives	the	declaration	of	AudioComponent.

Note	that	it	has	two	different	std::vector	collections:

one	for	2D	events	and	one	for	3D	events.	The	only

member	functions	not	inherited	from	Component	are

PlayEvent	and	StopAllEvents.

Listing	7.8	AudioComponent	Declaration

Click	here	to	view	code	image

class	AudioComponent	:	public	Component

			AudioComponent(class	Actor*	owner,	int	updateOrder	=	200);

			~AudioComponent();

	

			void	Update(float	deltaTime)	override;

			void	OnUpdateWorldTransform()	override;

	

			SoundEvent	PlayEvent(const	std::string&	name);

			void	StopAllEvents();

private:

			std::vector<SoundEvent>	mEvents2D;

			std::vector<SoundEvent>	mEvents3D;

};

The	AudioComponent::PlayEvent	function	first	calls

PlayEvent	on	the	AudioSystem.	You	then	check

whether	the	event	is	3D	to	determine	which	of	the	two

vectors	should	store	the	SoundEvent.	Finally,	if	the

event	is	3D,	call	Set3DAttributes	on	it:

Click	here	to	view	code	image

SoundEvent	AudioComponent::PlayEvent(const	std::string&	name)

{

			SoundEvent	e	=	mOwner->GetGame()->GetAudioSystem()->PlayEvent(name);

			//	Is	this	2D	or	3D?

			if	(e.Is3D())

			{

						mEvents3D.emplace_back(e);

						//	Set	initial	3D	attributes

						e.Set3DAttributes(mOwner->GetWorldTransform());

			}

			else

			{

						mEvents2D.emplace_back(e);

			}

			return	e;

}

The	AudioComponent::Update	function	(omitted

here)	removes	any	of	the	events	in	mEvents2D	or

mEvents3D	that	are	no	longer	valid.	(IsValid	returns

false.)

Next,	you	add	an	override	of

OnUpdateWorldTransform.	Recall	that	every	time	the

owning	actor	computes	its	world	transform	matrix,	it

notifies	each	component	by	calling	this	function.	For	the

AudioComponent,	it	needs	to	update	the	3D	attributes

of	any	3D	events	in	mEvents3D	every	time	the	world

transform	changes:

Click	here	to	view	code	image

void	AudioComponent::OnUpdateWorldTransform()

{

			Matrix4	world	=	mOwner->GetWorldTransform();

			for	(auto&	event	:	mEvents3D)

			{

						if	(event.IsValid())

						{

									event.Set3DAttributes(world);

						}

			}

}

Finally,	AudioComponent::StopAllEvents	(also

omitted	here)	simply	calls	stop	on	every	event	in	both

vectors	and	clears	out	the	vectors.	The	destructor	of

AudioComponent	calls	this	function,	but	there	may	be

other	situations	in	which	a	game	wants	to	just	stop	the

sound	events	for	an	actor.

With	these	additions,	you	can	attach	an

AudioComponent	to	an	actor	and	play	sound	events	on

the	audio	component.	The	AudioComponent	then

automatically	updates	the	3D	attributes	of	the	associated

events	as	needed.

The	Listener	in	a	Third-Person	Game

The	listener	directly	using	the	camera	position	and

orientation	works	great	for	first-person	games	where

the	camera	is	from	the	perspective	of	the	player’s

character.	However,	things	are	not	quite	as	simple

for	a	third-person	game	where	the	camera	follows

the	player	character.	Figure	7.2	illustrates	the	side

view	of	a	third-person	game.	The	player	character	is

at	position	P,	and	the	camera	is	at	position	C.

Position	A	represents	a	sound	effect	right	next	to	the

player	character.	Position	B	is	a	sound	effect	close	to

the	camera.

Figure	7.2	Sound	effects	in	a	third-person	game

Now	suppose	the	listener	uses	the	camera	position	and

orientation,	as	in	the	preceding	code.	In	this	case,	both

sounds	A	and	B	will	sound	like	they’re	in	front.	This	is

good	because	both	sound	effects	are	visible	onscreen,	so

you	as	the	player	should	perceive	the	sounds	in	front.

However,	sound	B	will	sound	closer	than	sound	A.	This

seems	weird	because	you	expect	sounds	right	next	to	the

player	to	be	louder.	And	even	if	there	were	no	sound	B,

any	sounds	right	next	to	(or	even	on)	the	player	will

always	have	some	attenuation	applied	to	them,	which

may	be	frustrating	for	the	sound	designer.

If	instead	the	listener	uses	the	player	position	and

orientation,	then	sound	A	will	be	louder	than	sound	B.

However,	sound	B	then	sounds	like	it’s	behind	because

it’s	positioned	behind	the	player.	This	is	very	weird

because	the	sound	is	onscreen,	so	you	expect	it	to	sound

like	it’s	in	front.

What	you	effectively	want	is	an	attenuation	based	on	the

player	position	but	an	orientation	based	on	the	camera.

Guy	Somberg	describes	a	great	solution	to	this	problem

(his	book	is	listed	in	the	“Additional	Reading”	section	at

the	end	of	the	chapter),	which	involves	just	a	little	bit	of

vector	math.	Given	the	player	at	position	P,	the	camera

at	position	C,	and	a	sound	at	position	S,	first	compute

two	vectors—one	vector	from	camera	to	sound	and	the

other	vector	from	player	to	sound:

The	length	of	the	PlayerToSound	vector	is	the	desired

distance	for	attenuation.	The	normalized

CameraToSound	vector	is	the	correct	heading.	Scalar

multiplying	the	normalized	CameraToSound	vector	by

the	length	of	PlayerToSound	yields	a	virtual	position	for

the	sound:

This	virtual	position,	illustrated	in	Figure	7.3,	yields	both

the	correct	attenuation	and	the	correct	orientation	of	the

sound.	The	listener	itself	then	directly	uses	the	camera,

as	before.

Figure	7.3	Sound	effects	in	a	third-person	game

with	virtual	positions

Note	that	this	approach	may	be	untenable	if	true	world

positions	of	sounds	are	necessary	for	other	calculations

(such	as	for	occlusion,	discussed	later	in	this	chapter).

The	Doppler	Effect

Imagine	standing	on	a	street	corner.	While	the	police

car	is	approaching,	the	pitch	of	the	siren	sound	is

increased.	Conversely,	after	the	police	car	passes,	the

pitch	of	the	sound	decreases.	This	is	the	Doppler

effect	in	action,	and	it	is	illustrated	in	Figure	7.4.

Figure	7.4	Doppler	effect

The	Doppler	effect	(or	Doppler	shift)	occurs	because

sound	waves	take	time	to	travel	through	the	air.	As	the

police	car	gets	closer,	each	sound	wave	starts	closer,

which	means	the	waves	arrive	closer	together.	This

causes	a	perceived	increase	in	frequency,	leading	to	the

heightened	pitch.	The	true	pitch	of	the	sound	is	audible

when	the	car	is	right	next	to	the	listener.	Finally,	as	the

car	travels	off,	the	opposite	effect	occurs:	The	sound

waves	arrive	farther	apart,	yielding	a	lower	pitch.	The

Doppler	effect	applies	to	all	types	of	waves,	but	sound

waves	are	the	most	easily	observable.

In	a	game,	the	Doppler	effect	can	create	more	realistic

sounds	for	objects	such	as	vehicles.	FMOD	can

automatically	calculate	Doppler	pitch	shifts;	it	just

requires	passing	in	the	correct	velocities	both	in

setListenerAttributes	and	set3DAttributes.

This	means	the	game	likely	needs	a	more	correct	physics-

based	movement	approach	with	forces,	as	briefly

discussed	in	Chapter	3,	“Vectors	and	Basic	Physics.”

There	also	are	some	additional	Doppler	parameters

accessible	through	the	Low	Level	API.	The

set3DSettings	function	sets	these	parameters:

Click	here	to	view	code	image

mLowLevelSystem->set3DSettings(

			1.0f,		//	Doppler	scale,	1	=	normal,	higher	exaggerates	effect

			50.0f,	//	How	many	game	units	=	1	meter	(our	game	is	~50)

			1.0f			//	(Not	for	Doppler,	leave	at	1)

);

MIXING	AND	EFFECTS
One	of	the	advantages	of	digitized	sounds	is	that

manipulation	during	playback	is	easy.	You’ve	already

manipulated	sounds	as	they	play	to	account	for	the

sound’s	position	relative	to	the	listener.	The	term

digital	signal	processing	(DSP)	refers	to

computational	manipulation	of	a	signal.	For	audio,

adjusting	the	volume	or	pitch	of	the	signal	is	a	type	of

DSP.

Two	other	common	DSP	effects	in	games	are	reverb	and

equalization.	Reverb	simulates	sound	bouncing	in	an

enclosed	area.	For	example,	sound	effects	while	inside	a

cave	have	an	echo	because	of	waves	bouncing	off	the

walls.	Equalization,	on	the	other	hand,	tries	to

normalize	the	volume	levels	of	sounds	into	a	set	range.

FMOD	Studio	allows	configuration	of	chains	of	DSP

effects.	In	other	words,	a	sound	can	pass	through

multiple	stages	that	modify	the	signal	prior	to	output.

Although	each	sound	event	can	have	its	own	DSP	chain,

a	more	common	approach	is	to	group	sounds	into	types.

Then,	different	groups	can	have	different	effects	applied

to	them.

Buses

In	FMOD	Studio,	a	bus	is	a	grouping	of	sounds.	For

example,	you	might	have	a	bus	for	sound	effects,	a

bus	for	music,	and	a	bus	for	dialogue.	Each	bus	can

individually	have	different	DSP	effects	attached	to	it,

and	at	runtime	you	can	adjust	buses.	For	instance,

many	games	offer	separate	volume	sliders	for

different	categories	of	sound.	This	is	straightforward

to	implement	with	buses.

By	default,	every	project	has	a	master	bus,	specified	by

the	root	path	bus:/.	However,	a	sound	designer	can	add

any	number	of	additional	buses.	So,	much	as	with

loading	in	event	descriptions	on	bank	load,	you	can	load

in	buses	at	the	same	time.	First,	you	add	a	map	of	buses

to	AudioSystem:

Click	here	to	view	code	image

std::unordered_map<std::string,	FMOD::Studio::Bus*>	mBuses;

Then,	when	loading	in	a	bank,	call	getBusCount	and

getBusList	on	the	bank	to	get	the	list	of	buses	to	add

to	mBuses.	(This	is	very	similar	to	the	code	for	event

descriptions,	so	this	chapter	omits	that	code.)

Next,	add	functions	to	AudioSystem	to	control	the

buses:

Click	here	to	view	code	image

float	GetBusVolume(const	std::string&	name)	const;

bool	GetBusPaused(const	std::string&	name)	const;

void	SetBusVolume(const	std::string&	name,	float	volume);

void	SetBusPaused(const	std::string&	name,	bool	pause);

The	implementations	of	these	functions	are	similar—and

aren’t	surprising.	For	example,	SetVolume	is	as	follows:

Click	here	to	view	code	image

void	AudioSystem::SetBusVolume(const	std::string&	name,	float	volume)

{

			auto	iter	=	mBuses.find(name);

			if	(iter	!=	mBuses.end())

			{

						iter->second->setVolume(volume);

			}

}

In	this	chapter’s	game	project,	there	are	three	buses	in

all:	master,	SFX,	and	music.	The	sound	effects,	including

footsteps,	the	fire	loop,	and	the	explosion	sound,	go

through	the	SFX	bus,	while	the	background	music	goes

through	the	music	bus.

Snapshots

In	FMOD,	snapshots	are	special	types	of	events

that	control	buses.	Because	they’re	just	events,	they

use	the	same	event	interface	that	already	exists,	and

the	existing	PlayEvent	function	works	with	them.

The	only	difference	is	that	their	paths	begin	with

snapshot:/	instead	of	event:/.

Note	that	the	game	project	in	this	chapter	uses	a

snapshot	to	enable	reverb	on	the	SFX	bus.	Use	the	R	key

to	enable	or	disable	reverb.

Occlusion

Imagine	living	in	a	small	apartment	when	there’s	a

party	next	door.	The	music	at	the	party	is	very	loud

and	travels	through	your	wall.	You’ve	heard	the	song

before,	but	it	sounds	different	when	listening

through	the	wall.	The	bass	is	more	dominant,	and	it’s

tough	to	hear	the	high-frequency	parts.	This	is

sound	occlusion,	as	illustrated	in	Figure	7.5(a).

Figure	7.5	Sound	occlusion	(a)	and	testing	for

occlusion	(b)

Sound	occlusion	occurs	when	a	sound	does	not	have	a

direct	path	from	emitter	to	listener.	Instead,	the	sound

must	travel	through	some	material	to	reach	the	listener.

The	predominant	result	of	sound	occlusion	is	a	low-

pass	filter,	which	means	a	reduction	in	volume	of

higher-frequency	sounds.

Implementing	occlusion	involves	two	separate	tasks:

detection	of	occlusion	and	modification	of	occluded

sounds.	One	approach	for	detection	is	to	draw	line

segments	between	the	emitter	and	an	arc	around	the

listener,	as	in	Figure	7.5(b).	If	all	line	segments	can	reach

the	listener	without	hitting	any	objects,	there	is	no

occlusion.	If	only	some	line	segments	reach,	there’s

partial	occlusion,	and	if	none	reach,	there’s	full

occlusion.	This	style	of	detection	requires	the	collision

calculations	covered	in	Chapter	10,	“Collision	Detection.”

Modifying	occluded	sounds	in	FMOD	is	simple.

However,	it	requires	calls	into	the	Low	Level	API.	First,

when	initializing	FMOD,	you	enable	software	low-pass

filtering:

Click	here	to	view	code	image

result	=	mSystem->initialize(

			512,	//	Max	number	of	concurrent	sounds

			FMOD_STUDIO_INIT_NORMAL,	//	Use	default	settings

			FMOD_INIT_CHANNEL_LOWPASS,	//	Initialize	low-pass	filter

			nullptr	//	Usually	null

);

Next,	each	event	instance	affected	by	occlusion	needs	to

set	occlusion	parameters.	For	example,	the	following

code	enables	occlusion	for	event:

Click	here	to	view	code	image

//	Flush	commands	to	ensure	channel	group	is	available

mSystem->flushCommands();

//	Get	channel	group	from	event

FMOD::ChannelGroup*	cg	=	nullptr;

event->getChannelGroup(&cg);

//	Set	occlusion	factor	-	occFactor	ranges

//	from	0.0	(no	occlusion)	to	1.0	(full	occlusion)

cg->set3DOcclusion(occFactor,	occFactor);

GAME	PROJECT
This	chapter’s	game	project	demonstrates	most	of

the	audio	features	covered	in	this	chapter.	The	code

is	available	in	the	book’s	GitHub	repository,	in	the

Chapter07	directory.	Open	Chapter07-

windows.sln	on	Windows	and	Chapter07-

mac.xcodeproj	on	Mac.	The	FMOD	Studio	project

corresponding	to	this	chapter’s	content	is	in

FMODStudio/Chapter07.

A	music	track	plays	in	the	background.	As	the	player

walks	around,	a	footstep	event	triggers.	The	sphere	emits

a	positional	fire	loop	sound.

As	before,	use	WASD	to	move	around.	The	following	keys

provide	additional	behavior:

E—Play	the	explosion	(2D)	sound

M—Pause/unpause	the	music	event

R—Enable/disable	reverb	on	the	SFX	bus	(via	a	snapshot)

1—Set	footstep	parameter	to	default

2—Set	footstep	parameter	to	grass

−—Reduce	master	bus	volume

+—Increase	master	bus	volume

All	the	corresponding	function	calls	for	these	behaviors

are	in	Game::HandleKeyPress.

The	sound	files	used	in	this	chapter	come	from

https://opengameart.org	and	http://freesound.org,	both

great	websites	for	finding	quality	sounds	for	games.

SUMMARY
Most	games	require	audio	systems	that	go	beyond

simply	playing	sound	files.	Using	the	FMOD	API,	this

chapter	shows	how	to	implement	a	production-

quality	sound	system	into	the	game.	The	audio

system	loads	in	banks	and	plays	back	events.	The

SoundEvent	class	tracks	outstanding	event

instances	and	allows	manipulation	of	these

instances.

Positional	audio	simulates	sounds	in	a	3D	environment.

By	setting	the	properties	of	the	listener	and	every	3D

event	instance,	the	audio	behaves	as	it	would	in	a	real	3D

environment.	While	a	first-person	game	can	directly	use

the	camera	orientation	and	position	for	the	listener,	a

third-person	game	is	more	complex.	For	fast-moving

objects,	the	Doppler	effect	shifts	the	pitch	of	the	sound	as

it	approaches	or	leaves.

Mixing	adds	more	control	to	the	sound	environment.

Buses	group	different	sounds	into	independently

controllable	categories.	Snapshots	can	also	dynamically

change	the	buses	at	runtime,	such	as	enabling	DSP

effects	like	reverb.	Finally,	occlusion	simulates	sounds

traveling	through	surfaces.

https://opengameart.org
http://freesound.org

ADDITIONAL	READING
Until	recently,	it	was	difficult	to	find	references	for

aspiring	game	audio	programmers.	However,	Guy

Somberg’s	excellent	book	has	articles	from	many

experienced	developers.	This	book	provides	the	most

complete	coverage	of	game	audio	currently	available.

Somberg,	Guy,	Ed.	Game	Audio

Programming:	Principles	and	Practices.

Boca	Raton:	CRC	Press,	2016.

EXERCISES
This	chapter’s	exercises	build	on	the	audio	features

implemented	in	the	chapter.	In	the	first	exercise	you

add	support	for	the	Doppler	effect,	while	in	the

second	exercise	you	implement	virtual	positions	for	a

third-person	listener.

Exercise	7.1

Adjust	the	listener	and	event	instance	attribute	code

so	that	it	correctly	sets	the	velocity	parameters.	Then

make	the	sphere	actor	(created	in

Game::LoadData)	move	quickly	back	and	forth	to

test	the	Doppler	effect.	Use	set3DSettings	to

adjust	the	intensity	of	the	effect	as	needed.	The

Doppler	effect	should	be	perceptible	for	the	fire	loop

audio	sound	once	it’s	working	correctly.

Exercise	7.2

Implement	virtual	positions	for	event	instances	as

per	the	third-person	listener	formulas	in	this

chapter.	Replace	the	CameraActor	class	in	the

Chapter	7	game	project	with	the	CameraActor	class

in	Exercise/7.2	on	GitHub.	This	version	of	the

CameraActor	implements	a	basic	third-person

camera	for	testing	purposes.

CHAPTER	8

INPUT	SYSTEMS

This	chapter	takes	an	in-depth	look	at	a	wide

variety	of	input	devices	for	games,	including

the	keyboard,	mouse,	and	controller.	It

explores	how	to	integrate	these	devices	into	a

cohesive	system	that	all	actors	and

components	in	the	game	can	interact	with

for	their	input	needs.

INPUT	DEVICES
Without	input,	games	would	be	a	static	form	of

entertainment,	much	like	film	or	television.	The	fact

that	a	game	responds	to	the	keyboard,	mouse,

controller,	or	another	input	device	is	what	enables

interactivity.	You	query	these	input	devices	for	their

current	state	during	the	“process	input”	phase	of	the

game	loop,	and	this	affects	the	game	world	during

the	“update	game	world”	phase	of	the	game	loop.

Some	input	devices	yield	only	Boolean	values.	For

example,	for	the	keyboard	you	can	check	the	state	of	each

key,	and	this	state	is	true	or	false,	depending	on	whether

the	key	is	down	or	up.	There’s	no	way	for	us	to	discern

whether	a	key	is	“half	pressed”	because	the	input	device

simply	doesn’t	detect	this.

Other	input	devices	give	a	range	of	values.	For	example,

most	joysticks	yield	a	range	of	values	in	two	axes	that	you

can	use	to	determine	how	far	the	user	has	moved	the

joystick	in	a	specific	direction.

Many	of	the	devices	used	in	games	are	composite,

meaning	they	combine	multiple	types	of	inputs	into	one.

For	example,	a	typical	controller	might	have	two

joysticks	and	triggers	that	yield	a	range	of	values,	as	well

as	other	buttons	that	yield	only	Boolean	values.

Similarly,	the	movement	of	the	mouse	or	scroll	wheel

might	be	some	range,	but	the	mouse	buttons	may	be

Boolean.

Polling

Earlier	in	this	book,	you	used	the

SDL_GetKeyboardState	function	to	get	the

Boolean	state	of	every	key	on	the	keyboard.	With	the

additions	in	Chapter	3,	“Vectors	and	Basic	Physics,”

you	then	passed	this	keyboard	state	to	every	actor’s

ProcessInput	function,	which	in	turn	passes	it	to

every	component’s	ProcessInput	function.	Then,

in	these	functions	you	can	query	the	state	of	a

specific	key	to	decide	whether	to	perform	an	action,

such	as	moving	the	player	character	forward	when

pressing	the	W	key.	Because	you’re	checking	the	value

of	a	specific	key	on	every	frame,	this	approach	is

considered	polling	the	state	of	the	key.

Input	systems	designed	around	polling	are	conceptually

simple	to	understand,	and	for	this	reason	many	game

developers	prefer	to	use	a	polling	approach.	It	works

especially	well	for	things	like	character	movement

because	you	need	to	know	the	state	of	some	input	device

on	every	frame	and	update	the	character	movement

based	on	that.	And,	in	fact,	you	will	stick	to	this	basic

polling	approach	for	most	of	the	input	needs	in	the	code

for	this	book.

Positive	and	Negative	Edges

Consider	a	game	where	pressing	the	spacebar	causes

a	character	to	jump.	On	every	frame,	you	check	the

state	of	the	spacebar.	Suppose	the	spacebar	is	up	for

the	first	three	frames,	and	then	the	player	presses	the

spacebar	prior	to	frame	4.	The	player	continues	to

hold	the	spacebar	down	until	prior	to	frame	6	and

then	releases	it.	You	can	draw	this	as	a	graph,	as	in

Figure	8.1,	where	the	x-axis	corresponds	to	the	time

at	each	frame	and	the	y-axis	corresponds	to	the

binary	value	for	that	frame.	On	frame	4,	the	spacebar

changes	from	0	to	1,	and	on	frame	6,	the	spacebar

changes	back	from	1	to	0.	The	frame	where	the	input

changes	from	0	to	1	is	a	positive	edge	(or	rising

edge),	and	the	frame	where	the	input	changes	from	1

to	0	is	a	negative	edge	(or	falling	edge).

Figure	8.1	Graph	of	the	spacebar	polled	over	nine

frames

Now	consider	what	would	happen	if	the	process	input	for

the	character	simply	said	the	following	(in	pseudocode):

if	(spacebar	==	1)

			character.jump()

For	the	sample	input	in	Figure	8.1,	this	code	would	call

the	character.jump()	function	twice:	once	on	frame

4	and	once	on	frame	5.	And	if	the	player	held	the	button

for	10	frames	instead	of	2,	then	you’d	call

character.jump()	10	times.	Clearly,	you	don’t	want

the	character	to	jump	every	frame	when	the	spacebar

value	is	1.	Instead,	you	should	only	call

character.jump()	on	the	frame	where	the	spacebar

has	a	positive	edge.	For	the	input	graph	in	Figure	8.1,

this	is	on	frame	4.	This	way,	for	every	press	of	the

spacebar,	regardless	of	how	long	the	player	holds	the

spacebar,	the	character	jumps	only	once.	In	this	case,

you	want	pseudocode	like	this:

Click	here	to	view	code	image

if	(spacebar	has	positive	edge)

			character.jump()

The	“has	positive	edge”	term	in	the	pseudocode	means

that	on	the	last	frame	the	key	was	0,	and	on	this	frame

the	key	is	1.	But	with	the	current	method	of	using

SDL_GeyKeyboardState	to	get	the	state	of	the

keyboard	on	the	current	frame,	it	might	not	be	apparent

how	to	implement	this.	If	you	add	a	variable	called

spacebarLast	that	you	initialize	to	0,	you	can	use	this

variable	to	track	the	value	in	the	last	frame.	Then	you

initiate	the	jump	only	if	the	value	in	the	last	frame	is	0

and	the	value	in	this	frame	is	1:

Click	here	to	view	code	image

if	(spacebar	==	1	and	spacebarLast	==	0)

			character.jump()

spacebarLast	=	spacebar

Consider	what	happens	in	the	case	of	the	example	in

Figure	8.1.	On	frame	3,	you	set	spacebarLast	to	the

current	value	of	spacebar,	or	0.	Then,	on	frame	4,

spacebar	is	1	while	spacebarLast	is	0,	so	you	trigger

character.jump().	After	this,	spacebarLast

becomes	the	current	value	of	spacebar,	or	1.	Then	on

frame	5,	both	spacebar	and	spacebarLast	are	1,	so	the

character	doesn’t	jump.

You	could	use	this	pattern	throughout	the	code.

However,	it	would	be	nice	to	have	a	system	that	tracks

values	of	keys	on	the	previous	frame	automatically.	That

way,	you	could	easily	ask	the	system	whether	a	key	has	a

positive	edge	or	negative	edge,	which	might	reduce	the

burden	for	other	programmers	on	the	team.

If	you	generalize	the	approach	of	storing	the	value	of	the

input	last	frame	and	comparing	it	to	the	value	this	frame,

there	are	four	possible	results,	as	shown	in	Table	8.1.	If

both	values	are	0,		the	button	state	is	None.	Similarly,	if

both	values	are	1,	this	means	the	player	holds	the	key	for

consecutive	frames,	or	the	button	state	is	Held.	Finally,

if	the	values	are	different,	it’s	either	a	positive	edge	or

negative	edge,	which	you	denote	with	the	button	states

Pressed	and	Released,	respectively.

Table	8.1	Four	Possible	Input	States,	Given	the

Value	in	the	Last	Frame	and	in	the	Current	Frame

Last	Frame Current	Frame Button	State

0 0 None

0 1 Pressed

1 0 Released

1 1 Held

Consider	how	you	might	use	this	for	a	game	where	the

player	can	hold	a	key	to	charge	up	an	attack.	On	the

frame	on	which	you	detect	the	Pressed	state	of	the	key,

you	begin	charging	the	attack.	Then	as	long	as	the	key’s

state	on	subsequent	frames	remains	Held,	you	continue

to	charge	the	attack.	Finally,	when	the	key’s	state

becomes	Released,	it	means	the	player	let	go	of	the	key,

and	you	can	now	execute	the	attack	with	the	appropriate

charge	level.

But	for	actions	such	as	just	moving	forward	if	W	is	1,

you’d	rather	just	use	the	old	approach,	where	you	check

the	value	of	the	input	on	that	frame.	In	this	chapter’s

input	system,	you	will	give	the	option	of	either	querying

this	basic	value	or	querying	for	the	different	input	states.

Events

Recall	from	Chapter	1,	“Game	Programming

Overview,”	that	SDL	generates	different	events	that

the	program	can	optionally	respond	to.	Currently,

you	respond	to	the	SDL_Quit	event,	which	occurs

when	the	player	tries	to	close	the	window.

Game::ProcessInput	checks	every	frame	if	there

are	events	in	the	queue	and	can	selectively	choose	to

respond	to	them.

SDL	also	generates	events	for	input	devices.	For

example,	every	time	the	player	presses	a	key	on	the

keyboard,	SDL	generates	an	SDL_KEYDOWN	event

(corresponding	to	the	Pressed	button	state).

Conversely,	every	time	the	player	releases	a	key,	it

generates	an	SDL_KEYUP	event	(corresponding	to	the

Released	state).	If	you	only	care	about	positive	and

negative	edges,	then	this	is	a	very	quick	way	to	set	up

code	to	respond	to	these	actions.

However,	for	the	case	of	pressing	W	to	move	forward,	this

means	you	need	extra	code	to	track	whether	W	is	held

because	you	only	get	the	negative	and	positive	edges

from	the	SDL	events.	Although	you	can	certainly	design

an	input	system	entirely	based	around	events,	this

chapter	uses	SDL	events	only	when	required	(such	as	for

mouse	wheel	scrolling).

There	is	one	subtle	relationship	between	SDL	events	and

the	various	polling	functions.	The	keyboard	state	you	get

from	SDL_GetKeyboardState	updates	only	after

calling	SDL_PollEvents	in	the	message	pump	loop.

This	means	you	can	delineate	when	the	state	data

changes	between	frames	because	you	know	where	the

code	calls	SDL_PollEvents.	This	comes	in	handy	when

implementing	an	input	system	that	saves	the	data	for	the

previous	frame.

Basic	InputSystem	Architecture

Before	diving	into	each	of	the	different	input	devices,

let’s	consider	a	structure	for	an	input	system.

Currently	you	let	actors	and	components	know	about

the	current	keyboard	state	via	ProcessInput.

However,	this	mechanism	means	that

ProcessInput	currently	cannot	access	the	mouse

or	controller	without	directly	calling	SDL	functions.

While	this	works	for	a	simple	game	(and	it’s	the

approach	largely	used	outside	this	chapter),	it’s

better	if	the	programmers	writing	the	code	for	actors

and	components	do	not	need	much	specific

knowledge	of	SDL	functions.	Furthermore,	some

SDL	input	functions	return	the	difference	in	state

between	calls	of	the	function.	If	you	call	those

functions	more	than	once	during	one	frame,	you’ll

get	values	of	zero	after	the	first	call.

To	solve	this	problem,	you	can	have	the	InputSystem

class	populate	data	in	a	helper	class	called	InputState.

You	can	then	pass	this	InputState	by	const	reference

to	actors/components	via	their	ProcessInput	function.

You	can	also	add	several	helper	functions	to

InputState	to	make	it	easy	to	query	whatever	state	the

actor/component	cares	about.

Listing	8.1	shows	the	initial	declaration	of	the	relevant

pieces.	First,	declare	a	ButtonState	enum	to

correspond	to	the	four	different	states	outlined	in	Table

8.1.	Next,	declare	an	InputState	struct	(which

currently	has	no	members).	Finally,	you	declare

InputSystem,		which	contains

Initialize/Shutdown	functions	(much	like	Game).	It

also	has	a	PrepareForUpdate	function	that	is	called

before	SDL_PollEvents,	and	then	an	Update	function

that	is	called	after	polling	events.	The	GetState

function	returns	a	const	reference	to	the	InputState

it	holds	as	member	data.

Listing	8.1	Basic	InputSystem	Declarations

Click	here	to	view	code	image

enum	ButtonState

{

			ENone,

			EPressed,

			EReleased,

			EHeld

};

//	Wrapper	that	contains	current	state	of	input

struct	InputState

{

			KeyboardState	Keyboard;

};

class	InputSystem

{

public:

			bool	Initialize();

			void	Shutdown();

			//	Called	right	before	SDL_PollEvents	loop

			void	PrepareForUpdate();

			//	Called	right	after	SDL_PollEvents	loop

			void	Update();

			const	InputState&	GetState()	const	{	return	mState;	}

private:

			InputState	mState;

};

To	integrate	this	code	into	the	game,	you	add	an

InputSystem	pointer	to	the	member	data	of	Game

called	mInputSystem.	Game::Initialize	allocates

and	initializes	InputSystem	and	Game::Shutdown

shuts	down	and	deletes	it.

Next,	you	change	the	declaration	of	ProcessInput	in

both	Actor	and	Component	to	the	following:

Click	here	to	view	code	image

void	ProcessInput(const	InputState&	state);

Recall	that	in	Actor,	ProcessInput	is	not	overridable

because	it	calls	ProcessInput	on	all	the	attached

components.	However,	actors	also	have	an	overridable

ActorInput	function	for	any	input	specific	to	that

actor.	So,	you	similarly	change	the	declaration	of

ActorInput	to	take	in	a	constant	InputState

reference.

Finally,	the	implementation	of	Game::ProcessInput

changes	to	the	following	outline	of	steps:

Click	here	to	view	code	image

void	Game::ProcessInput()

{

			mInputSystem->PrepareForUpdate();

			//	SDL_PollEvent	loop...

			mInputSystem->Update();

			const	InputState&	state	=	mInputSystem->GetState();

			//	Process	any	keys	here	as	desired...

			//	Send	state	to	all	actor's	ProcessInput...

}

With	the	InputSystem	in	place,	you	now	have	the

basics	needed	to	add	support	for	several	input	devices.

For	each	of	these	devices,	you	need	to	add	a	new	class	to

encapsulate	the	state	and	add	an	instance	of	this	class	to

the	InputState	struct.

KEYBOARD	INPUT

Recall	that		the	SDL_GetKeyboardState	function

returns	a	pointer	to	the	keyboard	state.	Notably,	the

return	value	of	SDL_GetKeyboardState	does	not

change	throughout	the	lifetime	of	the	application,	as

it	points	to	internal	SDL	data.	Therefore,	to	track	the

current	state	of	the	keyboard,	you	merely	need	a

single	pointer	that	you	initialize	once.	However,

because	SDL	overwrites	the	current	keyboard	state

when	you	call	SDL_PollEvents,	you	need	a

separate	array	to	save	the	previous	frame	state.

This	leads	naturally	to	the	member	data	in	the

declaration	of	KeyboardState,	shown	in	Listing	8.2.

You	have	a	pointer	that	points	to	the	current	state	and	an

array	for	the	previous	state.	The	size	of	the	array

corresponds	to	the	size	of	the	buffer	that	SDL	uses	for

keyboard	scan	codes.	For	the	member	functions	of

KeyboardState,	you	provide	both	a	method	to	get	the

basic	current	value	of	a	key	(GetKeyValue)	and	one

that	returns	one	of	the	four	button	states

(GetKeyState).	Finally,	you	make	InputSystem	a

friend	of	KeyboardState.	This	makes	it	easy	for

InputSystem	to	directly	manipulate	the	member	data

of	KeyboardState.

Listing	8.2	KeyboardState	Declaration

Click	here	to	view	code	image

class	KeyboardState

{

public:

			//	Friend	so	InputSystem	can	easily	update	it

			friend	class	InputSystem;

			//	Get	just	the	boolean	true/false	value	of	key

			bool	GetKeyValue(SDL_Scancod	keyCode)	const;

			//	Get	a	state	based	on	current	and	previous	frame

			ButtonState	GetKeyState(SDL_Scancode	keyCode)	const;

private:

			//	Current	state

			const	Uint8*	mCurrState;

			//	State	previous	frame

			Uint8	mPrevState[SDL_NUM_SCANCODES];

};

Next,	you	add	a	KeyboardState	instance	called

Keyboard	to	the	member	data	of	InputState:

struct	InputState

{

			KeyboardState	Keyboard;

};

Next,	you	need	to	add	code	to	both	Initialize	and

PrepareForUpdate	within	InputSystem.	In

Initialize,	you	need	to	first	set	the	mCurrState

pointer	and	then	also	zero	out	the	memory	of

mPrevState	(because	before	the	game	starts,	the	keys

have	no	previous	state).	You	get	the	current	state	pointer

from	SDL_GetKeyboardState,	and	you	can	clear	the

memory	with	memset:

Click	here	to	view	code	image

//	(In	InputSystem::Initialize...)

//	Assign	current	state	pointer

mState.Keyboard.mCurrState	=	SDL_GetKeyboardState(NULL);

//	Clear	previous	state	memory

memset(mState.Keyboard.mPrevState,	0,

			SDL_NUM_SCANCODES);

Then	in	PrepareForUpdate,	you	need	to	copy	all	the

“current”	data	to	the	previous	buffer.	Remember	that

when	you	call	PrepareForUpdate,	the	“current”	data	is

stale	from	the	previous	frame.	This	is	because	you	call

PrepareForUpdate	when	you’re	on	a	new	frame	but

haven’t	called	SDL_PollEvents	yet.	This	is	critical

because	SDL_PollEvents	is	what	updates	the	internal

SDL	keyboard	state	data	(which	you’re	pointing	to	with

mCurrState).	So,	before	SDL	overwrites	the	current

state,	use	memcpy	to	copy	from	the	current	buffer	to	the

previous	buffer:

Click	here	to	view	code	image

//	(In	InputSystem::PrepareForUpdate...)

memcpy(mState.Keyboard.mPrevState,

			mState.Keyboard.mCurrState,

			SDL_NUM_SCANCODES);

Next,	you	need	to	implement	the	member	functions	in

KeyboardState.	GetKeyValue	is	straightforward.	It

simply	indexes	into	the	mCurrState	buffer	and	returns

true	if	the	value	is	1	and	false	if	the	value	is	0.

The	GetKeyState	function,	shown	in	Listing	8.3,	is

slightly	more	complex.	It	uses	both	the	current	frame’s

and	previous	frame’s	key	state	to	determine	which	of	the

four	button	states	to	return.	This	simply	maps	the	entries

in	Table	8.1	into	source	code.

Listing	8.3	KeyboardState::GetKeyState

Implementation

Click	here	to	view	code	image

ButtonState	KeyboardState::GetKeyState(SDL_Scancode	keyCode)	const

{

			if	(mPrevState[keyCode]	==	0)

			{

						if	(mCurrState[keyCode]	==	0)

						{	return	ENone;	}

						else

						{	return	EPressed;	}

			}

			else	//	Prev	state	must	be	1

			{

						if	(mCurrState[keyCode]	==	0)

						{	return	EReleased;	}

						else

						{	return	EHeld;	}

			}

}

With	this	KeyboardState	code,	you	can	still	access	the

value	of	a	key	with	the	GetKeyValue	function.	For

example,	the	following	checks	if	the	current	value	of	the

spacebar	is	true:

Click	here	to	view	code	image

if	(state.Keyboard.GetKeyValue(SDL_SCANCODE_SPACE))

However,	the	advantage	of	the	InputState	object	is

that	you	can	also	query	the	button	state	of	a	key.	For

example,	the	following	code	in	Game::ProcessInput

detects	if	the	button	state	of	the	Escape	key	is

EReleased,	and	it	exits	only	at	that	point:

Click	here	to	view	code	image

if	(state.Keyboard.GetKeyState(SDL_SCANCODE_ESCAPE)

			==	EReleased)

{

			mIsRunning	=	false;

}

This	means	that	initially	pressing	Escape	does	not

immediately	quit	the	game,	but	releasing	the	key	causes

the	game	to	quit.

MOUSE	INPUT
For	mouse	input,	there	are	three	main	types	of	input

to	focus	on:	button	input,	movement	of	the	mouse,

and	movement	of	the	scroll	wheel.	The	button	input

code	is	like	the	keyboard	code	except	that	the

number	of	buttons	is	significantly	smaller.	The

movement	input	is	a	little	more	complex	because

there	are	two	modes	of	input	(absolute	and	relative).

Ultimately,	you	can	still	poll	the	mouse	input	with	a

single	function	call	per	frame.	However,	for	the	scroll

wheel,	SDL	only	reports	the	data	via	an	event,	so	you

must	add	some	code	to	InputSystem	to	also

process	certain	SDL	events.

By	default,	SDL	shows	the	system’s	mouse	cursor	(at

least	on	platforms	that	have	a	system	mouse	cursor).

However,	you	can	enable	or	disable	the	cursor	by	using

SDL_ShowCursor,	passing	in	SDL_TRUE	to	enable	it

and	SDL_FALSE	to	disable	it.	For	example,	this	disables

the	cursor:

SDL_ShowCursor(SDL_FALSE);

Buttons	and	Position

For	querying	both	the	position	of	the	mouse	and	the

state	of	its	buttons,	you	use	a	single	call	to

SDL_GetMouseState.	The	return	value	of	this

function	is	a	bitmask	of	the	button	state,	and	you

pass	in	two	integers	by	address	to	get	the	x/y

coordinates	of	the	mouse,	like	this:

Click	here	to	view	code	image

int	x	=	0,	y	=	0;

Uint32	buttons	=	SDL_GetMouseState(&x,	&y);

notenote

For	the	position	of	the	mouse,	SDL	uses	the	SDL	2D	coordinate	system.	This
means	that	the	top-left	corner	is	(0,	0),	positive	x	is	to	the	right,	and	positive	y
is	down.	However,	you	can	easily	convert	these	coordinates	to	whichever
other	system	you	prefer.

For	example,	to	convert	to	the	simple	view-projection	coordinate	system	from
Chapter	5,	“OpenGL,”	you	can	use	the	following	two	lines	of	code:

x	=	x	-	screenWidth/2;

y	=	screenHeight/2	-	y;

Because	the	return	value	of	SDL_GetMouseState	is	a

bitmask,	you	need	to	use	a	bitwise-AND	along	with	the

correct	bit	value	to	find	out	if	a	specific	button	is	up	or

down.	For	example,	given	the	buttons	variable

populated	from	SDL_GetMouseState,	the	following

statement	is	true	if	the	left	mouse	button	is	down:

Click	here	to	view	code	image

bool	leftIsDown	=	(buttons	&	SDL_BUTTON(SDL_BUTTON_LEFT))	==	1;

The	SDL_BUTTON	macro	shifts	a	bit	based	on	the

requested	button,	and	the	bitwise-AND	returns	1	if	the

button	is	down	and	0	if	it’s	up.	Table	8.2	shows	the

button	constants	corresponding	to	the	five	different

mouse	buttons	that	SDL	supports.

Table	8.2	SDL	Mouse	Button	Constants

Button Constant

Left SDL_BUTTON_LEFT

Right SDL_BUTTON_RIGHT

Middle SDL_BUTTON_MIDDLE

Mouse	button	4 SDL_BUTTON_X1

Mouse	button	5 SDL_BUTTON_X2

You	now	have	enough	knowledge	to	create	the	initial

declaration	of	MouseState,	which	is	shown	in	Listing

8.4.	You	save	a	32-bit	unsigned	integer	for	both	the

previous	and	current	buttons’	bitmasks	and	a	Vector2

for	the	current	mouse	position.	Listing	8.4	omits	the

implementations	of	the	button	functions	because	they

are	almost	identical	to	the	functions	for	the	keyboard

keys.	The	only	difference	is	that	these	functions	use	the

bitmask	as	outlined	earlier.

Listing	8.4	Initial	MouseState	Declaration

Click	here	to	view	code	image

class	MouseState

{

public:

			friend	class	InputSystem;

			//	For	mouse	position

			const	Vector2&	GetPosition()	const	{	return	mMousePos;	}

			//	For	buttons

			bool	GetButtonValue(int	button)	const;

			ButtonState	GetButtonState(int	button)	const;

private:

			//	Store	mouse	position

			Vector2	mMousePos;

			//	Store	button	data

			Uint32	mCurrButtons;

			Uint32	mPrevButtons;

};

Next,	you	add	a	MouseState	instance	called	Mouse	to

InputState.	Then,	in	InputSystem,		add	the

following	to	PrepareForUpdate,	which	copies	the

current	button	state	to	the	previous	state:

Click	here	to	view	code	image

mState.Mouse.mPrevButtons	=	mState.Mouse.mCurrButtons;

In	Update,	you	call	SDL_GetMouseState	to	update	all

the	MouseState	members:

Click	here	to	view	code	image

int	x	=	0,	y	=	0;

mState.Mouse.mCurrButtons	=	SDL_GetMouseState(&x,	&y);

mState.Mouse.mMousePos.x	=	static_cast<float>(x);

mState.Mouse.mMousePos.y	=	static_cast<float>(y);

With	these	changes,	you	can	now	access	basic	mouse

information	from	InputState.	For	example,	to

determine	if	the	left	mouse	button	is	in	state	EPressed,

you	use	the	following:

Click	here	to	view	code	image

if	(state.Mouse.GetButtonState(SDL_BUTTON_LEFT)	==	EPressed)

Relative	Motion

SDL	supports	two	different	modes	for	detecting

mouse	movement.	In	the	default	mode,	SDL	reports

the	current	coordinates	of	the	mouse.	However,

sometimes	you	instead	want	to	know	the	relative

change	of	the	mouse	between	frames.	For	example,

in	many	first-person	games	on	PC,	you	can	use	the

mouse	to	rotate	the	camera.	The	speed	of	the

camera’s	rotation	depends	on	how	fast	the	player

moves	the	mouse.	In	this	case,	exact	coordinates	of

the	mouse	aren’t	useful,	but	the	relative	movement

between	frames	is.

You	could	approximate	the	relative	movement	between

frames	by	saving	the	position	of	the	mouse	on	the

previous	frame.	However,	SDL	supports	a	relative

mouse	mode	that	instead	reports	the	relative	movement

between	calls	to	the	SDL_GetRelativeMouseState

function.	The	big	advantage	of	SDL’s	relative	mouse

mode	is	that	it	hides	the	mouse,	locks	the	mouse	to	the

window,	and	centers	the	mouse	on	every	frame.	This

way,	it’s	not	possible	for	the	player	to	accidentally	move

the	mouse	cursor	out	of	the	window.

To	enable	relative	mouse	mode,	call	the	following:

Click	here	to	view	code	image

SDL_SetRelativeMouseMode(SDL_TRUE);

Similarly,	to	disable	relative	mouse	mode,	pass	in

SDL_FALSE	as	the	parameter.

Once	you’ve	enabled	relative	mouse	mode,	instead	of

using	SDL_GetMouseState,	you	use

SDL_GetRelativeMouseState.

To	support	this	in	InputSystem,	you	first	add	a

function	that	can	enable	or	disable	relative	mouse	mode:

Click	here	to	view	code	image

void	InputSystem::SetRelativeMouseMode(bool	value)

{

			SDL_bool	set	=	value	?	SDL_TRUE	:	SDL_FALSE;

			SDL_SetRelativeMouseMode(set);

			mState.Mouse.mIsRelative	=	value;

}

You	save	the	state	of	the	relative	mouse	mode	in	a

Boolean	variable	in	MouseState	that	you	initialize	to

false.

Next,	change	the	code	in	InputSystem::Update	so

that	if	you’re	in	relative	mouse	mode,	you	use	the	correct

function	to	grab	the	position	and	buttons	of	the	mouse:

Click	here	to	view	code	image

int	x	=	0,	y	=	0;

if	(mState.Mouse.mIsRelative)

{

			mState.Mouse.mCurrButtons	=	SDL_GetRelativeMouseState(&x,	&y);

}

else

{

			mState.Mouse.mCurrButtons	=	SDL_GetMouseState(&x,	&y);

}

mState.Mouse.mMousePos.x	=	static_cast<float>(x);

mState.Mouse.mMousePos.y	=	static_cast<float>(y);

With	this	code,	you	can	now	enable	relative	mouse	mode

and	access	the	relative	mouse	position	via	MouseState.

Scroll	Wheel

For	the	scroll	wheel,	SDL	does	not	provide	a	function

to	poll	the	current	state	of	the	wheel.	Instead,	SDL

generates	the	SDL_MOUSEWHEEL	event.	To	support

this	in	the	input	system,	then,	you	must	first	add

support	for	passing	SDL	events	to	InputSystem.

You	can	do	this	via	a	ProcessEvent	function,	and

then	you	update	the	event	polling	loop	in

Game::ProcessInput	to	pass	the	mouse	wheel

event	to	the	input	system:

Click	here	to	view	code	image

SDL_Event	event;

while	(SDL_PollEvent(&event))

{

			switch	(event.type)

			{

						case	SDL_MOUSEWHEEL:

									mInputSystem->ProcessEvent(event);

									break;

						//	Other	cases	omitted	...

			}

}

Next,	in	MouseState	add	the	following	member

variable:

Vector2	mScrollWheel;

You	use	a	Vector2	object	because	SDL	reports	scrolling

in	both	the	vertical	and	horizontal	directions,	as	many

mouse	wheels	support	scrolling	in	both	directions.

You	then	need	to	make	changes	to	InputSystem.	First,

implement	ProcessEvent	to	read	in	the	scroll	wheel’s

x/y	values	from	the	event.wheel	struct,	as	in	Listing

8.5.

Listing	8.5	InputSystem::ProcessEvent

Implementation	for	the	Scroll	Wheel

Click	here	to	view	code	image

void	InputSystem::ProcessEvent(SDL_Event&	event)

{

			switch	(event.type)

			{

			case	SDL_MOUSEWHEEL:

						mState.Mouse.mScrollWheel	=	Vector2(

									static_cast<float>(event.wheel.x),

									static_cast<float>(event.wheel.y));

						break;

			default:

						break;

			}

}

Next,	because	the	mouse	wheel	event	only	triggers	on

frames	where	the	scroll	wheel	moves,	you	need	to	make

sure	to	reset	the	mScrollWheel	variable	during

PrepareForUpdate:

Click	here	to	view	code	image

mState.Mouse.mScrollWheel	=	Vector2::Zero;

This	ensures	that	if	the	scroll	wheel	moves	on	frame	1

but	doesn’t	move	on	frame	2,	you	don’t	erroneously

report	the	same	scroll	value	on	frame	2.

With	this	code,	you	can	now	access	the	scroll	wheel	state

every	frame	with	the	following:

Click	here	to	view	code	image

Vector2	scroll	=	state.Mouse.GetScrollWheel();

CONTROLLER	INPUT
For	numerous	reasons,	detecting	controller	input	in

SDL	is	more	complex	than	for	the	keyboard	and

mouse.	First,	a	controller	has	a	much	greater	variety

of	sensors	than	a	keyboard	or	mouse.	For	example,	a

standard	Microsoft	Xbox	controller	has	two	analog

joysticks,	a	directional	pad,	four	standard	face

buttons,	three	special	face	buttons,	two	bumper

buttons,	and	two	triggers—which	is	a	lot	of	different

sensors	to	get	data	from.

Furthermore,	while	PC/Mac	users	have	only	a	single

keyboard	or	mouse,	it’s	possible	to	have	multiple

controllers	connected.	Finally,	controllers	support	hot

swapping,	which	means	it’s	possible	to	plug	and	unplug

controllers	while	a	program	is	running.	Combined,	these

elements	add	complexity	to	handling	controller	input.

notenote

Depending	on	the	controller	and	your	platform,	you	may	need	to	first	install	a
driver	for	your	controller	in	order	for	SDL	to	detect	it.

Before	you	can	use	a	controller,	you	must	first	initialize

the	SDL	subsystem	that	handles	controllers.	To	enable	it,

simply	add	the	SDL_INIT_GAMECONTROLLER	flag	to	the

SDL_Init	call	in	Game::Initialize:

Click	here	to	view	code	image

SDL_Init(SDL_INIT_VIDEO	|	SDL_INIT_AUDIO	|	SDL_INIT_GAMECONTROLLER);

Enabling	a	Single	Controller

For	now,	assume	that	you’re	using	only	a	single

controller	and	that	this	controller	is	plugged	in	when

the	game	starts.	To	initialize	the	controller,	you	need

to	use	the	SDL_GameControllerOpen	function.

This	function	returns	a	pointer	to	an

SDL_Controller	struct	upon	successful

initialization	or	nullptr	if	it	fails.	You	can	then	use

the	SDL_Controller*	variable	to	query	the	state	of

the	controller.

For	this	single	controller,	you	first	add	an

SDL_Controller*	pointer	called	mController	to	the

InputState	member	data.	Then,	add	the	following	call

to	open	controller	0:

Click	here	to	view	code	image

mController	=	SDL_GameControllerOpen(0);

To	disable	a	controller,	you	can	call

SDL_GameControllerClose,	which	takes	the

SDL_GameController	pointer	as	its	parameter.

tiptip

By	default,	SDL	supports	a	handful	of	common	controllers,	such	as	the
Microsoft	Xbox	controller.	You	can	find	controller	mappings	that	specify	the
button	layouts	of	many	other	controllers.	The
SDL_GameControllerAddMappingsFromFile	function	can	load
controller	mappings	from	a	supplied	file.	A	community-maintained	mapping
file	is	available	on	GitHub	at
https://github.com/gabomdq/SDL_GameControllerDB.

Because	you	do	not	want	to	assume	that	the	player	has	a

controller,	you	must	be	vigilant	to	null	check

mController	wherever	you	might	want	to	access	it	in

code.

Buttons

Game	controllers	in	SDL	support	many	different

buttons.	SDL	uses	a	naming	convention	that	mirrors

the	button	names	of	a	Microsoft	Xbox	controller.	For

example,	the	names	of	the	face	buttons	are	A,	B,	X,

and	Y.	Table	8.3	lists	the	different	button	constants

defined	by	SDL,	where	*	is	a	wildcard	that	denotes

multiple	possible	values.

Table	8.3	SDL	Controller	Button	Constants

Button Constant

A,	B,	X,	or	Y SDL_CONTROLLER_BUTTON_*	(replace	*	with	A,

B,	X,	or	Y)

https://github.com/gabomdq/SDL_GameControllerDB

Back SDL_CONTROLLER_BACK

Start SDL_CONTROLLER_START

Pressing

left/right

stick

SDL_CONTROLLER_BUTTON_*STICK	(replace	*

with	LEFT	or	RIGHT)

Left/right

shoulder

SDL_CONTROLLER_BUTTON_*SHOULDER	(replace

*	with	LEFT	or	RIGHT)

Directional

pad

SDL_CONTROLLER_BUTTON_DPAD_*	(replace	*

with	UP,	DOWN,	LEFT,	or	RIGHT)

Note	that	the	left	and	right	stick	buttons	are	for	when	the

user	physically	presses	in	the	left/right	stick.	Some

games	use	pressing	in	the	right	stick	for	sprinting,	for

example.

SDL	does	not	have	a	mechanism	to	query	the	state	of	all

controller	buttons	simultaneously.	Instead,	you	must

individually	query	each	button	via	the

SDL_GameControllerGetButton	function.

However,	you	can	take	advantage	of	the	fact	that	the

enum	for	the	controller	button	names	defines	an

SDL_CONTROLLER_BUTTON_MAX	member	that	is	the

number	of	buttons	the	controller	has.	Thus,	the	first	pass

of	the	ControllerState	class,	shown	in	Listing	8.6,

contains	arrays	for	both	the	current	and	previous	button

states.	The	code	also	has	a	Boolean	so	the	game	code	can

determine	whether	there’s	a	controller	connected.

Finally,	the	class	has	declarations	for	the	now-standard

button	value/state	functions.

Listing	8.6	Initial	ControllerState	Declaration

Click	here	to	view	code	image

class	ControllerState

{

public:

			friend	class	InputSystem;

			//	For	buttons

			bool	GetButtonValue(SDL_GameControllerButton	button)	const;

			ButtonState	GetButtonState(SDL_GameControllerButton	button)

						const;

			bool	GetIsConnected()	const	{	return	mIsConnected;	}

private:

			//	Current/previous	buttons

			Uint8	mCurrButtons[SDL_CONTROLLER_BUTTON_MAX];

			Uint8	mPrevButtons[SDL_CONTROLLER_BUTTON_MAX];

			//	Is	this	controlled	connected?

			bool	mIsConnected;

};

Then	add	an	instance	of	ControllerState	to

InputState:

ControllerState	Controller;

Next,	back	in	InputSystem::Initialize,	after	you

try	to	open	controller	0,	set	the	mIsConnected	variable

based	on	whether	the	mController	pointer	is	non-null.

You	also	clear	out	the	memory	for	both	mCurrButtons

and	mPrevButtons:

Click	here	to	view	code	image

mState.Controller.mIsConnected	=	(mController	!=	nullptr);

memset(mState.Controller.mCurrButtons,	0,

			SDL_CONTROLLER_BUTTON_MAX);

memset(mState.Controller.mPrevButtons,	0,

			SDL_CONTROLLER_BUTTON_MAX);

As	with	the	keyboard,	the	code	in	PrepareForUpdate

then	copies	the	button	states	from	current	to	previous:

Click	here	to	view	code	image

memcpy(mState.Controller.mPrevButtons,

			mState.Controller.mCurrButtons,

			SDL_CONTROLLER_BUTTON_MAX);

Finally,	in	Update,	loop	over	the	mCurrButtons	array

and	set	the	value	of	each	element	to	the	result	of	the

SDL_GameControllerGetButton	call	that	queries	the

state	of	that	button:

Click	here	to	view	code	image

for	(int	i	=	0;	i	<	SDL_CONTROLLER_BUTTON_MAX;	i++)

{

			mState.Controller.mCurrButtons[i]	=

						SDL_GameControllerGetButton(mController,

									SDL_GameControllerButton(i));

}

With	this	code,	you	can	then	query	the	state	of	a	specific

game	controller	button,	using	a	pattern	like	the	keyboard

and	mouse	buttons.	For	example,	this	code	checks	if	the

A	button	on	the	controller	has	a	positive	edge	this	frame:

Click	here	to	view	code	image

if	(state.Controller.GetButtonState(SDL_CONTROLLER_BUTTON_A)	==	EPressed)

Analog	Sticks	and	Triggers

SDL	supports	a	total	of	six	axes.	Each	analog	stick

has	two	axes:	one	in	the	x	direction	and	one	in	the	y

direction.	Furthermore,	each	of	the	triggers	has	a

single	axis.	Table	8.4	shows	the	list	of	axes.	(Once

again,	*	denotes	a	wildcard.)

Table	8.4	SDL	Controller	Axis	Constants

Button Constant

Left	analog

stick

SDL_CONTROLLER_AXIS_LEFT*	(replace	*	with	X

or	Y)

Right	analog

stick

SDL_CONTROLLER_AXIS_RIGHT*	(replace	*	with

X	or	Y)

Left/right

triggers

SDL_CONTROLLER_AXIS_TRIGGER*	(replace	*

with	LEFT	or	RIGHT)

For	triggers,	the	value	ranges	from	0	to	32,767,	with	0

meaning	there	is	no	pressure	on	the	trigger.	For	the

analog	stick	axes,	the	value	ranges	from	-32,768	to

32,767,	with	0	representing	centered.	A	positive	y-axis

value	corresponds	to	down	on	the	analog	stick,	and	a

positive	x-axis	value	corresponds	to	right.

However,	an	issue	with	continuous	input	such	as	these

axes	is	that	the	ranges	specified	by	the	API	are

theoretical.	Each	individual	device	has	its	own

imprecisions.	You	can	observe	this	behavior	by	releasing

one	of	the	analog	sticks,	which	returns	the	stick	to	its

center.	You	might	reasonably	expect	that	because	the

stick	is	at	rest,	the	values	reported	for	the	stick’s	x-	and

y-axes	are	zero.	However,	in	practice	the	values	will	be

around	zero	but	rarely	precisely	zero.	Conversely,	if	the

player	slams	the	stick	all	the	way	to	the	right,	the	value

reported	by	the	stick’s	x-axis	will	be	near	the	maximum

value	but	rarely	precisely	the	maximum	value.

This	is	problematic	for	games	for	two	reasons.	First,	it

may	cause	phantom	inputs,	where	the	player	isn’t

touching	an	input	axis	but	the	game	reports	that

something	is	happening.	For	example,	suppose	the

player	completely	puts	the	controller	down	on	a	table.

The	player	should	rightfully	expect	that	his	or	her

character	in	game	will	not	move	around.	However,	if	the

issue	isn’t	handled,	the	game	will	detect	some	value	of

input	to	the	axis	and	move	the	character.

Furthermore,	many	games	have	the	character	move

based	on	how	far	the	analog	stick	is	moved	in	one

direction—so	that	slightly	moving	the	stick	might	cause

the	character	to	slowly	walk,	whereas	moving	the	stick	all

the	way	in	a	direction	might	cause	the	character	to

sprint.	However,	if	you	only	make	the	player	sprint	when

the	axis	reports	the	maximum	value,	the	player	will

never	sprint.

To	solve	this	issue,	code	that	processes	the	input	from	an

axis	should	filter	the	value.	Specifically,	you	want	to

interpret	values	close	to	zero	as	zero	and	values	close	to

the	minimum	or	maximum	as	the	minimum	or

maximum.	Furthermore,	it’s	convenient	for	users	of	the

input	system	if	you	convert	the	integral	ranges	into	a

normalized	floating-point	range.	For	the	axes	that	yield

both	positive	and	negative	values,	this	means	a	range

between	−1.0	and	1.0.

Figure	8.2	shows	an	example	of	such	a	filter	for	a	single

axis.	The	numbers	above	the	line	are	the	integral	values

before	filtering,	and	the	numbers	below	the	line	are	the

floating-point	values	after	filtering.	The	area	near	zero

that	you	interpreted	as	0.0	is	called	a	dead	zone.

Figure	8.2	A	sample	filter	for	an	axis,	with	the	input

values	above	and	the	output	values	below

Listing	8.7	shows	the	implementation	the

InputSystem::Filter1D	function,	which	the	input

system	uses	to	filter	one-dimensional	axes	such	as	the

triggers.	First,	you	declare	two	constants	for	the	dead

zone	and	maximum	value.	Note	that	deadZone	here	is

250—which	is	less	than	in	Figure	8.2	because	this	value

works	better	for	the	triggers	(but	you	could	make	the

constants	parameters	or	user	configurable,	if	desired).

Next,	the	code	takes	the	absolute	value	of	the	input	by

using	a	ternary	operator.	If	this	value	is	less	than	the

dead	zone	constant,	you	simply	return	0.0f.	Otherwise,

you	convert	the	input	to	a	fractional	value	representing

where	it	lands	in	between	the	dead	zone	and	the

maximum	value.	For	example,	an	input	halfway	between

deadZone	and	maxValue	is	0.5f.

Then	you	ensure	that	the	sign	of	this	fractional	value

matches	the	sign	of	the	original	input.	Finally,	you	clamp

the	value	to	the	range	of	-1.0	to	1.0	to	account	for	the

cases	where	the	input	is	greater	than	the	maximum	value

constant.	The	implementation	Math::Clamp	is	in	the

custom	Math.h	header	file.

Listing	8.7	Filter1D	Implementation

Click	here	to	view	code	image

float	InputSystem::Filter1D(int	input)

{

			//	A	value	<	dead	zone	is	interpreted	as	0%

			const	int	deadZone	=	250;

			//	A	value	>	max	value	is	interpreted	as	100%

			const	int	maxValue	=	30000;

			float	retVal	=	0.0f;

			//	Take	absolute	value	of	input

			int	absValue	=	input	>	0	?	input	:	-input;

			//	Ignore	input	within	dead	zone

			if	(absValue	>	deadZone)

			{

						//	Compute	fractional	value	between	dead	zone	and	max	value

						retVal	=	static_cast<float>(absValue	-	deadZone)	/

									(maxValue	-	deadZone);

						//	Make	sure	sign	matches	original	value

						retVal	=	input	>	0	?	retVal	:	-1.0f	*	retVal;

		

						//	Clamp	between	-1.0f	and	1.0f

						retVal	=	Math::Clamp(retVal,	-1.0f,	1.0f);

			}

			return	retVal;

}

Using	the	Filter1D	function,	an	input	value	of	5000

returns	0.0f,	and	a	value	of	-19000	returns	-0.5f.

The	Filter1D	function	works	well	when	you	only	need

a	single	axis,	such	as	for	one	of	the	triggers.	However,

because	the	analog	sticks	really	are	two	different	axes	in

concert,	it’s	usually	preferable	to	instead	filter	them	in

two	dimensions,	as	discussed	in	the	next	section.

For	now,	you	can	add	two	floats	to	ControllerState

for	the	left	and	right	triggers:

float	mLeftTrigger;

float	mRightTrigger;

Next,	in	InputSystem::Update	use	the

SDL_GameControllerGetAxis	function	to	read	in	the

values	of	both	triggers	and	call	the	Filter1D	function

on	this	value	to	convert	it	to	a	range	of	0.0	to	1.0

(because	triggers	cannot	be	negative).	For	example,	the

following	sets	the	mLeftTrigger	member:

Click	here	to	view	code	image

mState.Controller.mLeftTrigger	=

			Filter1D(SDL_GameControllerGetAxis(mController,

						SDL_CONTROLLER_AXIS_TRIGGERLEFT));

You	then	add	GetLeftTrigger()	and

GetRightTrigger()	functions	to	access	these.	For

example,	the	following	code	gets	the	value	of	the	left

trigger:

Click	here	to	view	code	image

float	left	=	state.Controller.GetLeftTrigger();

Filtering	Analog	Sticks	in	Two	Dimensions

A	common	control	scheme	for	an	analog	stick	is	that

the	orientation	of	the	stick	corresponds	to	the

direction	in	which	the	player’s	character	moves.	For

example,	pressing	the	stick	up	and	to	the	left	would

cause	the	character	onscreen	to	also	move	in	that

direction.	To	implement	this,	you	should	interpret

the	x-	and	y-axes	together.

Although	it	is	tempting	to	apply	the	Filter1D	function

to	the	x-	and	y-axes	independently,	doing	so	can	cause	an

interesting	issue.	If	the	player	moves	the	stick	all	the	way

up,	interpreting	it	as	a	normalized	vector	yields	<0.0,

1.0>.	On	the	other	hand,	if	the	player	moves	the	stick	all

the	way	up	and	to	the	right,	the	normalized	vector	is

<1.0,	1.0>.	The	length	of	these	two	vectors	is	different,

which	is	a	problem	if	you	use	the	length	to	dictate	the

speed	at	which	the	character	moves:	The	character	could

move	faster	diagonally	than	straight	in	one	direction!

Although	you	could	just	normalize	vectors	with	a	length

greater	than	one,	interpreting	each	axis	independently

still	ultimately	means	you’re	interpreting	the	dead	zone

and	maximum	values	as	a	square.	A	better	approach	is	to

interpret	them	as	concentric	circles,	as	shown	in	Figure

8.3.	The	square	border	represents	the	raw	input	values,

the	inner	circle	represents	the	dead	zone,	and	the	outer

circle	represents	the	maximum	values.

Figure	8.3	Filtering	in	two	dimensions

Listing	8.8	gives	the	code	for	Filter2D,	which	takes	in

both	the	x-	and	y-axes	for	the	analog	stick	and	filters	in

two	dimensions.	You	first	create	a	2D	vector	and	then

determine	the	length	of	that	vector.	Lengths	less	than	the

dead	zone	result	in	Vector2::Zero.	For	lengths

greater	than	the	dead	zone,	you	determine	the	fractional

value	between	the	dead	zone	and	max	and	set	the	length

of	the	vector	to	this	fractional	value.

Listing	8.8	InputSystem::Filter2D

Implementation

Click	here	to	view	code	image

Vector2	InputSystem::Filter2D(int	inputX,	int	inputY)

{

			const	float	deadZone	=	8000.0f;

			const	float	maxValue	=	30000.0f;

			//	Make	into	2D	vector

			Vector2	dir;

			dir.x	=	static_cast<float>(inputX);

			dir.y	=	static_cast<float>(inputY);

			float	length	=	dir.Length();

			//	If	length	<	deadZone,	should	be	no	input

			if	(length	<	deadZone)

			{

						dir	=	Vector2::Zero;

			}

			else

			{
						//	Calculate	fractional	value	between

						//	dead	zone	and	max	value	circles

						float	f	=	(length	-	deadZone)	/	(maxValue	-	deadZone);

						//	Clamp	f	between	0.0f	and	1.0f

						f	=	Math::Clamp(f,	0.0f,	1.0f);

						//	Normalize	the	vector,	and	then	scale	it	to	the

						//	fractional	value

						dir	*=	f	/	length;

			}

			return	dir;

}

Next,	add	two	Vector2s	to	ControllerState	for	the

left	and	right	sticks,	respectively.	You	can	then	add	code

in	InputSystem::Update	to	grab	the	values	of	the	two

axes	for	each	stick	and	then	run	Filter2D	to	get	the

final	analog	stick	value.	For	example,	the	following	code

filters	the	left	stick	and	saves	the	result	in	the	controller

state:

Click	here	to	view	code	image

x	=	SDL_GameControllerGetAxis(mController,

			SDL_CONTROLLER_AXIS_LEFTX);

y	=	-SDL_GameControllerGetAxis(mController,

			SDL_CONTROLLER_AXIS_LEFTY);

mState.Controller.mLeftStick	=	Filter2D(x,	y);

Note	that	this	code	negates	the	y-axis	value.	This	is

because	SDL	reports	the	y-axis	in	the	SDL	coordinate

system	where	+y	is	down.	Thus,	to	get	the	expected

values	in	the	game’s	coordinate	system,	you	must	negate

the	value.

You	can	then	access	the	value	of	the	left	stick	via

InputState	with	code	like	this:

Click	here	to	view	code	image

Vector2	leftStick	=	state.Controller.GetLeftStick();

Supporting	Multiple	Controllers

Supporting	multiple	local	controllers	is	more

complex	than	supporting	one.	This	section	briefly

touches	on	the	different	pieces	of	code	needed	to

support	it,	though	it	does	not	fully	implement	this

code.	First,	to	initialize	all	connected	controllers	at

startup,	you	need	to	rewrite	the	controller	detection

code	to	loop	over	all	joysticks	and	see	which	ones	are

controllers.	You	can	then	open	each	one	individually,

with	code	roughly	like	this:

Click	here	to	view	code	image

for	(int	i	=	0;	i	<	SDL_NumJoysticks();	++i)

{

			//	Is	this	joystick	a	controller?

			if	(SDL_IsGameController(i))
			{

						//	Open	this	controller	for	use

						SDL_GameController*	controller	=	SDL_GameControllerOpen(i);

						//	Add	to	vector	of	SDL_GameController*	pointers

			}

}

Next,	you	change	InputState	to	contain	several

ControllerStates	instead	of	just	one.	You	also

update	all	the	functions	in	InputSystem	to	support

each	of	these	different	controllers.

To	support	hot	swapping	(adding/removing	controllers

while	the	game	is	running),	SDL	generates	two	different

events	for	adding	and	removing	controllers:

SDL_CONTROLLERDEVICEADDED	and

SDL_CONTROLLERDEVICEREMOVED.	Consult	the	SDL

documentation	for	further	information	about	these

events	(see

https://wiki.libsdl.org/SDL_ControllerDeviceEvent).

INPUT	MAPPINGS
The	way	you	currently	use	the	data	from

InputState,	the	code	assumes	that	specific	input

https://wiki.libsdl.org/SDL_ControllerDeviceEvent

devices	and	keys	map	directly	to	actions.	For

example,	if	you	want	the	player	character	to	jump	on

the	positive	edge	of	a	spacebar,	you	add	code	like	this

to	ProcessInput:

Click	here	to	view	code	image

bool	shouldJump	=	state.Keyboard.GetKeyState(SDL_SCANCODE_SPACE)

																		==	Pressed;

Although	this	works,	ideally	you’d	like	to	instead	define

an	abstract	“Jump”	action.	Then,	you	want	some

mechanism	that	allows	the	game	code	to	specify	that

“Jump”	corresponds	to	the	spacebar	key.	To	support	this,

you	want	a	map	between	these	abstract	actions	and	the

{device,	button}	pair	corresponding	to	this	abstract

action.	(You	will	actually	work	on	implementing	this	in

Exercise	8.2.)

You	could	further	enhance	this	system	by	allowing	for

multiple	bindings	to	the	same	abstract	action.	This

means	you	could	bind	both	the	spacebar	and	the	A

button	on	the	controller	to	“Jump.”

Another	advantage	of	defining	such	abstract	actions	is

that	doing	so	makes	it	easier	for	AI-controlled	characters

to	perform	the	same	action.	Rather	than	needing	some

separate	code	path	for	the	AI,	you	could	update	the	AI

character	such	that	it	generates	a	“Jump”	action	when

the	AI	wants	to	jump.

Another	improvement	to	this	system	allows	for	the

definition	of	a	movement	along	an	axis,	such	as	a

“ForwardAxis”	action	that	corresponds	to	the	W	and	S

keys	or	one	of	the	controller	axes.	You	can	then	use	this

action	to	specify	movement	of	characters	in	the	game.

Finally,	with	these	types	of	mappings,	you	can	add	a

mechanism	to	load	mappings	from	a	file.	This	makes	it

easy	for	designers	or	users	to	configure	the	mappings

without	modifying	the	code.

GAME	PROJECT
This	chapter’s	game	project	adds	a	full

implementation	of	the	InputSystem	from	this

chapter	to	the	game	project	from	Chapter	5.	This

includes	all	the	code	for	the	keyboard,	mouse,	and

controller.	Recall	that	the	Chapter	5	project	uses	2D

movement	(so	position	is	a	Vector2).	The	code	is

available	in	the	book’s	GitHub	repository,	in	the

Chapter08	directory.	Open	Chapter08-

windows.sln	on	Windows	and	Chapter08-

mac.xcodeproj	on	Mac.

In	this	chapter’s	project,	the	game	controller	moves	the

spaceship.	The	left	stick	affects	the	direction	in	which	the

ship	travels,	and	the	right	stick	rotates	the	direction	the

ship	faces.	The	right	trigger	fires	a	laser.	This	is	a	control

scheme	popularized	by	“twin	stick	shooter”	games.

With	the	input	system	already	returning	2D	axes	for	the

left/right	stick,	implementing	the	twin	stick–style

controls	does	not	require	too	much	code.	First,	in

Ship::ActorInput,	you	add	the	following	lines	of

code	to	grab	both	the	left	and	right	sticks	and	save	them

in	member	variables:

Click	here	to	view	code	image

if	(state.Controller.GetIsConnected())

{

			mVelocityDir	=	state.Controller.GetLeftStick();

			if	(!Math::NearZero(state.Controller.GetRightStick().Length()))

			{

						mRotationDir	=	state.Controller.GetRightStick();

			}

}

You	add	the	NearZero	check	for	the	right	stick	to	make

sure	that	if	the	player	releases	the	right	stick	completely,

the	ship	doesn’t	snap	back	to	an	initial	angle	of	zero.

Next,	in	Ship::UpdateActor,	add	the	following	code

to	move	the	actor	based	on	the	direction	of	the	velocity,	a

speed,	and	delta	time:

Click	here	to	view	code	image

Vector2	pos	=	GetPosition();

pos	+=	mVelocityDir	*	mSpeed	*	deltaTime;

SetPosition(pos);

Note	that	this	code	reduces	the	speed	based	on	how	far

you	move	the	left	stick	in	a	direction	because

mVelocityDir	can	have	a	length	less	than	one	in	this

case.

Finally,	you	add	the	following	code	(also	in

UpdateActor)	to	rotate	the	actor	based	on	the

mRotationDir,	using	the	atan2	approach:

Click	here	to	view	code	image

float	angle	=	Math::Atan2(mRotationDir.y,	mRotationDir.x);

SetRotation(angle);

Again,	this	code	compiles	because	the	Actor	class	in	this

chapter’s	project	harkens	back	to	the	2D	actor	class	that

used	a	single	float	for	the	angle,	as	opposed	to	the

quaternion	rotation	used	in	3D.

Figure	8.4	shows	what	the	game	looks	like	with	the	ship

moving	around.

Figure	8.4	Ship	moving	around	in	the	Chapter	8

game	project

SUMMARY
Many	different	input	devices	are	used	for	games.	A

device	might	report	either	a	single	Boolean	value	or	a

range	of	inputs.	For	a	key/button	that	reports	a

simple	on/off	state,	it’s	useful	to	consider	the

difference	between	the	value	in	this	frame	and	the

value	in	the	last	frame.	This	way,	you	can	detect	the

positive	or	negative	edge	of	the	input,	corresponding

to	a	“pressed”	or	“released”	state.

SDL	provides	support	for	the	most	common	input

devices	including	the	keyboard,	mouse,	and	controller.

For	each	of	these	devices,	you	add	data	in	an

InputState	struct	that	you	then	pass	to	each	actor’s

ProcessInput	function.	This	way,	actors	can	query	the

input	state	for	not	only	the	current	values	of	inputs	but

also	negative	and	positive	edges.

For	devices	that	give	a	range	of	values,	such	as	the

triggers	or	analog	sticks,	you	typically	need	to	filter	this

data.	This	is	because	even	when	the	device	is	at	rest,	the

device	may	give	spurious	signals.	The	filtering

implemented	in	this	chapter	ensures	that	input	less	than

some	dead	zone	is	ignored	and	also	ensures	that	you

detect	the	maximum	input	even	when	the	input	is	only

“almost”	the	maximum.

This	chapter’s	game	project	takes	advantage	of	the	new

controller	input	functionality	to	add	support	for	twin-

stick	shooter–style	movement.

ADDITIONAL	READING
Bruce	Dawson	covers	how	to	record	input	and	then

play	it	back,	which	is	very	useful	for	testing.	The

Oculus	SDK	documentation	covers	how	to	interface

with	Oculus	VR	touch	controllers.	Finally,	Mick	West

explores	how	to	measure	input	lag,	which	is	the

amount	of	time	it	takes	a	game	to	detect	inputs	from

controllers.	Input	lag	is	generally	not	the	fault	of	the

input	code,	but	West’s	material	is	interesting

nonetheless.

Dawson,	Bruce.	“Game	Input	Recording

and	Playback.”	Game	Programming	Gems

2,	edited	by	Mark	DeLoura.	Cengage

Learning,	2001.

Oculus	PC	SDK.	Accessed	November	29,

2017.

https://developer.oculus.com/documentation/pcsdk/latest/.

West,	Mick.	“Programming

Responsiveness.”	Gamasutra.	Accessed

November	29,	2017.

http://www.gamasutra.com/view/feature/1942/programming_responsiveness.php?

print=1.

EXERCISES
In	this	chapter’s	exercises	you	will	improve	the	input

system.	In	the	first	exercise	you	add	support	for

multiple	controllers.	In	the	second	exercise	you	add

input	mappings.

Exercise	8.1

Recall	that	to	support	multiple	controllers,	you	need

to	have	multiple	ControllerState	instances	in

the	InputState	struct.	Add	code	to	support	a

maximum	of	four	controllers	simultaneously.	On

initialization,	change	the	code	to	detect	any

connected	controllers	and	enable	them	individually.

Then	change	the	Update	code	so	that	it	updates	up

to	all	four	controllers	instead	of	just	a	single	one.

Finally,	investigate	the	events	that	SDL	sends	when	the

user	connects/disconnects	controllers	and	add	support

to	dynamically	add	and	remove	controllers.

https://developer.oculus.com/documentation/pcsdk/latest/
http://www.gamasutra.com/view/feature/1942/programming_responsiveness.php?print=1

Exercise	8.2

Add	support	for	basic	input	mappings	for	actions.	To

do	this,	create	a	text	file	format	that	maps	actions	to

both	a	device	and	a	button/key	on	that	device.	For

example,	an	entry	in	this	text	file	to	specify	that	the

“Fire”	action	corresponds	to	the	A	button	on	the

controller	might	look	like	this:

Fire,Controller,A

Then	parse	this	data	in	the	InputSystem	and	save	it

into	a	map.	Next,	add	a	generic

GetMappedButtonState	function	to	InputState

that	takes	in	the	action	name	and	returns	the

ButtonState	from	the	correct	device.	The	signature	of

this	function	is	roughly	the	following:

Click	here	to	view	code	image

ButtonState	GetMappedButtonState(const	std::string&	actionName);

CHAPTER	9

CAMERAS

The	camera	determines	the	player’s	point	of

view	in	a	3D	game	world,	and	there	are	many

different	types	of	cameras.	This	chapter

covers	the	implementation	of	four	cameras:

a	first-person	camera,	a	follow	camera,	an

orbit	camera,	and	a	spline	camera	that

follows	paths.	And	because	the	camera	often

dictates	the	movement	of	the	player

character,	this	chapter	also	covers	how	to

update	movement	code	for	different	types	of

cameras.

FIRST-PERSON	CAMERA
A	first-person	camera	shows	the	game	world

from	the	perspective	of	a	character	moving	through

the	world.	This	type	of	camera	is	popular	in	first-

person	shooters	such	as	Overwatch	but	also	sees	use

in	some	role-playing	games	like	Skyrim	or	narrative-

based	games	such	as	Gone	Home.	Some	designers

feel	that	a	first-person	camera	is	the	most	immersive

type	of	camera	for	a	video	game.

Even	though	it’s	tempting	to	think	of	a	camera	as	just	a

view,	the	camera	also	informs	the	player	how	the	player

character	moves	around	the	world.	This	means	the

camera	and	movement	system	implementations	depend

on	each	other.	The	typical	controls	for	a	first-person

shooter	on	PC	use	both	the	keyboard	and	mouse.	The

W/S	keys	move	forward	and	backward,	while	the	A/D

keys	strafe	the	character	(that	is,	move	left	and	right).

Moving	the	mouse	left	and	right	rotates	the	character

about	the	up	axis,	but	moving	the	mouse	up	and	down

pitches	only	the	view,	not	the	character.

Basic	First-Person	Movement

Implementing	movement	is	easier	than	working	with

the	view,	so	this	is	a	good	starting	point.	You	create	a

new	actor	called	FPSActor	that	implements	first-

person	movement.	The	forward/back	movement	in

MoveComponent	already	works	in	the	3D	world,

based	on	the	changes	made	in	Chapter	6,	“3D

Graphics.”	Implementing	strafing	requires	just	a	few

updates.	First,	you	create	a	GetRight	function	in

Actor,	which	is	like	GetForward	(just	using	the	y-

axis	instead):

Click	here	to	view	code	image

Vector3	Actor::GetRight()	const

{

			//	Rotate	right	axis	using	quaternion	rotation

			return	Vector3::Transform(Vector3::UnitY,	mRotation);

}

Next,	you	add	a	new	variable	in	MoveComponent	called

mStrafeSpeed	that	affects	the	speed	at	which	the

character	strafes.	In	Update,	you	simply	use	the	right

vector	of	the	actor	to	adjust	the	position	based	on	the

strafe	speed:

Click	here	to	view	code	image

if	(!Math::NearZero(mForwardSpeed)	||	!Math::NearZero(mStrafeSpeed))

{

			Vector3	pos	=	mOwner->GetPosition();

			pos	+=	mOwner->GetForward()	*	mForwardSpeed	*	deltaTime;

			//	Update	position	based	on	strafe

			pos	+=	mOwner->GetRight()	*	mStrafeSpeed	*	deltaTime;

			mOwner->SetPosition(pos);

}

Then	in	FPSActor::ActorInput,	you	can	detect	the

A/D	keys	and	adjust	the	strafe	speed	as	needed.	Now	the

character	can	move	with	standard	first-person	WASD

controls.

The	left/right	rotation	also	already	exists	in

MoveComponent	via	the	angular	speed.	So,	the	next	task

is	to	convert	mouse	left/right	movements	to	angular

speed.	First,	the	game	needs	to	enable	relative	mouse

mode	via	SDL_RelativeMouseMode.	Recall	from

Chapter	8,	“Input	Systems,”	that	relative	mouse	mode

reports	the	change	in	(x,	y)	values	per	frame,	as	opposed

to	absolute	(x,	y)	coordinates.	(Note	that	in	this	chapter,

you	will	directly	use	SDL	input	functions	rather	than	the

input	system	created	in	Chapter	8.)

Converting	the	relative	x	movement	into	an	angular

speed	only	requires	a	few	calculations,	shown	in	Listing

9.1.	First,	SDL_GetRelativeMouseState	retrieves	the

(x,	y)	motion.	The	maxMouseSpeed	constant	is	an

expected	maximum	amount	of	relative	motion	possible

per	frame,	though	this	might	be	an	in-game	setting.

Similarly,	maxAngularSpeed	converts	the	motion	into

a	rotation	per	second.	You	then	take	the	reported	x	value,

divide	by	maxMouseSpeed,	and	multiply	by

maxAngularSpeed.	This	yields	an	angular	speed	that’s

sent	to	the	MoveComponent.

Listing	9.1	FPS	Angular	Speed	Calculation	from	the

Mouse

Click	here	to	view	code	image

//	Get	relative	movement	from	SDL

int	x,	y;

Uint32	buttons	=	SDL_GetRelativeMouseState(&x,	&y);

//	Assume	mouse	movement	is	usually	between	-500	and	+500

const	int	maxMouseSpeed	=	500;

//	Rotation/sec	at	maximum	speed

const	float	maxAngularSpeed	=	Math::Pi	*	8;

float	angularSpeed	=	0.0f;

if	(x	!=	0)

{

			//	Convert	to	approximately	[-1.0,	1.0]

			angularSpeed	=	static_cast<float>(x)	/	maxMouseSpeed;

			//	Multiply	by	rotation/sec

			angularSpeed	*=	maxAngularSpeed;

}

mMoveComp->SetAngularSpeed(angularSpeed);

Camera	(Without	Pitch)

The	first	step	to	implement	a	camera	is	to	create	a

subclass	of	Component	called	CameraComponent.

All	the	different	types	of	cameras	in	this	chapter	will

subclass	from	CameraComponent,	so	any	common

camera	functionality	can	go	in	this	new	component.

The	declaration	of	CameraComponent	is	like	that	of

any	other	component	subclass.	For	now,	the	only

new	function	is	a	protected	function	called

SetViewMatrix,	which	simply	forwards	the	view

matrix	to	the	renderer	and	audio	system:

Click	here	to	view	code	image

void	CameraComponent::SetViewMatrix(const	Matrix4&	view)

{

			//	Pass	view	matrix	to	renderer	and	audio	system

			Game*	game	=	mOwner->GetGame();

			game->GetRenderer()->SetViewMatrix(view);

			game->GetAudioSystem()->SetListener(view);

}

For	the	FPS	camera	specifically,	you	create	a	subclass	of

CameraComponent	called	FPSCamera,	which	has	an

overridden	Update	function.	Listing	9.2	shows	the	code

for	Update.	For	now,	Update	uses	the	same	logic	as	the

basic	camera	actor	introduced	in	Chapter	6.	The	camera

position	is	the	owning	actor’s	position,	the	target	point	is

an	arbitrary	point	in	the	forward	direction	of	the	owning

actor,	and	the	up	vector	is	the	z-axis.	Finally,

Matrix4::CreateLookAt	creates	the	view	matrix.

Listing	9.2	FPSCamera::Update	Implementation

(Without	Pitch)

Click	here	to	view	code	image

void	FPSCamera::Update(float	deltaTime)

{

			//	Camera	position	is	owner	position

			Vector3	cameraPos	=	mOwner->GetPosition();

			//	Target	position	100	units	in	front	of	owner

			Vector3	target	=	cameraPos	+	mOwner->GetForward()	*	100.0f;

			//	Up	is	just	unit	z

			Vector3	up	=	Vector3::UnitZ;

			//	Create	look	at	matrix,	set	as	view

			Matrix4	view	=	Matrix4::CreateLookAt(cameraPos,	target,	up);

			SetViewMatrix(view);

}

Adding	Pitch

Recall	from	Chapter	6	that	yaw	is	rotation	about	the

up	axis	and	pitch	is	rotation	about	the	side	axis	(in

this	case,	the	right	axis).	Incorporating	pitch	into	the

FPS	camera	requires	a	few	changes.	The	camera	still

starts	with	the	forward	vector	from	the	owner,	but

you	apply	an	additional	rotation	to	account	for	the

pitch.	Then,	you	derive	a	target	from	this	view

forward.	To	implement	this,	you	add	three	new

member	variables	to	FPSCamera:

Click	here	to	view	code	image

//	Rotation/sec	speed	of	pitch

float	mPitchSpeed;

//	Maximum	pitch	deviation	from	forward

float	mMaxPitch;

//	Current	pitch

float	mPitch;

The	mPitch	variable	represents	the	current	(absolute)

pitch	of	the	camera,	while	mPitchSpeed	is	the	current

rotation/second	in	the	pitch	direction.	Finally,	the

mMaxPitch	variable	is	the	maximum	the	pitch	can

deviate	from	the	forward	vector	in	either	direction.	Most

first-person	games	limit	the	total	amount	the	player	can

pitch	the	view	up	or	down.	The	reason	for	this	limitation

is	that	the	controls	seem	odd	if	the	player	faces	straight

up.	In	this	case,	you	can	use	60°	(converted	to	radians)

as	the	default	maximum	pitch	value.

Next,	you	modify	FPSCamera::Update	to	take	into

account	the	pitch,	as	in	Listing	9.3.	First,	the	current

pitch	value	updates	based	on	the	pitch	speed	and	delta

time.	Second,	you	clamp	the	pitch	to	make	sure	it	does

not	exceed	+/-	the	maximum	pitch.	Recall	from	Chapter

6	that	a	quaternion	can	represent	an	arbitrary	rotation.

Thus,	you	can	construct	a	quaternion	representing	this

pitch.	Note	that	this	rotation	is	about	the	owner’s	right

axis.	(It’s	not	just	the	y-axis	because	the	pitch	axis

changes	depending	on	the	owner’s	yaw.)

The	view	forward	is	then	the	owner’s	forward	vector,

transformed	by	the	pitch	quaternion.	You	use	this	view

forward	to	determine	the	target	position	that’s	“in	front”

of	the	camera.	You	also	rotate	the	up	vector	by	the	pitch

quaternion.	Then	you	construct	the	look-at	matrix	from

these	vectors.	The	camera	position	is	still	the	owner’s

position.

Listing	9.3	FPSCamera::Update	Implementation

(with	Pitch	Added)

Click	here	to	view	code	image

void	FPSCamera::Update(float	deltaTime)

{

			//	Call	parent	update	(doesn't	do	anything	right	now)

			CameraComponent::Update(deltaTime);

			//	Camera	position	is	owner	position

			Vector3	cameraPos	=	mOwner->GetPosition();

			

			//	Update	pitch	based	on	pitch	speed

			mPitch	+=	mPitchSpeed	*	deltaTime;

			//	Clamp	pitch	to	[-max,	+max]

			mPitch	=	Math::Clamp(mPitch,	-mMaxPitch,	mMaxPitch);

			//	Make	a	quaternion	representing	pitch	rotation,

			//	which	is	about	owner's	right	vector

			Quaternion	q(mOwner->GetRight(),	mPitch);

			

			//	Rotate	owner	forward	by	pitch	quaternion

			Vector3	viewForward	=	Vector3::Transform(

						mOwner->GetForward(),	q);

			//	Target	position	100	units	in	front	of	view	forward

			Vector3	target	=	cameraPos	+	viewForward	*	100.0f;

			//	Also	rotate	up	by	pitch	quaternion

			Vector3	up	=	Vector3::Transform(Vector3::UnitZ,	q);

			

			//	Create	look	at	matrix,	set	as	view

			Matrix4	view	=	Matrix4::CreateLookAt(cameraPos,	target,	up);

			SetViewMatrix(view);

}

Finally,	FPSActor	updates	the	pitch	speed	based	on	the

relative	y	motion	of	the	mouse.	This	requires	code	in

ProcessInput	that	is	almost	identical	to	the	code	you	use

to	update	the	angular	speed	based	on	the	x	motion	from

Listing	9.1.	With	this	in	place,	the	first-person	camera

now	pitches	without	adjusting	the	pitch	of	the	owning

actor.

First-Person	Model

Although	it’s	not	strictly	part	of	the	camera,	most

first-person	games	also	incorporate	a	first-person

model.	This	model	may	have	parts	of	an	animated

character,	such	as	arms,	feet,	and	so	on.	If	the	player

carries	a	weapon,	then	when	the	player	pitches	up,

the	weapon	appears	to	also	aim	up.	You	want	the

weapon	model	to	pitch	up	even	though	the	player

character	remains	flat	with	the	ground.

You	can	implement	this	with	a	separate	actor	for	the

first-person	model.	Then	every	frame,	FPSActor

updates	the	first-person	model	position	and	rotation.

The	position	of	the	first-person	model	is	the	position	of

the	FPSActor	with	an	offset.	This	offset	places	the	first-

person	model	a	little	to	the	right	of	the	actor.	The

rotation	of	the	model	starts	with	the	rotation	of	the

FPSActor	but	then	has	an	additional	rotation	applied

for	the	view	pitch.	Listing	9.4	shows	the	code	for	this.

Listing	9.4	Updating	Position	and	Rotation	of	the	First-

Person	Model

Click	here	to	view	code	image

//	Update	position	of	FPS	model	relative	to	actor	position

const	Vector3	modelOffset(Vector3(10.0f,	10.0f,	-10.0f));

Vector3	modelPos	=	GetPosition();

modelPos	+=	GetForward()	*	modelOffset.x;

modelPos	+=	GetRight()	*	modelOffset.y;

modelPos.z	+=	modelOffset.z;

mFPSModel->SetPosition(modelPos);

	

//	Initialize	rotation	to	actor	rotation

Quaternion	q	=	GetRotation();

	

//	Rotate	by	pitch	from	camera

q	=	Quaternion::Concatenate(q,

			Quaternion(GetRight(),	mCameraComp->GetPitch()));

mFPSModel->SetRotation(q);

Figure	9.1	demonstrates	the	first-person	camera	with	a

first-person	model.	The	aiming	reticule	is	just	a

SpriteComponent	positioned	in	the	center	of	the

screen.

Figure	9.1	First-person	camera	with	first-person

model

FOLLOW	CAMERA
A	follow	camera	is	a	camera	that	follows	behind	a

target	object.	This	type	of	camera	is	popular	in	many

games,	including	racing	games	where	the	camera

follows	behind	a	car	and	third-person

action/adventure	games	such	as	Horizon	Zero

Dawn.	Because	follow	cameras	see	use	in	many

different	types	of	games,	there	is	a	great	deal	of

variety	in	their	implementation.	This	section	focuses

on	a	follow	camera	tracking	a	car.

As	was	the	case	with	the	first-person	character,	you’ll

create	a	new	actor	called	FollowActor	to	correspond	to

the	different	style	of	movement	when	the	game	uses	a

follow	camera.	The	movement	controls	are	W/S	to	move

the	car	forward	and	A/D	to	rotate	the	car	left/right.	The

normal	MoveComponent	supports	both	types	of

movements,	so	it	doesn’t	require	any	changes	here.

Basic	Follow	Camera

With	a	basic	follow	camera,	the	camera	always

follows	a	set	distance	behind	and	above	the	owning

actor.	Figure	9.2	gives	the	side	view	of	this	basic

follow	camera.	The	camera	is	a	set	horizontal

distance	HDist	behind	the	car	and	a	set	vertical

distance	VDist	above	the	car.	The	target	point	of	the

camera	is	not	the	car	itself	but	a	point	TargetDist	in

front	of	the	car.	This	causes	the	camera	to	look	at	a

point	a	little	in	front	of	the	car	rather	than	directly	at

the	car	itself.

Figure	9.2	Basic	follow	camera	tracking	a	car

To	compute	the	camera	position,	you	use	vector	addition

and	scalar	multiplication.	The	camera	position	is	HDist

units	behind	the	owner	and	VDist	units	above	the	owner,

yielding	the	following	equation:

OwnerForward	and	OwnerUp	in	this	equation	are	the

owner’s	forward	and	up	vectors,	respectively.

Similarly,	TargetPos	is	just	a	point	TargetDist	units	in

front	of	the	owner:

In	code,	you	declare	a	new	subclass	of

CameraComponent	called	FollowCamera.	It	has

member	variables	for	the	horizontal	distance

(mHorzDist),	vertical	distance	(mVertDist),	and	target

distance	(mTargetDist).	First,	you	create	a	function	to

compute	the	camera	position	(using	the	previous

equation):

Click	here	to	view	code	image

Vector3	FollowCamera::ComputeCameraPos()	const

{

			//	Set	camera	position	behind	and	above	owner

			Vector3	cameraPos	=	mOwner->GetPosition();

			cameraPos	-=	mOwner->GetForward()	*	mHorzDist;

			cameraPos	+=	Vector3::UnitZ	*	mVertDist;

			return	cameraPos;

}

Next,	the	FollowCamera::Update	function	uses	this

camera	position	as	well	as	a	computed	target	position	to

create	the	view	matrix:

Click	here	to	view	code	image

void	FollowCamera::Update(float	deltaTime)

{

			CameraComponent::Update(deltaTime);

			//	Target	is	target	dist	in	front	of	owning	actor

			Vector3	target	=	mOwner->GetPosition()	+

						mOwner->GetForward()	*	mTargetDist;

			//	(Up	is	just	UnitZ	since	we	don't	flip	the	camera)

			Matrix4	view	=	Matrix4::CreateLookAt(GetCameraPos(),	target,

						Vector3::UnitZ);

			SetViewMatrix(view);

}

Although	this	basic	follow	camera	successfully	tracks	the

car	as	it	moves	through	the	game	world,	it	appears	very

rigid.	Because	the	camera	is	always	a	set	distance	from

the	target,	it’s	difficult	to	get	a	sense	of	speed.

Furthermore,	when	the	car	turns,	it	almost	seems	like

the	world—not	the	car—is	turning.	So	even	though	the

basic	follow	camera	is	a	good	starting	point,	it’s	not	a

very	polished	solution.

One	simple	change	that	improves	the	sense	of	speed	is	to

make	the	horizontal	follow	distance	a	function	of	the

speed	of	the	owner.	Perhaps	at	rest	the	horizontal

distance	is	350	units,	but	when	moving	at	max	speed	it

increases	to	500.	This	makes	it	easier	to	perceive	the

speed	of	the	car,	but	the	camera	still	seems	stiff	when	the

car	is	turning.	To	solve	the	rigidity	of	the	basic	follow

camera,	you	can	add	springiness	to	the	camera.

Adding	a	Spring

Rather	than	having	the	camera	position	instantly

changing	to	the	position	as	per	the	equation,	you	can

have	the	camera	adjust	to	this	position	over	the

course	of	several	frames.	To	accomplish	this,	you	can

separate	the	camera	position	into	an	“ideal”	camera

position	and	an	“actual”	camera	position.	The	ideal

camera	position	is	the	position	derived	from	the

basic	follow	camera	equations,	while	the	actual

camera	position	is	what	the	view		matrix	uses.

Now,	imagine	that	there’s	a	spring	connecting	the	ideal

camera	and	the	actual	camera.	Initially,	both	cameras	are

at	the	same	location.	As	the	ideal	camera	moves,	the

spring	stretches	and	the	actual	camera	also	starts	to

move—but	at	a	slower	rate.	Eventually,	the	spring

stretches	completely,	and	the	actual	camera	moves	just

as	quickly	as	the	ideal	camera.	Then,	when	the	ideal

camera	stops,	the	spring	eventually	compresses	back	to

its	steady	state.	At	this	point,	the	ideal	camera	and	actual

camera	are	at	the	same	point	again.	Figure	9.3	visualizes

this	idea	of	a	spring	connecting	the	ideal	and	actual

cameras.

Figure	9.3	A	spring	connecting	the	ideal	and	actual

cameras

Implementing	a	spring	requires	a	few	more	member

variables	in	FollowCamera.	A	spring	constant

(mSpringConstant)	represents	the	stiffness	of	the

spring,	with	a	higher	value	being	stiffer.	You	also	must

track	the	actual	position	(mActualPos)	and	the	velocity

(mVelocity)	of	the	camera	from	frame	to	frame,	so	you

add	two	vector	member	variables	for	these.

Listing	9.5	gives	the	code	for	FollowCamera::Update

with	a	spring.	First,	you	compute	a	spring	dampening

based	on	the	spring	constant.	Next,	the	ideal	position	is

simply	the	position	from	the	previously	implemented

ComputeCameraPos	function.	You	then	compute	the

difference	between	the	actual	and	ideal	positions	and

compute	an	acceleration	of	the	camera	based	on	this

distance	and	a	dampening	of	the	old	velocity.	Next,	you

compute	the	velocity	and	acceleration	of	the	camera	by

using	the	Euler	integration	technique	introduced	in

Chapter	3,	“Vectors	and	Basic	Physics.”	Finally,	the

target	position	calculation	remains	the	same,	and	the

CreateLookAt	function	now	uses	the	actual	position	as

opposed	to	the	ideal	one.

Listing	9.5	FollowCamera::Update	Implementation

(with	Spring)

Click	here	to	view	code	image

void	FollowCamera::Update(float	deltaTime)

{

			CameraComponent::Update(deltaTime);

			

			//	Compute	dampening	from	spring	constant

			float	dampening	=	2.0f	*	Math::Sqrt(mSpringConstant);

			

			//	Compute	ideal	position

			Vector3	idealPos	=	ComputeCameraPos();

			

			//	Compute	difference	between	actual	and	ideal
			Vector3	diff	=	mActualPos	-	idealPos;

			//	Compute	acceleration	of	spring

			Vector3	acel	=	-mSpringConstant	*	diff	-

						dampening	*	mVelocity;

			

			//	Update	velocity

			mVelocity	+=	acel	*	deltaTime;

			//	Update	actual	camera	position

			mActualPos	+=	mVelocity	*	deltaTime;

			

			//	Target	is	target	dist	in	front	of	owning	actor

			Vector3	target	=	mOwner->GetPosition()	+

						mOwner->GetForward()	*	mTargetDist;

			

			//	Use	actual	position	here,	not	ideal

			Matrix4	view	=	Matrix4::CreateLookAt(mActualPos,	target,

						Vector3::UnitZ);

			SetViewMatrix(view);

}

A	big	advantage	of	using	a	spring	camera	is	that	when

the	owning	object	turns,	the	camera	takes	a	moment	to

catch	up	to	the	turn.	This	means	that	the	side	of	the

owning	object	is	visible	as	it	turns.	This	gives	a	much

better	sense	that	the	object,	not	the	world,	is	turning.

Figure	9.4	shows	the	spring	follow	camera	in	action.

Figure	9.4	Spring	follow	camera	following	a	car	as

it	turns

The	red	sports	car	model	used	here	is	“Racing	Car”	by

Willy	Decarpentrie,	licensed	under	CC	Attribution	and

downloaded	from	https://sketchfab.com.

Finally,	to	make	sure	the	camera	starts	out	correctly	at

the	beginning	of	the	game,	you	create	a	SnapToIdeal

function	that’s	called	when	the	FollowActor	first

initializes:

Click	here	to	view	code	image

void	FollowCamera::SnapToIdeal()

{

			//	Set	actual	position	to	ideal

			mActualPos	=	ComputeCameraPos();

			//	Zero	velocity

			mVelocity	=	Vector3::Zero;

			//	Compute	target	and	view

			Vector3	target	=	mOwner->GetPosition()	+

						mOwner->GetForward()	*	mTargetDist;

			Matrix4	view	=	Matrix4::CreateLookAt(mActualPos,	target,

						Vector3::UnitZ);

			SetViewMatrix(view);

https://sketchfab.com

}

ORBIT	CAMERA
An	orbit	camera	focuses	on	a	target	object	and

orbits	around	it.	This	type	of	camera	might	be	used

in	a	builder	game	such	as	Planet	Coaster,	as	it	allows

the	player	to	easily	see	the	area	around	an	object.

The	simplest	implementation	of	an	orbit	camera

stores	the	camera’s	position	as	an	offset	from	the

target	rather	than	as	an	absolute	world	space

position.	This	takes	advantage	of	the	fact	that

rotations	always	rotate	about	the	origin.	So,	if	the

camera	position	is	an	offset	from	the	target	object,

any	rotations	are	effectively	about	the	target	object.

In	this	section,	you’ll	create	an	OrbitActor	as	well	as

an	OrbitCamera	class.	A	typical	control	scheme	uses

the	mouse	for	both	yaw	and	pitch	around	the	object.	The

input	code	that	converts	relative	mouse	movement	into

rotation	values	is	like	the	code	covered	in	the	“First-

Person	Camera”	section,	earlier	in	this	chapter.	However,

you	add	a	restriction	that	the	camera	rotates	only	when

the	player	is	holding	down	the	right	mouse	button	(since

this	is	a	typical	control	scheme).	Recall	that	the

SDL_GetRelativeMouseState	function	returns	the

state	of	the	buttons.	The	following	conditional	tests

whether	the	player	is	holding	the	right	mouse	button:

Click	here	to	view	code	image

if	(buttons	&	SDL_BUTTON(SDL_BUTTON_RIGHT))

The	OrbitCamera	class	requires	the	following	member

variables:

Click	here	to	view	code	image

//	Offset	from	target

Vector3	mOffset;

//	Up	vector	of	camera

Vector3	mUp;

//	Rotation/sec	speed	of	pitch

float	mPitchSpeed;

//	Rotation/sec	speed	of	yaw

float	mYawSpeed;

The	pitch	speed	(mPitchSpeed)	and	yaw	speed

(mYawSpeed)	simply	track	the	current	rotations	per

second	of	the	camera	for	each	type	of	rotation.	The

owning	actor	can	update	these	speeds	as	needed,	based

on	the	mouse	rotation.	In	addition,	the	OrbitCamera

needs	to	track	the	offset	of	the	camera	(mOffset),	as

well	as	the	up	vector	of	the	camera	(mUp).	The	up	vector

is	needed	because	the	orbit	camera	allows	full	360-

degree	rotations	in	both	yaw	and	pitch.	This	means	the

camera	could	flip	upside	down,	so	you	can’t	universally

pass	in	(0,	0,	1)	as	up.	Instead,	you	must	update	the	up

vector	as	the	camera	rotates.

The	constructor	for	OrbitCamera	initializes

mPitchSpeed	and	mYawSpeed	both	to	zero.	The

mOffset	vector	can	initialize	to	any	value,	but	here	you

initialize	it	to	400	units	behind	the	object	(-400,	0,	0).

The	mUp	vector	initializes	to	world	up	(0,	0,	1).

Listing	9.6	shows	the	implementation	of

OrbitCamera::Update.	First,	you	create	a	quaternion

representing	the	amount	of	yaw	to	apply	this	frame,

which	is	about	the	world	up	vector.	You	use	this

quaternion	to	transform	both	the	camera	offset	and	up.

Next,	you	compute	the	camera	forward	vector	from	the

new	offset.	The	cross	product	between	the	camera

forward	and	camera	yields	the	camera	right	vector.	You

then	use	this	camera	right	vector	to	compute	the	pitch

quaternion	and	transform	both	the	camera	offset	and	up

by	this	quaternion,	as	well.

Listing	9.6	OrbitCamera::Update	Implementation

Click	here	to	view	code	image

void	OrbitCamera::Update(float	deltaTime)

{

			CameraComponent::Update(deltaTime);

			//	Create	a	quaternion	for	yaw	about	world	up

			Quaternion	yaw(Vector3::UnitZ,	mYawSpeed	*	deltaTime);

			//	Transform	offset	and	up	by	yaw

			mOffset	=	Vector3::Transform(mOffset,	yaw);

			mUp	=	Vector3::Transform(mUp,	yaw);

	

			//	Compute	camera	forward/right	from	these	vectors

			//	Forward	owner.position	-	(owner.position	+	offset)

			//	=	-offset

			Vector3	forward	=	-1.0f	*	mOffset;

			forward.Normalize();

			Vector3	right	=	Vector3::Cross(mUp,	forward);

			right.Normalize();

			
			//	Create	quaternion	for	pitch	about	camera	right

			Quaternion	pitch(right,	mPitchSpeed	*	deltaTime);

			//	Transform	camera	offset	and	up	by	pitch

			mOffset	=	Vector3::Transform(mOffset,	pitch);

			mUp	=	Vector3::Transform(mUp,	pitch);

	

			//	Compute	transform	matrix

			Vector3	target	=	mOwner->GetPosition();

			Vector3	cameraPos	=	target	+	mOffset;

			Matrix4	view	=	Matrix4::CreateLookAt(cameraPos,	target,	mUp);

			SetViewMatrix(view);

}

For	the	look-at	matrix,	the	target	position	of	the	camera

is	simply	the	owner’s	position,		the	camera	position	is	the

owner’s	position	plus	the	offset,	and	the	up	is	the	camera

up.	This	yields	the	final	orbited	camera.	Figure	9.5

demonstrates	the	orbit	camera	with	the	car		as	the	target.

Figure	9.5	Orbit	camera	focused	on	the	car

SPLINE	CAMERA
A	spline	is	a	mathematical	representation	of	a	curve

specified	by	a	series	of	points	on	the	curve.	Splines

are	popular	in	games	because	they	enable	an	object

to	smoothly	move	along	a	curve	over	some	period.

This	can	be	very	useful	for	a	cutscene	camera

because	the	camera	can	follow	a	predefined	spline

path.	This	type	of	camera	also	sees	use	in	games	like

God	of	War,	where	the	camera	follows	along	a	set

path	as	the	player	progresses	through	the	world.

The	Catmull-Rom	spline	is	a	type	of	spline	that’s

relatively	simple	to	compute,	and	it	is	therefore	used

frequently	in	games	and	computer	graphics.	This	type	of

spline	minimally	requires	four	control	points,	named	P

through	P .	The	actual	curve	runs	from	P 	to	P ,	while	P

is	a	control	point	prior	to	the	curve	and	P 	is	a	control

point	after	the	curve.	For	best	results,	you	can	space

these	control	points	roughly	evenly	along	the	curve—and

you	can	approximate	this	with	Euclidean	distance.

Figure	9.6	illustrates	a	Catmull-Rom	spline	with	four

control	points.

Figure	9.6	Catmull-Rom	spline

0

3 1 2 0

3

Given	these	four	control	points,	you	can	express	the

position	between	P 	and	P 	as	the	following	parametric

equation,	where	t	=	0	is	at	P 	and	t	=	1	is	at	P :

Although	the	Catmull-Rom	spline	equation	has	only	four

control	points,	you	can	extend	the	spline	to	any	arbitrary

number	of	control	points.	This	works	provided	that	there

still	is	one	point	before	the	path	and	one	point	after	the

path	because	those	control	points	are	not	part	of	the

path.	In	other	words,	you	need	n	+	2	points	to	represent

a	curve	of	n	points.	You	can	then	take	any	sequence	of

four	neighboring	points	and	substitute	them	into	the

spline	equation.

To	implement	a	camera	that	follows	a	spline	path,	you

first	create	a	struct	to	define	a	spline.	The	only	member

data	Spline	needs	is	a	vector	of	the	control	points:

Click	here	to	view	code	image

struct	Spline

{

			//	Control	points	for	spline

			//	(Requires	n + 2	points	where	n	is	number

			//	of	points	in	segment)

1 2

1 2

			std::vector<Vector3>	mControlPoints;

			//	Given	spline	segment	where	startIdx	=	P1,

			//	compute	position	based	on	t	value

			Vector3	Compute(size_t	startIdx,	float	t)	const;

			size_t	GetNumPoints()	const	{	return	mControlPoints.size();	}

};

The	Spline::Compute	function	applies	the	spline

equation	given	a	start	index	corresponding	to	P 	and	a	t

value	in	the	range	[0.0,	1.0].	It	also	performs	boundary

checks	to	make	sure	startIdx	is	a	valid	index,	as	shown

in	Listing	9.7.

Listing	9.7	Spline::Compute	Implementation

Click	here	to	view	code	image

Vector3	Spline::Compute(size_t	startIdx,	float	t)	const

{

			//	Check	if	startIdx	is	out	of	bounds

			if	(startIdx	>=	mControlPoints.size())

			{	return	mControlPoints.back();	}

			else	if	(startIdx	==	0)

			{	return	mControlPoints[startIdx];	}

			else	if	(startIdx	+	2	>=	mControlPoints.size())

1

			{	return	mControlPoints[startIdx];	}

	

			//	Get	p0	through	p3

			Vector3	p0	=	mControlPoints[startIdx	-	1];

			Vector3	p1	=	mControlPoints[startIdx];

			Vector3	p2	=	mControlPoints[startIdx	+	1];

			Vector3	p3	=	mControlPoints[startIdx	+	2];

	

			//	Compute	position	according	to	Catmull-Rom	equation

			Vector3	position	=	0.5f	*	((2.0f	*	p1)	+	(-1.0f	*	p0	+	p2)	*	t	+

						(2.0f	*	p0	-	5.0f	*	p1	+	4.0f	*	p2	-	p3)	*	t	*	t	+

						(-1.0f	*	p0	+	3.0f	*	p1	-	3.0f	*	p2	+	p3)	*	t	*	t	*	t);

			return	position;

}

The	SplineCamera	class	then	needs	a	Spline	in	its

member	data.	In	addition,	it	tracks	the	current	index

corresponding	to	P ,	the	current	t	value,	a	speed,	and

whether	the	camera	should	move	along	the	path:

Click	here	to	view	code	image

//	Spline	path	camera	follows

1

Spline	mPath;

//	Current	control	point	index	and	t

size_t	mIndex;

float	mT;

//	Amount	t	changes/sec

float	mSpeed;

//	Whether	to	move	the	camera	along	the	path

bool	mPaused;

The	spline	camera	updates	by	first	increasing	the	t	value

as	a	function	of	speed	and	delta	time.	If	the	t	value	is

greater	than	or	equal	to	1.0,	P 	advances	to	the	next	point

on	the	path	(assuming	that	there	are	enough	points	on

the	path).	Advancing	P 	also	means	you	must	subtract	1

from	the	t	value.	If	the	spline	has	no	more	points,	the

spline	camera	pauses.

For	the	camera	calculations,	the	position	of	the	camera	is

simply	the	point	computed	from	the	spline.	To	compute

the	target	point,	you	increase	t	by	a	small	delta	to

determine	the	direction	the	spline	camera	is	moving.

Finally,	the	up	vector	stays	at	(0,	0,	1),	which	assumes

that	you	do	not	want	the	spline	to	flip	upside	down.

Listing	9.8	gives	the	code	for	SplineCamera::Update,

and	Figure	9.7	shows	the	spline	camera	in	action.

1

1

Figure	9.7	Spline	camera	in	a	game

Listing	9.8	SplineCamera::Update	Implementation

Click	here	to	view	code	image

void	SplineCamera::Update(float	deltaTime)

{

			CameraComponent::Update(deltaTime);

			//	Update	t	value

			if	(!mPaused)

			{

						mT	+=	mSpeed	*	deltaTime;

						//	Advance	to	the	next	control	point	if	needed.

						//	This	assumes	speed	isn't	so	fast	that	you	jump	past

						//	multiple	control	points	in	one	frame.

						if	(mT	>=	1.0f)

						{

									//	Make	sure	we	have	enough	points	to	advance	the	path

									if	(mIndex	<	mPath.GetNumPoints()	-	3)

									{

												mIndex++;

												mT	=	mT	-	1.0f;

									}

									else

									{

												//	Path's	done,	so	pause

												mPaused	=	true;

									}

						}

			}

			

			//	Camera	position	is	the	spline	at	the	current	t/index

			Vector3	cameraPos	=	mPath.Compute(mIndex,	mT);

			//	Target	point	is	just	a	small	delta	ahead	on	the	spline

			Vector3	target	=	mPath.Compute(mIndex,	mT	+	0.01f);

			

//	Assume	spline	doesn't	flip	upside-down

			const	Vector3	up	=	Vector3::UnitZ;

			Matrix4	view	=	Matrix4::CreateLookAt(cameraPos,	target,	up);

			SetViewMatrix(view);

}

UNPROJECTION
Given	a	point	in	world	space,	to	transform	it	into	clip

space,	you	first	multiply	by	the	view	matrix	followed

by	the	projection	matrix.	Imagine	that	the	player	in	a

first-person	shooter	wants	to	fire	a	projectile	based

on	the	screen	position	of	the	aiming	reticule.	In	this

case,	the	aiming	reticule	position	is	a	coordinate	in

screen	space,	but	to	correctly	fire	the	projectile,	you

need	a	position	in	world	space.	An	unprojection	is

a	calculation	that	takes	in	a	screen	space	coordinate

and	converts	it	into	a	world	space	coordinate.

Assuming	the	screen	space	coordinate	system	described

in	Chapter	5,	“OpenGL,”	the	center	of	the	screen	is	(0,	0),

the	top-left	corner	is	(-512,	384),	and	the	bottom-right

corner	is	(512,	-384).	The	first	step	to	calculating	an

unprojection	is	converting	a	screen	space	coordinate	into

a	normalized	device	coordinate	with	a	range	of	[-1,	1]	for

both	the	x	and	y	components:

However,	the	issue	is	that	any	single	(x,	y)	coordinate	can

correspond	to	any	z	coordinate	in	the	range	[0,	1],	where

0	is	a	point	on	the	near	plane	(right	in	front	of	the

camera),	and	1	is	a	point	on	the	far	plane	(the	maximum

distance	you	can	see	from	the	camera).	So,	to	correctly

perform	the	unprojection,	you	also	need	a	z	component

in	the	range	[0,	1].	You	then	represent	this	as	a

homogenous	coordinate:

Now	you	construct	an	unprojection	matrix,	which	is

simply	the	inverse	of	the	view-projection	matrix:

When	multiplying	the	NDC	point	by	the	unprojection

matrix,	the	w	component	changes.	However,	you	need	to

renormalize	the	w	component	(setting	it	back	to	1)	by

dividing	each	component	by	w.	This	yields	the	following

calculation	for	the	point	in	world	space:

You	add	a	function	for	an	unprojection	into	the

Renderer	class	because	it’s	the	only	class	with	access	to

both	the	view	and	projection	matrices.	Listing	9.9

provides	the	implementation	for	Unproject.	In	this

code,	the	TransformWithPerspDiv	function	does	the

w	component	renormalization.

Listing	9.9	Renderer::Unproject	Implementation

Click	here	to	view	code	image

Vector3	Renderer::Unproject(const	Vector3&	screenPoint)	const

{

			//	Convert	screenPoint	to	device	coordinates	(between	-1	and	+1)

			Vector3	deviceCoord	=	screenPoint;

			deviceCoord.x	/=	(mScreenWidth)	*	0.5f;

			deviceCoord.y	/=	(mScreenHeight)	*	0.5f;

	

			//	Transform	vector	by	unprojection	matrix

			Matrix4	unprojection	=	mView	*	mProjection;

			unprojection.Invert();

			return	Vector3::TransformWithPerspDiv(deviceCoord,	unprojection);

}

You	can	use	Unproject	to	calculate	a	single	world	space

position.	However,	it	some	cases,	it’s	more	useful	to

construct	a	vector	in	the	direction	of	the	screen	space

point,	as	it	gives	opportunities	for	other	useful	features.

One	such	feature	is	picking,	which	is	the	capability	to

click	to	select	an	object	in	the	3D	world.	Figure	9.8

illustrates	picking	with	a	mouse	cursor.

Figure	9.8	Picking	with	a	vector	in	the	direction	of

the	screen	space	coordinate	of	the	mouse

To	construct	a	direction	vector,	you	use	Unproject

twice,	once	for	a	start	point	and	once	for	the	end	point.

Then	simply	use	vector	subtraction	and	normalize	this

vector,	as	in	the	implementation	of

Renderer::GetScreenDirection	in	Listing	9.10.

Note	how	the	function	computes	both	the	start	point	of

the	vector	in	world	space	and	the	direction.

Listing	9.10	Renderer::GetScreenDirection

Implementation

Click	here	to	view	code	image

void	Renderer::GetScreenDirection(Vector3&	outStart,

			Vector3&	outDir)	const

{

			//	Get	start	point	(in	center	of	screen	on	near	plane)

			Vector3	screenPoint(0.0f,	0.0f,	0.0f);

			outStart	=	Unproject(screenPoint);

	

			//	Get	end	point	(in	center	of	screen,	between	near	and	far)

			screenPoint.z	=	0.9f;

			Vector3	end	=	Unproject(screenPoint);

	

			//	Get	direction	vector

			outDir	=	end	-	outStart;

			outDir.Normalize();

}

GAME	PROJECT

This	chapter’s	game	project	demonstrates	all	the

different	cameras	discussed	in	the	chapter,	as	well	as

the	unprojection	code.	The	code	is	available	in	the

book’s	GitHub	repository,	in	the	Chapter09

directory.	Open	Chapter09-windows.sln	on

Windows	and	Chapter09-mac.xcodeproj	on

Mac.

The	camera	starts	out	in	first-person	mode.	To	switch

between	the	different	cameras,	use	the	1	through	4	keys:

1—Enable	first-person	camera	mode

2—Enable	follow	camera	mode

3—Enable	orbit	camera	mode

4—Enable	spline	camera	mode	and	restart	the	spline	path

Depending	on	the	camera	mode,	the	character	has

different	controls,	summarized	below:

First-person—Use	W/S	to	move	forward	and	back,	A/D	to	strafe,	and

the	mouse	to	rotate

Follow—Use	W/S	to	move	forward	and	back	and	use	A/D	to	rotate

(yaw)

Orbit	camera	mode—Hold	down	the	right	mouse	button	and	move

the	mouse	to	rotate

Spline	camera	mode—No	controls	(moves	automatically)

In	addition,	in	any	camera	mode,	you	can	left-click	to

compute	the	unprojection.	This	positions	two	spheres—

one	at	the	“start”	position	of	the	vector	and	one	at	the

“end”	position.

SUMMARY
This	chapter	shows	how	to	implement	many

different	types	of	cameras.	The	first-person	camera

presents	the	world	from	the	perspective	of	a

character	moving	through	it.	A	typical	first-person

control	scheme	uses	the	WASD	keys	for	movement

and	the	mouse	for	rotation.	Moving	the	mouse	left

and	right	rotates	the	character,	while	moving	the

mouse	up	and	down	pitches	the	view.	You	can

additionally	use	the	first-person	view	pitch	to	orient

a	first-person	model.

A	basic	follow	camera	follows	rigidly	behind	an	object.

However,	this	camera	does	not	look	polished	when

rotating	because	it’s	difficult	to	discern	if	the	character	or

the	world	is	rotating.	An	improvement	is	to	incorporate	a

spring	between	“ideal”	and	“actual”	camera	positions.

This	adds	smoothness	to	the	camera	that’s	especially

noticeable	when	turning.

An	orbit	camera	rotates	around	an	object,	typically	with

mouse	or	joystick	control.	To	implement	orbiting,	you

represent	the	camera	as	an	offset	from	the	target	object.

Then,	you	can	apply	both	yaw	and	pitch	rotations	by

using	quaternions	and	some	vector	math	to	yield	the

final	view.

A	spline	is	a	curve	defined	by	points	on	the	curve.	Splines

are	popular	for	cutscene	cameras.	The	Catmull-Rom

spline	requires	a	minimum	of	n	+	2	points	to	represent	a

curve	of	n	points.	By	applying	the	Catmull-Rom	spline

equations,	you	can	create	a	camera	that	follows	along

this	spline	path.

Finally,	an	unprojection	has	many	uses,	such	as	selecting

or	picking	objects	with	the	mouse.	To	compute	an

unprojection,	you	first	transform	a	screen	space	point

into	normalized	device	coordinates.	You	then	multiply	by

the	unprojection	matrix,	which	is	simply	the	inverse	of

the	view-projection	matrix.

ADDITIONAL	READING
There	are	not	many	books	dedicated	to	the	topic	of

game	cameras.	However,	Mark	Haigh-Hutchinson,

the	primary	programmer	for	the	Metroid	Prime

camera	system,	provides	an	overview	of	many

different	techniques	relevant	for	game	cameras.

Haigh-Hutchinson,	Mark.	Real-Time

Cameras.	Burlington:	Morgan	Kaufmann,

2009.

EXERCISES
In	this	chapter’s	exercises,	you	will	add	features	to

some	of	the	cameras.	In	the	first	exercise,	you	add

mouse	support	to	the	follow	camera,	and	in	the

second	exercise,	you	add	features	to	the	spline

camera.

Exercise	9.1

Many	follow	cameras	have	support	for	user-

controlled	rotation	of	the	camera.	For	this	exercise,

add	code	to	the	follow	camera	implementation	that

allows	the	user	to	rotate	the	camera.	When	the	player

holds	down	the	right	mouse	button,	apply	an

additional	pitch	and	yaw	rotation	to	the	camera.

When	the	player	releases	the	right	mouse	button,	set

the	pitch/yaw	rotation	back	to	zero.

The	code	for	the	rotation	is	like	the	rotation	code	for	the

orbit	camera.	Furthermore,	as	with	the	orbit	camera,	the

code	can	no	longer	assume	that	the	z-axis	is	up.	When

the	player	releases	the	mouse	button,	the	camera	won’t

immediately	snap	back	to	the	original	orientation

because	of	the	spring.	However,	this	is	aesthetically

pleasing,	so	there’s	no	reason	to	change	this	behavior!

Exercise	9.2

Currently,	the	spline	camera	goes	in	only	one

direction	on	the	path	and	stops	upon	reaching	the

end.	Modify	the	code	so	that	when	the	spline	hits	the

end	of	the	path,	it	starts	moving	backward.

CHAPTER	10

COLLISION	DETECTION

You	use	collision	detection	to	determine

whether	objects	in	the	game	world	intersect

with	each	other.	While	earlier	chapters

discuss	some	basic	ways	to	check	for

collisions,	this	chapter	takes	a	deeper	look	at

the	topic.	This	chapter	first	introduces	the

basic	geometric	types	commonly	used	in

games	and	then	covers	the	calculation	of

intersection	between	these	types.	It

concludes	with	a	discussion	of	how	to

incorporate	collisions	into	game	behavior.

GEOMETRIC	TYPES
Collision	detection	for	games	utilizes	several

different	concepts	from	geometry	and	linear	algebra.

This	section	covers	some	fundamental	geometric

types	commonly	used	in	games,	such	as	line

segments,	planes,	and	boxes.	Each	geometric	type

discussed	here	has	a	corresponding	declaration	in

the	Collision.h	header	file	included	in	this

chapter’s	game	project.

Line	Segments

A	line	segment	comprises	start	and	end	points:

struct	LineSegment

{

			Vector3	mStart;

			Vector3	mEnd;

};

To	calculate	any	arbitrary	point	on	a	line	segment,	you

can	use	the	following	parametric	equation,	where	Start

and	End	are	the	start	and	end	points,	and	t	is	the

parameter:

For	convenience,	you	can	add	a	member	function	to

LineSegment	that	returns	a	point	on	the	line	segment

given	a	t	value:

Click	here	to	view	code	image

Vector3	LineSegment::PointOnSegment(float	t)	const

{

			return	mStart	+	(mEnd	-	mStart)	*	t;

}

The	parametric	representation	of	a	line	segment	easily

expands	to	define	a	ray	or	a	line.	A	ray	follows	the	above

equation,	but	the	bounds	for	t	are	as	follows:

Similarly,	a	line	has	an	unbounded	t:

Line	segments	and	rays	are	versatile	primitives	for	many

different	types	of	collision	detection	in	games.	For

example,	firing	a	bullet	in	a	straight	line	or	testing	for

landing	on	a	ground	can	use	a	line	segment.	You	can	also

use	line	segments	for	aiming	reticules	(as	in	Chapter	11,

“User	Interfaces”),	sound	occlusion	tests	(as	in	Chapter

7,	“Audio”),	or	mouse	picking	(as	in	Chapter	9,

“Cameras”).

Another	useful	operation	is	finding	the	minimal	distance

between	a	line	segment	and	an	arbitrary	point.	Imagine

that	a	line	segment	starts	at	point	A	and	ends	at	point	B.

Given	an	arbitrary	point	C,	you	want	to	find	the	minimal

distance	between	the	segment	and	point	C.	There	are

three	different	cases	to	consider,	shown	in	Figure	10.1.

Figure	10.1	Three	cases	for	minimal	distance

between	a	point	and	a	line	segment

In	the	first	case,	shown	in	Figure	10.1(a),	the	angle

between	AB	and	AC	is	greater	than	90°.	You	can	test	this

by	using	the	dot	product	because	a	negative	dot	product

between	two	vectors	means	they	form	an	obtuse	angle.	If

this	is	true,	the	minimal	distance	between	C	and	the	line

segment	is	the	length	of	the	vector	AC.

In	the	second	case,	shown	in	Figure	10.1(b),	the	angle

between	BA	and	BC	is	greater	than	90°.	As	in	the	first

case,	you	can	test	this	with	a	dot	product.	If	this	is	true,

the	minimal	distance	is	the	length	of	BC.

In	the	final	case,	shown	in	Figure	10.1(c),	you	draw	a	new

line	segment	from	AB	to	C	that’s	perpendicular	to	AB.

The	distance	of	this	new	line	segment	is	the	minimal

distance	between	C	and	AB.	To	figure	out	this	line

segment,	you	first	need	to	compute	the	vector	p.

You	already	know	the	direction	of	p,	as	it’s	in	the	same

direction	as	the	normalized	AB.	To	figure	out	the

distance	of	p,	you	apply	a	property	of	the	dot	product

called	the	scalar	projection.	Given	a	unit	vector	and	a

non-unit	vector,	extend	(or	contract)	the	unit	vector	such

that	a	right	triangle	forms	with	the	non-unit	vector.	The

dot	product	then	returns	the	length	of	this	extended	unit

vector.

In	this	example,	the	length	of	p	is	the	dot	product

between	AC	and	a	normalized	AB:

The	vector	p	is	then	the	scalar	multiplication	between	the

length	of	p	and	the	normalized	AB:

Using	some	algebraic	manipulation—and	remembering

that	the	length	squared	of	a	vector	is	the	same	as	a	dot

product	with	itself—you	can	simplify	p	as	follows:

Finally,	you	construct	the	vector	from	p	to	AC,	and	the

length	of	this	vector	is	the	minimum	distance	from	AB	to

C:

Remember	that	because	the	distance	must	be	positive	in

this	case,	you	can	square	both	sides	of	the	equation	to

instead	get	the	minimal	distance	squared	from	AB	to	C:

This	way	you	avoid	the	expensive	square	root	operation.

For	the	most	part,	you	will	calculate	the	distance	squared

instead	of	distance	throughout	this	chapter.	Listing	10.1

gives	the	code	for	this	MinDistSq	function.

Listing	10.1	LineSegment::MinDistSq

Implementation

Click	here	to	view	code	image

float	LineSegment::MinDistSq(const	Vector3&	point)	const

{

			//	Construct	vectors

			Vector3	ab	=	mEnd	-	mStart;

			Vector3	ba	=	-1.0f	*	ab;

			Vector3	ac	=	point	-	mStart;

			Vector3	bc	=	point	-	mEnd;

			//	Case	1:	C	projects	prior	to	A

			if	(Vector3::Dot(ab,	ac)	<	0.0f)

			{

						return	ac.LengthSq();

			}

			//	Case	2:	C	projects	after	B

			else	if	(Vector3::Dot(ba,	bc)	<	0.0f)

			{

						return	bc.LengthSq();

			}

			//	Case	3:	C	projects	onto	line

			else

			{

						//	Compute	p

						float	scalar	=	Vector3::Dot(ac,	ab)

									/	Vector3::Dot(ab,	ab);
						Vector3	p	=	scalar	*	ab;

						//	Compute	length	squared	of	ac	-	p

						return	(ac	-	p).LengthSq();

			}

}

Planes

A	plane	is	a	flat,	two-dimensional	surface	that

extends	infinitely,	much	as	a	line	is	a	one-

dimensional	object	that	extends	infinitely.	In	a	game,

you	may	use	a	plane	as	an	abstraction	for	the	ground

or	walls.	The	equation	of	a	plane	is	as	follows:

where	P	an	arbitrary	point	on	the	plane,	n	is	the	normal

to	the	plane,	and	d	is	the	signed	minimal	distance

between	the	plane	and	the	origin.

In	code,	a	typical	test	is	whether	a	point	lies	on	the	plane

(and	thus	satisfies	the	plane	equation).	Because	of	this,

the	definition	of	the	Plane	struct	only	stores	the	normal

and	d:

struct	Plane

{

			Vector3	mNormal;

			float	mD;

};

By	definition,	a	triangle	lies	on	a	single	plane.	So,	given	a

triangle,	you	can	derive	the	equation	of	that	plane.	You

compute	the	normal	to	the	triangle	with	the	cross

product,	which	corresponds	to	the	normal	of	the	plane.

You	already	know	an	arbitrary	point	on	the	plane,	as

well,	because	all	three	of	the	vertices	of	the	triangle	are

on	the	plane.	Given	this	normal	and	point,	you	can	then

solve	for	d,	as	in	Listing	10.2.

Listing	10.2	Constructing	a	Plane	from	Three	Points

Click	here	to	view	code	image

Plane::Plane(const	Vector3&	a,	const	Vector3&	b,	const	Vector3&	c)

{

			//	Compute	vectors	from	a	to	b	and	a	to	c

			Vector3	ab	=	b	-	a;

			Vector3	ac	=	c	-	a;

			//	Cross	product	and	normalize	to	get	normal

			mNormal	=	Vector3::Cross(ab,	ac);

			mNormal.Normalize();

			//	d	=	-P	dot	n

			mD	=	-Vector3::Dot(a,	mNormal);

}

Finding	the	minimum	distance	between	an	arbitrary

point	C	and	the	plane	is	simpler	than	for	a	line	segment,

though	it	also	uses	the	scalar	projection	property	of	the

dot	product.	Figure	10.2	illustrates	the	calculation,

showing	the	plane	from	a	side	view.

Figure	10.2	Calculations	for	minimum	distance

between	point	C	and	a	plane

You	already	know	the	normal	of	the	plane	n	and	the

minimal	distance	d	between	the	origin	and	the	plane.

You	need	to	calculate	the	scalar	projection	of	C	onto	the

normal	n,	which	is	simply	the	dot	product:

Then,	the	difference	between	d	and	this	scalar	projection

yields	a	signed	distance	between	C	and	the	plane:

A	negative	value	means	C	is	below	the	plane	(facing	away

from	the	normal),	while	a	positive	value	means	C	is

above.	The	signed	distance	calculation	translates	to	the

following	code:

Click	here	to	view	code	image

float	Plane::SignedDist(const	Vector3&	point)	const

{

			return	Vector3::Dot(point,	mNormal)	-	mD;

}

Bounding	Volumes

Modern	3D	games	have	characters	and	objects

drawn	with	thousands	of	triangles.	When

determining	whether	two	objects	collide,	it’s	not

efficient	to	test	all	the	triangles	comprising	the

object.	For	this	reason,	games	use	simplified

bounding	volumes,	such	as	boxes	or	spheres.

When	deciding	whether	two	objects	intersect,	the

game	uses	the	simplified	collision	for	calculations.

This	yields	greatly	improved	efficiency.

Spheres
The	simplest	representation	of	the	bounds	of	a	3D

object	is	a	sphere.	The	definition	of	a	sphere	only

requires	the	position	of	the	center	of	the	sphere	and	a

radius:

struct	Sphere

{

			Vector3	mCenter;

			float	mRadius;

};

As	illustrated	in	Figure	10.3,	bounding	spheres	fit	around

some	objects	better	than	others.	For	example,	a	sphere

around	a	humanoid	character	has	a	lot	of	empty	space

between	the	character	and	the	bounds	of	the	sphere.

Having	loose	bounds	for	an	object	increases	the	number

of	false	positive	collisions,	meaning	the	bounding

volumes	for	two	objects	intersect	but	the	objects

themselves	do	not.	For	instance,	if	a	first-person	shooter

used	bounding	spheres	for	humanoids,	players	could

shoot	way	to	the	left	or	right	of	a	character,	and	the	game

would	count	that	as	a	hit.

Figure	10.3	Bounding	spheres	for	different	objects

However,	the	advantage	of	using	bounding	spheres	is

that	intersection	calculations	are	extremely	efficient.

Furthermore,	rotation	has	no	effect	on	a	sphere,	so	a

bounding	sphere	works	regardless	of	the	rotation	of	the

underlying	3D	object.	And	for	some	objects,	like	balls,

spheres	perfectly	express	the	bounds.

Axis-Aligned	Bounding	Boxes
In	2D,	an	axis-aligned	bounding	box	(AABB)	is

a	rectangle	where	the	edges	are	parallel	to	either	the

x-axis	or	y-axis.	Similarly,	in	3D,	an	AABB	is	a

rectangular	prism	where	every	face	of	the	prism	is

parallel	to	one	of	the	coordinate	axis	planes.

You	can	define	an	AABB	by	two	points:	a	minimum	point

and	a	maximum	point.	In	2D,	the	minimum	point

corresponds	to	the	bottom-left	point,	while	the

maximum	corresponds	to	the	top-right	point.	In	other

words,	the	minimum	point	has	the	minimal	x	and	y

values	for	the	box,	and	the	maximum	point	has	the

maximal	x	and	y	values	for	the	box.	This	carries	over

directly	to	3D,	where	the	minimum	point	has	the

minimal	x,	y,	and	z	values,	and	the	maximum	is	likewise

the	maximal	x,	y,	and	z	values.	This	translates	to	the

following	struct:

struct	AABB

{

			Vector3	mMin;

			Vector3	mMax;

};

One	useful	operation	with	an	AABB	is	constructing	it

from	a	series	of	points.	For	example,	when	loading	in	a

model,	you	have	a	sequence	of	vertices,	and	you	can	use

this	sequence	of	vertices	to	define	an	AABB	for	the

model.	To	do	this,	you	can	create	a	new	function	called

UpdateMinMax	that	takes	in	a	point	and	updates	min

and	max,	accounting	for	this	point:

Click	here	to	view	code	image

void	AABB::UpdateMinMax(const	Vector3&	point)

{

			//	Update	each	component	separately

			mMin.x	=	Math::Min(mMin.x,	point.x);

			mMin.y	=	Math::Min(mMin.y,	point.y);

			mMin.z	=	Math::Min(mMin.z,	point.z);

			mMax.x	=	Math::Max(mMax.x,	point.x);

			mMax.y	=	Math::Max(mMax.y,	point.y);

			mMax.z	=	Math::Max(mMax.z,	point.z);

}

Because	you	do	not	know	where	the	new	point	is	in

relation	to	all	the	other	points,	you	must	test	every

component	independently	to	decide	which	components

of	min	and	max	should	update.

Then,	given	a	container	of	points,	you	first	initialize	min

and	max	of	the	AABB	to	the	first	point	in	the	container.

For	each	remaining	point,	you	simply	call

UpdateMinMax:

Click	here	to	view	code	image

//	Assume	points	is	a	std::vector<Vector3>

AABB	box(points[0],	points[0]);

for	(size_t	i	=	1;	i	<	points.size();	i++)

{

			box.UpdateMinMax(points[i]);

}

Because	an	AABB	must	keep	its	sides	parallel	to	the

coordinate	planes,	rotating	an	object	does	not	rotate	the

AABB.	Instead,	it	changes	the	dimensions	of	the	AABB,

as	in	Figure	10.4.	In	some	cases,	it	may	be	desirable	not

to	compute	AABB	rotations.	For	example,	most

humanoid	characters	in	games	only	rotate	about	the	up

axis.	If	you	make	the	AABB	for	the	character	wide

enough,	rotating	the	character	does	not	change	the	AABB

enough	to	warrant	rotating	the	AABB	(though	watch	out

for	animations	that	move	the	character	too	much).

However,	for	other	objects,	it	is	necessary	to	compute	a

rotated	AABB.

Figure	10.4	AABBs	for	different	orientations	of	a

character

One	way	to	compute	an	AABB	after	rotation	is	to	first

construct	the	eight	points	representing	the	corners	of	the

AABB.	These	points	are	simply	all	possible	permutations

of	the	min	and	max	x,	y,	and	z	components.	Then	you

rotate	each	point	individually	and	use	the

UpdateMinMax	function	to	create	a	new	AABB	from

these	rotated	points.	Note	that	this	process,	shown	in

Listing	10.3,	does	not	compute	the	minimal	possible

AABB	of	the	underlying	object	after	rotation.	Thus,	the

game	should	save	the	original	object	space	AABB	to

avoid	error	propagation	after	multiple	rotations.

Listing	10.3	AABB::Rotate	Implementation

Click	here	to	view	code	image

void	AABB::Rotate(const	Quaternion&	q)

{

			//	Construct	the	8	points	for	the	corners	of	the	box

			std::array<Vector3,	8>	points;

			//	Min	point	is	always	a	corner

			points[0]	=	mMin;

			//	Permutations	with	2	min	and	1	max

			points[1]	=	Vector3(mMax.x,	mMin.y,	mMin.z);

			points[2]	=	Vector3(mMin.x,	mMax.y,	mMin.z);

			points[3]	=	Vector3(mMin.x,	mMin.y,	mMax.z);

			//	Permutations	with	2	max	and	1	min

			points[4]	=	Vector3(mMin.x,	mMax.y,	mMax.z);

			points[5]	=	Vector3(mMax.x,	mMin.y,	mMax.z);

			points[6]	=	Vector3(mMax.x,	mMax.y,	mMin.z);

			//	Max	point	corner

			points[7]	=	Vector3(mMax);

	

			//	Rotate	first	point

			Vector3	p	=	Vector3::Transform(points[0],	q);
			//	Reset	min/max	to	first	point	rotated

			mMin	=	p;

			mMax	=	p;

			//	Update	min/max	based	on	remaining	points,	rotated

			for	(size_t	i	=	1;	i	<	points.size();	i++)

			{

						p	=	Vector3::Transform(points[i],	q);

						UpdateMinMax(p);

			}

}

Oriented	Bounding	Boxes
An	oriented	bounding	box	(OBB)	does	not	have

the	parallel	restrictions	of	an	AABB.	This	means	that

an	OBB	maintains	the	tightness	of	its	bounds,

regardless	of	the	rotation	of	the	underlying	object,	as

in	Figure	10.5.	One	way	to	represent	an	OBB	is	with	a

center	point,		a	quaternion	for	the	rotation,	and	the

extents	(width,	height,	and	depth)	of	the	box:

struct	OBB

{

			Vector3	mCenter;

			Quaternion	mRotation;

			Vector3	mExtents;

};

Figure	10.5	An	oriented	bounding	box	for	a

humanoid	character	that’s	rotated

Although	it’s	tempting	to	use	OBBs,	the	downside	is	that

collision	computations	are	far	more	expensive	with	OBBs

than	with	AABBs.

Capsules
A	capsule	is	a	line	segment	with	a	radius:

struct	Capsule

{

			LineSegment	mSegment;

			float	mRadius;

};

Capsules	are	popularly	used	for	representing	humanoid

characters	in	a	game,	as	in	Figure	10.6.	A	capsule	can

also	represent	a	sphere	moving	over	a	set	period	because

there’s	a	start	point	and	an	end	point	for	the	sphere’s

movement,	and	the	sphere	of	course	has	a	radius.

Figure	10.6	A	capsule	for	a	humanoid	character

Convex	Polygons
Sometimes,	a	game	may	need	bounds	for	an	object

that	are	more	accurate	than	any	of	the	basic	shapes.

For	a	2D	game,	the	object	might	have	bounds

represented	as	a	convex	polygon.	Recall	that	a

polygon	is	convex	if	all	its	interior	angles	are	less

than	180°.

You	can	represent	a	convex	polygon	as	a	collection	of

vertices:

Click	here	to	view	code	image

struct	ConvexPolygon

{

			//	Vertices	have	a	clockwise	ordering

			std::vector<Vector2>	mVertices;

};

These	vertices	should	have	a	set	ordering,	such	as

clockwise	or	counterclockwise	along	the	polygon’s	edge.

Without	an	ordering,	intersections	are	more	difficult	to

compute.

Note	that	this	representation	assumes	that	the	developer

correctly	uses	it,	and	it	does	no	testing	to	make	sure	the

polygon	is	convex	and	has	vertices	in	a	clockwise	order.

INTERSECTION	TESTS
Once	the	game	is	using	geometric	types	to	represent

game	objects,	the	next	step	is	to	test	for	intersections

between	these	objects.	This	section	looks	at	a	series

of	useful	tests.	First,	it	explores	whether	an	object

contains	a	point.	Then,	it	looks	at	intersections

between	different	types	of	bounding	volumes.	Next,

it	looks	at	intersections	between	a	line	segment	and

other	objects.	Finally,	this	section	covers	how	to

handle	dynamically	moving	objects.

Contains	Point	Tests

Testing	whether	a	shape	contains	a	point	is	useful	by

itself.	For	example,	you	might	use	this	type	of	test	for

finding	out	whether	a	player	is	inside	a	region	of	the

game	world.	In	addition,	some	shape	intersection

algorithms	rely	on	finding	the	point	closest	to	an

object	and	then	figuring	out	if	that	point	is	inside	the

object.	This	section	considers	a	point	to	be

“contained”		by	a	shape	even	if	it’s	technically	on	one

of	the	edges	of	that	shape.

Sphere	Contains	Point	Tests
To	figure	out	if	a	sphere	contains	a	point,	first	find

the	distance	between	the	point	and	the	center	of	the

sphere.	If	this	distance	is	less	than	or	equal	to	the

radius,	then	the	sphere	contains	the	point.

Because	the	distance	and	radius	are	both	positive	values,

you	can	optimize	this	comparison	by	squaring	both	sides

of	the	inequality.	This	way,	you	avoid	the	expensive

square	root	operation	and	add	only	one	multiplication,

making	it	far	more	efficient:

Click	here	to	view	code	image

bool	Sphere::Contains(const	Vector3&	point)	const

{

			//	Get	distance	squared	between	center	and	point

			float	distSq	=	(mCenter	-	point).LengthSq();

			return	distSq	<=	(mRadius	*	mRadius);

}

AABB	Contains	Point	Tests
Given	a	2D	axis-aligned	box,	a	point	is	outside	the

box	if	any	of	the	following	cases	are	true:	The	point	is

to	the	left	of	the	box,	the	point	is	to	the	right	of	the

box,	the	point	is	above	the	box,	or	the	point	is	below

the	box.	If	none	of	these	cases	are	true,	then	the	box

must	contain	the	point.

You	can	check	for	this	by	simply	comparing	components

of	the	point	to	the	min	and	max	points	of	the	box.	For

example,	a	point	is	to	the	left	of	the	box	if	its	x

component	is	less	than	min.x.

This	concept	easily	extends	to	a	3D	AABB.	However,

instead	of	having	four	checks—one	for	each	side	of	a	2D

box—you	have	six	checks	because	there	are	six	faces	for	a

3D	AABB:

Click	here	to	view	code	image

bool	AABB::Contains(const	Vector3&	point)	const

{

			bool	outside	=	point.x	<	mMin.x	||

						point.y	<	mMin.y	||

						point.z	<	mMin.z	||

						point.x	>	mMax.x	||

						point.y	>	mMax.y	||

						point.z	>	mMax.z;

			//	If	none	of	these	are	true,	the	point	is	inside	the	box

			return	!outside;

}

Capsule	Contains	Point	Tests
For	testing	whether	a	capsule	contains	a	point,	you

first	compute	the	minimum	distance	squared

between	the	point	and	the	line	segment.	To	do	so,

you	can	use	the	existing

LineSegment::MinDistSq	function	declared

earlier.	You	know	the	capsule	contains	the	point	if

that	minimal	distance	squared	is	less	than	or	equal	to

the	radius	squared:

Click	here	to	view	code	image

bool	Capsule::Contains(const	Vector3&	point)	const

{

			//	Get	minimal	dist.	sq.	between	point	and	line	segment

			float	distSq	=	mSegment.MinDistSq(point);

			return	distSq	<=	(mRadius	*	mRadius);

}

Convex	Polygon	Contains	Point	(2D)	Tests
There	are	multiple	ways	to	test	whether	a	2D	polygon

contains	a	point.	One	of	the	simplest	approaches	is	to

construct	vectors	from	the	point	to	each	pair	of

adjacent	vertices.	Then	you	can	use	the	dot	product

and	arccosine	to	find	the	angle	formed	by	these

vectors.	If	the	sum	of	all	these	angles	is	close	to	360°,

then	the	point	is	inside	the	polygon.	Otherwise,	the

point	is	outside	the	polygon.	Figure	10.7	illustrates

this	concept.

Figure	10.7	Angle	summation	test	for	whether	a

convex	polygon	contains	a	point

The	code	for	this	type	of	test,	shown	in	Listing	10.4,

relies	on	the	fact	that	two	adjacent	vertices	are	also	at

adjacent	indices	in	the	convex	polygon’s	vector.

Listing	10.4	ConvexPolygon::Contains

Implementation

Click	here	to	view	code	image

bool	ConvexPolygon::Contains(const	Vector2&	point)	const

{

			float	sum	=	0.0f;

			Vector2	a,	b;

			for	(size_t	i	=	0;	i	<	mVertices.size()	-	1;	i++)

			{

						//	From	point	to	first	vertex

						a	=	mVertices[i]	-	point;

						a.Normalize();

						//	From	point	to	second	vertex

						b	=	mVertices[i	+	1]	-	point;

						b.Normalize();

						//	Add	angle	to	sum

						sum	+=	Math::Acos(Vector2::Dot(a,	b));

			}

			//	Compute	angle	for	last	vertex	and	first	vertex

			a	=	mVertices.back()	-	point;

			a.Normalize();

			b	=	mVertices.front()	-	point;

			b.Normalize();

			sum	+=	Math::Acos(Vector2::Dot(a,	b));

			//	Return	true	if	approximately	2pi

			return	Math::NearZero(sum	-	Math::TwoPi);

}

Unfortunately,	this	angle	summation	approach	is	not

terribly	efficient	because	it	requires	several	square	roots

and	arccosine	calculations.	Other,	more	complex,

methods	are	more	efficient.	One	such	method	is	to	draw

an	infinite	ray	starting	at	the	point	and	to	then	count	the

number	of	edges	the	ray	intersects.	If	the	ray	intersects

an	odd	number	of	edges,	the	point	is	inside	the	polygon;

otherwise,	it’s	outside.	This	ray	method	works	for	both

convex	and	concave	polygons.

Bounding	Volume	Tests

It’s	very	common	to	compute	intersection	tests

between	different	bounding	volumes.	For	example,

imagine	that	both	the	player	and	the	wall	use	AABBs

for	collision.	When	the	player	tries	to	move	forward,

you	can	test	if	the	player’s	bounding	volume

intersects	with	the	wall	bounding	volume.	If	they

intersect,	then	you	can	fix	the	player’s	position	so

that	they	no	longer	intersect.	(You	will	see	how	to	do

this	later	in	this	chapter.)	This	section	doesn’t	cover

all	possible	intersections	between	the	different	types

of	bounding	volumes	discussed	earlier,	but	it	touches

on	some	important	ones.

Sphere	Versus	Sphere	Test
Two	spheres	intersect	if	the	distance	between	their

centers	is	less	than	or	equal	to	the	sum	of	their	radii.

As	with	the	sphere	contains	point	test,	you	can

square	both	sides	of	the	inequality	for	efficiency,

using	the	following	function:

Click	here	to	view	code	image

bool	Intersect(const	Sphere&	a,	const	Sphere&	b)

{

			float	distSq	=	(a.mCenter	-	b.mCenter).LengthSq();

			float	sumRadii	=	a.mRadius	+	b.mRadius;

			return	distSq	<=	(sumRadii	*	sumRadii);

}

AABB	Versus	AABB	Test
The	logic	for	testing	AABB	intersection	is	like	the

logic	for	whether	an	AABB	contains	a	point.	You	test

for	the	cases	where	the	two	AABBs	cannot	intersect.

If	none	of	these	tests	are	true,	then	the	AABBs	must

intersect.	For	2D	AABBs,	boxes	A	and	B	do	not

intersect	if	A	is	to	the	left	of	B,	A	is	to	the	right	of	B,	A

is	above	B,	or	A	is	below	B.	You	test	this	by

leveraging	the	min	and	max	points,	as	before.	For

example,	A	is	to	the	left	of	B	if	the	max.x	of	A	is	less

than	the	min.x	of	B.	Figure	10.8	illustrates	these

tests	for	2D	AABBs.

Figure	10.8	Four	cases	where	two	2D	AABBs	do	not

intersect

As	before,	when	switching	from	2D	AABBs	to	3D	AABBs,

you	must	add	two	more	checks,	for	a	total	of	six:

Click	here	to	view	code	image

bool	Intersect(const	AABB&	a,	const	AABB&	b)

{

			bool	no	=	a.mMax.x	<	b.mMin.x	||

						a.mMax.y	<	b.mMin.y	||

						a.mMax.z	<	b.mMin.z	||

						b.mMax.x	<	a.mMin.x	||

						b.mMax.y	<	a.mMin.y	||

						b.mMax.z	<	a.mMin.z;

			//	If	none	of	these	are	true,	they	must	intersect

			return	!no;

}

This	form	of	AABB	intersection	is	an	application	of	the

separating	axis	theorem,	which	states	that	if	two

convex	objects	A	and	B	do	not	intersect,	then	there	must

exist	an	axis	that	separates	A	from	B.	In	the	AABB	case,

you’re	testing	the	three	coordinate	axes	to	see	if	there	is

separation	between	the	boxes	on	any	of	these	axes.	If	the

AABBs	have	separation	on	any	coordinate	axis,	then,	by

the	separating	axis	theorem,	they	cannot	intersect.	You

can	extend	this	approach	to	oriented	bounding	boxes,	as

discussed	in	Exercise	10.3	at	the	end	of	this	chapter,	and,

in	fact,	to	any	set	of	convex	objects.

Sphere	Versus	AABB	Test
For	sphere	versus	AABB	intersection,	you	first	need

to	calculate	the	minimum	distance	squared	between

the	center	of	the	sphere	and	the	box.	The	algorithm

for	finding	the	minimum	distance	between	a	point

and	an	AABB	tests	each	component	individually.	For

each	component,	there	are	three	cases:	The	point’s

component	is	less	than	min,	the	point’s	component	is

between	min	and	max,	or	the	point’s	component	is

greater	than	max.	In	the	middle	case,	the	distance

between	the	point	and	box	for	that	axis	is	zero.	In	the

other	two	cases,	the	distance	between	the	point	and

the	box	for	the	axis	is	the	distance	to	the	closest	edge

(either	min	or	max).	Figure	10.9	illustrates	this	for	a

2D	AABB.

Figure	10.9	Distance	between	points	and	AABB

You	can	express	this	with	multiple	Math::Max	function

calls.	For	example,	the	distance	in	the	x	direction	is	as

follows:

Click	here	to	view	code	image

float	dx	=	Math::Max(mMin.x	-	point.x,	0.0f);

dx	=	Math::Max(dx,	point.x	-	mMax.x);

This	works	because	if	point.x	<	min.x,	then	min.x

-	point.x	is	the	largest	of	the	three	values	and	the

delta	for	the	x-axis.	Otherwise,	if	min.x	<	point.x	<

max.x,	then	zero	is	the	highest.	Finally,	if	point.x	>

max.x,	then	point.x	-	max.x	is	the	highest.	Once

you	have	the	delta	for	all	three	axes,	you	then	use	the

distance	formula	to	compute	the	final	distance	squared

between	the	point	and	the	AABB:

Click	here	to	view	code	image

float	AABB::MinDistSq(const	Vector3&	point)	const

{

			//	Compute	differences	for	each	axis

			float	dx	=	Math::Max(mMin.x	-	point.x,	0.0f);

			dx	=	Math::Max(dx,	point.x	-	mMax.x);

			float	dy	=	Math::Max(mMin.y	-	point.y,	0.0f);

			dy	=	Math::Max(dy,	point.y	-	mMax.y);

			float	dz	=	Math::Max(mMin.z	-	point.z,	0.0f);

			dz	=	Math::Max(dy,	point.z	-	mMax.z);

			//	Distance	squared	formula

			return	dx	*	dx	+	dy	*	dy	+	dz	*	dz;

}

Once	you	have	the	MinDistSq	function,	you	can

implement	sphere	versus	AABB	intersection.	You	find

the	minimal	distance	squared	between	the	center	of	the

sphere	and	the	AABB.	If	it	is	less	than	or	equal	to	the

radius	squared,	then	the	sphere	and	AABB	intersect:

Click	here	to	view	code	image

bool	Intersect(const	Sphere&	s,	const	AABB&	box)

{

			float	distSq	=	box.MinDistSq(s.mCenter);

			return	distSq	<=	(s.mRadius	*	s.mRadius);

}

Capsule	Versus	Capsule	Test
Intersecting	two	capsules	is	conceptually

straightforward.	Because	both	capsules	are	line

segments	with	radii,	you	first	find	the	minimal

distance	squared	between	these	line	segments.	If	the

distance	squared	is	less	than	or	equal	to	the	sum	of

radii	squared,	then	the	two	capsules	intersect:

Click	here	to	view	code	image

bool	Intersect(const	Capsule&	a,	const	Capsule&	b)

{

			float	distSq	=	LineSegment::MinDistSq(a.mSegment,

						b.mSegment);

			float	sumRadii	=	a.mRadius	+	b.mRadius;

			return	distSq	<=	(sumRadii	*	sumRadii);

}

Unfortunately,	computing	the	minimal	distance	between

two	line	segments	is	complex	due	to	several	edge	cases.

This	chapter	doesn’t	go	into	those	details,	but	its	source

code	provides	an	implementation	of	MinDistSq	for	two

line	segments.

Line	Segment	Tests

As	mentioned	earlier,	line	segments	are	versatile	in

collision	detection.	This	chapter’s	game	project	uses

line	segment	tests	for	testing	whether	the	ball

projectiles	collide	against	objects.	This	section	looks

at	a	few	key	tests	between	line	segments	and	other

objects.	For	these	tests,	you	want	to	know	not	only	if

the	line	segment	intersects	but	the	first	such	point	of

intersection.

This	section	relies	heavily	on	the	previously	defined

parametric	equation	of	a	line	segment:

The	approach	for	most	line	segment	intersection	tests	is

to	first	treat	the	segment	as	an	infinite	line—because	if

the	infinite	line	does	not	intersect	with	the	object,	then

there’s	no	way	the	line	segment	will.	Once	you	solve	for

the	infinite	line	intersection,	you	then	verify	that	t	is

within	the	[0,	1]	bounds	for	the	line	segment.

Line	Segment	Versus	Plane	Test
To	find	the	point	of	intersection	between	a	line

segment	and	a	plane,	you	want	to	find	whether	there

exists	a	t	such	that	L(t)	is	a	point	on	the	plane:

You	can	solve	this	with	some	algebraic	manipulation.

First	substitute	for	L(t):

Because	the	dot	product	is	distributive	over	addition,	you

can	rewrite	this	as	follows:

Finally,	you	solve	for	t:

Note	that	there’s	a	potential	for	division	by	zero	if	the	dot

product	in	the	denominator	evaluates	to	zero.	This	will

happen	only	in	the	case	where	the	line	is	perpendicular

to	the	normal	of	the	plane,	meaning	the	line	is	parallel	to

the	plane.	In	this	case,	the	line	and	plane	intersect	only	if

the	line	is	entirely	on	the	plane.

After	you	calculate	the	value	of	t,	you	then	test	whether

it’s	within	the	bounds	of	the	line	segment,	as	in	Listing

10.5.	The	Intersect	function	here	returns	the	t	value

by	reference,	and	the	caller	can	use	this	to	figure	out	the

point	of	intersection	if	needed.

Listing	10.5	Line	Segment	Versus	Plane	Intersection

Click	here	to	view	code	image

bool	Intersect(const	LineSegment&	l,	const	Plane&	p,	float&	outT)

{

			//	First	test	if	there's	a	solution	for	t

			float	denom	=	Vector3::Dot(l.mEnd	-	l.mStart,

																														p.mNormal);

			if	(Math::NearZero(denom))

			{

						//	The	only	way	they	intersect	if	start/end	are

						//	points	on	the	plane	(P	dot	N)	==	d

						if	(Math::NearZero(Vector3::Dot(l.mStart,	p.mNormal)	-	p.mD))

						{

									outT	=	0.0f;

									return	true;

						}

						else

						{	return	false;	}

			}

			else

			{

						float	numer	=	-Vector3::Dot(l.mStart,	p.mNormal)	-	p.mD;

						outT	=	numer	/	denom;

						//	Validate	t	is	within	bounds	of	the	line	segment

						if	(outT	>=	0.0f	&&	outT	<=	1.0f)

						{

									return	true;

						}

						else

						{

									return	false;

						}

			}

}

Line	Segment	Versus	Sphere	Test
To	find	the	point	of	intersection	between	a	line

segment	and	a	sphere,	you	find	if	there’s	a	t	value

such	that	the	distance	between	the	line	and	the

center	of	the	sphere	C	is	equal	to	the	radius	of	the

sphere	r:

To	simplify	this	equation,	you	introduce	substitutions:

To	solve	for	t,	you	need	some	method	to	extract	it	from

inside	the	length	operation.	To	do	this,	you	square	both

sides	of	the	equation	and	replace	the	length	squared

operation	with	a	dot	product:

Because	the	dot	product	is	distributive	over	vector

addition,	you	can	apply	the	FOIL	(first,	outside,	inside,

last)	distribution	rule:

You	then	rewrite	this	in	the	quadratic	form:

Finally,	you	apply	the	quadratic	equation	to	solve	for	t:

The	discriminant	of	the	quadratic	equation	(the	value

under	the	radical)	tells	you	the	number	and	types	of

solutions	to	the	equation.	A	negative	discriminant	means

the	solutions	are	imaginary.	For	the	purposes	of	a	game,

you	can	assume	that	none	of	the	objects	have	imaginary

positions.	Thus,	you	know	that	a	negative	discriminant

means	the	line	does	not	intersect	with	the	sphere.

Otherwise,	there	can	be	one	or	two	solutions	to	the

quadratic	equation.	A	discriminant	of	zero	means	there’s

one	solution	because	the	line	is	tangential	to	the	sphere.

A	discriminant	greater	than	zero	means	the	line	has	two

points	of	intersection	with	the	sphere.	Figure	10.10

illustrates	these	three	possibilities.

Figure	10.10	Possible	discriminant	values	for	line

versus	sphere	intersection

Once	you	have	solutions	for	t,	you	then	validate	that	t	is

within	the	range	[0,	1].	Because	there	are	two	possible

solutions,	you	give	preference	to	the	lower	value	of	t,

which	represents	the	first	intersection.	But	if	the	line

segment	begins	inside	the	sphere	and	exits	the	sphere,

the	higher	value	of	t	represents	the	point	of	intersection.

Listing	10.6	gives	this	code	for	line	segment	versus

sphere	intersection.	Note	that	this	function	returns

false	if	the	sphere	wholly	contains	the	line	segment.

Listing	10.6	Line	Segment	Versus	Sphere	Intersection

Click	here	to	view	code	image

bool	Intersect(const	LineSegment&	l,	const	Sphere&	s,	float&	outT)

{

			//	Compute	X,	Y,	a,	b,	c	as	per	equations

			Vector3	X	=	l.mStart	-	s.mCenter;

			Vector3	Y	=	l.mEnd	-	l.mStart;

			float	a	=	Vector3::Dot(Y,	Y);

			float	b	=	2.0f	*	Vector3::Dot(X,	Y);

			float	c	=	Vector3::Dot(X,	X)	-	s.mRadius	*	s.mRadius;

			//	Compute	discriminant

			float	disc	=	b	*	b	-	4.0f	*	a	*	c;

			if	(disc	<	0.0f)

			{

						return	false;

			}

			else

			{

						disc	=	Math::Sqrt(disc);

						//	Compute	min	and	max	solutions	of	t

						float	tMin	=	(-b	-	disc)	/	(2.0f	*	a);

						float	tMax	=	(-b	+	disc)	/	(2.0f	*	a);

						//	Check	whether	either	t	is	within	bounds	of	segment

						if	(tMin	>=	0.0f	&&	tMin	<=	1.0f)

						{

									outT	=	tMin;

									return	true;

						}

						else	if	(tMax	>=	0.0f	&&	tMax	<=	1.0f)

						{

									outT	=	tMax;

									return	true;

						}

						else

						{

									return	false;

						}

			}

}

Line	Segment	Versus	AABB	Test
One	approach	for	line	segment	versus	AABB

intersection	is	to	construct	planes	for	each	edge	of

the	box.	In	2D,	this	yields	four	planes	for	the	four

different	sides.	Because	the	planes	are	infinite,

simply	intersecting	with	a	side	plane	does	not	mean

the	segment	intersects	the	box.	In	Figure	10.11(a),

the	line	segment	intersects	the	top	plane	at	P 	and

the	left	plane	at	P .		But	because	the	box	contains

neither	of	these	points,	these	points	do	not	intersect

the	box.	However,	in	Figure	10.11(b),	the	segment

intersects	the	left	plane	at	P .	Because	the	box

contains	P ,	this	is	a	point	of	intersection.

1

2

3

3

Figure	10.11	Intersection	with	the	side	planes	but

not	the	box	(a),	intersection	with	the	box	(b),	and

intersection	with	the	box	at	two	points	(c)

Sometimes,	the	line	segment	may	have	multiple	points	of

intersection,	as	in	Figure	10.11(c).	Both	P 	and	P

intersect	the	box.	In	this	case,	the	intersection	should

return	the	point	closest	to	the	start	point,	or	the	one	at

the	lowest	t	value	in	the	parametric	formulation	of	the

line	segment.

For	the	segment	tests	versus	each	plane,	recall	that	the

equation	for	line	segment	versus	plane	intersection	is	as

follows:

However,	because	each	plane	is	parallel	to	a	coordinate

axis	(or,	in	3D,	a	coordinate	plane),	you	can	optimize	this

equation	because	the	normal	of	each	plane	will	always

have	zeros	for	two	components	and	a	one	for	the	third

component.	Thus,	two	of	the	three	dot	product

components	will	always	evaluate	to	zero.

For	example,	the	normal	of	the	left	side	plane	points

4 5

directly	to	the	left	or	right;	the	direction	doesn’t	matter

for	the	purposes	of	the	intersection	test.	In	2D,	this	is	as

follows:

Because	the	min	point	for	the	box	is	on	its	left	plane,	the

d	value	is	as	follows:

Similarly,	the	dot	products	in	the	segment	versus	plane

intersection	equation	also	simplify	to	their	x

components.	This	means	the	final	equation	solving	for

intersection	against	the	left	plane	is	as	follows:

The	equations	for	the	other	side	planes	have	similar

derivations.	For	3D,	there	are	a	total	of	six	planes	to	test.

Listing	10.7	shows	a	helper	function	that	encapsulates

the	behavior	of	testing	a	single	side	plane.	Note	that	if

the	segment	intersects	with	the	plane,	the	function	adds

the	t	value	to	a	supplied	std::vector.	The	intersection

function	uses	this	std::vector	to	test	all	possible	t

values	in	order,	from	earliest	to	latest	planar

intersection.

Listing	10.7	Line	Segment	Versus	AABB	Helper

Function

Click	here	to	view	code	image

bool	TestSidePlane(float	start,	float	end,	float	negd,

			std::vector<float>&	out)

{

			float	denom	=	end	-	start;

			if	(Math::NearZero(denom))

			{

						return	false;

			}

			else

			{

						float	numer	=	-start	+	negd;

						float	t	=	numer	/	denom;

						//	Test	that	t	is	within	bounds

						if	(t	>=	0.0f	&&	t	<=	1.0f)

						{

									out.emplace_back(t);

									return	true;

						}

						else

						{

									return	false;

						}

			}

}

The	Intersect	function,	shown	in	Listing	10.8,	uses

the	TestSidePlane	function	to	test	the	six	different

side	planes	of	the	AABB	against	the	line	segment.	Each

point	of	planar	intersection	has	its	t	value	stored	in	the

tValues	vector.	Then,	you	sort	this	vector	in	ascending

order	and	return	the	first	intersection	point	contained	by

the	AABB.	If	the	AABB	contains	none	of	these	points,	the

function	returns	false.

Listing	10.8	Line	Segment	Versus	AABB	Intersection

Click	here	to	view	code	image

bool	Intersect(const	LineSegment&	l,	const	AABB&	b,	float&	outT)

{

			//	Vector	to	save	all	possible	t	values

			std::vector<float>	tValues;

			//	Test	the	x	planes

			TestSidePlane(l.mStart.x,	l.mEnd.x,	b.mMin.x,	tValues);

			TestSidePlane(l.mStart.x,	l.mEnd.x,	b.mMax.x,	tValues);

			//	Test	the	y	planes

			TestSidePlane(l.mStart.y,	l.mEnd.y,	b.mMin.y,	tValues);

			TestSidePlane(l.mStart.y,	l.mEnd.y,	b.mMax.y,	tValues);

			//	Test	the	z	planes

			TestSidePlane(l.mStart.z,	l.mEnd.z,	b.mMin.z,	tValues);

			TestSidePlane(l.mStart.z,	l.mEnd.z,	b.mMax.z,	tValues);

	

			//	Sort	the	t	values	in	ascending	order

			std::sort(tValues.begin(),	tValues.end());

			//	Test	if	the	box	contains	any	of	these	points	of	intersection

			Vector3	point;

			for	(float	t	:	tValues)

			{

						point	=	l.PointOnSegment(t);

						if	(b.Contains(point))

						{

									outT	=	t;

									return	true;

						}

			}

	

			//None	of	the	intersections	are	within	bounds	of	box

			return	false;

}

By	testing	each	side	of	the	box	independently,	you	can

modify	the	code	to	return	which	side	intersects	the	line

segment.	This	is	useful	if	an	object	needs	to	bounce	off

the	box	(such	as	a	ball	bouncing	as	in	this	chapter’s	game

project).	While	not	shown	here,	this	requires	associating

each	call	to	TestSidePlane	with	a	side	of	the	box.

Then,	you	add	that	side	(or	normal	to	the	side)	as	a

reference	parameter	that	Intersect	can	write	to.

You	can	optimize	the	segment	versus	AABB	intersection

by	instead	using	slabs,	which	are	infinite	areas	bounded

by	two	planes.	However,	grasping	this	approach	requires

additional	mathematical	backing.	It’s	one	of	the	many

topics	discussed	in	Christer	Ericson’s	book,	listed	in	the

“Additional	Reading”	section	at	the	end	of	this	chapter.

Dynamic	Objects

The	intersection	tests	covered	thus	far	are

instantaneous	tests.	In	a	game,	this	means	that

you	test	whether	two	objects	intersect	on	the	current

frame.	Although	this	might	be	sufficient	for	simple

games,	in	practice	there	are	issues.

Consider	the	case	where	a	character	fires	a	bullet	at	piece

of	paper.	Suppose	you	use	a	bounding	sphere	for	the

bullet	and	a	box	for	the	paper.	On	each	frame,	you	test

whether	the	bullet	intersects	with	the	paper.	Because	the

bullet	travels	quickly,	it’s	unlikely	that	there’s	one

specific	frame	where	the	bullet	exactly	intersects	with	the

paper.	This	means	that	instantaneous	tests	will	miss	the

intersection,	as	in	Figure	10.12.

Figure	10.12	Instantaneous	tests	on	frames	0	and	1

miss	the	collision	between	the	bullet	and	paper

For	the	specific	example	of	a	bullet,	you	might	solve	this

by	representing	the	bullet	as	a	line	segment.	The	start

point	of	the	line	segment	is	the	position	of	the	bullet	in

the	last	frame,	and	the	end	is	the	position	of	the	bullet

this	frame.	This	way,	you	can	detect	whether	the	bullet

intersects	with	the	paper	at	any	point	between	the	last

frame	and	this	frame.	However,	this	works	only	because

the	bullet	is	very	small.	You	can’t	represent	larger	objects

with	a	line	segment.

For	some	types	of	moving	objects,	such	as	two	moving

spheres,	you	can	solve	directly	for	the	time	of

intersection.	However,	this	doesn’t	work	well	for	cases

such	as	boxes	that	rotate	between	two	frames.	For	other

types	of	moving	objects,	you	might	try	to	sample	the

intersection	at	multiple	points	between	frames.	The	term

continuous	collision	detection	(CCD)	can	reference

either	directly	solving	the	point	of	intersection	or

sampling	the	intersection.

To	get	a	taste	of	how	to	solve	directly	for	a	time	of

intersection,	consider	the	case	of	intersection	between

two	moving	spheres.	This	intersection,	called	swept-

sphere	intersection,	also	happens	to	commonly	come

up	in	video	game	companies’	interview	questions.

For	each	sphere,	you	have	the	center	positions	during	the

last	frame	and	during	this	frame.	You	can	represent

these	positions	using	the	same	parametric	equation	as

for	line	segments,	where	the	position	last	frame	is	t	=	0

and	the	position	this	frame	is	t	=	1.	For	sphere	P,	P 	is

the	position	last	frame	and	P 	is	the	position	this	frame.

Similarly,	the	sphere	Q	has	the	positions	Q 	and	Q .	So,

these	are	the	parametric	equations	for	the	positions	of

spheres	P	and	Q:

You	want	to	solve	for	the	value	of	t	where	the	distance

between	the	two	spheres	is	equal	to	the	sum	of	their

radii:

0

1

0 1

You	now	proceed	in	a	manner	similar	to	that	used	to	test

for	line	segment	versus	sphere	intersection.	You	square

both	sides	and	replace	the	length	squared	with	a	dot

product:

Then,	you	factor	the	terms	and	make	substitutions:

Finally,	you	distribute	the	dot	product	over	addition,

rewrite	in	the	quadratic	form,	and	solve	the	quadratic

equation:

As	with	line	segment	versus	sphere,	you	use	the

discriminant	to	determine	whether	any	real	solutions

exist.	However,	for	swept-sphere	intersection	you	only

care	about	the	first	point	of	intersection,	which	is	the

lower	of	the	two	t	values.	As	before,	you	must	validate

that	t	is	within	the	range	[0,	1].	Listing	10.9	gives	the

code	for	swept-sphere	intersection.	The	function	returns

t	by	reference,	so	the	caller	can	use	this	to	determine	the

position	of	the	spheres	at	the	time	of	intersection.

Listing	10.9	Swept-Sphere	Intersection

Click	here	to	view	code	image

bool	SweptSphere(const	Sphere&	P0,	const	Sphere&	P1,

			const	Sphere&	Q0,	const	Sphere&	Q1,	float&	outT)

{

			//	Compute	X,	Y,	a,	b,	and	c

			Vector3	X	=	P0.mCenter	-	Q0.mCenter;

			Vector3	Y	=	P1.mCenter	-	P0.mCenter	-

						(Q1.mCenter	-	Q0.mCenter);

			float	a	=	Vector3::Dot(Y,	Y);

			float	b	=	2.0f	*	Vector3::Dot(X,	Y);

			float	sumRadii	=	P0.mRadius	+	Q0.mRadius;

			float	c	=	Vector3::Dot(X,	X)	-	sumRadii	*	sumRadii;

			//	Solve	discriminant

			float	disc	=	b	*	b	-	4.0f	*	a	*	c;

			if	(disc	<	0.0f)

			{

						return	false;

			}

			else

			{

						disc	=	Math::Sqrt(disc);

						//	We	only	care	about	the	smaller	solution

						outT	=	(-b	-	disc)	/	(2.0f	*	a);

						if	(outT	>=	0.0f	&&	outT	<=	0.0f)

						{

									return	true;

						}

						else

						{

									return	false;

						}

			}

}

ADDING	COLLISIONS	TO	GAME
CODE
The	preceding	sections	discuss	geometry	objects

used	for	collision	and	how	to	detect	intersections

between	these	objects.	This	section	explores	how	to

incorporate	these	techniques	into	game	code.	A	new

BoxComponent	class	adds	AABBs	for	actors,	and	a

PhysWorld	class	tracks	boxes	and	detects

intersections	as	needed.	The	character	movement

and	new	projectile	firing	code	then	leverage	this	new

collision	functionality.

The	BoxComponent	Class

The	BoxComponent	class	declaration	is	much	like

the	declaration	of	other	components.	However,

instead	of	overriding	the	Update	function,	it

overrides	the	OnUpdateWorldTransform	function.

Recall	that	the	owning	actor	calls

OnUpdateWorldTransform	whenever	it

recomputes	the	world	transform.

The	member	data	of	BoxComponent	has	two	instances

of	the	AABB	struct:	one	AABB	for	the	object	space

bounds,	and	one	AABB	for	the	world	space	bounds.	The

object	space	bounds	shouldn’t	change	after	initialization

of	the	BoxComponent,	but	the	world	space	bounds

change	whenever	the	owning	actor’s	world	transform

changes.	Finally,	BoxComponent	has	a	Boolean	for

whether	you	want	the	BoxComponent	to	rotate	based	on

the	world	rotation.	This	way,	you	can	choose	whether	or

not	an	actor’s	BoxComponent	rotates	when	the	actor

rotates.	Listing	10.10	shows	the	declaration	of

BoxComponent.

Listing	10.10	BoxComponent	Declaration

Click	here	to	view	code	image

class	BoxComponent	:	public	Component

{

public:

			BoxComponent(class	Actor*	owner);

			~BoxComponent();

			void	OnUpdateWorldTransform()	override;

			void	SetObjectBox(const	AABB&	model)	{	mObjectBox	=	model;	}

			const	AABB&	GetWorldBox()	const	{	return	mWorldBox;	}

			void	SetShouldRotate(bool	value)	{	mShouldRotate	=	value;	}

private:

			AABB	mObjectBox;

			AABB	mWorldBox;

			bool	mShouldRotate;

};

To	get	the	object	space	bounds	of	mesh	files,	the	Mesh

class	also	adds	an	AABB	in	its	member	data.	Then,	when

loading	in	a	gpmesh	file,	Mesh	calls

AABB::UpdateMinMax	on	each	vertex,	ultimately

yielding	an	object	space	AABB.	Then	actors	using	a	mesh

can	grab	the	mesh’s	object	space	bounds	and	pass	these

bounds	into	the	actor’s	BoxComponent:

Click	here	to	view	code	image

Mesh*	mesh	=	GetGame()->GetRenderer()->GetMesh("Assets/Plane.gpmesh");

//	Add	collision	box

BoxComponent*	bc	=	new	BoxComponent(this);

bc->SetObjectBox(mesh->GetBox());

To	convert	from	object	bounds	to	world	bounds,	you

need	to	apply	scale,	rotation,	and	translation	to	the

bounds.	As	when	constructing	the	world	transform

matrix,	the	order	is	important	because	rotation	is	about

the	origin.	Listing	10.11	gives	the	code	for

OnUpdateWorldTransform.	To	scale	the	box,	you

multiply	min	and	max	by	the	scale	of	the	owning	actor.

To	rotate	the	box,	you	use	the	previously	discussed

AABB::Rotate	function,	passing	in	the	quaternion	of

the	owning	actor.	You	do	this	rotation	only	if

mShouldRotate	is	true	(which	it	is	by	default).	To

translate	the	box,	you	add	the	position	of	the	owning

actor	to	both	min	and	max.

Listing	10.11
BoxComponent::OnUpdateWorldTransform

Implementation

Click	here	to	view	code	image

void	BoxComponent::OnUpdateWorldTransform()

{

			//	Reset	to	object	space	box

			mWorldBox	=	mObjectBox;

			//	Scale

			mWorldBox.mMin	*=	mOwner->GetScale();

			mWorldBox.mMax	*=	mOwner->GetScale();

			//	Rotate

			if	(mShouldRotate)

			{

						mWorldBox.Rotate(mOwner->GetRotation());

			}

			//	Translate

			mWorldBox.mMin	+=	mOwner->GetPosition();

			mWorldBox.mMax	+=	mOwner->GetPosition();

}

The	PhysWorld	Class

Much	as	you	have	separate	Renderer	and

AudioSystem	classes,	it’s	sensible	to	create	a

PhysWorld	class	for	the	physics	world.	You	add	a

PhysWorld	pointer	to	Game	and	initialize	it	in

Game::Initialize.

PhysWorld	has	a	vector	of	BoxComponent	pointers	and

corresponding	public	AddBox	and	RemoveBox

functions,	as	shown	in	the	skeleton	declaration	in	Listing

10.12.	Then	the	constructor	and	destructor	for

BoxComponent	can	call	AddBox	and	RemoveBox,

respectively.	This	way,	PhysWorld	will	have	a	vector	of

all	box	components,	much	like	how	Renderer	has	a

vector	of	all	sprite	components.

Listing	10.12	Skeleton	PhysWorld	Declaration

Click	here	to	view	code	image

class	PhysWorld

{

public:

			PhysWorld(class	Game*	game);

			//	Add/remove	box	components	from	world

			void	AddBox(class	BoxComponent*	box);

			void	RemoveBox(class	BoxComponent*	box);

			//	Other	functions	as	needed

			//	...

private:

			class	Game*	mGame;

			std::vector<class	BoxComponent*>	mBoxes;

};

Now	that	PhysWorld	tracks	all	the	box	components	in

the	world,	the	next	step	is	to	add	support	for	collision

tests	against	these	boxes.	You	define	a	function	called

SegmentCast	that	takes	in	a	line	segment	and	returns

true	if	the	segment	intersects	with	a	box.	In	addition,	it

returns	by	reference	information	about	the	first	such

collision:

Click	here	to	view	code	image

bool	SegmentCast(const	LineSegment&	l,	CollisionInfo&	outColl);

The	CollisionInfo	struct	contains	the	position	of

intersection,	the	normal	at	the	intersection,	and	pointers

to	both	the	BoxComponent	and	Actor	of	the	collision:

Click	here	to	view	code	image

struct	CollisionInfo

{

			//	Point	of	collision

			Vector3	mPoint;

			//	Normal	at	collision

			Vector3	mNormal;

			//	Component	collided	with

			class	BoxComponent*	mBox;

			//	Owning	actor	of	component

			class	Actor*	mActor;

};

Because	the	segment	potentially	intersects	with	multiple

boxes,	SegmentCast	assumes	that	the	closest

intersection	is	the	most	important	one.	Because	the

vector	of	box	components	has	no	ordering,

SegmentCast	can’t	simply	return	after	the	first

intersection.	Instead,	the	function	needs	to	test	against

all	boxes	and	return	the	intersection	result	with	the

lowest	t	value,	as	shown	in	Listing	10.13.	This	works

because	the	lowest	t	value	intersection	is	the	one	closest

to	the	start	of	the	line	segment.	SegmentCast	uses	the

segment	versus	AABB	intersection	function	discussed

earlier	but	now	modified	to	also	return	the	normal	of	the

side	the	line	segment	intersects	with.

Listing	10.13	PhysWorld::SegmentCast

Implementation

Click	here	to	view	code	image

bool	PhysWorld::SegmentCast(const	LineSegment&	l,	CollisionInfo&	outColl)

{

			bool	collided	=	false;

			//	Initialize	closestT	to	infinity,	so	first

			//	intersection	will	always	update	closestT

			float	closestT	=	Math::Infinity;

			Vector3	norm;

			//	Test	against	all	boxes

			for	(auto	box	:	mBoxes)

			{

						float	t;

						//	Does	the	segment	intersect	with	the	box?

						if	(Intersect(l,	box->GetWorldBox(),	t,	norm))

						{

									//	Is	this	closer	than	previous	intersection?

									if	(t	<	closestT)

									{

												outColl.mPoint	=	l.PointOnSegment(t);

												outColl.mNormal	=	norm;

												outColl.mBox	=	box;

												outColl.mActor	=	box->GetOwner();

												collided	=	true;

									}

						}

			}

			return	collided;

}

Ball	Collisions	with	SegmentCast

In	the	chapter	game	project,	you	use	SegmentCast

to	determine	whether	the	ball	projectile	the	player

fires	hits	something.	If	it	does,	you	want	the	ball	to

bounce	off	the	normal	of	the	surface.	This	means	that

once	the	ball	hits	the	surface,	you	must	rotate	it	to

face	an	arbitrary	direction.

You	first	add	a	helper	function	to	Actor	that	uses	the

dot	product,	cross	product,	and	quaternions	to	adjust	the

actor’s	rotation	to	face	the	desired	direction.	Listing

10.14	shows	the	implementation	of	this	helper	function,

RotateToNewForward.

Listing	10.14	Actor::RotateToNewForward

Implementation

Click	here	to	view	code	image

void	Actor::RotateToNewForward(const	Vector3&	forward)

{

			//	Figure	out	difference	between	original	(unit	x)	and	new

			float	dot	=	Vector3::Dot(Vector3::UnitX,	forward);

			float	angle	=	Math::Acos(dot);

	

			//	Are	we	facing	down	X?

			if	(dot	>	0.9999f)

			{	SetRotation(Quaternion::Identity);	}

			//	Are	we	facing	down	-X?

			else	if	(dot	<	-0.9999f)

			{	SetRotation(Quaternion(Vector3::UnitZ,	Math::Pi));	}

			else

			{

						//	Rotate	about	axis	from	cross	product

						Vector3	axis	=	Vector3::Cross(Vector3::UnitX,	forward);

						axis.Normalize();

						SetRotation(Quaternion(axis,	angle));

			}

}

Next,	you	create	a	BallActor	class	and	attach	to	it	a

new	MoveComponent	subclass	called	BallMove,	which

implements	the	movement	code	specific	to	BallActor.

The	BallMove::Update	function,	shown	in	Listing

10.15,	first	constructs	a	line	segment	in	the	direction	the

ball	is	traveling.	If	this	segment	intersects	with	anything

in	the	world,	you	want	it	to	bounce	off	the	surface.	You

reflect	the	movement	direction	off	the	surface	with

Vector3::Reflect	and	then	use

RoateToNewForward	to	tell	the	ball	to	rotate	to	face

this	new	direction.

Listing	10.15	Using	SegmentCast	for	Ball	Movement

Click	here	to	view	code	image

void	BallMove::Update(float	deltaTime)

{

			//	Construct	segment	in	direction	of	travel

			const	float	segmentLength	=	30.0f;

			Vector3	start	=	mOwner->GetPosition();

			Vector3	dir	=	mOwner->GetForward();

			Vector3	end	=	start	+	dir	*	segmentLength;

			LineSegment	ls(start,	end);

	

			//	Test	segment	vs	world

			PhysWorld*	phys	=	mOwner->GetGame()->GetPhysWorld();

			PhysWorld::CollisionInfo	info;

			if	(phys->SegmentCast(ls,	info))

			{

						//	If	we	collided,	reflect	the	direction	about	the	normal

						dir	=	Vector3::Reflect(dir,	info.mNormal);

						mOwner->RotateToNewForward(dir);

			}

	

			//	Base	class	update	moves	based	on	forward	speed

			MoveComponent::Update(deltaTime);

}

One	thing	to	watch	out	for	is	what	happens	when	you

add	a	BoxComponent	to	the	player,	as	you	will	do	later

in	this	section.	You	clearly	don’t	want	the	ball	to	collide

against	the	player	because	the	player	fires	the	ball!

Luckily,	you	can	leverage	the	fact	that	the

CollisionInfo	from	SegmentCast	has	a	pointer	to

the	actor	owning	the	box	component.	Thus,	if	you	save	a

pointer	to	the	player	somewhere,	you	can	make	sure	a

ball	doesn’t	collide	against	the	player.

Testing	Box	Collisions	in	PhysWorld

Although	not	used	in	this	chapter’s	game	project,

some	game	features	may	require	testing	all	the	boxes

in	the	physics	world	against	each	other.	A	naïve

implementation	is	to	perform	pairwise	intersection

tests	between	all	combinations	of	boxes	in	the	world.

This	basic	approach,	shown	in	Listing	10.16,	uses	an

O(n)	algorithm	because	it	tests	every	box	against

every	other	box.	The	TestPairwise	function	takes

in	a	user-supplied	function,	f,	and	calls	f	on	every

intersection	between	boxes.

Listing	10.16	PhysWorld::TestPairwise

Implementation

Click	here	to	view	code	image

void	PhysWorld::TestPairwise(std::function<void(Actor*,	Actor*)>	f)

2

{

			//	Naive	implementation	O(n^2)

			for	(size_t	i	=	0;	i	<	mBoxes.size();	i++)

			{

						//	Don't	need	to	test	vs.	itself	and	any	previous	i	values

						for	(size_t	j	=	i	+	1;	j	<	mBoxes.size();	j++)

						{

									BoxComponent*	a	=	mBoxes[i];

									BoxComponent*	b	=	mBoxes[j];

									if	(Intersect(a->GetWorldBox(),	b->GetWorldBox()))

									{

												//	Call	supplied	function	to	handle	intersection

												f(a->GetOwner(),	b->GetOwner());

									}

						}

			}

}

Although	TestPairwise	is	conceptually	simple,	it	ends

up	making	a	lot	of	unnecessary	calls	to	Intersect.	It

treats	two	boxes	on	opposite	sides	of	the	world	the	same

as	two	boxes	right	next	to	each	other.	In	the	case	of	this

chapter’s	game	project,	there	are	144	boxes.

TestPairwise	makes	over	10,000	calls	to	the

Intersect	function	given	these	144	boxes.

You	can	optimize	this	by	observing	that	two	2D	axis-

aligned	boxes	do	not	intersect	unless	they	overlap	on

both	coordinate	axes.	For	example,	the	interval	[min.x,

max.x]	from	one	box	must	overlap	with	the	[min.x,

max.x]	interval	from	another	box	if	the	two	boxes	are	to

intersect.	The	sweep-and-prune	method	takes

advantage	of	this	observation	to	reduce	the	number	of

box	intersection	tests.	The	sweep-and-prune	method

involves	selecting	an	axis	and	testing	only	boxes	that

have	overlapping	intervals	along	that	axis.

Figure	10.13	illustrates	a	handful	of	AABBs	and	considers

their	intervals	along	the	x-axis.	Box	A’s	and	Box	B’s	x

intervals	overlap,	so	they	may	potentially	intersect.

Similarly,	Box	B’s	and	Box	C’s	x	intervals	overlap,	so	they

may	intersect.	However,	Box	A’s	and	Box	C’s	x	intervals

do	not	overlap,	so	they	cannot	intersect.	Similarly,	Box

D’s	x	interval	overlaps	with	none	of	the	other	boxes,	so	it

can’t	intersect	with	any	of	them.	In	this	case,	the	sweep-

and-prune	algorithm	calls	Intersect	only	on	the	pairs

(A,	B)	and	(B,	C)	instead	of	on	all	six	possible

combinations.

Figure	10.13	AABB	intervals	along	the	x-axis

Listing	10.17	gives	the	code	for	the	sweep-and-prune

method	along	the	x-axis.	You	first	sort	the	vector	of

boxes	by	their	minimum	x-value.	Then,	for	every	box,

you	grab	the	maximum	x	value	and	save	it	in	max.	In	the

inner	loop,	you	only	consider	boxes	whose	min.x	is	less

than	max.	Once	the	inner	loop	hits	the	first	box	with	a

min.x	greater	than	max,	there	are	no	other	boxes	that

overlap	along	the	x-axis	with	the	outer	loop	box.	This

means	there	are	no	other	possible	intersections	against

the	outer	loop	box,	so	you	break	to	the	next	iteration	of

the	outer	loop.

Listing	10.17	PhysWorld::TestSweepAndPrune

Implementation

Click	here	to	view	code	image

void	PhysWorld::TestSweepAndPrune(std::function<void(Actor*,	Actor*)>	f)

{

			//	Sort	by	min.x

			std::sort(mBoxes.begin(),	mBoxes.end(),

						[](BoxComponent*	a,	BoxComponent*	b)	{

									return	a->GetWorldBox().mMin.x	<

												b->GetWorldBox().mMin.x;

			});

			for	(size_t	i	=	0;	i	<	mBoxes.size();	i++)

			{

						//	Get	max.x	for	box[i]

						BoxComponent*	a	=	mBoxes[i];

						float	max	=	a->GetWorldBox().mMax.x;

						for	(size_t	j	=	i	+	1;	j	<	mBoxes.size();	j++)

						{

									BoxComponent*	b	=	mBoxes[j];

									//	If	box[j]	min.x	is	past	the	max.x	bounds	of	box[i],

									//	then	there	aren't	any	other	possible	intersections

									//	against	box[i]

									if	(b->GetWorldBox().mMin.x	>	max)

									{

												break;

									}

									else	if	(Intersect(a->GetWorldBox(),	b->GetWorldBox()))

									{

												f(a->GetOwner(),	b->GetOwner());

									}

						}

			}

}

In	this	chapter’s	game	project,	TestSweepAndPrune

cuts	down	the	number	of	calls	to	Intersect	roughly	by

half	in	comparison	to	TestPairwise.	The	complexity	of

this	algorithm	is	on	average	O(n	log	n).	Even	though

sweep-and-prune	requires	a	sort,	it	is	generally	more

efficient	than	the	naïve	pairwise	test—unless	there	are

very	few	boxes.	Some	implementations	of	the	sweep-

and-prune	algorithm	do	the	pruning	along	all	three	axes,

as	in	Exercise	10.2.	This	requires	maintaining	multiple

sorted	vectors.	The	advantage	of	testing	all	three	axes	is

that	after	you	prune	for	all	three	axes,	the	remaining	set

of	boxes	must	intersect	with	each	other.

Sweep-and-prune	is	one	of	a	category	of	techniques

called	broadphase	techniques.	The	broadphase	tries	to

eliminate	as	many	collisions	as	possible	before	the

narrowphase,	which	tests	the	individual	pairs	of

collisions.	Other	techniques	use	grids,	cells,	or	trees.

Player	Collision	Against	the	Walls

Recall	that	MoveComponent	uses	the

mForwardSpeed	variable	to	move	the	character

forward	or	backward.	However,	the	current

implementation	allows	the	player	to	move	through

walls.	To	fix	this,	you	can	add	a	BoxComponent	to

each	wall	(encapsulated	by	PlaneActor),	as	well	as

a	BoxComponent	to	the	player.	Because	you	only

want	to	test	the	player	against	every	PlaneActor,

you	don’t	use	TestSweepAndPrune.	Instead,	you

can	just	make	a	vector	of	PlaneActor	pointers	in

Game	and	access	this	from	the	player’s	code.

The	basic	idea	is	that	every	frame,	you	test	the	player’s

collision	against	every	PlaneActor.	If	the	AABBs

intersect,	you	adjust	the	player’s	position	so	that	it	no

longer	collides	with	the	wall.	To	understand	this

calculation,	it	helps	to	visualize	the	problem	in	2D.

Figure	10.14	illustrates	a	player’s	AABB	colliding	with	a

platform	AABB.	You	calculate	two	differences	per	axis.

For	example,	dx1	is	the	difference	between	the	player’s

max.x	and	the	platform’s	min.x.	Conversely,	dx2	is	the

difference	between	the	player’s	min.x	and	the	platform’s

max.x.	Whichever	of	these	differences	has	the	lowest

absolute	value	is	the	minimum	overlap	between	the

two	AABBs.	In	Figure	10.14,	the	minimum	overlap	is	dy1.

If	you	then	add	dy1	to	the	player’s	y	position,	the	player

stands	exactly	on	top	of	the	platform.	Thus,	to	correctly

fix	the	collision,	you	can	just	adjust	the	position	in	the

axis	of	the	minimum	overlap.

Figure	10.14	Calculating	minimum	overlap	in	2D

In	3D,	the	principle	is	the	same,	except	there	are	now	six

difference	values	because	there	are	three	axes.	The

FPSActor::FixCollisions	function	as	shown	in

Listing	10.18	implements	this	minimum	overlap	test.

Importantly,	because	changing	the	position	of	the	player

changes	the	player’s	BoxComponent,	in	between	each

intersect	we	must	recompute	the	world	bounds	of	the

BoxComponent.	You	then	call	this	function	from

UpdateActor,	which	means	you	call	it	after	the

MoveComponent	updates	the	player’s	position	every

frame.

Listing	10.18	FPSActor::FixCollisions

Implementation

Click	here	to	view	code	image

void	FPSActor::FixCollisions()

{

			//	Need	to	recompute	my	world	transform	to	update	world	box

			ComputeWorldTransform();

	

			const	AABB&	playerBox	=	mBoxComp->GetWorldBox();

			Vector3	pos	=	GetPosition();

	

			auto&	planes	=	GetGame()->GetPlanes();

			for	(auto	pa	:	planes)

			{

						//	Do	we	collide	with	this	PlaneActor?

						const	AABB&	planeBox	=	pa->GetBox()->GetWorldBox();

						if	(Intersect(playerBox,	planeBox))

						{

									//	Calculate	all	our	differences

									float	dx1	=	planeBox.mMin.x	-	playerBox.mMax.x;

									float	dx2	=	planeBox.mMax.x	-	playerBox.mMin.x;

									float	dy1	=	planeBox.mMin.y	-	playerBox.mMax.y;

									float	dy2	=	planeBox.mMax.y	-	playerBox.mMin.y;

									float	dz1	=	planeBox.mMin.z	-	playerBox.mMax.z;

									float	dz2	=	planeBox.mMax.z	-	playerBox.mMin.z;

	

									//	Set	dx	to	whichever	of	dx1/dx2	have	a	lower	abs

									float	dx	=	(Math::Abs(dx1)	<	Math::Abs(dx2))	?	dx1	:	dx2;

									//	Ditto	for	dy

									float	dy	=	(Math::Abs(dy1)	<	Math::Abs(dy2))	?	dy1	:	dy2;

									//	Ditto	for	dz

									float	dz	=	(Math::Abs(dz1)	<	Math::Abs(dz2))	?	dz1	:	dz2;

							

									//	Whichever	is	closest,	adjust	x/y	position

									if	(Math::Abs(dx)	<=	Math::Abs(dy)	&&

													Math::Abs(dx)	<=	Math::Abs(dz))

									{

												pos.x	+=	dx;

									}

									else	if	(Math::Abs(dy)	<=	Math::Abs(dx)	&&

																		Math::Abs(dy)	<=	Math::Abs(dz))

									{

												pos.y	+=	dy;

									}

									else

									{

												pos.z	+=	dz;

									}

	

									//	Need	to	set	position	and	update	box	component

									SetPosition(pos);

									mBoxComp->OnUpdateWorldTransform();

						}

			}

}

Because	you	also	use	PlaneActor	instances	for	the

ground	beneath	the	player,	you	can	also	leverage	this

code,	with	modification,	to	test	whether	the	player	lands

on	the	platforms.	In	Exercise	10.1,	you’ll	explore	adding

jumping	to	the	player.

GAME	PROJECT
This	chapter’s	game	project	implements	all	the

different	types	of	intersections	discussed	in	this

chapter,	as	well	as	BoxComponent	and	PhysWorld.

It	also	uses	SegmentCast	for	the	ball	projectile	and

implements	fixing	the	player	colliding	against	the

walls.	The	result	is	a	first-person	shooting	gallery,	as

shown	in	Figure	10.15.	The	code	is	available	in	the

book’s	GitHub	repository,	in	the	Chapter10

directory.	Open	Chapter10-windows.sln	in

Windows	and	Chapter10-mac.xcodeproj	on

Mac.

Figure	10.15	Chapter	10	game	project

The	controls	for	this	game	project	use	the	FPS-style

controls	implemented	in	Chapter	9.	Recall	that	W/S	move

forward	and	back,	A/D	strafe,	and	the	mouse	rotates	the

character.	In	addition,	clicking	the	left	mouse	button

now	fires	a	ball	projectile	in	the	direction	of	the	vector

derived	from	an	unprojection	(also	discussed	in	Chapter

9).	The	ball	projectile	uses	SegmentCast	to	test	whether

it	intersects	with	a	wall	or	target.	In	either	case,	the	ball

reflects	its	facing	direction	based	on	the	normal	of	the

surface,	causing	it	to	bounce.	If	the	ball	hits	a	target,	the

game	plays	a	ding	sound.

SUMMARY
This	chapter	provides	an	in-depth	introduction	to

collision	detection	techniques	in	games.	Games

might	use	many	different	geometric	types	for

collision	detection.	A	line	segment	has	a	start	point

and	an	end	point.	The	representation	of	a	plane	is	its

normal	and	distance	to	the	origin.	Spheres	are

simple	bounding	volumes	but	may	cause	many	false

negatives	for	characters	of	different	shapes.	Axis-

aligned	bounding	boxes	have	sides	aligned	with	the

axes,	while	oriented	bounding	boxes	do	not	have	this

restriction.

For	intersection	tests,	this	chapter	covers	many	different

types	of	intersections.	Contains	point	tests	can	say

whether	a	shape	contains	a	point.	You	can	also	test

whether	two	bounding	volumes	(such	as	two	AABBs)

intersect	with	each	other.	This	chapter	also	covers	tests

for	whether	a	line	segment	intersects	with	objects

including	planes,	spheres,	and	other	boxes.	For	moving

objects,	you	may	need	to	use	a	form	of	continuous

collision	detection	to	ensure	that	the	game	doesn’t	miss

collisions	that	occur	between	frames.

Finally,	this	chapter	covers	how	to	integrate	collision

detection	into	game	code.	The	BoxComponent	class	has

both	object	space	bounds	(derived	from	the	mesh)	and

world	space	bounds	that	are	updated	based	on	the

owning	actor.	PhysWorld	keeps	track	of	all	box

components	in	the	world,	and	SegmentCast	tests	a	line

segment	against	all	the	boxes.	For	collisions	between

pairs	of	boxes,	it’s	more	efficient	to	use	the	sweep-and-

prune	broadphase	algorithm.	Sweep-and-prune	exploits

the	fact	that	two	boxes	cannot	intersect	if	their	intervals

along	a	coordinate	axis	do	not	overlap.	This	chapter

shows	how	to	use	both	segment	cast	and	box	component

collisions	to	implement	some	game-specific	features,

such	as	the	ball	bouncing	off	objects	or	the	player

colliding	with	the	wall.

ADDITIONAL	READING
Christer	Ericson	provides	extremely	detailed

coverage	of	collision	detection,	covering	both	the

mathematical	bases	of	the	algorithms	and	usable

implementations.	Ian	Millington	doesn’t	have	as

much	coverage	of	collision	detection	algorithms	but

explains	how	to	incorporate	collision	in	the	context

of	physics	engine	movement,	which	is	something	this

chapter	does	not	discuss	in	detail.

Ericson,	Christer.	Real-time	Collision

Detection.	San	Francisco:	Morgan

Kaufmann,	2005.

Millington,	Ian.	Game	Physics	Engine

Development,	2nd	edition.	Boca	Raton:

CRC	Press,	2010.

EXERCISES
In	this	chapter’s	first	exercise,	you	add	jumping	to

the	chapter’s	game	project.	In	the	second	exercise,

you	improve	upon	the	sweep-and-prune

implementation	covered	in	this	chapter.	In	the	last

exercise	you	implement	OBB	versus	OBB

intersection	between	oriented	bounding	boxes.

Exercise	10.1

Add	jumping	to	the	player	character.	The	ground

objects	already	have	corresponding	axis-aligned

bounding	boxes.	To	implement	jumping,	select	a	key

(such	as	the	spacebar).	When	the	player	presses	the

jump	key,	set	an	additional	velocity	in	the	positive	z

direction.	Similarly,	add	a	negative	z	acceleration	for

gravity	that	slows	down	the	jump	velocity.	After	the

player	hits	the	apex	of	the	jump,	he	or	she	starts

falling.	While	they	player	is	falling,	you	can	detect	in

FixCollisions	whether	the	player	lands	on	top	of

a	PlaneActor	(because	you	know	that	the	top	is

dz2).	While	the	player	is	on	the	ground,	disable

gravity	and	set	the	z	velocity	back	to	zero.

To	help	keep	the	code	modular,	it’s	recommended	that

you	use	a	simple	state	machine	to	represent	the	different

states	of	the	character:	on	the	ground,	jumping,	and

falling.	As	an	additional	feature,	experiment	with

transitioning	from	the	“on	ground”	state	to	the	“falling”

state.	While	in	the	“on	ground”	state,	keep	making

downward	SegmentCasts	to	detect	whether	the	player

has	walked	off	the	platform.	If	that	happens,	switch	from

“on	ground”	to	“falling.”

Exercise	10.2

Change	the	SweepAndPrune	function	to	sweep	and

prune	across	all	three	coordinate	axes.	Have

PhysWorld	maintain	three	vectors	of	boxes	and

change	it	so	that	AddBox	and	RemoveBox	touch	all

three	vectors.	Then	sort	each	vector	by	its

corresponding	axis.

The	sweep-and-prune	code	should	then	test	along	each

axis	independently	and	create	a	map	of	pairs	of

overlapping	boxes	along	that	axis.	Once	all	three	axes	are

complete,	the	code	should	compare	the	overlapping	box

vectors.	The	boxes	that	overlap	along	all	three	axes	are

the	only	boxes	that	intersect	with	each	other.

Exercise	10.3

Implement	OBB	versus	OBB	intersection	in	a	new

Intersect	function.	As	with	AABBs,	use	the

separating	axis	approach	(that	is,	figure	out	whether

they	cannot	intersect	and	then	logically	not	the

result).	However,	whereas	there	are	3	axes	to	test	for

AABBs,	for	OBBs	there	are	a	total	of	15	different	axes

to	test.

To	implement	this,	first	compute	the	8	different	corners

of	both	OBBs.	Each	OBB	has	a	total	of	3	local	axes

corresponding	to	each	side	of	the	box.	You	can	compute

these	by	using	vector	subtraction	between	the	correct	set

of	points	and	normalizing	the	vectors.	Because	each	box

has	three	local	axes,	that	yields	the	first	6	potential

separating	axes.	The	other	9	vectors	are	the

combinations	of	cross	products	between	the	two	OBBs’

local	axes.	For	example,	OBB	A’s	up	vector	crosses	OBB

B’s	up,	right,	and	forward	vectors.

To	determine	the	interval	of	the	box	along	an	axis,

compute	the	dot	product	of	each	corner	of	that	box

versus	the	axis.	The	lowest	dot	product	result	is	the

minimum	value	of	the	interval	and,	similarly,	the	highest

dot	product	result	is	the	maximum	value.	Then

determine	whether	the	[min,	max]	intervals	of	both

boxes	separate	along	the	axis.	If	any	of	the	15	axes

separate,	then	the	boxes	cannot	intersect.	Otherwise,

they	must	intersect.

CHAPTER	11

USER	INTERFACES

Most	games	include	UI	elements	such	as	a

menu	system	and	an	in-game	heads-up

display	(HUD).	The	menu	system	allows	the

player	to	perform	actions	such	as	starting

and	pausing	the	game.	The	HUD	includes

elements	that	give	information	to	the	player

during	gameplay.	This	can	include	elements

such	as	an	aiming	reticule	or	a	radar.

This	chapter	looks	at	core	systems	needed	to

implement	user	interfaces,	including	text

rendering	with	a	font,	a	system	for	UI

screens,	and	localization	for	different

languages.	The	chapter	also	explores

implementations	of	certain	HUD	elements.

FONT	RENDERING
In	the	TrueType	font	format,	straight	line	segments

and	Bézier	curves	form	the	outlines	of	individual

characters	(or	glyphs).	The	SDL	TTF	library

provides	support	for	loading	and	rendering	TrueType

fonts.	After	initializing	the	library,	the	basic	process

is	to	load	fonts	at	specific	point	sizes.	Then	SDL	TTF

takes	in	a	string	and	renders	the	string	to	a	texture,

using	the	glyphs	from	the	font.	Once	this	texture

exists,	the	game	can	render	the	texture	just	like	any

other	2D	sprite.

Much	as	in	other	systems,	the	Game	class	initializes	SDL

TTF	in	Game::Initialize.	The	TTF_Init	function

returns	0	if	successful,	and	-1	in	the	event	of	an	error.

Similarly,	Game::Shutdown	calls	TTF_Quit	to	shut

down	the	library.

Next,	you	declare	a	Font	class	to	encapsulate	any	font-

specific	functionality,	as	shown	in	Listing	11.1.	The	Load

function	loads	in	a	font	from	the	specified	file,	and

Unload	frees	all	font	data.	The	RenderText	function

takes	in	the	provided	string,	color,	and	point	size	and

creates	a	texture	that	contains	the	text.

Listing	11.1	Font	Declaration

Click	here	to	view	code	image

class	Font

{

public:

			Font();

			~Font();

			//	Load/unload	from	a	file

			bool	Load(const	std::string&	fileName);

			void	Unload();

			//	Given	string	and	this	font,	draw	to	a	texture

			class	Texture*	RenderText(const	std::string&	text,

																		const	Vector3&	color	=	Color::White,

																		int	pointSize	=	30);

private:

			//	Map	of	point	sizes	to	font	data

			std::unordered_map<int,	TTF_Font*>	mFontData;

};

The	TTF_OpenFont	function	loads	a	font	from	a	.ttf

file	at	a	specific	point	size	and	returns	a	pointer	to	the

TTF_Font	data	corresponding	to	the	font	at	that	size.

This	means	to	support	different-sized	text	in	the	game,

you	must	call	TTF_OpenFont	multiple	times.	The

Font::Load	function,	shown	in	Listing	11.2,	first

creates	a	vector	of	the	desired	point	sizes,	and	then	it

loops	over	this	vector,	calling	TTF_OpenFont	once	per

size	and	adding	each	TTF_Font	to	the	mFontData	map.

Listing	11.2	Font::Load	Implementation

Click	here	to	view	code	image

bool	Font::Load(const	std::string&	fileName)

{

			//	Support	these	font	sizes

			std::vector<int>	fontSizes	=	{

						8,	9,	10,	11,	12,	14,	16,	18,	20,	22,	24,	26,	28,

						30,	32,	34,	36,	38,	40,	42,	44,	46,	48,	52,	56,

						60,	64,	68,	72

			};

			//	Call	TTF_OpenFont	once	per	every	font	size

			for	(auto&	size	:	fontSizes)

			{

						TTF_Font*	font	=	TTF_OpenFont(fileName.c_str(),	size);

						if	(font	==	nullptr)

						{

									SDL_Log("Failed	to	load	font	%s	in	size	%d",	fileName.c_str(),

									size);

									return	false;

						}

						mFontData.emplace(size,	font);

			}

			return	true;

}

As	with	other	resources,	you	want	to	keep	track	of	loaded

fonts	in	a	central	place.	In	this	case,	the	Game	class	adds

a	map	where	the	key	is	the	filename	of	the	font,	and	the

value	is	a	Font	pointer.	You	then	add	a	corresponding

GetFont	function.	As	with	GetTexture	and	similar

functions,	GetFont	first	tries	to	find	the	data	in	its	map

and,	if	it	fails,	it	loads	the	font	file	and	adds	it	to	the	map.

The	Font::RenderText	function,	shown	in	Listing

11.3,	creates	a	texture	given	a	text	string,	using	a	font	of

the	appropriate	size.	First,	you	convert	the	Vector3

color	into	an	SDL_Color,	where	each	component	ranges

from	0	to	255.	Next,	you	look	in	the	mFontData	map	to

find	the	TTF_Font	data	corresponding	to	the	font	at	the

requested	point	size.

Next,	you	call	the	TTF_RenderText_Blended

function,	which	takes	in	a	TTF_Font*,	the	string	of	text

to	render,	and	a	color.	The	Blended	suffix	means	that

the	font	will	draw	with	alpha	transparency	around	the

glyphs.	Unfortunately,	TTF_RenderText_Blended

returns	a	pointer	to	an	SDL_Surface.	OpenGL	cannot

directly	draw	an	SDL_Surface.

Recall	that	in	Chapter	5,	“OpenGL,”	you	created	the

Texture	class	to	encapsulate	a	texture	loaded	for

OpenGL	usage.	You	can	add	a

Texture::CreateFromSurface	function	to	convert

an	SDL_Surface	into	a	Texture.	(This	chapter	omits

the	implementation	of	CreateFromSurface,	but	check

the	source	code	for	the	gameproject.)	Once	the

SDL_Surface	is	converted	into	a	Texture	object,	you

can	free	the	surface.

Listing	11.3	Font::RenderText	Implementation

Click	here	to	view	code	image

Texture*	Font::RenderText(const	std::string&	text,

			const	Vector3&	color,	int	pointSize)

{

			Texture*	texture	=	nullptr;

			//	Convert	to	SDL_Color

			SDL_Color	sdlColor;

			sdlColor.r	=	static_cast<Uint8>(color.x	*	255);

			sdlColor.g	=	static_cast<Uint8>(color.y	*	255);

			sdlColor.b	=	static_cast<Uint8>(color.z	*	255);

			sdlColor.a	=	255;

			//	Find	the	font	data	for	this	point	size

			auto	iter	=	mFontData.find(pointSize);

			if	(iter	!=	mFontData.end())

			{

						TTF_Font*	font	=	iter->second;

						//	Draw	this	to	a	surface	(blended	for	alpha)

						SDL_Surface*	surf	=	TTF_RenderText_Blended(font,	text.c_str(),

																										sdlColor);

						if	(surf	!=	nullptr)

						{

									//	Convert	from	surface	to	texture

									texture	=	new	Texture();

									texture->CreateFromSurface(surf);

									SDL_FreeSurface(surf);

						}

			}

			else

			{

						SDL_Log("Point	size	%d	is	unsupported",	pointSize);

			}

			return	texture;

}

Because	creating	a	texture	is	somewhat	expensive,	the	UI

code	does	not	call	RenderText	every	frame.	Instead,	it

calls	RenderText	only	when	the	text	string	changes	and

saves	the	resulting	texture.	Then	on	every	frame,	the	UI

code	can	draw	the	texture	that	contains	the	rendered

text.	For	maximum	efficiency,	you	could	even	render

each	letter	in	the	alphabet	to	separate	textures	and	then

stich	these	letter	textures	together	to	form	words.

UI	SCREENS
Because	a	UI	system	might	be	used	for	many	things,

including	the	HUD	and	menus,	flexibility	is	an

important	feature.	Although	there	are	data-driven

systems	that	utilize	tools	such	as	Adobe	Flash,	this

chapter	instead	focuses	on	a	code-driven

implementation.	However,	many	of	the	ideas

presented	here	can	still	apply	to	a	more	data-driven

system.

It’s	useful	to	think	of	the	UI	as	containing	different

layers.	For	example,	during	gameplay,	the	heads-up

display	(HUD)	shows	information	relevant	to	the

player,	such	as	health	or	a	score.	If	the	player	pauses	the

game,	the	game	might	show	a	menu	that	lets	the	player

choose	between	different	options.	While	the	game	shows

the	pause	menu,	you	may	still	want	the	HUD	elements	to

be	visible	under	the	pause	menu.

Now	suppose	that	one	of	the	options	in	the	pause	menu

is	to	quit	the	game.	When	the	player	selects	this	option,

you	might	want	to	have	the	game	show	a	confirmation

dialog	box	that	asks	whether	the	player	truly	wants	to

quit.	The	player	might	still	see	parts	of	both	the	HUD

and	pause	menu	onscreen	under	this	dialog	box.

During	this	sequence,	the	player	can	typically	interact

with	only	the	topmost	layer	of	the	UI.	This	naturally

leads	to	the	idea	of	using	a	stack	to	represent	the

different	layers	of	the	UI.	You	can	implement	the	idea	of

a	single	UI	layer	with	the	UIScreen	class.	Each	type	of

UI	screen,	such	as	the	pause	menu	or	HUD,	is	a	subclass

of	UIScreen.	After	drawing	the	game	world,	the	game

draws	all	UI	screens	on	the	stack	in	a	bottom-up	order.

At	any	point	in	time,	only	the	UIScreen	on	top	of	the	UI

stack	might	receive	input	events.

Listing	11.4	shows	the	first	iteration	of	the	base

UIScreen	class.	Notice	that	it	has	several	virtual

functions	that	subclasses	can	override:	Update	for

updating	the	UI	screen’s	state,	Draw	for	drawing	it,	and

the	two	input	functions	to	handle	different	types	of

incoming	input.	You	can	also	keep	track	of	the	state	of	a

specific	UI	screen;	in	this	case,	you	only	need	two	states

for	whether	the	screen	is	active	or	closing.

The	UI	screen	also	might	have	a	title,	so	the	member

data	contains	a	pointer	to	the	Font,	a	pointer	to	the

Texture	that	contains	the	rendered	title,	and	a	position

for	the	title	onscreen.	Subclasses	can	then	call	the

SetTitle	function,	which	uses	Font::RenderText	to

set	the	mTitle	member.

Finally,	because	a	UIScreen	is	not	an	Actor,	you

cannot	attach	any	types	of	components	to	it.	Thus,	the

UIScreen	class	doesn’t	use	the	drawing	functionality

from	SpriteComponent.	Instead,	you	need	a	new

helper	function	called	DrawTexture	that	draws	a

texture	at	the	specified	position	onscreen.	Every	UI

screen	can	then	call	DrawTexture	as	needed.

Listing	11.4	Initial	UIScreen	Declaration

Click	here	to	view	code	image

class	UIScreen

{

public:

			UIScreen(class	Game*	game);

			virtual	~UIScreen();

			//	UIScreen	subclasses	can	override	these

			virtual	void	Update(float	deltaTime);

			virtual	void	Draw(class	Shader*	shader);

			virtual	void	ProcessInput(const	uint8_t*	keys);

			virtual	void	HandleKeyPress(int	key);

			//	Tracks	if	the	UI	is	active	or	closing

			enum	UIState	{	EActive,	EClosing	};

			//	Set	state	to	closing

			void	Close();

			//	Get	state	of	UI	screen

			UIState	GetState()	const	{	return	mState;	}

			//	Change	the	title	text

			void	SetTitle(const	std::string&	text,

														const	Vector3&	color	=	Color::White,

														int	pointSize	=	40);

protected:

			//	Helper	to	draw	a	texture

			void	DrawTexture(class	Shader*	shader,	class	Texture*	texture,

																const	Vector2&	offset	=	Vector2::Zero,

																float	scale	=	1.0f);

			class	Game*	mGame;

			//	For	the	UI	screen's	title	text

			class	Font*	mFont;

			class	Texture*	mTitle;

			Vector2	mTitlePos;

			//	State

			UIState	mState;

};

The	UI	Screen	Stack

Adding	the	UI	screen	stack	to	the	game	requires

connections	in	several	places.	First,	you	add	a

std::vector	of	UIScreen	pointers	to	the	Game

class	for	the	UI	stack.	You	don’t	just	use

std::stack	here	because	you	need	to	iterate	over

the	entire	UI	stack,	which	is	not	possible	in

std::stack.	You	also	add	functions	to	push	a	new

UIScreen	onto	the	stack	(PushUI)	and	a	function

to	get	the	entire	stack	by	reference:

Click	here	to	view	code	image

//	UI	stack	for	game

std::vector<class	UIScreen*>	mUIStack;

//	Returns	entire	stack	by	reference

const	std::vector<class	UIScreen*>&	GetUIStack();

//	Push	specified	UIScreen	onto	stack

void	PushUI(class	UIScreen*	screen);

Then	the	constructor	of	UIScreen	calls	PushUI	and

passes	in	its	this	pointer	as	the	screen.	This	means	that

simply	dynamically	allocating	a	UIScreen	(or	subclass

of	UIScreen)	automatically	adds	the	UIScreen	to	the

stack.

Updating	the	UI	screens	on	the	stack	happens	in

UpdateGame,	after	updating	all	the	actors	in	the	world.

This	requires	looping	over	the	entire	UI	screen	stack	and

calling	Update	on	any	active	screens:

Click	here	to	view	code	image

for	(auto	ui	:	mUIStack)

{

			if	(ui->GetState()	==	UIScreen::EActive)

			{

						ui->Update(deltaTime);

			}

}

After	updating	all	the	UI	screens,	you	also	delete	any

screens	whose	state	is	EClosing.

Drawing	the	UI	screens	must	happen	in	Renderer.

Recall	that	Renderer::Draw	first	draws	all	the	3D

mesh	components	by	using	the	mesh	shader	and	then

draws	all	the	sprite	components	by	using	the	sprite

shader.	Because	the	UI	comprises	several	textures,	it’s

natural	to	draw	them	by	using	the	same	shader	that

sprites	use.	So,	after	drawing	all	sprite	components,	the

Renderer	gets	the	UI	stack	from	the	Game	object	and

calls	Draw	on	each	UIScreen:

Click	here	to	view	code	image

for	(auto	ui	:	mGame->GetUIStack())

{

			ui->Draw(mSpriteShader);

}

For	testing	purposes,	you	can	create	a	subclass	of

UIScreen	called	HUD.	You	can	create	an	instance	of	HUD

in	Game::LoadData	and	save	it	in	an	mHUD	member

variable:

mHUD	=	new	HUD(this);

Because	the	constructor	of	HUD	calls	the	constructor	of

UIScreen,	this	automatically	adds	the	object	to	the

game’s	UI	stack.	For	now,	HUD	doesn’t	draw	any

elements	to	the	screen	or	otherwise	override	any

behavior	of	UIScreen.	(Later	in	this	chapter,	you’ll

learn	about	supporting	different	functionality	in	the

HUD.)

Handling	input	for	the	UI	stack	is	a	bit	trickier.	In	most

cases,	a	specific	input	action	such	as	clicking	the	mouse

should	affect	the	game	or	the	UI—but	not	both

simultaneously.	Thus,	you	first	need	a	way	to	decide

whether	to	route	the	input	to	the	game	or	to	the	UI.

To	implement	this,	you	first	add	the	mGameState

variable	to	Game	that	supports	three	different	states:

gameplay,	paused,	and	quit.	In	the	gameplay	state,	all

input	actions	route	to	the	game	world,	which	means	you

pass	the	input	to	each	actor.	On	the	other	hand,	in	the

paused	state,	all	input	actions	go	to	the	UI	screen	at	the

top	of	the	UI	stack.	This	means	that

Game::ProcessInput	must	call	ProcessInput	on

either	each	actor	or	the	UI	screen,	depending	on	this

state:

Click	here	to	view	code	image

if	(mGameState	==	EGameplay)

{

			for	(auto	actor	:	mActors)

			{

						if	(actor->GetState()	==	Actor::EActive)

						{

									actor->ProcessInput(state);

						}

			}

}

else	if	(!mUIStack.empty())

{

			mUIStack.back()->ProcessInput(state);

}

You	can	also	extend	this	behavior	so	that	the	UI	screen

on	top	of	the	stack	can	decide	whether	it	wants	to

process	the	input.	If	the	UI	screen	decides	it	doesn’t	want

to	process	the	input,	it	can	forward	the	input	to	the	next

topmost	UI	on	the	stack.

Similarly,	when	responding	to	SDL_KEYDOWN	and

SDL_MOUSEBUTTON	events,	you	either	send	the	event	to

the	game	world	or	to	the	UI	screen	at	the	top	of	the	stack

(via	the	HandleKeyPress	function).

Because	you	added	mGameState	to	track	the	state	of	the

game,	you	also	make	changes	to	the	game	loop.	The

condition	of	the	game	loop	changes	to	keep	looping	as

long	as	the	game	is	not	in	the	EQuit	state.	You	further

update	the	game	loop	such	that	you	call	Update	on	all

the	actors	in	the	world	only	if	the	game	state	is

EGameplay.	This	way,	the	game	doesn’t	continue	to

update	the	objects	in	the	game	world	while	in	the	paused

state.

The	Pause	Menu

Once	the	game	has	support	for	a	paused	state,	you

can	add	a	pause	menu.	First,	you	declare

PauseMenu	as	a	subclass	of	UIScreen.	The

constructor	of	PauseMenu	sets	the	game	state	to

paused	and	sets	the	title	text	of	the	UI	screen:

Click	here	to	view	code	image

PauseMenu::PauseMenu(Game*	game)

			:UIScreen(game)

{

			mGame->SetState(Game::EPaused);

			SetTitle("PAUSED");

}

The	destructor	sets	the	game’s	state	back	to	gameplay:

Click	here	to	view	code	image

PauseMenu::~PauseMenu()

{

			mGame->SetState(Game::EGameplay);

}

Finally,	the	HandleKeyPress	function	closes	the	pause

menu	if	the	player	presses	the	Escape	key:

Click	here	to	view	code	image

void	PauseMenu::HandleKeyPress(int	key)

{

			UIScreen::HandleKeyPress(key);

			if	(key	==	SDLK_ESCAPE)

			{

						Close();

			}

}

This	leads	to	the	game	deleting	the	PauseMenu	instance,

which	calls	the	PauseMenu	destructor,	which	sets	the

game	state	back	to	gameplay.

To	show	the	pause	menu,	you	need	to	construct	a	new

PauseMenu	object	because	the	constructor

automatically	adds	the	UIScreen	to	the	stack.	You

create	the	pause	menu	in	Game::HandleKeyPress	to

have	it	appear	when	the	player	presses	the	Escape	key.

The	overall	flow	is	that	while	in	the	gameplay	state,	the

player	can	press	Escape	to	see	the	pause	menu.

Constructing	the	pause	menu	object	causes	the	game	to

enter	the	pause	state,	which	means	actors	don’t	update.

Then,	if	the	player	presses	Escape	when	in	the	pause

menu,	you	delete	the	pause	menu	and	return	to	the

gameplay	state.	Figure	11.1	shows	the	game	paused	with

this	simple	version	of	the	pause	menu	(which	isn’t	really

a	menu	yet	because	it	has	no	buttons).

Figure	11.1	Game	showing	the	basic	pause	menu

Buttons

Most	menus	in	games	also	have	buttons	that	the

player	can	interact	with.	For	example,	a	pause	menu

might	have	buttons	for	resuming	the	game,	quitting

the	game,	configuring	options,	and	so	on.	Because

different	UI	screens	may	need	buttons,	it	makes

sense	to	add	this	support	to	the	base	UIScreen

class.

To	encapsulate	buttons,	you	can	declare	a	Button	class,

as	shown	in	Listing	11.5.	You	can	assume	that	every

button	has	a	text	name,	and	so	it	also	needs	a	pointer	to

the	Font	that	renders	this	text.	In	addition,	the	button

has	a	position	onscreen	as	well	as	dimensions	(width	and

height).	Finally,	when	the	player	clicks	the	button,	some

action	should	occur,	depending	on	the	button	clicked.

To	customize	a	button’s	action,	Button	uses	the

std::function	class	to	encapsulate	a	callback

function.	This	function	can	be	a	standalone	function	or,

more	likely,	a	lambda	expression.	When	declaring	a

Button,	the	constructor	takes	in	this	function.	Then,

when	the	code	detects	a	button	click,	you	can	call	this

function.	This	way,	any	arbitrary	button	you	create	for

any	arbitrary	menu	can	call	a	corresponding	arbitrary

function.

Listing	11.5	Button	Declaration

Click	here	to	view	code	image

class	Button

{

public:

			//	Constructor	takes	in	a	name,	font,

			//	callback	function,	and	position/dimensions	of	button

			Button(const	std::string&	name,	class	Font*	font,

						std::function<void()>	onClick,

						const	Vector2&	pos,	const	Vector2&	dims);

			~Button();

			//	Set	the	name	of	the	button,	and	generate	name	texture

			void	SetName(const	std::string&	name);

	

			//	Returns	true	if	the	point	is	within	the	button's	bounds

			bool	ContainsPoint(const	Vector2&	pt)	const;

			//	Called	when	button	is	clicked

			void	OnClick();

			//	Getters/setters

			//	...

private:

			std::function<void()>	mOnClick;

			std::string	mName;

			class	Texture*	mNameTex;

			class	Font*	mFont;

			Vector2	mPosition;

			Vector2	mDimensions;

			bool	mHighlighted;

};

Button	has	a	ContainsPoint	function	that,	given	a

point,	returns	true	if	the	point	is	within	the	2D	bounds

of	the	button.	This	function	uses	the	same	approach	as	in

Chapter	10,	“Collision	Detection”:	You	test	for	the	four

cases	where	the	point	is	not	within	the	bounds.	If	none	of

these	four	cases	are	true,	then	the	button	must	contain

the	point:

Click	here	to	view	code	image

bool	Button::ContainsPoint(const	Vector2&	pt)	const

{

			bool	no	=	pt.x	<	(mPosition.x	-	mDimensions.x	/	2.0f)	||

						pt.x	>	(mPosition.x	+	mDimensions.x	/	2.0f)	||

						pt.y	<	(mPosition.y	-	mDimensions.y	/	2.0f)	||

						pt.y	>	(mPosition.y	+	mDimensions.y	/	2.0f);

			return	!no;

}

The	Button::SetName	function	uses	the	previously

discussed	RenderText	function	to	create	the	texture	for

the	button’s	name,	stored	in	mNameTex.	The	OnClick

function	simply	calls	the	mOnClick	handler,	if	it	exists:

void	Button::OnClick()

{

			if	(mOnClick)

			{

						mOnClick();

			}

}

You	then	add	additional	member	variables	to	UIScreen

to	support	buttons:	a	vector	of	Button	pointers	and	two

textures	for	the	buttons.	One	texture	is	for	unselected

buttons,	and	the	other	is	for	selected	buttons.	Having

different	textures	makes	it	easier	for	the	player	to

differentiate	between	the	selected	and	unselected

buttons.

Next,	you	add	a	helper	function	to	make	it	easy	to	create

new	buttons:

Click	here	to	view	code	image

void	UIScreen::AddButton(const	std::string&	name,

			std::function<void()>	onClick)

{

			Vector2	dims(static_cast<float>(mButtonOn->GetWidth()),

						static_cast<float>(mButtonOn->GetHeight()));

			Button*	b	=	new	Button(name,	mFont,	onClick,	mNextButtonPos,	dims);

			mButtons.emplace_back(b);

			//	Update	position	of	next	button

			//	Move	down	by	height	of	button	plus	padding

			mNextButtonPos.y	-=	mButtonOff->GetHeight()	+	20.0f;

}

The	mNextButtonPos	variable	allows	the	UIScreen	to

control	where	the	buttons	draw.	You	could	certainly	add

more	customization	with	more	parameters,	but	using	the

provided	code	is	a	simple	way	to	get	a	vertical	list	of

buttons.

Next,	you	add	code	in	UIScreen::DrawScreen	to

draw	the	buttons.	For	each	button,	you	first	draw	the

button	texture	(which	is	either	mButtonOn	or

mButtonOff,	depending	on	whether	the	button	is

selected).	Next,	you	draw	the	text	for	the	button:

Click	here	to	view	code	image

for	(auto	b	:	mButtons)

{

			//	Draw	background	of	button

			Texture*	tex	=	b->GetHighlighted()	?	mButtonOn	:	mButtonOff;

			DrawTexture(shader,	tex,	b->GetPosition());

			//	Draw	text	of	button

			DrawTexture(shader,	b->GetNameTex(),	b->GetPosition());

}

You	also	want	the	player	to	use	the	mouse	to	select	and

click	on	buttons.	Recall	that	the	game	uses	a	relative

mouse	mode	so	that	that	mouse	movement	turns	the

camera.	To	allow	the	player	to	highlight	and	click	on

buttons,	you	need	to	disable	this	relative	mouse	mode.

You	can	leave	responsibility	for	this	to	the	PauseMenu

class;	in	the	constructor,	it	disables	relative	mouse	mode,

and	then	it	reenables	it	in	the	destructor.	This	way,	when

the	player	returns	to	gameplay,	the	mouse	can	once

again	rotate	the	camera.

The	UIScreen::ProcessInput	function,	shown	in

Listing	11.6,	handles	highlighting	buttons	with	the

mouse.	You	first	get	the	position	of	the	mouse	and

convert	it	to	the	simple	screen	space	coordinates	where

the	center	of	the	screen	is	(0,	0).	You	get	the	width	and

height	of	the	screen	from	the	renderer.	You	then	loop

over	all	the	buttons	in	the	mButtons	vector	and	use	the

ContainsPoint	function	to	determine	whether	the

mouse	cursor	is	within	the	bounds	of	the	button.	If	the

button	contains	the	mouse	cursor,	its	state	is	set	to

highlighted.

Listing	11.6	UIScreen::ProcessInput

Implementation

Click	here	to	view	code	image

void	UIScreen::ProcessInput(const	uint8_t*	keys)

{

			//	Are	there	buttons?

			if	(!mButtons.empty())

			{

						//	Get	position	of	mouse

						int	x,	y;

						SDL_GetMouseState(&x,	&y);

						//	Convert	to	(0,0)	center	coordinates	(assume	1024x768)

						Vector2	mousePos(static_cast<float>(x),	static_cast<float>(y));

						mousePos.x	-=	mGame->GetRenderer()->GetScreenWidth()	*	0.5f;

						mousePos.y	=	mGame->GetRenderer()->GetScreenHeight()	*	0.5f

																			-	mousePos.y;

						//	Highlight	any	buttons

						for	(auto	b	:	mButtons)

						{

									if	(b->ContainsPoint(mousePos))

									{

												b->SetHighlighted(true);

									}

									else

									{

												b->SetHighlighted(false);

									}

						}

			}

}

The	mouse	clicks	are	routed	through

UIScreen::HandleKeyPress.	Because

ProcessInput	already	determines	which	buttons	are

highlighted	by	the	mouse,	HandleKeyPress	just	calls

the	OnClick	function	on	any	highlighted	buttons.

Using	all	this	code,	you	can	add	buttons	to	PauseMenu.

For	now,	you	can	add	two	buttons—one	to	resume	the

game	and	one	to	quit	the	game:

AddButton("Resume",	[this]()	{

			Close();

});

AddButton("Quit",	[this]()	{

			mGame->SetState(Game::EQuit);

});

The	lambda	expressions	passed	to	AddButton	define

what	happens	when	the	player	clicks	the	button.	When

the	player	clicks	Resume,	the	pause	menu	closes,	and

when	the	player	clicks	Quit,	the	game	ends.	Both	lambda

expressions	capture	the	this	pointer	so	that	they	can

access	members	of	PauseMenu.	Figure	11.2	shows	the

pause	menu	with	these	buttons.

Figure	11.2	Pause	menu	with	buttons

Dialog	Boxes

For	certain	menu	actions,	such	as	quitting	the	game,

it’s	preferable	to	show	the	player	a	confirmation

dialog	box.	This	way,	if	the	player	clicks	on	the	first

button	by	mistake,	he	or	she	can	still	correct	the

mistake.	Using	a	UI	screen	stack	makes	it	easy	to

transfer	control	from	one	UI	screen	(such	as	the

pause	menu)	to	a	dialog	box.	In	fact,	you	can

implement	the	dialog	box	with	all	the	existing

UIScreen	functionality.	To	do	this,	you	can	make	a

new	subclass	of	UIScreen	called	DialogBox.

The	DialogBox	constructor	takes	in	a	string	for	the	text

shown,	as	well	as	a	function	to	execute	when	the	user

clicks	OK:

DialogBox::DialogBox(Game*	game,	const	std::string&	text,

			std::function<void()>	onOK)

			:UIScreen(game)

{

			//	Adjust	positions	for	dialog	box

			mBGPos	=	Vector2(0.0f,	0.0f);

			mTitlePos	=	Vector2(0.0f,	100.0f);

			mNextButtonPos	=	Vector2(0.0f,	0.0f);

			//	Set	background	texture

			mBackground	=	mGame->GetRenderer()->GetTexture("Assets/DialogBG.png");

			SetTitle(text,	Vector3::Zero,	30);

			//	Setup	buttons

			AddButton("OK",	[onOK]()	{

						onOK();

			});

			AddButton("Cancel",	[this]()	{

						Close();

			});

}

The	constructor	first	initializes	some	of	the	position

member	variables	for	both	the	title	and	buttons.	Notice

that	you	also	use	a	new	member	of	UIScreen,

mBackground,	which	is	a	texture	for	a	background	that

appears	behind	the	UIScreen.	In	UIScreen::Draw,

you	draw	the	background	(if	it	exists)	prior	to	drawing

anything	else.

Finally,	DialogBox	sets	up	both	OK	and	Cancel	buttons.

You	could	add	additional	parameters	to	DialogBox	so

that	the	user	can	configure	the	text	of	the	buttons,	as	well

as	callbacks	for	both	buttons.	However,	for	now	you	can

just	use	the	OK	and	Cancel	text	and	assume	that	the

Cancel	button	simply	closes	the	dialog	box.

Because	DialogBox	is	also	a	UIScreen,	you	can	add	it

to	the	UI	stack	by	dynamically	allocating	an	instance	of

DialogBox.	In	the	case	of	the	pause	menu,	you	change

the	Quit	button	so	that	it	creates	a	dialog	box	to	confirm

that	the	user	wants	to	quit:

Click	here	to	view	code	image

AddButton("Quit",	[this]()	{

			new	DialogBox(mGame,	"Do	you	want	to	quit?",

						[this]()	{

									mGame->SetState(Game::EQuit);

			});

});

Figure	11.3	shows	this	dialog	box	for	quitting	the	game.

Figure	11.3	Quit	dialog	box

notenote

You	could	use	the	UI	system	as	described	to	this	point	to	also	create	a	main
menu	screen.	However,	this	also	requires	adding	additional	states	to	the
Game	class	because	the	game	can	no	longer	spawn	all	the	objects	in	the
game	world	immediately;	instead,	you	need	to	wait	until	the	player
progresses	past	the	main	menu.

HUD	ELEMENTS
The	types	of	elements	in	the	HUD	vary	depending	on

the	game.	Such	elements	include	showing	hit	points

or	ammo	count,	a	score,	or	an	arrow	that	points	to

the	next	objective.	This	section	looks	at	two	types	of

elements	that	are	common	for	first-person	games:	a

crosshair	(or	aiming	reticule)	and	a	radar	that

shows	target	positions.

Adding	an	Aiming	Reticule

Most	first-person	games	have	some	sort	of	aiming

reticule	(such	as	a	crosshair)	in	the	middle	of	the

screen.	As	the	player	aims	at	different	objects,	the

reticule	might	change	appearance,	with	different

textures.	For	example,	if	the	player	can	pick	up	an

object,	the	reticule	might	change	to	a	hand.	For

games	that	allow	the	player	to	shoot,	the	reticule

might	change	colors.	If	you	implement	the	color

change	with	a	change	of	texture,	then	there	isn’t	a

difference	between	these	two	behaviors.

In	this	case,	you	can	implement	a	reticule	that	changes	to

red	when	the	player	aims	at	one	of	the	target	objects	in

the	game.	To	do	this,	you	need	to	add	member	variables

to	HUD	for	the	different	textures,	as	well	as	a	Boolean	for

whether	the	player	is	aiming	at	an	enemy:

Click	here	to	view	code	image

//	Textures	for	crosshair

class	Texture*	mCrosshair;

class	Texture*	mCrosshairEnemy;

//	Whether	crosshair	targets	an	enemy

bool	mTargetEnemy;

To	track	what	the	targets	are,	you	create	a	new

component	called	TargetComponent.	Then,	you	create

a	vector	of	TargetComponent	pointers	as	a	member

variable	in	HUD:

Click	here	to	view	code	image

std::vector<class	TargetComponent*>	mTargetComps;

You	then	add	AddTarget	and	RemoveTarget	functions

that	can	add	and	remove	from	mTargetComps.	You	call

these	functions	in	the	TargetComponent	constructor

and	destructor,	respectively.

Next,	you	create	an	UpdateCrosshair	function,	as

shown	in	Listing	11.7.	This	function	gets	called	by

HUD::Update.	You	first	reset	mTargetEnemy	back	to

false.	Next,	you	use	the	GetScreenDirection

function	first	described	in	Chapter	9,	“Cameras.”	Recall

that	this	function	returns	a	normalized	vector	of	the

camera’s	current	facing	in	the	world.	You	use	this	vector

and	a	constant	to	construct	a	line	segment,	and	you	use

the	SegmentCast	function	from	Chapter	10	to

determine	the	first	actor	that	intersects	with	the

segment.

Next,	you	see	if	this	actor	has	a	TargetComponent.	The

way	you	can	check	this	for	now	is	to	find	if	any

TargetComponent	in	mTargetComps	has	an	owner

corresponding	to	the	actor	that	you	collide	against.	You

can	optimize	this	significantly	after	you	implement	a

method	to	figure	out	which	components	an	actor	has;

you	will	do	this	in	Chapter	14,	“Level	Files	and	Binary

Data.”

Listing	11.7	HUD::UpdateCrosshair

Implementation

Click	here	to	view	code	image

void	HUD::UpdateCrosshair(float	deltaTime)

{

			//	Reset	to	regular	cursor

			mTargetEnemy	=	false;

			//	Make	a	line	segment

			const	float	cAimDist	=	5000.0f;

			Vector3	start,	dir;

			mGame->GetRenderer()->GetScreenDirection(start,	dir);

			LineSegment	l(start,	start	+	dir	*	cAimDist);

			//	Segment	cast

			PhysWorld::CollisionInfo	info;

			if	(mGame->GetPhysWorld()->SegmentCast(l,	info))

			{

						//	Check	if	this	actor	has	a	target	component

						for	(auto	tc	:	mTargetComps)

						{

									if	(tc->GetOwner()	==	info.mActor)

									{

												mTargetEnemy	=	true;

												break;

									}

						}

			}

}

Drawing	the	crosshair	texture	is	straightforward.	In

HUD::Draw,	you	simply	check	the	value	of

mTargetEnemy	and	draw	the	corresponding	texture	in

the	center	of	the	screen.	You	pass	in	2.0f	as	the	scale	of

the	texture,	as	well:

Click	here	to	view	code	image

Texture*	cross	=	mTargetEnemy	?	mCrosshairEnemy	:	mCrosshair;

DrawTexture(shader,	cross,	Vector2::Zero,	2.0f);

This	way,	as	the	player	moves	the	aiming	reticule	to

target	an	object,	the	reticule	changes	to	the	red	crosshair

texture,	as	shown	in	Figure	11.4.

Figure	11.4	Red	aiming	reticule	when	aiming	at	a

target

Adding	Radar

A	game	may	have	a	radar	that	displays	nearby

enemies	(or	other	objects)	within	a	certain	radius	of

the	player.	You	can	represent	these	enemies	on	the

radar	with	blips	(which	look	like	dots	or	circles	on

the	radar).	This	way,	the	player	can	get	a	sense	of

whether	there	are	enemies	around.	Some	games

always	show	enemies	on	the	radar,	while	others	show

enemies	only	under	certain	conditions	(such	as	if	the

enemy	recently	fired	a	weapon).	However,	these

conditions	would	only	be	an	extension	of	a	basic

approach	that	shows	all	enemies.

There	are	two	parts	to	implementing	a	working	radar.

First,	you	need	to	track	the	actors	that	should	appear	on

the	radar.	Then,	on	every	frame	you	must	update	the

blips	on	the	radar	based	on	the	position	of	the	actors

relative	to	the	player.	The	most	basic	approach	is	to

represent	the	blips	with	a	Vector2	offset	from	the

center	of	the	radar,	but	you	could	also	add	other

properties	of	blips,	such	as	different	textures.

You	can	leverage	existing	code	and	say	that	any	actor

that	has	a	TargetComponent	should	also	appear	on	the

radar.

For	this	basic	radar,	you	must	add	a	few	member

variables	to	HUD:

Click	here	to	view	code	image

//	2D	offsets	of	blips	relative	to	radar

std::vector<Vector2>	mBlips;

//	Adjust	range	of	radar	and	radius

float	mRadarRange;

float	mRadarRadius;

The	mBlips	vector	tracks	the	2D	offsets	of	the	blips

relative	to	the	radar	center.	When	updating	the	radar,

you	update	mBlips.	This	way,	drawing	the	radar	simply

means	drawing	the	background	and	then	the	blip

textures	at	the	required	offset.

Finally,	the	mRadarRange	and	mRadarRadius

variables	are	parameters	for	the	radar.	The	range	is	how

far	the	radar	sees	in	the	world.	For	example,	a	range	of

2000	means	the	radar	has	a	range	of	2000	units	in	world

space.	So,	for	every	target	that’s	within	mRadarRange	of

the	player,	you	create	a	blip	on	the	radar.	The	radius

variable	is	the	radius	of	the	2D	radar	drawn	onscreen.

Suppose	a	game	has	a	radar	with	a	range	of	50	units.

Now	imagine	that	there’s	an	object	25	units	directly	in

front	of	the	player.	Because	the	object	positions	are	in

3D,	you	need	to	convert	both	the	position	of	the	player

and	the	object	into	2D	coordinates	for	the	onscreen

radar.	In	the	case	of	a	z-up	world,	this	means	the	radar

acts	like	a	projection	of	the	player	and	game	objects	on

the	x-y	plane.	This	means	your	radar	ignores	the	z

components	of	both	the	player	and	the	objects	it	tracks.

Because	up	on	the	radar	usually	denotes	forward	in

world	space,	and	your	world	is	+x	forward,	just	ignoring

the	z	component	is	not	enough.	For	both	the	player	and

any	actors	on	the	radar,	you	need	to	convert	their	(x,	y,	z)

coordinates	to	the	2D	vector	(y,	x)	for	the	radar	offsets.

Once	both	the	player’s	and	the	object’s	positions	are	in

2D	radar	coordinates,	you	can	construct	a	vector	from

the	player	to	the	object,	which	for	clarity	is	the	vector	 .

The	length	of	 	determines	whether	the	object	is	within

the	range	of	the	radar.	For	the	previous	example	with	a

range	of	50	units	and	an	object	25	units	in	front,	the

length	of	 	is	less	than	the	maximum	range.	This	means

the	object	should	appear	on	the	radar	halfway	between

the	center	of	the	radar	and	the	edge.	You	can	convert	

to	a	scale	relative	to	the	radius	of	the	radar	by	first

dividing	by	the	maximum	range	of	the	radar	and	then

multiplying	by	the	scale	of	the	radar,	saving	the	result	in

a	new	vector	 :

However,	most	radars	rotate	as	the	player	rotates	so	that

up	on	the	radar	always	corresponds	to	forward	in	the

game	world.	This	means	you	can’t	just	directly	use	 	as

the	offset	of	the	radar	blip.	Instead,	you	need	to	figure

out	the	angle	between	the	x-y	projection	of	the	player’s

facing	vector	and	the	world	forward	(unit	x).	Because	you

want	the	angle	on	the	x-y	plane,	you	can	compute	this

angle	θ	with	the	atan2	function	and	construct	a	2D

rotation	matrix	given	θ.	Recall	that	given	row	vectors,	the

2D	rotation	matrix	is	as	follows:

Once	you	have	the	rotation	matrix,	the	final	blip	offset	is

simply	 	rotated	by	this	matrix:

Listing	11.8	shows	the	code	that	computes	the	positions

of	all	the	blips.	You	loop	over	all	the	target	components

and	test	whether	the	owning	actor	is	in	range	of	the

radar.	If	so,	you	compute	the	blip	offset	by	using	the

preceding	equations.

Listing	11.8	HUD::UpdateRadar	Implementation

Click	here	to	view	code	image

void	HUD::UpdateRadar(float	deltaTime)

{

			//	Clear	blip	positions	from	last	frame

			mBlips.clear();

	

			//	Convert	player	position	to	radar	coordinates	(x	forward,	z	up)

			Vector3	playerPos	=	mGame->GetPlayer()->GetPosition();

			Vector2	playerPos2D(playerPos.y,	playerPos.x);

			//	Ditto	for	player	forward

			Vector3	playerForward	=	mGame->GetPlayer()->GetForward();

			Vector2	playerForward2D(playerForward.x,	playerForward.y);

	

			//	Use	atan2	to	get	rotation	of	radar

			float	angle	=	Math::Atan2(playerForward2D.y,	playerForward2D.x);

			//	Make	a	2D	rotation	matrix

			Matrix3	rotMat	=	Matrix3::CreateRotation(angle);

	

			//	Get	positions	of	blips

			for	(auto	tc	:	mTargetComps)

			{

						Vector3	targetPos	=	tc->GetOwner()->GetPosition();

						Vector2	actorPos2D(targetPos.y,	targetPos.x);

				

						//	Calculate	vector	between	player	and	target

						Vector2	playerToTarget	=	actorPos2D	-	playerPos2D;

				

						//	See	if	within	range

						if	(playerToTarget.LengthSq()	<=	(mRadarRange	*	mRadarRange))

						{

									//	Convert	playerToTarget	into	an	offset	from

									//	the	center	of	the	on-screen	radar

									Vector2	blipPos	=	playerToTarget;

									blipPos	*=	mRadarRadius/mRadarRange;

							

									//	Rotate	blipPos

									blipPos	=	Vector2::Transform(blipPos,	rotMat);

									mBlips.emplace_back(blipPos);

						}

			}

}

Drawing	the	radar	is	then	just	a	matter	of	first	drawing

the	background	and	then	looping	through	each	blip	and

drawing	it	as	an	offset	of	the	center	of	the	radar:

Click	here	to	view	code	image

const	Vector2	cRadarPos(-390.0f,	275.0f);

DrawTexture(shader,	mRadar,	cRadarPos,	1.0f);

//	Blips

for	(const	Vector2&	blip	:	mBlips)

{

			DrawTexture(shader,	mBlipTex,	cRadarPos	+	blip,	1.0f);

}

Figure	11.5	shows	this	radar	in	a	game.	The	dots	on	the

radar	each	correspond	to	a	target	actor	in	the	game

world.	The	arrow	in	the	middle	of	the	radar	is	just	an

extra	texture	drawn	to	show	where	the	player	is,	but	this

always	just	draws	at	the	center	of	the	radar.

Figure	11.5	Radar	in	a	game

Other	extensions	to	the	radar	could	include	having

different	styles	of	blips	depending	on	whether	the	enemy

is	above	or	below	the	player.	Switching	between	such

styles	involves	considering	the	z	components	of	both	the

player	and	the	object.

LOCALIZATION
Localization	is	the	process	of	converting	a	game

from	one	region	or	locale	to	a	different	one.	The

most	common	items	to	localize	include	any	voice-

over	dialogue	as	well	as	any	text	shown	onscreen.	For

example,	a	game	developer	working	in	English	may

want	to	localize	to	Chinese	if	releasing	the	game	in

China.	The	biggest	expense	of	localization	is	in	the

content:	Someone	must	translate	all	the	text	and

dialogue,	and	in	the	case	of	dialogue,	different	actors

must	speak	the	lines	in	different	languages.

However,	part	of	the	responsibility	of	localization	falls	on

the	programmer.	In	the	case	of	the	UI,	the	game	needs

some	system	to	easily	show	text	from	different	locales

onscreen.	This	means	you	can’t	hard-code	strings	such	as

“Do	you	want	to	quit?”	throughout	the	code.	Instead,	you

minimally	need	a	map	to	convert	between	a	key	like

"QuitText"	and	the	actual	text	shown	onscreen.

Working	with	Unicode

One	issue	with	localizing	text	is	that	each	ASCII

character	only	has	7	bits	of	information	(though	it’s

stored	internally	as	1	byte).	Only	7	bits	of

information	means	there	is	a	total	of	128	characters.

Of	these	characters,	52	are	letters	(upper-	and

lowercase	English),	and	the	rest	of	the	characters	are

numbers	and	other	symbols.	ASCII	does	not	contain

any	glyphs	from	other	languages.

To	deal	with	this	issue,	a	consortium	of	many	different

companies	introduced	the	Unicode	standard	in	the

1980s.	At	this	writing,	the	current	version	of	Unicode

supports	over	100,000	different	glyphs,	including	glyphs

in	many	different	languages,	as	well	as	emojis.

Because	a	single	byte	can’t	represent	more	than	256

distinct	values,	Unicode	must	use	a	different	byte

encoding.	There	are	several	different	byte	encodings,

including	ones	where	each	character	is	2	bytes	or	4	bytes.

However,	arguably	the	most	popular	encoding	is	UTF-8,

in	which	each	character	in	a	string	has	a	variable	length

between	1	and	4	bytes.	Within	a	string,	some	characters

may	be	only	1	byte,	others	may	be	2	bytes,	others	may	be

3,	and	others	may	be	4.

Although	this	seems	more	complex	to	handle	than	a

fixed	number	of	bytes	for	each	character,	the	beauty	of

UTF-8	is	that	it’s	fully	backward	compatible	with	ASCII.

This	means	that	an	ASCII	sequence	of	bytes	directly

corresponds	to	the	same	UTF-8	sequence	of	bytes.	Think

of	ASCII	as	a	special	case	of	UTF-8	in	which	each

character	in	the	UTF-8	string	is	1	byte.	The	backward

compatibility	is	likely	the	reason	UTF-8	is	the	default

encoding	for	the	World	Wide	Web,	as	well	as	for	file

formats	such	as	JSON.

Unfortunately,	C++	does	not	have	great	built-in	support

for	Unicode.	For	example,	the	std::string	class	is

intended	only	for	ASCII	characters.	However,	you	can

use	the	std::string	class	to	store	a	UTF-8	string.	The

catch	is	that	if	the	string	is	UTF-8	encoded,	the	length

member	function	no	longer	guarantees	to	specify	the

number	of	glyphs	(or	letters)	in	the	string.	Instead,	the

length	is	the	number	of	bytes	stored	in	the	string

object.

Luckily,	both	the	RapidJSON	library	and	SDL	TTF

support	UTF-8	encoding.	This,	combined	with	storing

the	UTF-8	strings	in	std::string,	means	you	can	add

support	for	UTF-8	strings	without	much	additional	code.

Adding	a	Text	Map

In	Game,	you	add	a	member	variable	called

mTextMap	that’s	a	std::unordered_map	with	key

and	value	types	of	std::string.	This	map	converts

a	key	such	as	"QuitText"	to	the	displayed	text	“Do

You	Want	to	Quit?”

You	can	define	this	map	in	a	simple	JSON	file	format,	as

shown	in	Listing	11.9.	Every	language	has	its	own	version

of	this	JSON	file,	which	makes	it	easy	to	switch	between

different	languages.

Listing	11.9	English.gptext	Text	Map	File

Click	here	to	view	code	image

{

			"TextMap":{

						"PauseTitle":	"PAUSED",

						"ResumeButton":	"Resume",

						"QuitButton":	"Quit",

						"QuitText":	"Do	you	want	to	quit?",

						"OKButton":	"OK",

						"CancelButton":	"Cancel"

			}

}

You	then	add	a	LoadText	function	to	Game	that	parses

in	a	gptext	file	and	populates	the	mTextMap.	(This

function	calls	various	RapidJSON	functions	to	parse	in

the	file,	but	we	omit	its	implementation	here	for	the	sake

of	brevity.)

You	likewise	implement	a	GetText	function	in	a	game

and,	given	a	key,	it	returns	the	associated	text.	This	just

performs	a	find	operation	on	the	mTextMap.

You	then	make	two	modifications	to

Font::RenderText.	First,	rather	than	directly

rendering	the	text	string	it	takes	in	as	a	parameter,	you

have	that	text	string	looked	up	in	the	text	map:

Click	here	to	view	code	image

const	std::string&	actualText	=	mGame->GetText(textKey);

Next,	instead	of	calling	TTF_RenderText_Blended,

you	call	TTF_RenderUTF8_Blended,	which	has	the

same	syntax	but	takes	in	a	UTF-8	encoded	string	instead

of	an	ASCII	string:

Click	here	to	view	code	image

SDL_Surface*	surf	=	TTF_RenderUTF8_Blended(font,

			actualText.c_str(),	sdlColor);

Finally,	any	code	that	previously	used	a	hard-coded	text

string	instead	uses	the	text	key.	For	example,	the	title

text	for	the	pause	menu	is	no	longer	"PAUSED"	but

"PauseTitle".	This	way,	when	you	eventually	call

RenderText,	the	correct	text	loads	from	the	map.

tiptip

If	the	game	code	has	finalized	English	text,	a	quick	hack	to	localize	the	text	is
to	use	the	finalized	English	text	as	the	text	key.	This	way,	you	don’t	have	to
track	down	every	single	non-localized	string	usage	in	the	code.	However,	this
can	be	dangerous	if	someone	later	changes	the	English	strings	in	the	code,
thinking	that	this	will	change	the	text	onscreen!

To	demonstrate	the	functionality	of	this	code,	you	can

create	a	Russian.gptext	file	with	a	Russian

translation	of	the	strings	in	Listing	11.9.	Figure	11.6

shows	the	Russian	version	of	the	pause	menu	with	the

Do	You	Want	to	Quit?	dialog	box.

Figure	11.6	Pause	menu	in	Russian

Other	Localization	Concerns

The	code	presented	in	this	section	works	only	if	the

TrueType	font	file	supports	all	needed	glyphs.	In

practice,	it’s	common	for	a	font	file	to	include	only	a

subset	of	glyphs.	Some	languages,	such	as	Chinese,

typically	have	a	dedicated	font	file	for	the	language.

To	solve	this	issue,	you	could	add	a	font	entry	to	the

gptext	file.	When	populating	the	mTextMap,	you

can	also	load	the	correct	font.	Then,	the	rest	of	the	UI

code	needs	to	be	sure	to	use	this	correct	font.

Some	issues	with	localization	aren’t	clear	at	first	glance.

For	example,	German	text	is	typically	20%	longer	than

the	equivalent	English	text.	This	means	that	if	a	UI

element	barely	fits	the	English	text,	it	likely	won’t	fit	the

German	text.	Although	this	usually	is	a	content	issue,	it

may	be	an	issue	if	the	UI	code	assumes	certain	paddings

or	text	sizes.	One	way	to	circumvent	this	is	to	always

query	the	size	of	the	rendered	font	texture	and	scale

down	the	size	of	the	text	if	it	won’t	fit	within	the	needed

extents.

Finally,	in	some	instances,	content	beyond	text	or

dialogue	might	need	a	localization	process.	For	example,

in	Germany,	it	is	illegal	to	sell	a	product	containing

symbols	associated	with	the	Third	Reich.	So,	a	game	set

in	World	War	II	may	show	swastikas	or	other	symbols	in

the	English	version,	but	the	German	version	must

replace	these	symbols	with	alternatives	such	as	the	iron

cross.	As	another	example,	some	games	also	have

content	restrictions	in	China	(such	as	not	showing	too

much	blood).	However,	this	type	of	issue	usually	can	be

solved	without	additional	help	from	a	programmer,	since

the	artists	can	simply	create	alternative	content	for	these

regions.

SUPPORTING	MULTIPLE
RESOLUTIONS
For	PC	and	mobile	games,	it’s	very	common	to	have

players	with	different	screen	resolutions.	On	a	PC,

common	monitor	resolutions	include	1080p

(1920×1080),	1440p	(2560×1440),	and	4K

(3840×2160).	On	mobile	platforms,	there	are	a

staggering	number	of	different	device	resolutions.

Although	the	Renderer	class	currently	supports

creating	the	window	at	different	resolutions,	the	UI

code	in	this	chapter	assumes	a	fixed	resolution.

One	way	to	support	multiple	resolutions	is	to	avoid	using

specific	pixel	locations,	or	absolute	coordinates,	for	UI

elements.	An	example	of	using	an	absolute	coordinate	is

placing	a	UI	element	precisely	at	the	coordinate	(1900,

1000)	and	assuming	that	this	corresponds	to	the	bottom-

right	corner.

Instead,	you	could	use	relative	coordinates,	where	the

coordinates	are	relative	to	a	specific	part	of	the	screen,

called	an	anchor.	For	example,	in	relative	coordinates,

you	can	say	that	you	want	to	place	an	element	at	(–100,–

100)	relative	to	the	bottom-right	corner.	This	means	the

element	would	appear	at	(1820,	980)	on	a	1080p	screen,

while	it	would	appear	at	(1580,	950)	on	a	1680×1050

screen	(see	Figure	11.7).	You	can	express	coordinates

relative	to	key	points	on	the	screen	(usually	the	corners

or	the	center	of	the	screen)	or	even	relative	to	other	UI

elements.	To	implement	this,	you	need	to	be	able	to

specify	the	anchor	points	and	relative	coordinates	for	UI

elements	and	then	calculate	the	absolute	coordinates

dynamically	at	runtime.

Figure	11.7	A	UI	element	positioned	relative	to	the

bottom-right	corner	of	the	screen

Another	refinement	is	to	scale	the	size	of	UI	elements

depending	on	the	resolution.	This	is	useful	because	at

very	high	resolutions,	the	UI	might	become	too	small	and

unusable.	At	higher	resolutions,	you	could	scale	the	size

of	the	UI	elements	or	even	make	the	UI	scale	an	option

for	the	player.

GAME	PROJECT
This	chapter’s	game	project	demonstrates	all	the

features	discussed	in	this	chapter	except	for

supporting	multiple	resolutions.	The	Game	class	has

a	UI	stack,	along	with	a	UIScreen	class,	a

PauseMenu	class,	and	a	DialogBox	class.	The	HUD

demonstrates	both	the	aiming	reticule	and	the	radar.

The	code	also	implements	text	localization.	The	code

is	available	in	the	book’s	GitHub	repository,	in	the

Chapter11	directory.	Open	Chapter11-

windows.sln	in	Windows	and	Chapter11-

mac.xcodeproj	on	Mac.

In	the	game,	use	the	standard	first-person	controls

(WASD	plus	mouse	look)	to	move	around	the	world.	Use

the	Escape	key	to	enter	the	pause	menu	and	the	mouse

controls	to	select	and	click	on	buttons	in	the	menu.

During	gameplay,	use	the	1	and	2	key	to	switch	between

English	(1)	and	Russian	(2)	text.	Pressing	these	keys

while	the	pause	menu	is	showing	doesn’t	do	anything

because	the	UI	screen	absorbs	the	game	input.

SUMMARY
This	chapter	provides	a	high-level	overview	of	the

challenges	involved	in	implementing	the	user

interface	in	code.	Using	the	SDL	TTF	library	is	a

convenient	way	to	render	fonts,	as	it	can	load	in

TrueType	fonts	and	then	render	the	text	to	a	texture.

In	the	UI	stack	system,	you	represent	each	unique	UI

screen	as	an	element	on	the	UI	stack.	At	any	point	in

time,	only	the	topmost	screen	on	the	UI	might

receive	input	from	the	player.	You	can	extend	this

system	to	support	buttons	as	well	as	dialog	boxes.

The	HUD	might	contain	many	different	elements,

depending	on	the	game.	An	aiming	reticule	that	changes

based	on	aiming	at	an	object	requires	use	of	collision

detection	to	determine	what	object	the	player	is	aiming

at.	If	the	player	aims	at	a	target	object,	the	HUD	can

draw	a	different	texture.	For	a	radar,	you	can	project	the

player	and	any	enemy	objects	onto	the	x/y	plane	and	use

these	converted	coordinates	to	determine	where	to	draw

a	blip	on	the	radar.

Finally,	the	UI	needs	code	to	handle	text	for	different

locales.	A	simple	map	can	convert	between	text	keys	and

values.	Using	UTF-8	encoding	of	these	text	values	makes

it	relatively	painless	to	use.	The	RapidJSON	library	can

load	in	JSON	files	encoded	in	UTF-8,	and	SDL	TTF

supports	rendering	UTF-8	strings.

ADDITIONAL	READING
Desi	Quintans’	short	article	gives	examples	of	good

and	bad	game	UI,	from	a	design	perspective.	Luis

Sempé,	a	UI	programmer	for	games	including	Deus

Ex:	Human	Revolution,	has	written	the	only	book

solely	dedicated	to	programming	UIs	for	games.	(In

the	interest	of	full	disclosure,	I	worked	with	the

author	many	years	ago.)	Finally,	Joel	Spolsky’s	book

is	for	UI	design	in	general,	but	it	provides	insight

into	how	to	create	an	effective	UI.

Quintans,	Desi.	“Game	UI	by	Example:	A

Crash	Course	in	the	Good	and	the	Bad.”

https://gamedevelopment.tutsplus.com/tutorials/

game-ui-by-example-a-crash-course-in-the-

good-and-the-bad--gamedev-3943.

Accessed	September	10,	2017.

Sempé,	Luis.	User	Interface	Programming

https://gamedevelopment.tutsplus.com/tutorials/

for	Games.	Self-published,	2014.

Spolsky,	Joel.	User	Interface	Design	for

Programmers.	Berkeley:	Apress,	2001.

EXERCISES
In	this	chapter’s	exercises,	you	explore	adding	a	main

menu	as	well	as	making	changes	to	the	game’s	HUD.

Exercise	11.1

Create	a	main	menu.	To	support	this,	the	game	class

needs	a	new	state	called	EMainMenu.	The	game

should	first	start	in	this	state	and	display	a	UI	screen

with	the	menu	options	Start	and	Quit.	If	the	player

clicks	Start,	the	game	should	switch	to	gameplay.	If

the	player	clicks	Quit,	the	menu	should	show	a	dialog

box	confirming	that	the	player	wants	to	quit.

To	add	further	functionality,	consider	spawning	the

actors	only	when	first	entering	the	gameplay	state	from

the	main	menu.	In	addition,	change	the	pause	menu	so

that	the	Quit	option	deletes	all	actors	and	returns	to	the

main	menu	rather	than	immediately	quitting	the	game.

Exercise	11.2

Modify	the	radar	so	that	it	uses	different	blip

textures,	depending	on	whether	the	actor	is	above	or

below	the	player.	Use	the	provided	BlipUp.png	and

BlipDown.png	textures	to	show	these	different

states.	Testing	this	feature	may	require	changing	the

positions	of	some	of	the	target	actors	in	order	to

more	clearly	distinguish	the	height.

Exercise	11.3

Implement	an	onscreen	2D	arrow	that	points	to	a

specific	actor.	Create	a	new	type	of	actor	called

ArrowTarget	and	place	it	somewhere	in	the	game

world.	Then,	in	the	HUD,	compute	the	vector	from

the	player	to	the	ArrowTarget.	Use	the	angle

between	this	and	the	player’s	forward	on	the	x-y

plane	to	determine	the	angle	to	rotate	the	onscreen

2D	arrow.	Finally,	add	code	to

UIScreen::DrawTexture	to	supporting	rotating	a

texture	(with	a	rotation	matrix).

CHAPTER	12

SKELETAL	ANIMATION

Animating	characters	for	a	3D	game	is	very

different	from	animating	characters	for	a	2D

game.	This	chapter	looks	at	skeletal

animation,	the	most	common	animation

used	in	3D	games.	This	chapter	first	goes

over	the	mathematical	foundations	of	the

approach	and	then	dives	into	the

implementation	details.

FOUNDATIONS	OF	SKELETAL
ANIMATION
As	described	in	Chapter	2,	“Game	Objects	and	2D

Graphics,”	for	2D	animation,	games	use	a	sequence

of	image	files	to	yield	the	illusion	of	an	animated

character.	A	naïve	solution	for	animating	3D

characters	is	similar:	Construct	a	sequence	of	3D

models	and	render	those	different	models	in	rapid

succession.	Although	this	solution	conceptually

works,	it’s	not	a	very	practical	approach.

Consider	a	character	model	composed	of	15,000

triangles,	which	is	a	conservative	number	for	a	modern

game.	Assuming	only	10	bytes	per	vertex,	the	total

memory	usage	of	this	one	model	might	be	around	50	to

100	KB.	A	two-second	animation	running	at	30	frames

per	second	would	need	a	total	of	60	different	models.

This	means	the	total	memory	usage	for	this	single

animation	would	be	3	to	6	MB.	Now	imagine	that	the

game	uses	several	different	animations	and	several

different	character	models.	The	memory	usage	for	the

game’s	models	and	animations	will	quickly	become	too

high.

In	addition,	if	a	game	has	20	different	humanoid

characters,	chances	are	their	movements	during	an

animation	such	as	running	are	largely	the	same.	If	you

use	the	naïve	solution	just	described,	each	of	these	20

characters	needs	a	different	model	set	for	its	animations.

This	also	means	that	artists	need	to	manually	author

these	different	model	sets	and	animations	for	each

character.

Because	of	these	issues,	most	3D	games	instead	take

inspiration	from	anatomy:	vertebrates,	like	humans,

have	bones.	Attached	to	these	bones	are	muscles,	skin,

and	other	tissue.	Bones	are	rigid,	while	the	other	tissues

are	not.	Thus,	given	the	position	of	a	bone,	it’s	possible	to

derive	the	position	of	the	tissue	attached	to	the	bone.

Similarly,	in	skeletal	animation,	the	character	has	an

underlying	rigid	skeleton.	This	skeleton	is	what	the

animator	animates.	Then,	each	vertex	in	the	model	has

an	association	with	one	or	more	bones	in	the	skeleton.

When	the	animation	moves	the	bones,	the	vertices

deform	around	the	associated	bones	(much	the	way	your

skin	stretches	when	you	move	around).	This	means	that

there	only	needs	to	be	a	single	3D	model	for	a	character,

regardless	of	the	number	of	animations	for	the	model.

notenote

Because	skeletal	animation	has	bones	and	vertices	that	deform	along	the
bones,	some	call	this	technique	skinned	animation.	The	“skin”	in	this	case
is	the	model’s	vertices.

Similarly,	the	terms	bone	and	joint,	though	different	in	the	context	of	anatomy,
are	interchangeable	terms	in	the	context	of	skeletal	animation.

An	advantage	of	skeletal	animation	is	that	the	same

skeleton	can	work	for	several	different	characters.	For

example,	it’s	common	in	a	game	for	all	humanoid

characters	to	share	the	same	skeleton.	This	way,	the

animator	creates	one	set	of	animations	for	the	skeleton,

and	all	characters	can	then	use	those	animations.

Furthermore,	many	popular	3D	model	authoring

programs	such	as	Autodesk	Maya	and	Blender	support

skeletal	animations.	Thus,	artists	can	use	these	tools	to

author	the	skeletons	and	animations	for	characters.

Then,	as	with	3D	models,	you	can	write	exporter	plugins

to	export	into	the	preferred	format	for	the	game	code.	As

with	3D	models	this	book	uses	a	JSON-based	file	format

for	the	skeleton	and	animations.	(As	a	reminder,	the

book’s	code	on	GitHub	includes	an	exporter	for	Epic

Games’s	Unreal	Engine,	in	the	Exporter	directory.)

The	remainder	of	this	section	looks	at	the	high-level

concepts	and	mathematics	that	drive	skeletal	animation.

The	subsequent	section	then	dives	into	the	details	of

implementing	skeletal	animation	in	game	code.

Skeletons	and	Poses

The	usual	representation	of	a	skeleton	is	as	a

hierarchy	(or	tree)	of	bones.	The	root	bone	is	the

base	of	the	hierarchy	and	has	no	parent	bone.	Every

other	bone	in	the	skeleton	has	a	single	parent	bone.

Figure	12.1	illustrates	a	simple	skeletal	hierarchy	for

a	humanoid	character.	The	spine	bone	is	a	child	of

the	root	bone,	and	then	in	turn	the	left	and	right	hip

bones	are	children	of	the	spine	bone.

Figure	12.1	Character	with	a	basic	skeleton	with

some	bones	labeled

This	bone	hierarchy	attempts	to	emulate	anatomy.	For

example,	if	a	human	rotates	her	shoulder,	the	rest	of	the

arm	follows	that	rotation.	With	a	game	skeleton,	you

might	represent	this	by	saying	the	shoulder	bone	is	the

parent	of	the	elbow	bone,	the	elbow	bone	is	the	parent	of

the	wrist	bone,	and	the	wrist	bone	is	the	parent	of	the

finger	bones.

Given	a	skeleton,	a	pose	represents	a	configuration	of

the	skeleton.	For	example,	if	a	character	waves	hello	in

an	animation,	there	is	one	pose	during	the	animation

where	the	character’s	hand	bone	is	raised	up	to	wave.	An

animation	is	then	just	a	sequence	of	poses	the	skeleton

transitions	between	over	time.

The	bind	pose	is	the	default	pose	of	the	skeleton,	prior

to	applying	any	animation.	Another	term	for	bind	pose	is

t-pose	because,	typically,	the	character’s	body	forms	a	T

shape	in	bind	pose,	as	in	Figure	12.1.	You	author	a

character’s	model	so	that	it	looks	like	this	bind	pose

configuration.

The	reason	the	bind	pose	usually	looks	like	a	T	because	it

makes	it	easier	to	associate	bones	to	vertices,	as

discussed	later	in	this	chapter.

In	addition	to	specifying	the	parent/child	relationships

of	the	bones	in	the	skeleton,	you	also	must	specify	each

bone’s	position	and	orientation.	Recall	that	in	a	3D

model,	each	vertex	has	a	position	relative	to	the	object

space	origin	of	the	model.	In	the	case	of	a	humanoid

character,	a	common	placement	of	the	object	space

origin	is	between	the	feet	of	the	character	in	bind	pose.

It’s	not	accidental	that	this	also	corresponds	to	the

typical	placement	of	the	root	bone	of	the	skeleton.

For	each	bone	in	the	skeleton,	you	can	describe	its

position	and	orientation	in	two	ways.	A	global	pose	is

relative	to	the	object	space	origin.	Conversely,	a	local

pose	is	relative	to	a	parent	bone.	Because	the	root	bone

has	no	parent,	its	local	pose	and	global	pose	are

identical.	In	other	words,	the	position	and	orientation	of

the	root	bone	is	always	relative	to	the	object	space	origin.

Suppose	that	you	store	local	pose	data	for	all	the	bones.

One	way	to	represent	position	and	orientation	is	with	a

transform	matrix.	Given	a	point	in	the	bone’s	coordinate

space,	this	local	pose	matrix	would	transform	the	point

into	the	parent’s	coordinate	space.

If	each	bone	has	a	local	pose	matrix,	then	given	the

parent/child	relationships	of	the	hierarchy,	you	can

always	calculate	the	global	pose	matrix	for	any	bone.	For

example,	the	parent	of	the	spine	is	the	root	bone,	so	its

local	pose	matrix	is	its	position	and	orientation	relative

to	the	root	bone.	As	established,	the	root	bone’s	local

pose	matrix	corresponds	to	its	global	pose	matrix.	So

multiplying	the	local	pose	matrix	of	the	spine	by	the	root

bone’s	global	pose	matrix	yields	the	global	pose	matrix

for	the	spine:

With	the	spine’s	global	pose	matrix,	given	a	point	in	the

spine’s	coordinate	space,	you	could	transform	it	into

object	space.

Similarly,	to	compute	the	global	pose	matrix	of	the	left

hip,	whose	parent	is	the	spine,	the	calculation	is	as

follows:

Because	you	can	always	convert	from	local	poses	to

global	poses,	it	may	seem	reasonable	to	store	only	local

poses.	However,	by	storing	some	information	in	global

form,	you	can	reduce	the	number	of	calculations

required	every	frame.

Although	storing	bone	poses	with	matrices	can	work,

much	as	with	actors,	you	may	want	to	separate	the	bone

position	and	orientation	into	a	vector	for	the	translation

and	a	quaternion	for	the	rotation.	The	main	reason	to	do

this	is	that	quaternions	allow	for	more	accurate

interpolation	of	the	rotation	of	a	bone	during	an

animation.	You	can	omit	a	scale	for	the	bones	because

scaling	bones	typically	only	sees	use	for	cartoon-style

characters	who	can	stretch	in	odd	ways.

You	can	combine	the	position	and	orientation	into	the

following	BoneTransform	struct:

Click	here	to	view	code	image

struct	BoneTransform

{

			Quaternion	mRotation;

			Vector3	mTranslation;

			//	Convert	to	matrix

			Matrix4	ToMatrix()	const;

};

The	ToMatrix	function	converts	the	transform	into	a

matrix.	This	just	creates	rotation	and	translation

matrices	from	the	member	data	and	multiplies	these

matrices	together.	This	function	is	necessary	because

even	though	many	intermediate	calculations	directly	use

the	quaternion	and	vector	variables,	ultimately	the

graphics	code	and	shaders	need	matrices.

To	define	the	overall	skeleton,	for	each	bone	you	need	to

know	the	name	of	the	bone,	the	parent	of	the	bone,	and

its	bone	transform.	For	the	bone	transform,	you

specifically	store	the	local	pose	(the	transform	from	the

parent)	when	the	overall	skeleton	is	in	the	bind	pose.

One	way	to	store	these	bones	is	in	an	array.	Index	0	of

the	array	corresponds	to	the	root	bone,	and	then	each

subsequent	bone	references	its	parent	by	an	index

number.	For	the	example	in	Figure	12.2,	the	spine	bone,

stored	in	index	1,	has	a	parent	index	of	0	because	the

root	bone	is	its	parent.	Similarly,	the	hip	bone,	stored	in

index	2,	has	a	parent	of	index	1.

Figure	12.2	Representation	of	skeleton	as	an	array

of	bones

This	leads	to	the	following	Bone	struct	that	contains	the

local	bind	pose	transform,	a	bone	name,	and	a	parent

index:

Click	here	to	view	code	image

struct	Bone

{

			BoneTransform	mLocalBindPose;

			std::string	mName;

			int	mParent;

};

Then,	you	define	a	std::vector	of	bones	that	you	can

fill	in	based	on	the	skeleton.	The	root	bone	sets	its	parent

index	to	-1,	but	every	other	bone	has	a	parent	indexing

into	the	array.	To	simplify	later	calculations,	parents

should	be	at	earlier	indices	in	the	array	than	their

children	bones.	For	example,	because	the	left	hip	is	a

child	of	spine,	it	should	never	be	the	case	that	left	hip	has

a	lower	index	than	spine.

The	JSON-based	file	format	used	to	store	the	skeleton

data	directly	mirrors	this	representation.	Listing	12.1

gives	a	snippet	of	a	skeleton	file,	showing	the	first	two

bones:	root	and	pelvis.

Listing	12.1	The	Beginning	of	a	Skeleton	Data	File

Click	here	to	view	code	image

{

			"version":1,

			"bonecount":68,

			"bones":[

						{

									"name":"root",

									"parent":-1,

									"bindpose":{

												"rot":[0.000000,0.000000,0.000000,1.000000],

												"trans":[0.000000,0.000000,0.000000]

									}

						},

						{

									"name":"pelvis",

									"parent":0,

									"bindpose":{

												"rot":[0.001285,0.707106,-0.001285,-0.707106],

												"trans":[0.000000,-1.056153,96.750603]

									}

						},

						//	...

]

}

The	Inverse	Bind	Pose	Matrix

With	the	local	bind	pose	information	stored	in	the

skeleton,	you	can	easily	compute	a	global	bind	pose

matrix	for	every	bone	by	using	matrix	multiplication,

as	shown	earlier.	Given	a	point	in	a	bone’s	coordinate

space,	multiplying	by	this	global	bind	pose	matrix

yields	that	point	transformed	into	object	space.	This

assumes	that	the	skeleton	is	in	the	bind	pose.

The	inverse	bind	pose	matrix	for	a	bone	is	simply	the

inverse	of	the	global	bind	pose	matrix.	Given	a	point	in

object	space,	multiplying	it	by	the	inverse	bind	pose

matrix	yields	that	point	transformed	into	the	bone’s

coordinate	space.	This	is	actually	very	useful	because	the

model’s	vertices	are	in	object	space,	and	the	models’

vertices	are	in	the	bind	pose	configuration.	Thus,	the

inverse	bind	pose	matrix	allows	you	to	transform	a

vertex	from	the	model	into	a	specific	bone’s	coordinate

space	(in	bind	pose).

For	example,	you	can	compute	the	spine	bone’s	global

bind	pose	matrix	with	this:

Its	inverse	bind	pose	matrix	is	then	simply	as	follows:

The	simplest	way	to	compute	the	inverse	bind	pose

matrix	is	in	two	passes.	First,	you	compute	each	bone’s

global	bind	pose	matrix	using	the	multiplication

procedure	from	the	previous	section.	Second,	you	invert

each	of	these	matrices	to	get	the	inverse	bind	pose.

Because	the	inverse	bind	pose	matrix	for	each	bone

never	changes,	you	can	compute	these	matrices	when

loading	the	skeleton.

Animation	Data

Much	the	way	you	describe	the	bind	pose	of	a

skeleton	in	terms	of	local	poses	for	each	of	the	bones,

you	can	describe	any	arbitrary	pose.	More	formally,

the	current	pose	of	a	skeleton	is	just	the	set	of	local

poses	for	each	bone.	An	animation	is	then	simply	a

sequence	of	poses	played	over	time.	As	with	the	bind

pose,	you	can	convert	these	local	poses	into	global

pose	matrices	for	each	bone,	as	needed.

You	can	store	this	animation	data	as	a	2D	dynamic	array

of	bone	transforms.	In	this	case,	the	row	corresponds	to

the	bone,	and	the	column	corresponds	to	the	frame	of

the	animation.

One	issue	with	storing	animation	on	a	per-frame	basis	is

that	the	frame	rate	of	the	animation	may	not	correspond

to	the	frame	rate	of	the	game.	For	example,	the	game

may	update	at	60	FPS,	but	the	animation	may	update	at

30	FPS.	If	the	animation	code	tracks	the	duration	of	the

animation,	then	every	frame,	you	can	update	this	by

delta	time.	However,	it	will	sometimes	be	the	case	that

the	game	needs	to	show	the	animation	between	two

different	frames.	To	support	this,	you	can	add	a	static

Interpolate	function	to	BoneTransform:

Click	here	to	view	code	image

BoneTransform	BoneTransform::Interpolate(const	BoneTransform&	a,

			const	BoneTransform&	b,	float	f)

{

			BoneTransform	retVal;

			retVal.mRotation	=	Quaternion::Slerp(a.mRotation,	b.mRotation,	f);

			retVal.mTranslation	=	Vector3::Lerp(a.mTranslation,

			b.mTranslation,	f);

			return	retVal;

}

Then,	if	the	game	must	show	a	state	between	two

different	frames,	you	can	interpolate	the	transforms	of

each	bone	to	get	the	current	local	pose.

Skinning

Skinning	involves	associating	vertices	in	the	3D

model	with	one	or	more	bones	in	the	corresponding

skeleton.	(This	is	different	from	the	term	skinning	in

a	non-animation	context.)	Then,	when	drawing	a

vertex,	the	position	and	orientation	of	any	associated

bones	influence	the	position	of	the	vertex.	Because

the	skinning	of	a	model	does	not	change	during	the

game,		the	skinning	information	is	an	attribute	of

each	vertex.

In	a	typical	implementation	of	skinning,	each	vertex	can

have	associations	with	up	to	four	different	bones.	Each	of

these	associations	has	a	weight,	which	designates	how

much	each	of	the	four	bones	influences	the	vertex.	These

weights	must	sum	to	one.	For	example,	the	spine	and	left

hip	bone	might	influence	a	vertex	on	the	lower-left	part

of	the	torso	of	the	character.	If	the	vertex	is	closer	to	the

spine,	it	might	have	a	weight	of	0.7	for	the	spline	bone

and	0.3	for	the	hip	bone.	If	a	vertex	has	only	one	bone

that	influences	it,	as	is	common,	then	that	one	bone

simply	has	a	weight	of	1.0.

For	the	moment,	don’t	worry	about	how	to	add	these

additional	vertex	attributes	for	both	the	bones	and

skinning	weights.	Instead,	consider	the	example	of	a

vertex	that	has	only	one	bone	influencing	it.	Remember

that	the	vertices	stored	in	the	vertex	buffer	are	in	object

space,	while	the	model	is	in	bind	pose.	But	if	you	want	to

draw	the	model	in	an	arbitrary	pose,	P,	you	must	then

transform	each	vertex	from	object	space	bind	pose	into

object	space	in	the	current	pose,	P.

To	make	this	example	concrete,	suppose	that	the	sole

bone	influence	of	vertex	v	is	the	spine	bone.	You	already

know	the	inverse	bind	pose	matrix	for	the	spine	from

earlier	calculations.	In	addition,	from	the	animation

data,	you	can	calculate	the	spine’s	global	pose	matrix	for

the	current	pose,	P.	To	transform	v	into	object	space	of

the	current	pose,	you	first	transform	it	into	the	local

space	of	the	spine	in	bind	pose.	Then	you	transform	it

into	object	space	of	the	current	pose.	Mathematically,	it

looks	like	this:

Now,	suppose	that	v	instead	has	two	bone	influences:

The	spine	has	a	weight	of	0.75,	and	the	left	hip	has	a

weight	of	0.25.	To	calculate	v	in	the	current	pose	in	this

case,	you	need	to	calculate	each	bone’s	current	pose

vertex	position	separately	and	then	interpolate	between

them,	using	these	weights:

You	could	similarly	extend	the	calculation	for	a	vertex

with	four	different	bone	influences.

Some	bones,	such	as	the	spine,	influence	hundreds	of

vertices	on	the	character	model.	Recalculating	the

multiplication	between	the	spine’s	inverse	bind	pose

matrix	and	the	current	pose	matrix	for	each	of	these

vertices	is	redundant.	On	a	single	frame,	the	result	of	this

multiplication	will	never	change.	The	solution	is	to	create

an	array	of	matrices	called	the	matrix	palette.	Each

index	in	this	array	contains	the	result	of	the

multiplication	between	the	inverse	bind	pose	matrix	and

the	current	pose	matrix	for	the	bone	with	the

corresponding	index.

For	example,	if	the	spine	is	at	index	1	in	the	bone	array,

then	index	1	of	the	matrix	palette	contains	the	following:

Any	vertex	that’s	influenced	by	the	spine	can	then	use	the

precomputed	matrix	from	the	palette.	For	the	case	of	the

vertex	solely	influenced	by	the	spine,	its	transformed

position	is	as	follows:

Using	this	matrix	palette	saves	thousands	of	extra	matrix

multiplications	per	frame.

IMPLEMENTING	SKELETAL
ANIMATION
With	the	mathematical	foundations	established,	you

can	now	add	skeletal	animation	support	to	the	game.

First,	you	add	support	for	the	additional	vertex

attributes	that	a	skinned	model	needs	(bone

influences	and	weights),	and	then	you	draw	the

model	in	bind	pose.	Next,	you	add	support	for

loading	the	skeleton	and	compute	the	inverse	bind

pose	for	each	bone.	Then,	you	can	calculate	the

current	pose	matrices	of	an	animation	and	save	the

matrix	palette.	This	allows	you	to	draw	the	model	in

the	first	frame	of	an	animation.	Finally,	you	add

support	for	updating	the	animation	based	on	delta

time.

Drawing	with	Skinning	Vertex	Attributes

Although	drawing	a	model	with	different	vertex

attributes	seems	straightforward,	several	pieces	of

code	written	in	Chapter	6,	“3D	Graphics,”	assume	a

single	vertex	layout.	Recall	that	to	this	point,	all	3D

models	have	used	a	vertex	layout	with	a	position,	a

normal,	and	texture	coordinates.	To	add	support	for

the	new	skinning	vertex	attributes,	you	need	to	make

a	nontrivial	number	of	changes.

First,	you	create	a	new	vertex	shader	called

Skinned.vert.	Recall	that	you	write	shaders	in	GLSL,

not	C++.	You	don’t	need	a	new	fragment	shader	in	this

case	because	you	still	want	to	light	the	pixels	with	the

Phong	fragment	shader	from	Chapter	6.	Initially,

Skinned.vert	is	just	a	copy	of	Phong.vert.	Recall

that	the	vertex	shader	must	specify	the	expected	vertex

layout	of	each	incoming	vertex.	Thus,	you	must	change

the	declaration	of	the	vertex	layout	in	Skinned.vert	to

the	following:

Click	here	to	view	code	image

layout(location	=	0)	in	vec3	inPosition;

layout(location	=	1)	in	vec3	inNormal;

layout(location	=	2)	in	uvec4	inSkinBones;

layout(location	=	3)	in	vec4	inSkinWeights;

layout(location	=	4)	in	vec2	inTexCoord;

This	set	of	declarations	says	that	you	expect	the	vertex

layout	to	have	three	floats	for	position,	three	floats	for

the	normal,	four	unsigned	integers	for	the	bones	that

influence	the	vertex,	four	floats	for	the	weights	of	these

bone	influences,	and	two	floats	for	the	texture

coordinates.

The	previous	vertex	layout—with	position,	normal,	and

texture	coordinates—uses	single-precision	floats	(4	bytes

each)	for	all	the	values.	Thus,	the	old	vertex	layout	has	a

size	of	32	bytes.	If	you	were	to	use	single-precision	floats

for	the	skinning	weights	and	full	32-bit	integers	for	the

skinned	bones,	this	would	add	an	additional	32	bytes,

doubling	the	size	of	each	vertex	in	memory.

Instead,	you	can	limit	the	number	of	bones	in	a	model	to

256.	This	means	you	only	need	a	range	of	0	to	255	for

each	bone	influence—or	a	single	byte	each.	This	reduces

the	size	of	inSkinBones	from	16	bytes	to	4	bytes.	In

addition,	you	can	specify	that	the	skinning	weights	will

also	be	in	a	range	of	0	to	255.	OpenGL	can	then

automatically	convert	this	0–255	range	to	a	normalized

floating-point	range	of	0.0–1.0.	This	reduces	the	size	of

inSkinWeights	to	4	bytes,	as	well.	This	means	that,	in

total,	the	size	of	each	vertex	will	be	the	original	32	bytes,

plus	an	additional	8	bytes	for	the	skinned	bones	and

weights.	Figure	12.3	illustrates	this	layout.

Figure	12.3	Vertex	layout	with	bone	influences	and

weights

To	reduce	the	memory	usage	of	inSkinBones	and

inSkinWeights,	you	don’t	need	to	make	any	further

changes	to	the	shader	code.	Instead,	you	need	to	specify

the	expected	sizes	of	these	attributes	when	defining	the

vertex	array	attributes	in	your	C++	code.	Recall	from

Chapter	5,	“OpenGL,”	that	the	definition	of	the	vertex

array	attributes	occurs	in	the	VertexArray	constructor.

To	support	different	types	of	vertex	layouts,	you	add	a

new	enum	to	the	declaration	of	the	VertexArray	class

in	VertexArray.h:

enum	Layout

{

			PosNormTex,

			PosNormSkinTex

};

Then,	you	modify	the	VertexArray	constructor	so	that

it	takes	in	a	Layout	as	a	parameter.	Then,	in	the	code

for	the	constructor	you	check	the	layout	to	determine

how	to	define	the	vertex	array	attributes.	For	the	case	of

PosNormTex,	you	use	the	previously	written	vertex

attribute	code.	Otherwise,	if	the	layout	is

PosNormSkinTex,	you	define	the	layout	as	in	Listing

12.2.

Listing	12.2	Declaring	Vertex	Attributes	in	the

VertexArray	Constructor

Click	here	to	view	code	image

if	(layout	==	PosNormTex)

{	/*	From	Chapter	6...	*/		}

else	if	(layout	==	PosNormSkinTex)

{

			//	Position	is	3	floats

			glEnableVertexAttribArray(0);

			glVertexAttribPointer(0,	3,	GL_FLOAT,	GL_FALSE,	vertexSize,	0);

			//	Normal	is	3	floats

			glEnableVertexAttribArray(1);

			glVertexAttribPointer(1,	3,	GL_FLOAT,	GL_FALSE,	vertexSize,

						reinterpret_cast<void*>(sizeof(float)	*	3));

	

			//	Skinning	bones	(keep	as	ints)

			glEnableVertexAttribArray(2);

			glVertexAttribIPointer(2,	4,	GL_UNSIGNED_BYTE,	vertexSize,

						reinterpret_cast<void*>(sizeof(float)	*	6));

			//	Skinning	weights	(convert	to	floats)

			glEnableVertexAttribArray(3);

			glVertexAttribPointer(3,	4,	GL_UNSIGNED_BYTE,	GL_TRUE,	vertexSize,

						reinterpret_cast<void*>(sizeof(float)	*	6	+	4));

	

			//	Texture	coordinates

			glEnableVertexAttribArray(4);

			glVertexAttribPointer(4,	2,	GL_FLOAT,	GL_FALSE,	vertexSize,

						reinterpret_cast<void*>(sizeof(float)	*	6	+	8));

}

The	declarations	for	the	first	two	attributes,	position	and

normal,	are	the	same	as	in	Chapter	6.		Recall	that	the

parameters	to	glVertexAttribPointer	are	the

attribute	number,	the	number	of	elements	in	the

attribute,	the	type	of	the	attribute	(in	memory),	whether

OpenGL	should	normalize	the	value,	the	size	of	each

vertex	(or	stride),	and	the	byte	offset	from	the	start	of	the

vertex	to	that	attribute.	So,	both	the	position	and	normal

are	three	float	values.

Next,	you	define	the	skinning	bones	and	weight

attributes.	For	the	bones,	you	use	glVertexAttribIPointer,

which	is	for	values	that	are	integers	in	the	shader.

Because	the	definition	of	inSkinBones	uses	four

unsigned	integers,	you	must	use	the	AttribI	function

instead	of	the	regular	Attrib	version.	Here,	you	specify

that	each	integer	is	an	unsigned	byte	(from	0	to	255).	For

the	weights,	you	specify	that	each	is	stored	in	memory	as

an	unsigned	byte,	but	you	want	to	convert	these

unsigned	bytes	to	a	normalized	float	value	from	0.0	to

1.0.

Finally,	the	declaration	of	the	texture	coordinates	is	the

same	as	in	Chapter	6,	except	that	they	have	a	different

offset	because	they	appear	later	in	the	vertex	layout.

Once	you	have	defined	the	vertex	attributes,	the	next

step	is	to	update	the	Mesh	file	loading	code	to	load	in	a

gpmesh	file	with	skinning	vertex	attributes.	(This	chapter

omits	the	code	for	file	loading	in	the	interest	of	brevity.

But	as	always,	the	source	code	is	available	in	this

chapter’s	corresponding	game	project.)

Next,	you	declare	a	SkeletalMeshComponent	class

that	inherits	from	MeshComponent,	as	in	Listing	12.3.

For	now,	the	class	does	not	override	any	behavior	from

the	base	MeshComponent.	So,	the	Draw	function	for

now	simply	calls	MeshComponent::Draw.	This	will

change	when	you	begin	playing	animations.

Listing	12.3	SkeletalMeshComponent	Declaration

Click	here	to	view	code	image

class	SkeletalMeshComponent	:	public	MeshComponent

{

public:

			SkeletalMeshComponent(class	Actor*	owner);

			//	Draw	this	mesh	component

			void	Draw(class	Shader*	shader)	override;

};

Then,	you	need	to	make	changes	to	the	Renderer	class

to	separate	meshes	and	skeletal	meshes.	Specifically,	you

create	a	separate	std::vector	of

SkeletalMeshComponent	pointers.	Then,	you	change

the	Renderer::AddMesh	and	RemoveMesh	function	to

add	a	given	mesh	to	either	the	normal

MeshComponent*	vector	or	the	one	for

SkeletalMeshComponent	pointers.	(To	support	this,

you	add	a	mIsSkeletal	member	variable	to

MeshComponent	that	says	whether	the	mesh	is	skeletal.)

Next,	you	load	the	skinning	vertex	shader	and	the	Phong

fragment	shaders	in	Renderer::LoadShader	and	save

the	resulting	shader	program	in	a	mSkinnedShader

member	variable.

Finally,	in	Renderer::Draw,	after	drawing	the	regular

meshes,	you	draw	all	the	skeletal	meshes.	The	code	is

almost	identical	to	the	regular	mesh	drawing	code	from

Chapter	6,	except	you	use	the	skeletal	mesh	shader:

Click	here	to	view	code	image

//	Draw	any	skinned	meshes	now

mSkinnedShader->SetActive();

//	Update	view-projection	matrix

mSkinnedShader->SetMatrixUniform("uViewProj",	mView	*	mProjection);

//	Update	lighting	uniforms

SetLightUniforms(mSkinnedShader);

for	(auto	sk	:	mSkeletalMeshes)

{

			if	(sk->GetVisible())

			{

						sk->Draw(mSkinnedShader);

			}

}

With	all	this	code	in	place,	you	can	now	draw	a	model

with	skinning	vertex	attributes,	as	in	Figure	12.4.	The

character	model	used	in	this	chapter	is	the	Feline

Swordsman	model	created	by	Pior	Oberson.	The	model

file	is	CatWarrior.gpmesh	in	the	Assets	directory	for

this	chapter’s	game	project.

Figure	12.4	Drawing	the	Feline	Swordsman	model

in	bind	pose

The	character	faces	to	the	right	because	the	bind	pose	of

the	model	faces	down	the	+y	axis,	whereas	this	book’s

game	uses	a	+x	axis	as	forward.	However,	the	animations

all	rotate	the	model	to	face	toward	the	+x	axis.	So,	once

you	begin	playing	the	animations,	the	model	will	face	in

the	correct	direction.

Loading	a	Skeleton

Now	that	the	skinned	model	is	drawing,	the	next	step

is	to	load	the	skeleton.	The	gpskel	file	format	simply

defines	the	bones,	their	parents,	and	the	local	pose

transform	for	every	bone	in	bind	pose.	To

encapsulate	the	skeleton	data,	you	can	declare	a

Skeleton	class,	as	shown	in	Listing	12.4.

Listing	12.4	Skeleton	Declaration

Click	here	to	view	code	image

class	Skeleton

{

public:

			//	Definition	for	each	bone	in	the	skeleton

			struct	Bone

			{

						BoneTransform	mLocalBindPose;

						std::string	mName;

						int	mParent;

			};

	

			//	Load	from	a	file

			bool	Load(const	std::string&	fileName);

	

			//	Getter	functions

			size_t	GetNumBones()	const	{	return	mBones.size();	}

			const	Bone&	GetBone(size_t	idx)	const	{	return	mBones[idx];	}

			const	std::vector<Bone>&	GetBones()	const	{	return	mBones;	}

			const	std::vector<Matrix4>&	GetGlobalInvBindPoses()	const

						{	return	mGlobalInvBindPoses;	}

protected:

			//	Computes	the	global	inverse	bind	pose	for	each	bone

			//	(Called	when	loading	the	skeleton)

			void	ComputeGlobalInvBindPose();

private:

			//	The	bones	in	the	skeleton

			std::vector<Bone>	mBones;

			//	The	global	inverse	bind	poses	for	each	bone

			std::vector<Matrix4>	mGlobalInvBindPoses;

};

In	the	member	data	of	Skeleton,	you	store	both	a

std::vector	for	all	of	the	bones	and	a	std::vector

for	the	global	inverse	bind	pose	matrices.	The	Load

function	is	not	particularly	notable,	as	it	just	parses	in

the	gpmesh	file	and	converts	it	to	the	vector	of	bones

format	discussed	earlier	in	the	chapter.	(As	with	the

other	JSON	file	loading	code,	this	chapter	omits	the	code

in	this	case,	though	it	is	available	with	the	project	code	in

the	book’s	GitHub	repository.)

If	the	skeleton	file	loads	successfully,	the	function	then

calls	the	ComputeGlobalInvBindPose	function,

which	uses	matrix	multiplication	to	calculate	the	global

inverse	bind	pose	matrix	for	every	bone.	You	use	the

two-pass	approach	discussed	earlier	in	the	chapter:	First,

you	calculate	each	bone’s	global	bind	pose	matrix,	and

then	you	invert	each	of	these	matrices	to	yield	the	inverse

bind	pose	matrix	for	each	bone.	Listing	12.5	gives	the

implementation	of	ComputeGlobalInvBindPose.

Listing	12.5	ComputeGlobalInvBindPose

Implementation

Click	here	to	view	code	image

void	Skeleton::ComputeGlobalInvBindPose()

{

			//	Resize	to	number	of	bones,	which	automatically	fills	identity

			mGlobalInvBindPoses.resize(GetNumBones());

	

			//	Step	1:	Compute	global	bind	pose	for	each	bone

			//	The	global	bind	pose	for	root	is	just	the	local	bind	pose

			mGlobalInvBindPoses[0]	=	mBones[0].mLocalBindPose.ToMatrix();

	

			//	Each	remaining	bone's	global	bind	pose	is	its	local	pose

			//	multiplied	by	the	parent's	global	bind	pose

			for	(size_t	i	=	1;	i	<	mGlobalInvBindPoses.size();	i++)

			{

						Matrix4	localMat	=	mBones[i].mLocalBindPose.ToMatrix();

						mGlobalInvBindPoses[i]	=	localMat	*

									mGlobalInvBindPoses[mBones[i].mParent];

			}

	

			//	Step	2:	Invert	each	matrix

			for	(size_t	i	=	0;	i	<	mGlobalInvBindPoses.size();	i++)

			{

						mGlobalInvBindPoses[i].Invert();

			}

}

Using	the	familiar	pattern	for	loading	in	data	files,	you

can	add	an	unordered_map	of	Skeleton	pointers	to	the

Game	class,	as	well	as	code	to	load	a	skeleton	into	the

map	and	retrieve	it	from	the	map.

Finally,	because	each	SkeletalMeshComponent	also

needs	to	know	its	associated	skeleton,	you	add	a

Skeleton	pointer	to	the	member	data	of

SkeletalMeshComponent.	Then	when	creating	the

SkeletalMeshComponent	object,	you	also	assign	the

appropriate	skeleton	to	it.

Unfortunately,	adding	the	Skeleton	code	does	not

make	any	visible	difference	over	just	drawing	the

character	model	in	bind	pose.	To	see	anything	change,

you	need	to	do	more	work.

Loading	the	Animation	Data

The	animation	file	format	this	book	uses	is	also

JSON.	It	first	contains	some	basic	information,	such

as	the	number	of	frames	and	duration	(in	seconds)	of

the	animation,	as	well	as	the	number	of	bones	in	the

associated	skeleton.	The	remainder	of	the	file	is	local

pose	information	for	the	bones	in	the	model	during

the	animation.	The	file	organizes	the	data	into

tracks,	which	contain	pose	information	for	each

bone	on	each	frame.	(The	term	tracks	comes	from

time-based	editors	such	as	video	and	sound	editors.)

If	the	skeleton	has	10	bones	and	the	animation	has

50	frames,	then	there	are	10	tracks,	and	each	track

has	50	poses	for	that	bone.	Listing	12.6	shows	the

basic	layout	of	this	gpanim	data	format.

Listing	12.6	The	Beginning	of	an	Animation	Data	File

Click	here	to	view	code	image

{

			"version":1,

			"sequence":{

						"frames":19,

						"duration":0.600000,

						"bonecount":68,

						"tracks":[

									{

												"bone":0,

												"transforms":[

															{

																		"rot":[-0.500199,0.499801,-0.499801,0.500199],

																		"trans":[0.000000,0.000000,0.000000]

															},

															{

																		"rot":[-0.500199,0.499801,-0.499801,0.500199],

																		"trans":[0.000000,0.000000,0.000000]

															},

															//	Additional	transforms	up	to	frame	count

															//	...

],

												//	Additional	tracks	for	each	bone

												//	...

									}

]

			}

}

This	format	does	not	guarantee	that	every	bone	has	a

track,	which	is	why	each	track	begins	with	a	bone	index.

In	some	cases,	bones	such	as	the	fingers	don’t	need	to

have	any	animation	applied	to	them.	In	such	a	case,	the

bone	simply	would	not	have	a	track.	However,	if	a	bone

has	a	track,	it	will	have	a	local	pose	for	every	single	frame

in	the	animation.

Also,	the	animation	data	for	each	track	contains	an	extra

frame	at	the	end	that’s	a	duplicate	of	the	first	frame.	So

even	though	the	example	above	says	there	are	19	frames

with	a	duration	of	0.6	seconds,	frame	19	is	actually	a

duplicate	of	frame	0.	So,	there	are	really	only	18	frames,

with	a	rate	in	this	case	of	exactly	30	FPS.	This	duplicate

frame	is	included	because	it	makes	looping	slightly	easier

to	implement.

As	is	the	case	for	the	skeleton,	you	declare	a	new	class

called	Animation	to	store	the	loaded	animation	data.

Listing	12.7	shows	the	declaration	of	the	Animation

class.	The	member	data	contains	the	number	of	bones,

the	number	of	frames	in	the	animation,	the	duration	of

the	animation,	and	the	tracks	containing	the	pose

information	for	each	bone.	As	is	the	case	with	the	other

JSON-based	file	formats,	this	chapter	omits	the	code	for

loading	the	data	from	the	file.	However,	the	data	stored

in	the	Animation	class	clearly	mirrors	the	data	in	the

gpanim	file.

Listing	12.7	Animation	Declaration

Click	here	to	view	code	image

class	Animation

{

public:

			bool	Load(const	std::string&	fileName);

	

			size_t	GetNumBones()	const	{	return	mNumBones;	}

			size_t	GetNumFrames()	const	{	return	mNumFrames;	}

			float	GetDuration()	const	{	return	mDuration;	}

			float	GetFrameDuration()	const	{	return	mFrameDuration;	}

	

			//	Fills	the	provided	vector	with	the	global	(current)	pose	matrices

			//	for	each	bone	at	the	specified	time	in	the	animation.

			void	GetGlobalPoseAtTime(std::vector<Matrix4>&	outPoses,

						const	class	Skeleton*	inSkeleton,	float	inTime)	const;

private:

			//	Number	of	bones	for	the	animation

			size_t	mNumBones;

			//	Number	of	frames	in	the	animation

			size_t	mNumFrames;

			//	Duration	of	the	animation	in	seconds

			float	mDuration;

			//	Duration	of	each	frame	in	animation

			float	mFrameDuration;

			//	Transform	information	for	each	frame	on	the	track

			//	Each	index	in	the	outer	vector	is	a	bone,	inner	vector	is	a	frame

			std::vector<std::vector<BoneTransform>>	mTracks;

};

The	job	of	the	GetGlobalPoseAtTime	function	is	to

compute	the	global	pose	matrices	for	each	bone	in	the

skeleton	at	the	specified	inTime.	It	writes	these	global

pose	matrices	to	the	provided	outPoses

std::vector	of	matrices.	For	now,	you	can	ignore	the

inTime	parameter	and	just	hard-code	the	function	so

that	it	uses	frame	0.	This	way,	you	can	first	get	the	game

to	draw	the	first	frame	of	the	animation	properly.	The

“Updating	Animations”	section,	later	in	this	chapter,

circles	back	to	GetGlobalPoseAtTime	and	how	to

properly	implement	it.

To	compute	the	global	pose	for	each	bone,	you	follow	the

same	approach	discussed	before.	You	first	set	the	root

bone’s	global	pose,	and	then	each	other	bone’s	global

pose	is	its	local	pose	multiplied	by	its	parent’s	global

pose.	The	first	index	of	mTracks	corresponds	to	the

bone	index,	and	the	second	index	corresponds	to	the

frame	in	the	animation.	So,	this	first	version	of

GetGlobalPoseAtTime	hard-codes	the	second	index

to	0	(the	first	frame	of	the	animation),	as	shown	in

Listing	12.8.

Listing	12.8	First	Version	of	GetGlobalPoseAtTime

Click	here	to	view	code	image

void	Animation::GetGlobalPoseAtTime(std::vector<Matrix4>&	outPoses,

			const	Skeleton*	inSkeleton,	float	inTime)	const

{

			//	Resize	the	outPoses	vector	if	needed

			if	(outPoses.size()	!=	mNumBones)

			{

						outPoses.resize(mNumBones);

			}

	

			//	For	now,	just	compute	the	pose	for	every	bone	at	frame	0

			const	int	frame	=	0;

			//	Set	the	pose	for	the	root

			//	Does	the	root	have	a	track?

			if	(mTracks[0].size()	>	0)

			{

						//	The	global	pose	for	the	root	is	just	its	local	pose

						outPoses[0]	=	mTracks[0][frame].ToMatrix();

			}

			else

			{

						outPoses[0]	=	Matrix4::Identity;

			}

	

			const	std::vector<Skeleton::Bone>&	bones	=	inSkeleton->GetBones();

			//	Now	compute	the	global	pose	matrices	for	every	other	bone

			for	(size_t	bone	=	1;	bone	<	mNumBones;	bone++)

			{

						Matrix4	localMat;	//	Defaults	to	identity

						if	(mTracks[bone].size()	>	0)

						{

									localMat	=	mTracks[bone][frame].ToMatrix();

						}

	

						outPoses[bone]	=	localMat	*	outPoses[bones[bone].mParent];

			}

}

Note	that	because	not	every	bone	has	a	track,

GetGlobalPoseAtTime	must	first	check	that	the	bone

has	a	track.	If	it	doesn’t,	the	local	pose	matrix	for	the

bone	remains	the	identity	matrix.

Next,	you	use	the	common	pattern	of	creating	a	map	for

your	data	and	a	corresponding	get	function	that	caches

the	data	in	the	map.	This	time,	the	map	contains

Animation	pointers,	and	you	add	it	to	Game.

Now	you	need	to	add	functionality	to	the

SkeletalMeshComponent	class.	Recall	that	for	each

bone,	the	matrix	palette	stores	the	inverse	bind	pose

matrix	multiplied	by	the	current	pose	matrix.	Then	when

calculating	the	position	of	a	vertex	with	skinning,	you	use

this	palette.	Because	the	SkeletalMeshComponent

class	tracks	the	current	playback	of	an	animation	and	has

access	to	the	skeleton,	it	makes	sense	to	store	the	palette

here.	You	first	declare	a	simple	struct	for	the

MatrixPalette,	as	follows:

Click	here	to	view	code	image

const	size_t	MAX_SKELETON_BONES	=	96;

struct	MatrixPalette

{

			Matrix4	mEntry[MAX_SKELETON_BONES];

};

You	set	a	constant	for	the	maximum	number	of	bones	to

96,	but	you	could	go	as	high	as	256	because	your	bone

indices	can	range	from	0	to	255.

You	then	add	member	variables	to

SkeletalMeshComponent	to	track	the	current

animation,	the	play	rate	of	the	animation,	the	current

time	in	the	animation,	and	the	current	matrix	palette:

Click	here	to	view	code	image

//	Matrix	palette

MatrixPalette	mPalette;

//	Animation	currently	playing

class	Animation*	mAnimation;

//	Play	rate	of	animation	(1.0	is	normal	speed)

float	mAnimPlayRate;

//	Current	time	in	the	animation

float	mAnimTime;

Next,	you	create	a	ComputeMatrixPalette	function,

as	shown	in	Listing	12.9,	that	grabs	the	global	inverse

bind	pose	matrices	as	well	as	the	global	current	pose

matrices.	Then	for	each	bone,	you	multiply	these

matrices	together,	yielding	the	matrix	palette	entry.

Listing	12.9	ComputeMatrixPalette

Implementation

Click	here	to	view	code	image

void	SkeletalMeshComponent::ComputeMatrixPalette()

{

			const	std::vector<Matrix4>&	globalInvBindPoses	=

						mSkeleton->GetGlobalInvBindPoses();

			std::vector<Matrix4>	currentPoses;

			mAnimation->GetGlobalPoseAtTime(currentPoses,	mSkeleton,

						mAnimTime);

	

			//	Setup	the	palette	for	each	bone

			for	(size_t	i	=	0;	i	<	mSkeleton->GetNumBones();	i++)

			{

						//	Global	inverse	bind	pose	matrix	times	current	pose	matrix

						mPalette.mEntry[i]	=	globalInvBindPoses[i]	*	currentPoses[i];

			}

}

Finally,	you	create	a	PlayAnimation	function	that

takes	in	an	Animation	pointer	as	well	as	the	play	rate	of

the	animation.	This	sets	the	new	member	variables,	calls

ComputeMatrixPalette,	and	returns	the	duration	of

the	animation:

Click	here	to	view	code	image

float	SkeletalMeshComponent::PlayAnimation(const	Animation*	anim,

																																											float	playRate)

{

			mAnimation	=	anim;

			mAnimTime	=	0.0f;

			mAnimPlayRate	=	playRate;

	

			if	(!mAnimation)	{	return	0.0f;	}

			ComputeMatrixPalette();

	

			return	mAnimation->GetDuration();

}

Now	you	can	load	the	animation	data,	compute	the	pose

matrices	for	frame	0	of	the	animation,	and	calculate	the

matrix	palette.	However,	the	current	pose	of	the

animation	still	won’t	show	up	onscreen	because	the

vertex	shader	needs	modification.

The	Skinning	Vertex	Shader

Recall	from	Chapter	5	that	the	vertex	shader

program’s	responsibility	is	to	transform	a	vertex

from	object	space	into	clip	space.	Thus,	for	skeletal

animation,	you	must	update	the	vertex	shader	so	that

it	also	accounts	for	bone	influences	and	the	current

pose.	First,	you	add	a	new	uniform	declaration	for

the	matrix	palette	to	Skinned.vert:

uniform	mat4	uMatrixPalette[96];

Once	the	vertex	shader	has	a	matrix	palette,	you	can	then

apply	the	skinning	calculations	from	earlier	in	the

chapter.	Remember	that	because	each	vertex	has	up	to

four	different	bone	influences,	you	must	calculate	four

different	positions	and	blend	between	them	based	on	the

weight	of	each	bone.	You	do	this	before	transforming	the

point	into	world	space	because	the	skinned	vertex	is	still

in	object	space	(just	not	in	the	bind	pose).

Listing	12.10	shows	the	main	function	for	the	skinning

vertex	shader	program.	Recall	that	inSkinBones	and

inSkinWeights	are	the	four	bone	indices	and	the	four

bone	weights.	The	accessors	for	x,	y,	and	so	on	are	simply

accessing	the	first	bone,	the	second	bone,	and	so	on.

Once	you	calculate	the	interpolated	skinned	position	of

the	vertex,	you	transform	the	point	to	world	space	and

then	projection	space.

Listing	12.10	Skinned.vert	Main	Function

Click	here	to	view	code	image

void	main()

{

			//	Convert	position	to	homogeneous	coordinates

			vec4	pos	=	vec4(inPosition,	1.0);

	

			//	Skin	the	position

			vec4	skinnedPos	=	(pos	*	uMatrixPalette[inSkinBones.x])	*	inSkinWeights.x;

			skinnedPos	+=	(pos	*	uMatrixPalette[inSkinBones.y])	*	inSkinWeights.y;

			skinnedPos	+=	(pos	*	uMatrixPalette[inSkinBones.z])	*	inSkinWeights.z;

			skinnedPos	+=	(pos	*	uMatrixPalette[inSkinBones.w])	*	inSkinWeights.w;

	

			//	Transform	position	to	world	space

			skinnedPos	=	skinnedPos	*	uWorldTransform;

			//	Save	world	position

			fragWorldPos	=	skinnedPos.xyz;

			//	Transform	to	clip	space

			gl_Position	=	skinnedPos	*	uViewProj;

	

			//	Skin	the	vertex	normal

			vec4	skinnedNormal	=	vec4(inNormal,	0.0f);

			skinnedNormal	=

								(skinnedNormal	*	uMatrixPalette[inSkinBones.x])	*	inSkinWeights.x

						+	(skinnedNormal	*	uMatrixPalette[inSkinBones.y])	*	inSkinWeights.y

						+	(skinnedNormal	*	uMatrixPalette[inSkinBones.z])	*	inSkinWeights.z

						+	(skinnedNormal	*	uMatrixPalette[inSkinBones.w])	*	inSkinWeights.w;

			//	Transform	normal	into	world	space	(w	=	0)

			fragNormal	=	(skinnedNormal	*	uWorldTransform).xyz;

			//	Pass	along	the	texture	coordinate	to	frag	shader

			fragTexCoord	=	inTexCoord;

}

Similarly,	you	also	need	to	skin	the	vertex	normals;	if	you

don’t,	the	lighting	will	not	look	correct	as	the	character

animates.

Then,	back	in	the	C++	code	for

SkeletalMeshComponent::Draw,	you	need	to	make

sure	the	SkeletalMeshComponent	copies	the	matrix

palette	data	to	the	GPU	with	the	following:

Click	here	to	view	code	image

shader->SetMatrixUniforms("uMatrixPalette",	&mPalette.mEntry[0],

									MAX_SKELETON_BONES);

The	SetMatrixUniforms	function	on	the	shader	takes

in	the	name	of	the	uniform,	a	pointer	to	a	Matrix4,	and

the	number	of	matrices	to	upload.

You	now	have	everything	in	place	to	draw	the	first	frame

of	an	animation.	Figure	12.5	shows	the	first	frame	of	the

CatActionIdle.gpanim	animation.	This	and	other

animations	in	this	chapter	are	also	by	Pior	Oberson.

Figure	12.5	A	character	in	the	first	frame	of	the

“action	idle”	animation

Updating	Animations

The	final	step	to	get	a	working	skeletal	animation

system	is	to	update	the	animation	every	frame,	based

on	delta	time.	You	need	to	change	the	Animation

class	so	that	it	correctly	gets	the	pose	based	on	the

time	in	the	animation,	and	you	need	to	add	an

Update	function	to	SkeletalMeshComponent.

For	the	GetGlobalPoseAtTime	function,	in	Listing

12.11,	you	can	no	longer	hard-code	it	to	only	use	frame	0

of	the	animation.	Instead,	based	on	the	duration	of	each

frame	and	the	current	time,	you	figure	out	the	frame

before	the	current	time	(frame)	and	the	frame	after	the

current	time	(nextFrame).	You	then	calculate	a	value

from	0.0	to	1.0	that	specifies	where	exactly	between	the

two	frames	you	are	(pct).	This	way,	you	can	account	for

the	animation	and	game	frame	rates	being	different.

Once	you	have	this	fractional	value,	you	compute	the

global	poses	mostly	the	same	as	before.	However,	now

instead	of	directly	using	a	BoneTransform	for	a	frame,

you	interpolate	between	the	bone	transforms	of	frame

and	nextFrame	to	figure	out	the	correct	in-between

pose.

Listing	12.11	Final	Version	of	GetGlobalPoseAtTime

Click	here	to	view	code	image

void	Animation::GetGlobalPoseAtTime(std::vector<Matrix4>&	outPoses,

			const	Skeleton*	inSkeleton,	float	inTime)	const

{

			if	(outPoses.size()	!=	mNumBones)

			{

						outPoses.resize(mNumBones);

			}

	

			//	Figure	out	the	current	frame	index	and	next	frame

			//	(This	assumes	inTime	is	bounded	by	[0,	AnimDuration]

			size_t	frame	=	static_cast<size_t>(inTime	/	mFrameDuration);

			size_t	nextFrame	=	frame	+	1;

			//	Calculate	fractional	value	between	frame	and	next	frame

			float	pct	=	inTime	/	mFrameDuration	-	frame;

	

			//	Setup	the	pose	for	the	root

			if	(mTracks[0].size()	>	0)

			{

						//	Interpolate	between	the	current	frame's	pose	and	the	next	frame

						BoneTransform	interp	=	BoneTransform::Interpolate(mTracks[0][frame],

									mTracks[0][nextFrame],	pct);

						outPoses[0]	=	interp.ToMatrix();

			}

			else

			{

						outPoses[0]	=	Matrix4::Identity;

			}

	

			const	std::vector<Skeleton::Bone>&	bones	=	inSkeleton->GetBones();

			//	Now	setup	the	poses	for	the	rest

			for	(size_t	bone	=	1;	bone	<	mNumBones;	bone++)

			{

						Matrix4	localMat;	//	(Defaults	to	identity)

						if	(mTracks[bone].size()	>	0)

						{

									BoneTransform	interp	=

												BoneTransform::Interpolate(mTracks[bone][frame],

															mTracks[bone][nextFrame],	pct);

									localMat	=	interp.ToMatrix();

						}

	

						outPoses[bone]	=	localMat	*	outPoses[bones[bone].mParent];

			}

}

Then,	in	SkeletalMeshComponent,	you	add	an

Update	function:

Click	here	to	view	code	image

void	SkeletalMeshComponent::Update(float	deltaTime)

{

			if	(mAnimation	&&	mSkeleton)

			{

						mAnimTime	+=	deltaTime	*	mAnimPlayRate;

						//	Wrap	around	anim	time	if	past	duration

						while	(mAnimTime	>	mAnimation->GetDuration())

						{	mAnimTime	-=	mAnimation->GetDuration();	}

	

						//	Recompute	matrix	palette

						ComputeMatrixPalette();

			}

}

Here,	all	you	do	is	update	mAnimTime	based	on	delta

time	and	the	animation	play	rate.	You	also	wrap

mAnimTime	around	as	the	animation	loops.	This	works

correctly	even	when	transitioning	from	the	last	frame	of

the	animation	to	the	first	because,	as	mentioned	earlier,

the	animation	data	duplicates	the	first	frame	at	the	end

of	the	track.

Finally,	Update	calls	ComputeMatrixPalette.	This

function	uses	GetGlobalPoseAtTime	to	calculate	the

new	matrix	palette	for	this	frame.

Because	SkeletalMeshComponent	is	a	component,

the	owning	actor	calls	Update	every	frame.	Then	in	the

“generate	outputs”	phase	of	the	game	loop,	the

SkeletalMeshComponent	draws	with	this	new	matrix

palette	as	usual,	which	means	the	animation	now

updates		onscreen!

GAME	PROJECT
This	chapter’s	game	project	implements	skeletal

animation	as	described	in	this	chapter.	It	includes

the	SkeletalMeshComponent,	Animation,	and

Skeleton	classes,	as	well	as	the	skinned	vertex

shader.	The	code	is	available	in	the	book’s	GitHub

repository,	in	the	Chapter12	directory.	Open

Chapter12-windows.sln	in	Windows	and

Chapter12-mac.xcodeproj	on	Mac.

This	chapter’s	game	project	goes	back	to	the	follow

camera	discussed	in	Chapter	9,	“Cameras,”		to	make	the

character	visible.	The	FollowActor	class	has	a

SkeletalMeshComponent	component,	and	it	thus	uses

the	animation	code.	The	player	can	use	the	WASD	keys	to

move	the	character	around.	When	the	character	is

standing	still,	an	idle	animation	plays.	When	the	player

moves	the	character,	a	running	animation	plays	(see

Figure	12.6).	Currently,		the	transition	between	the	two

animations	is	not	smooth,	but	you	will	change	that	in

Exercise	12.2.

Figure	12.6	Character	running	through	the	game

world

SUMMARY
This	chapter	provides	a	comprehensive	overview	of

skeletal	animation.	In	skeletal	animation,	a	character

has	a	rigid	skeleton	that	animates,	and	vertices	act

like	a	skin	that	deforms	with	this	skeleton.	The

skeleton	contains	a	hierarchy	of	bones,	and	every

bone	except	for	the	root	has	a	parent	bone.

The	bind	pose	is	the	initial	pose	of	the	skeleton,	prior	to

any	animations.	You	can	store	a	local	transform	for	each

bone	in	bind	pose,	which	describes	the	position	and

orientation	of	a	bone	relative	to	its	parent.	A	global

transform	instead	describes	the	position	and	orientation

of	a	bone	relative	to	object	space.	You	can	convert	a	local

transform	into	a	global	one	by	multiplying	the	local	pose

by	the	global	pose	of	its	parent.	The	root	bone’s	local

pose	and	global	pose	are	identical.

The	inverse	bind	pose	matrix	is	the	inverse	of	each

bone’s	global	bind	pose	matrix.	This	matrix	transforms	a

point	in	object	space	while	in	bind	pose	into	the	bone’s

coordinate	space	while	in	bind	pose.

An	animation	is	a	sequence	of	poses	played	back	over

time.	As	with	bind	pose,	you	can	construct	a	global	pose

matrix	for	the	current	pose	for	each	bone.	These	current

pose	matrices	can	transform	a	point	in	a	bone’s

coordinate	space	while	in	bind	pose	into	object	space	for

the	current	pose.

The	matrix	palette	stores	the	multiplication	of	the

inverse	bind	pose	matrix	and	the	current	pose	matrix	for

each	bone.	When	computing	the	object	space	position	of

a	skinned	vertex,	you	use	the	matrix	palette	entries	for

any	bones	that	influence	the	vertex.

ADDITIONAL	READING
Jason	Gregory	takes	an	in-depth	look	at	more

advanced	topics	in	animation	systems,	such	as

blending	animations,	compressing	animation	data,

and	inverse	kinematics.

Gregory,	Jason.	Game	Engine	Architecture,

2nd	edition.	Boca	Raton:	CRC	Press,	2014.

EXERCISES
In	this	chapter’s	exercises	you	will	add	features	to	the

animation	system.	In	Exercise	12.1	you	add	support

for	getting	the	position	of	a	bone	in	the	current	pose,

and	in	Exercise	12.2	you	add	blending	when

transitioning	between	two	animations.

Exercise	12.1

It’s	useful	for	a	game	to	get	the	position	of	a	bone	as

an	animation	plays.	For	example,	if	a	character	holds

an	object	in	his	hand,	you	need	to	know	the	position

of	the	bone	as	the	animation	changes.	Otherwise,	the

character	will	no	longer	hold	the	item	properly!

Because	the	SkeletalMeshComponent	knows	the

progress	in	the	animation,	the	code	for	this	system	needs

to	go	in	here.	First,	add	as	a	member	variable	a

std::vector	to	store	the	current	pose	matrices.	Then,

when	the	code	calls	GetGlobalPoseAtTime,	save	the

current	pose	matrices	in	this	member	variable.

Next,	add	a	function	called	GetBonePosition	that

takes	the	name	of	a	bone	and	returns	the	object	space

position	of	the	bone	in	the	current	pose.	This	is	easier

than	it	sounds	because	if	you	multiply	a	zero	vector	by

the	current	pose	matrix	for	a	bone,	you	get	the	object

space	position	of	that	bone	in	the	current	pose.	This

works	because	a	zero	vector	here	means	it	is	exactly	at

the	origin	of	the	bone’s	local	space,	and	then	the	current

pose	matrix	transforms	it	back	to	object	space.

Exercise	12.2

Currently,
SkeletalMeshComponent::PlayAnimation

instantly	switches	to	a	new	animation.	This	does	not

look	very	polished,	and	you	can	address	this	issue	by

adding	blending	to	the	animations.	First,	add	an

optional	blend	time	parameter	to	PlayAnimation,

which	represents	the	duration	of	the	blend.	To	blend

between	multiple	animations,	you	must	track	each

animation	and	animation	time	separately.	If	you

limit	blending	to	only	two	animations,	you	just	need

to	duplicate	those	member	variables.

Then,	to	blend	between	the	animations,	when	you	call

GetGlobalPoseAtTime,	you	need	to	do	so	for	both

active	animations.	You	need	to	get	the	bone	transforms

of	every	bone	for	each	animation,	interpolate	these	bone

transforms	to	get	the	final	transforms,	and	then	convert

these	to	the	pose	matrices	to	get	the	blended	current

pose.

CHAPTER	13

INTERMEDIATE
GRAPHICS

There	are	a	multitude	of	different	graphical

techniques	used	in	games,	which	is	why

there	are	entire	volumes	and	book	series	on

the	topic.	This	chapter	explores	a	handful	of

intermediate	graphics	concepts:	how	to

improve	texture	quality,	rendering	to

textures,	and	a	different	method	for	lighting

the	scene,	called	deferred	shading.

IMPROVING	TEXTURE	QUALITY
Recall	from	Chapter	5,	“OpenGL,”	that	bilinear

filtering	can	improve	the	visual	quality	of	a	texture	as

it	gets	larger	on	the	screen.	For	example,	suppose	a

wall	has	a	texture	on	it.	As	the	player	gets	closer	to

the	wall,	the	size	of	the	texture	becomes	larger

onscreen.	Without	bilinear	filtering,	the	texture	will

look	pixelated.	However,	bilinear	filtering	makes	the

image	look	smoother	(although	slightly	blurry).

Also	recall	from	Chapter	5	that	images	are	just	2D	grids

of	pixels,	and	each	of	these	“texture	pixels”	is	called	a

texel.	Another	way	to	look	at	the	enlargement	effect	is

that	as	the	wall	texture	becomes	larger	onscreen,	the	size

of	every	texel	becomes	larger	onscreen.	In	other	words,

the	ratio	between	a	texel	from	the	texture	and	a	pixel

onscreen	decreases.

For	example,	if	every	1	texel	corresponds	to	2	pixels

onscreen,	then	that	ratio	is	1:2.	Texel	density	is	this

ratio	between	pixels	onscreen	and	texels.	Ideally,	you

want	the	texel	density	to	be	as	close	to	1:1	as	possible.	As

the	density	decreases,	the	image	quality	decreases.

Ultimately,	the	texture	appears	either	too	pixelated	(if

using	nearest-neighbor	filtering)	or	too	blurry	(if	using

bilinear	filtering).

If	the	texel	density	becomes	too	high,	this	means	that

each	pixel	onscreen	corresponds	to	multiple	texels	in	the

texture.	For	example,	a	10:1	texel	density	means	that

every	pixel	onscreen	corresponds	to	10	texels.

Ultimately,	each	of	these	pixels	needs	to	choose	a	single

color	to	display.	This	means	that	the	texture	will	appear

to	have	texels	missing	when	viewed	onscreen;	this	is

called	a	sampling	artifact.	In	graphics,	the	term

artifact	refers	to	a	graphical	glitch	that’s	a	result	of	a

graphics	algorithm.

Figure	13.1	illustrates	the	different	graphical	artifacts

caused	by	varying	texel	densities.	Figure	13.1(a)	shows	a

star	texture	at	a	texel	density	of	roughly	1:1,	meaning	the

texture	appears	onscreen	with	exactly	the	same	ratio	as

the	original	image	file.	Figure	13.1(b)	shows	part	of	the

star	at	a	texel	density	of	1:5,	which	makes	the	edges

appear	blurry.	Finally,	Figure	13.1(c)	shows	the	texture

with	a	texel	density	of	5:1,	which	causes	the	edges	of	the

star	to	disappear;	to	make	the	image	easier	to	see,	the

figure	illustrates	it	larger	than	the	actual	size.

Figure	13.1	Star	texture	bilinear	filtered	with

varying	texel	densities:	(a)	1:1,	(b)	1:5,	(c)	5:1

Texture	Sampling,	Revisited

To	understand	why	a	high	texel	density	causes	texels

to	appear	to	be	missing,	we	need	to	look	more	closely

at	how	texture	sampling	works	in	general.	Recall	that

textures	use	UV	coordinates	(also	called	texture

coordinates)	in	the	range	of	(0,	0)	for	the	top-left

corner	and	(1,	1)	for	the	bottom-right	corner.

Suppose	you	have	a	texture	that’s	a	4×4	square	of

texels.	In	this	case,	the	UV	coordinate	for	the	center

of	the	top-left	texel	is	(0.125,	0.125).	Similarly,	the

exact	center	of	the	texture	corresponds	to	the	UV

coordinate	(0.5,	0.5),	as	in	Figure	13.2(a).

Now	suppose	you	have	a	texel	density	of	1:2,	and	you

draw	the	region	of	the	texture	from	(0,	0)		to	(0.5,	0.5).

This	means	that	the	top	one-fourth	of	the	texture

appears	at	two	times	the	size	onscreen.	When	drawing

this	in	the	fragment	shader,	each	fragment	(pixel)	gets	a

UV	coordinate	corresponding	to	the	center	of	the	pixel.

For	example,	the	top-left	pixel	in	Figure	13.2(b)	is

sampling	from	the	texture	with	a	UV	coordinate	of

(0.0625,	0.0625).	However,	in	the	original	image,	no

texel’s	center	directly	corresponds	to	this	coordinate.

This	is	where	a	filtering	algorithm	comes	in:	It	helps

select	what	color	to	draw	for	these	in-between	UV

coordinates.

In	nearest-neighbor	filtering,	you	simply	select	the

texel	whose	center	is	the	closest	to	that	UV	coordinate.

So,	because	the	top-left	coordinate	of	(0.0625,	0.0625)	is

closest	to	the	white	texel	at	(0.125,	0.125),	nearest-

neighbor	filtering	selects	white	for	that	pixel.	The	result

of	this	is	that	every	texel	is	resized	proportionally	to	the

texel	density,	as	in	Figure	13.2(b).	More	plainly,	in

nearest-neighbor	filtering,	increasing	the	size	of	the

texture	onscreen	increases	the	perceived	size	of	each

texel,	making	the	image	look	pixelated.

In	bilinear	filtering,	you	find	the	four	texel	centers

closest	to	a	UV	coordinate,	and	the	sampled	color	at	a	UV

coordinate	is	the	weighted	average	between	these	four

nearest	texels.	This	yields	a	smoother	transition	as	the

image	magnifies,	though	the	image	will	appear	blurry	if

magnified	too	much.	Figure	13.2(c)	illustrates	bilinear

filtering.	Notice	that	there	are	fewer	neighboring	pixels

with	the	same	color,	but	instead	the	colors	blend

together.

Figure	13.2	(a)	Original	texture;	texture	at	2x

magnification	with	(b)	nearest-neighbor	filtering	and

(c)	bilinear	filtering

To	understand	how	to	calculate	the	weighted	average	in

bilinear	filtering,	remember	that	you	can	treat	a	color	as

a	3D	value	and	interpolate	between	colors	the	same	way

you	interpolate	other	values.	You	then	decompose	the

bilinear	interpolation	into	the	two	separate	axes’

interpolations.	Consider	a	point	P	that’s	nearest	the	four

texels	A,	B,	C,	and	D,	as	in	Figure	13.3.	First,	you

compute	the	interpolation	between	the	colors	at	A	and	B

in	the	u	direction	and,	similarly,	the	interpolation

between	C	and	D	in	the	u	direction.	This	yields	colors	at

the	two	points	R	and	S,	shown	in	Figure	13.3.	Finally,

you	interpolate	the	colors	at	R	and	S	in	the	v	direction,

which	yields	the	final	color	at	P.

Figure	13.3	Bilinear	interpolation	of	P	relative	to

texels	A,	B,	C,	and	D

Given	the	texture	coordinates	for	A,	B,	C,	D,	and	P,	you

can	calculate	this	bilinear	interpolation	with	the

following	set	of	equations:

In	these	equations,	uFactor	determines	the	weighting	in

the	u	component	direction,	and	vFactor	determines	the

weighting	in	the	v	component	direction.	You	then	use

these	weightings	to	first	calculate	the	colors	at	R	and	S

and	then,	finally,	the	color	at	P.

These	bilinear	filtering	calculations	automatically	occur

on	the	graphics	card	if	the	texture	has	bilinear	filtering

enabled.	And	although	this	sounds	like	a	lot	of

calculations	to	do	for	every	fragment	that	samples	the

texture,	modern	graphics	hardware	can	rapidly	perform

millions	of	such	calculations	per	second.

As	you’ve	seen,	magnifying	the	texture	too	much	causes

the	image	to	appear	either	pixelated	or	blurry,	depending

on	the	technique	used.	The	issue	with	reducing	the	size

of	the	texture	is	that	there	aren’t	enough	texture	samples

to	maintain	all	the	information	stored	in	the	texture.

Returning	to	the	example	texture,	if	you	reduce	the	size

of	the	image	by	a	factor	of	two,	the	filtering	loses	details

from	the	texture,	as	in	Figure	13.4(b).	You	no	longer	see

the	border,	as	in	the	original	image.	This	example	is

especially	dramatic	because	you	have	only	four	pixels	left

after	the	size	reduction.

Figure	13.4	(a)	Original	texture;	(b)	texture	bilinear

filtered	to	half	size

Mipmapping

In	mipmapping,	rather	than	having	a	single	source

texture,	you	generate	a	series	of	additional	textures,

called	mipmaps,	that	are	at	lower	resolutions	than

the	source	texture.	For	example,	if	the	source	texture

has	a	resolution	of	256×256,	you	may	generate

mipmaps	of	128×128,	64×64,	and	32×32.	Then,

when	it’s	time	to	draw	the	texture	onscreen,	the

graphics	hardware	can	select	the	mipmap	texture

that	yields	a	texel	density	closest	to	1:1.	While

mipmapping	doesn’t	improve	texture	quality	when

you’re	magnifying	a	texture	to	a	resolution	higher

than	the	original	resolution,	it	greatly	improves	the

quality	when	you’re	reducing	the	size	of	a	texture.

The	main	reason	for	the	quality	improvement	is	that	you

generate	the	mipmap	textures	only	once—at	the	time	the

texture	is	loaded.	This	means	that	you	can	use	more

expensive	algorithms	that	generate	high-quality

mipmaps	(such	as	using	a	box	filter).	Thus,	sampling

from	these	high-quality	mipmaps	with	a	texel	density

close	to	1:1	will	look	much	better	than	sampling	from	the

original	texture	with	some	higher	texel	density,	such	as

4:1.

Figure	13.5	illustrates	sample	mipmaps	for	the	star

texture.	The	highest-resolution	texture	is	the	original

texture	at	256×256,	and	the	remaining	textures	are	auto-

generated	mipmaps.	Note	how	even	the	smallest

mipmap	maintains	the	border	of	the	texture,	which	was

missing	previously	when	you	directly	sampled	from	the

256×256	texture	at	a	low	texel	density.

Figure	13.5	Star	texture	with	three	mipmap

textures

Much	as	texture	sampling	can	use	nearest-neighbor

filtering	or	bilinear	filtering,	there	are	two	different

approaches	to	applying	mipmaps.	In	nearest-neighbor

mipmapping,	you	simply	select	the	mipmap	that	gives

the	texel	density	closest	to	1:1.	Although	this	works	well

in	many	cases,	in	some	instances	(such	as	with	a	floor

texture),	it	may	cause	banding	at	the	borders	where	the

mipmap	texture	(or	mip	level)	changes.	In	trilinear

filtering,	you	sample	the	two	mip	levels	closest	to	a	1:1

texel	density	separately	(with	bilinear	filtering),	and	the

final	color	is	a	blend	between	these	two	samples.	This	is

“trilinear”	because	it	blends	now	in	three	dimensions—

the	UV	coordinates	of	the	texture	samples	as	well	as	the

mip-level	blend.

Enabling	mipmapping	for	a	texture	in	OpenGL	is

straightforward.	After	loading	a	texture	with	the	code

from	Chapter	5,	you	simply	add	a	call	to

glGenerateMipmap:

Click	here	to	view	code	image

glGenerateMipmap(GL_TEXTURE_2D);

This	automatically	generates	appropriate	mip	levels,

using	a	high-quality	filtering	algorithm.

When	setting	texture	parameters,	you	can	set	both	the

minimization	filter	(what	happens	when	the	texture

becomes	smaller	onscreen)	and	the	magnification	filter

(what	happens	when	the	texture	becomes	larger

onscreen).	This	is	what	the	GL_TEXTURE_MIN_FILTER

and	GL_	TEXTURE_MAG_FILTER	parameters	reference.

After	you’ve	generated	the	mipmaps,	you	then	change

the	texture	parameter	for	the	min	filter	to	use

mipmapping.	To	do	trilinear	filtering,	you	use	these

texture	parameters:

Click	here	to	view	code	image

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MIN_FILTER,

			GL_LINEAR_MIPMAP_LINEAR);

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MAG_FILTER,

			GL_LINEAR);

Note	that	you	still	use	GL_LINEAR	as	the	filtering

function	for	magnification	because	mipmaps	do	not	help

with	texel	density	lower	than	1:1.	To	instead	use	nearest-

neighbor	mipmapping	for	minification,	you	would	pass

in	GL_LINEAR_MIPMAP_NEAREST	as	the	final

parameter	to	the	GL_TEXTURE_MIN_FILTER	call.

Another	advantage	of	mipmapping	is	that	it	improves	the

rendering	performance	due	to	the	way	that	texture

caching	works.	Much	like	a	CPU	cache,	the	graphics	card

has	a	cache	for	its	memory.	Small	mip	levels	are	very

cache	friendly,	which	means	the	overall	rendering

performance	increases.

Anisotropic	Filtering

Although	mipmapping	greatly	reduces	sampling

artifacts	in	most	instances,	textures	viewed	at

oblique	angles	relative	to	the	camera	will	appear	very

blurry.	This	is	noticeable	especially	with	floor

textures,	as	shown	in	Figure	13.6(b).	Anisotropic

filtering	mitigates	this	by	sampling	additional

points	on	the	texture	when	it	is	viewed	at	an	oblique

angle.	For	example,	16x	anisotropic	filtering	means

that	there	are	16	different	samples	for	the	texel	color.

The	graphics	hardware	performs	the	anisotropic

calculations,	using	a	series	of	mathematical	functions.

This	chapter	does	not	cover	these	functions,	but	you	can

consult	OpenGL	Extensions	Registry	in	the	“Additional

Reading”	section	at	the	end	of	this	chapter	for	more

information.

Although	the	newest	specifications	of	OpenGL	include

anisotropic	filtering	as	a	default	feature,	anisotropic

filtering	is	an	extension	in	OpenGL	3.3.	This	means	you

should	verify	that	the	graphics	hardware	supports

anisotropy	before	enabling	the	feature.	For	the	most

part,	this	is	academic	because	every	graphics	card	made

in	the	past	decade	supports	anisotropic	filtering.	But	in

general,	it	is	a	good	idea	to	test	whether	an	OpenGL

extension	is	available	before	using	said	extension.

To	turn	on	anisotropic	filtering,	you	set	the	texture	to	use

mipmapping	and	then	add	the	following	lines	of	code:

Click	here	to	view	code	image

if	(GLEW_EXT_texture_filter_anisotropic)

{

			//	Get	the	maximum	anisotropy	value

			GLfloat	largest;

			glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT,	&largest);

			//	Enable	it

			glTexParameterf(GL_TEXTURE_2D,	GL_TEXTURE_MAX_ANISOTROPY_EXT,

			largest);

}

This	code	tests	whether	anisotropic	filtering	is	available,

and	if	it	is,	you	ask	OpenGL	for	the	maximum	anisotropy

value.	Then	you	set	the	texture	parameter	to	use

anisotropic	filtering.

Figure	13.6	shows	the	ground	from	this	chapter’s	game

project	with	different	settings.	Figure	13.6(a)	shows	the

ground	using	only	bilinear	filtering;	note	how	the	ground

has	many	sampling	artifacts	on	the	edges	of	the	bricks.

Figure	13.6(b)	shows	trilinear	filtering	enabled;	this	is	an

improvement,	but	the	distant	ground	is	blurry.	Finally,

Figure	13.6(c)	shows	both	trilinear	filtering	and

anisotropic	filtering	enabled,	which	yields	the	best	visual

quality	of	the	three	choices.

Figure	13.6	Viewing	the	ground	with	different

filtering	methods:	(a)	bilinear	filtering,	(b)	trilinear

filtering,	and	(c)	trilinear	and	anisotropic	filtering

RENDERING	TO	TEXTURES
To	this	point,	you’ve	always	drawn	polygons	directly

to	the	color	buffer.	However,	this	color	buffer	isn’t

special;	it’s	just	a	2D	image	that	you	write	colors	to	at

specific	coordinates.	It	turns	out	you	can	also	draw

the	scene	to	any	arbitrary	texture,	or	render-to-

texture.	Although	this	may	seem	unnecessary,	there

are	many	reasons	you	may	want	to	render	to	a

texture.

For	example,	a	racing	game	might	have	a	car	with	a

rearview	mirror.	If	you	want	the	mirror	to	look	accurate,

you	might	render	the	game	world	from	the	perspective	of

the	rearview	mirror	to	a	texture	and	then	draw	the

texture	on	the	mirror	in	the	scene.	Furthermore,	some

graphical	techniques	use	textures	as	temporary	storage

before	computing	the	final	output	to	the	color	buffer.

This	section	explores	how	to	render	to	a	texture	and	then

display	this	texture	on	the	screen.	This	will	require	some

changes	to	the	overall	rendering	code,	which	previously

assumed	that	everything	writes	directly	to	the	color

buffer.	You	also	need	to	add	support	for	rendering	the

scene	from	the	perspectives	of	different	cameras.

notenote

For	high-quality	reflections,	such	as	for	a	large	mirror,	you	must	render	the
scene	from	the	perspective	of	the	surface.	However,	if	the	game	scene
contains	many	surfaces	that	need	low-quality	reflections,	rendering	the
scene	from	the	perspective	of	each	of	these	surfaces	is	too	expensive.	In	this
case,	you	can	instead	generate	a	single	reflection	map	of	the	entire	scene.
Then,	for	every	low-quality	reflective	surface,	you	sample	from	this	reflection
map	to	give	the	illusion	of	a	reflection.	Although	the	quality	is	significantly
lower	than	when	rendering	from	the	perspective	of	the	reflective	surface,	it	is

sufficient	for	surfaces	that	only	need	low-quality	reflections.

This	book	does	not	cover	how	to	implement	reflection	maps,	but	you	can
consult	the	“Additional	Reading”	section	at	the	end	of	this	chapter	for	further
information	on	the	topic.

Creating	the	Texture

To	render	to	a	texture,	you	first	need	to	create	a

texture.	You	can	add	a	new	function	to	the	Texture

class	to	support	creating	a	texture	for	rendering.	The

code	for	creating	a	texture,	shown	in	Listing	13.1,	is

like	the	code	for	creating	textures	from	Chapter	5.

However,	rather	than	assuming	that	you	want	an

RGBA	format	(which	will	result	in	8	bits	per

component	and	32	bits	per	pixel),	you	use	a

parameter	to	specify	the	format.	Second,	the	texture

has	no	initial	data,	which	is	why	the	last	parameter	to

glTexImage2D	is	nullptr.	If	this	last	parameter	is

nullptr,	then	the	second	and	third-to-last

parameters	are	ignored.	Finally,	you	purposefully	do

not	enable	mipmapping	or	bilinear	filtering	on	the

texture.	You	want	the	sampled	data	from	the	texture

to	precisely	match	the	actual	output.

Listing	13.1	Creating	a	Texture	for	Rendering

Click	here	to	view	code	image

void	Texture::CreateForRendering(int	width,	int	height,

																																	unsigned	int	format)

{

			mWidth	=	width;

			mHeight	=	height;

			//	Create	the	texture	id

			glGenTextures(1,	&mTextureID);

			glBindTexture(GL_TEXTURE_2D,	mTextureID);

			//	Set	the	image	width/height	with	null	initial	data

			glTexImage2D(GL_TEXTURE_2D,	0,	format,	mWidth,	mHeight,	0,	GL_RGB,

						GL_FLOAT,	nullptr);

	

			//	For	a	texture	we'll	render	to,	just	use	nearest	neighbor

			glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MIN_FILTER,	GL_NEAREST);

			glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MAG_FILTER,	GL_NEAREST);

}

Creating	a	Framebuffer	Object

Much	the	way	that	OpenGL	uses	a	vertex	array	object

to	contain	all	information	about	vertices	(including

the	vertex	buffer,	vertex	format,	and	index	buffer),	a

framebuffer	object	(FBO)	contains	all	information

about	a	framebuffer.	The	FBO	includes	any	textures

associated	with	the	framebuffer,	an	associated	depth

buffer	(if	it	exists),	and	other	parameters.	You	can

then	select	which	framebuffer	to	use	for	rendering.

OpenGL	provides	a	default	framebuffer	object	with

ID	0,	which	is	the	framebuffer	that	you’ve	been

drawing	to	up	to	this	point.	However,	you	can	also

create	additional	framebuffers	and	switch	to	other

framebuffers	as	needed.

For	now,	you	will	use	a	custom	framebuffer	object	for	a

rearview	mirror	that	you	display	in	the	HUD	onscreen.

First,	you	must	add	two	new	member	variables	to	the

Renderer	class:

Click	here	to	view	code	image

//	Framebuffer	object	for	the	mirror

unsigned	int	mMirrorBuffer;

//	Texture	for	the	mirror

class	Texture*	mMirrorTexture;

You	store	the	ID	of	the	framebuffer	object	you	create	in

mMirrorBuffer	and	the	texture	object	associated	with

the	framebuffer	in	mMirrorTexture.

Next,	you	need	a	function	that	creates	and	configures	the

mirror	framebuffer	object,	as	shown	in	Listing	13.2.

Several	steps	are	necessary	here.	First,

glGenFrameBuffers	creates	the	framebuffer	object

and	stores	the	ID	in	mMirrorBuffer.	The

glBindFrameBuffer	call	then	sets	this	framebuffer	as

active.	The	next	several	lines	of

CreateMirrorTexture	create	a	depth	buffer	and

attach	it	to	the	current	framebuffer	object.	This	way,

when	rendering	for	the	mirror,	you	still	have	a	depth

buffer	to	ensure	that	further	objects	appear	behind	closer

objects.

Then	you	create	the	mirror	texture,	with	a	width	and

height	one-quarter	the	size	of	the	screen.	You	don’t	use

the	full	screen	size	because	you	want	the	mirror	to	take

up	only	part	of	the	screen.	You	request	a	GL_RGB	format

for	the	texture	because	the	mirror	will	contain	the	color

output	of	the	scene	from	the	perspective	of	the	mirror.

Next,	the	glFramebufferTexture	call	associates	the

mirror	texture	with	the	framebuffer	object.	Note	how	you

specify	GL_COLOR_ATTACHMENT0	as	the	second

parameter.	This	says	that	the	mirror	texture	corresponds

to	the	first	color	output	of	the	fragment	shader.	Right

now,	your	fragment	shader	writes	only	one	output,	but	as

you’ll	see	later	in	this	chapter,	it’s	possible	to	write

multiple	outputs	from	the	fragment	shader.

The	glDrawBuffers	call	then	says	that	for	this

framebuffer	object,	you	want	to	be	able	to	draw	to	the

texture	in	the	GL_COLOR_ATTACHMENT0	slot	(which	is

the	mirror	texture).	Finally,	the	glCheckFrameBuffer

status	call	verifies	that	everything	worked	properly.	If

there	was	an	issue,	you	delete	the	framebuffer	object	and

mirror	texture	and	return	false.

Listing	13.2	Creating	the	Mirror	Framebuffer

Click	here	to	view	code	image

bool	Renderer::CreateMirrorTarget()

{

			int	width	=	static_cast<int>(mScreenWidth)	/	4;

			int	height	=	static_cast<int>(mScreenHeight)	/	4;

	

			//	Generate	a	framebuffer	for	the	mirror	texture

			glGenFramebuffers(1,	&mMirrorBuffer);

			glBindFramebuffer(GL_FRAMEBUFFER,	mMirrorBuffer);

	

			//	Create	the	texture	we'll	use	for	rendering

			mMirrorTexture	=	new	Texture();

			mMirrorTexture->CreateForRendering(width,	height,	GL_RGB);

	

			//	Add	a	depth	buffer	to	this	target

			GLuint	depthBuffer;

			glGenRenderbuffers(1,	&depthBuffer);

			glBindRenderbuffer(GL_RENDERBUFFER,	depthBuffer);

			glRenderbufferStorage(GL_RENDERBUFFER,	GL_DEPTH_COMPONENT,	width,			height);

			glFramebufferRenderbuffer(GL_FRAMEBUFFER,	GL_DEPTH_ATTACHMENT,

																													GL_RENDERBUFFER,	depthBuffer);

	

			//	Attach	mirror	texture	as	the	output	target	for	the	framebuffer

			glFramebufferTexture(GL_FRAMEBUFFER,	GL_COLOR_ATTACHMENT0,

						mMirrorTexture->GetTextureID(),	0);

	

			//	Set	the	list	of	buffers	to	draw	to	for	this	framebuffer

			GLenum	drawBuffers[]	=	{	GL_COLOR_ATTACHMENT0	};

			glDrawBuffers(1,	drawBuffers);

	

			//	Make	sure	everything	worked

			if	(glCheckFramebufferStatus(GL_FRAMEBUFFER)	!=	GL_FRAMEBUFFER_COMPLETE)

			{

						//	If	it	didn't	work,	delete	the	framebuffer,

						//	unload/delete	the	texture	and	return	false

						glDeleteFramebuffers(1,	&mMirrorBuffer);

						mMirrorTexture->Unload();

						delete	mMirrorTexture;

						mMirrorTexture	=	nullptr;

						return	false;

			}

			return	true;

}

In	Renderer::Initialize,	you	add	a	call	to

CreateMirrorTarget	and	verify	that	the	function

returns	true.	Similarly,	in	Renderer::Shutdown,	you

delete	the	mirror	framebuffer	and	mirror	textures	(using

the	same	code	that	runs	if	the	glCheckFrameBuffer

call	says	the	framebuffer	is	not	complete).

Rendering	to	a	Framebuffer	Object

To	support	a	mirror,	you	need	to	render	the	3D	scene

twice:	once	from	the	perspective	of	the	mirror	and

once	from	the	perspective	of	the	normal	camera.

Each	time	you	render	the	scene	is	a	render	pass.	To

assist	with	drawing	the	3D	scene	multiple	times,	you

can	create	a	Draw3DScene	function,	the	skeleton	of

which	is	in	Listing	13.3.

The	Draw3DScene	function	takes	in	the	ID	of	the

framebuffer,	the	view	matrix,	the	projection	matrix,	and

the	scale	of	the	viewport.	The	viewport	size	lets	OpenGL

know	the	actual	size	of	the	framebuffer	target	that	it’s

writing	to.	So,	you	need	a	viewport	scale	parameter	here

so	that	the	normal	framebuffer	can	use	the	full	screen

width	and	height,	but	the	mirror	can	use	its	one-fourth

size.	You	use	the	glViewport	call	to	set	the	viewport	to

the	correct	size	based	on	the	screen	width/height	and	the

scale.

The	code	for	drawing	meshes	is	the	same	as	in	Chapter	6,

“3D	Graphics,”	and	the	code	for	drawing	skinned	meshes

is	the	same	as	in	Chapter	12,	“Skeletal	Animation.”	Other

than	the	viewport	code,	the	only	other	difference	is	that

before	drawing	anything,	the	glBindFramebuffer	call

sets	the	active	framebuffer	to	the	requested	one.

Listing	13.3	Renderer::Draw3DScene	Helper

Function

Click	here	to	view	code	image

void	Renderer::Draw3DScene(unsigned	int	framebuffer,

			const	Matrix4&	view,	const	Matrix4&	proj,

			float	viewportScale)

{

			//	Set	the	current	framebuffer

			glBindFramebuffer(GL_FRAMEBUFFER,	framebuffer);

	

			//	Set	viewport	size	based	on	scale

			glViewport(0,	0,

						static_cast<int>(mScreenWidth	*	viewPortScale),

						static_cast<int>(mScreenHeight	*	viewPortScale)

);

	

			//	Clear	color	buffer/depth	buffer

			glClearColor(0.0f,	0.0f,	0.0f,	1.0f);

			glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT);

	

			//	Draw	mesh	components

			//	(Same	code	as	Chapter	6)

			//	...

	

			//	Draw	any	skinned	meshes	now

			//	(Same	code	as	Chapter	12)

			//	...

}

You	then	change	the	code	in	Renderer::Draw	to	call

Draw3DScene	twice,	as	in	Listing	13.4.	First,	you	draw

using	the	mirror’s	view	and	rendering	to	the	mirror

framebuffer,	and	then	you	draw	using	the	normal

camera’s	view	and	rendering	to	the	default	framebuffer.

Finally,	you	draw	the	sprites	and	UI	screens	using	the

code	from	Chapters	6	and	12.

Listing	13.4	Renderer::Draw	Updated	to	Render

Both	Mirror	and	Default	Passes

Click	here	to	view	code	image

void	Renderer::Draw()

{

			//	Draw	to	the	mirror	texture	first	(viewport	scale	of	0.25)

			Draw3DScene(mMirrorBuffer,	mMirrorView,	mProjection,	0.25f);

			//	Now	draw	the	normal	3D	scene	to	the	default	framebuffer

			Draw3DScene(0,	mView,	mProjection);

	

			//	Draw	all	sprite	components

			//	(Same	code	as	Chapter	6)

			//	...

	

			//	Draw	any	UI	screens

			//	(Same	code	as	Chapter	12)

			//	...

	

			//	Swap	the	buffers

			SDL_GL_SwapWindow(mWindow);

}

Here,	mMirrorView	is	a	separate	view	matrix	for	the

mirror.	The	specifics	of	the	mirror	view	aren’t	anything

new.	You	can	create	a	MirrorCamera	class	that	uses	a

basic	follow	camera,	as	in	Chapter	9,	“Cameras.”

However,		the	mirror	camera	is	in	front	of	the	character,

facing	behind	the	character.	This	MirrorCamera	then

attaches	to	the	player	actor	and	updates	mMirrorView.

Drawing	the	Mirror	Texture	in	the	HUD

Now	that	the	drawing	code	is	writing	to	the	mirror

texture,	you	can	use	it	just	like	any	other	texture	and

draw	it	onscreen.	Because	the	mirror	in	this	case	is

just	a	HUD	element,	you	can	leverage	the	existing

DrawTexture	functionality	in	UIScreen.

However,	drawing	with	the	existing	code	results	in	a

mirror	that	has	a	flipped	y	value	from	what	is	expected.

This	is	because,	internally,	OpenGL	places	the	UV	origin

at	the	bottom-left	corner	of	the	image	instead	of	in	the

top-left	corner	(as	is	more	typical).	Luckily,	this	is	easy

enough	to	fix:	When	drawing	the	texture,	you	already

create	a	scale	matrix.	If	you	negate	the	y-axis	of	this	scale

matrix,	it	will	flip	the	texture	in	the	y	direction.	To

support	this,	you	add	a	new	flipY	bool	as	an	optional

parameter	to	UIScreen::DrawTexture,	as	shown	in

Listing	13.5.	You	default	flipY	to	false	because	the

existing	UI	textures	don’t	need	their	y-axis	flipped.

Listing	13.5	Adding	a	flipY	Option	to
UIScreen::DrawTexture

Click	here	to	view	code	image

void	UIScreen::DrawTexture(class	Shader*	shader,	class	Texture*	texture,

			const	Vector2&	offset,	float	scale,	bool	flipY)

{

			//	Scale	the	quad	by	the	width/height	of	texture

			//	and	flip	the	y	if	we	need	to

			float	yScale	=	static_cast<float>(texture->GetHeight())	*	scale;

			if	(flipY)	{	yScale	*=	-1.0f;	}

	

			Matrix4	scaleMat	=	Matrix4::CreateScale(

						static_cast<float>(texture->GetWidth())	*	scale,

						yScale,

						1.0f);

	

	

			//	Translate	to	position	on	screen

			Matrix4	transMat	=	Matrix4::CreateTranslation(

						Vector3(offset.x,	offset.y,	0.0f));

	

			//	Set	world	transform

			Matrix4	world	=	scaleMat	*	transMat;

			shader->SetMatrixUniform("uWorldTransform",	world);

			//	Set	current	texture

			texture->SetActive();

			//	Draw	quad

			glDrawElements(GL_TRIANGLES,	6,	GL_UNSIGNED_INT,	nullptr);

}

Finally,	you	add	two	lines	to	HUD::Draw	to	display	the

mirror	texture	in	the	bottom-left	corner	of	the	screen,

with	a	scale	of	1.0	and	flipY	set	to	true:

Click	here	to	view	code	image

Texture*	mirror	=	mGame->GetRenderer()->GetMirrorTexture();

DrawTexture(shader,	mirror,	Vector2(-350.0f,	-250.0f),	1.0f,	true);

Figure	13.7	shows	the	mirror	in	action.	Notice	that	the

main	view	shows	the	normal	perspective,	which	faces	in

the	direction	of	the	Feline	Swordsman,	but	the	mirror	in

the	bottom	left	renders	the	scene	in	the	opposite

direction.

Figure	13.7	Game	with	a	rearview	mirror	in	the

bottom	left

DEFERRED	SHADING
Recall	that	the	Phong	lighting	implemented	in

Chapter	6	performs	the	lighting	calculations	for	each

fragment	when	drawing	a	mesh.	The	pseudocode	for

this	type	of	lighting	calculation	is	as	follows:

Click	here	to	view	code	image

foreach	Mesh	m	in	Scene

			foreach	Pixel	p	to	draw	from	m

						if	p	passes	depth	test

									foreach	Light	li	that	effects	p

												color	=	Compute	lighting	equation(li,	p)

												Write	color	to	framebuffer

This	method	of	performing	lighting	calculations,	called

forward	rendering,	works	well	with	a	small	number	of

lights.	For	example,	the	game	currently	has	only	one

directional	light,	so	forward	rendering	works	perfectly

fine.	However,	consider	a	game	that	takes	place	at	night

in	a	city.	For	such	a	game,	a	single	directional	light	won’t

yield	a	believable	nightscape.	Instead,	you	would	want

dozens	of	lights	for	street	lights,	car	headlights,	lights

inside	buildings,	and	so	on.	Unfortunately,	forward

rendering	doesn’t	scale	well	in	this	case.	You	need	to

compute	lighting	equations	on	the	order	of	O(m	·	p	·	li),

which	means	adding	several	more	lights	increases	the

amount	of	lighting	calculations	significantly.

An	alternative	approach	is	to	create	a	series	of	textures,

collectively	called	the	G-buffer,	to	store	information

about	the	visible	surfaces	in	the	scene.	This	G-buffer

might	contain	the	diffuse	color	(albedo),	specular	power,

and	normals	of	visible	surfaces	in	the	scene.	You	then

render	the	scene	in	two	passes.	First,	you	go	through

every	mesh	and	render	the	properties	of	their	surfaces	to

the	G-buffer.	Then,	in	the	second	pass,	you	loop	through

every	light	and	compute	the	lighting	equations	based	on

these	lights	and	what	is	in	the	G-buffer.	The	following

pseudocode	accomplishes	this:

Click	here	to	view	code	image

foreach	Mesh	m	in	Scene

			foreach	Pixel	p1	to	draw	from	m

						if	p	passes	depth	test

									Write	surface	properties	of	p1	to	G-buffer

foreach	Light	li	in	the	scene

			foreach	Pixel	p2	affected	by	li

						s	=	surface	properties	from	the	G-buffer	at	p2

						color	=	Compute	lighting	equation	(l,	s)

						Write	color	to	framebuffer

Note	how	the	complexity	of	this	two-pass	approach	is

O(m	·	p 	+	li	·	p).	This	means	that	you	can	support	far

more	lights	in	the	scene	than	with	forward	rendering.

Because	there	are	two	passes,	and	the	shading	of	the

fragment	onscreen	doesn’t	occur	until	the	second	pass,

this	technique	is	called	deferred	shading	(or

deferred	rendering).

Implementing	deferred	shading	requires	several	steps.

First,	you	must	set	up	a	framebuffer	object	that	supports

multiple	output	textures.	Then,	you	must	create

fragment	shaders	that	write	surface	properties	to	the	G-

buffer.	Next,	you	draw	a	quad	that	covers	the	entire

screen	and	samples	from	the	G-buffer	to	output	the

result	of	global	lighting	(such	as	directional	and	ambient

1 2

light).	Finally,	you	calculate	the	lighting	for	each	non-

global	light	(such	as	point	lights	or	spotlights).

Creating	a	G-Buffer	Class

Because	the	framebuffer	object	for	the	G-buffer	is	far

more	complex	than	the	one	for	the	mirror	in	the

preceding	section,	it	makes	sense	to	encapsulate	the

FBO	and	all	its	associated	textures	into	a	new

GBuffer	class.	Listing	13.6	shows	the	declaration	of

GBuffer.	You	declare	an	enum	that	defines	the

types	of	data	stored	in	the	different	G-buffer

textures.	The	G-buffer	in	this	chapter	stores	the

diffuse	color,	the	normals,	and	the	world	position	of

each	surface.

notenote

Storing	the	world	position	in	the	G-buffer	makes	your	later	calculations
simpler—but	at	the	expense	of	increased	memory	and	rendering	bandwidth
usage.

It’s	possible	to	reconstruct	the	world	position	at	a	pixel	from	the	depth	buffer
and	the	view-projection	matrix,	which	eliminates	the	need	for	the	world
position	in	the	G-buffer.	Consult	Phil	Djonov’s	article	in	the	“Additional
Reading”	section	at	the	end	of	the	chapter	to	learn	how	to	do	these
calculations.

One	surface	property	missing	from	this	G-buffer	is	the

specular	power.	This	means	you	currently	cannot

calculate	the	specular	component	of	the	Phong	reflection

model;	in	Exercise	13.1	you	will	fix	this.

In	the	member	data	for	GBuffer,	you	store	the

framebuffer	object	ID	as	well	as	a	vector	of	the	textures

that	serve	as	render	targets.

Listing	13.6	GBuffer	Declaration

Click	here	to	view	code	image

class	GBuffer

{

public:

			//	Different	types	of	data	stored	in	the	G-buffer

			enum	Type

			{

						EDiffuse	=	0,

						ENormal,

						EWorldPos,

						NUM_GBUFFER_TEXTURES

			};

	

			GBuffer();

			~GBuffer();

			//	Create/destroy	the	G-buffer

			bool	Create(int	width,	int	height);

			void	Destroy();

	

			//	Get	the	texture	for	a	specific	type	of	data

			class	Texture*	GetTexture(Type	type);

			//	Get	the	framebuffer	object	ID

			unsigned	int	GetBufferID()	const	{	return	mBufferID;	}

			//	Setup	all	the	G-buffer	textures	for	sampling

			void	SetTexturesActive();

private:

			//	Textures	associated	with	G-buffer

			std::vector<class	Texture*>	mTextures;

			//	Framebuffer	object	ID

			unsigned	int	mBufferID;

};

For	the	member	functions	of	GBuffer,	most	of	the	work

occurs	in	the	Create	function,	which	creates	a	G-buffer

of	the	specified	width	and	height.	Listing	13.7	gives	the

truncated	code	for	this	function.	The	Create	function

first	creates	a	framebuffer	object	and	adds	a	depth	buffer

target,	as	was	done	in	Listing	13.2.

Listing	13.7	GBuffer::Create	Implementation

Click	here	to	view	code	image

bool	GBuffer::Create(int	width,	int	height)

{

			//	Create	the	framebuffer	object	and	save	in	mBufferID

			//	...

			//	Add	a	depth	buffer	to	this	target

			//	...

	

			//	Create	textures	for	each	output	in	the	G-buffer

			for	(int	i	=	0;	i	<	NUM_GBUFFER_TEXTURES;	i++)

			{

						Texture*	tex	=	new	Texture();

						//	We	want	three	32-bit	float	components	for	each	texture

						tex->CreateForRendering(width,	height,	GL_RGB32F);

						mTextures.emplace_back(tex);

						//	Attach	this	texture	to	a	color	output

						glFramebufferTexture(GL_FRAMEBUFFER,	GL_COLOR_ATTACHMENT0	+	i,

																						tex->GetTextureID(),	0);

			}

	

			//	Create	a	vector	of	the	color	attachments

			std::vector<GLenum>	attachments;

			for	(int	i	=	0;	i	<	NUM_GBUFFER_TEXTURES;	i++)

			{

						attachments.emplace_back(GL_COLOR_ATTACHMENT0	+	i);

			}

			//	Set	the	list	of	buffers	to	draw	to

			glDrawBuffers(static_cast<GLsizei>(attachments.size()),

														attachments.data());

	

			//	Make	sure	everything	worked

			if	(glCheckFramebufferStatus(GL_FRAMEBUFFER)	!=

			GL_FRAMEBUFFER_COMPLETE)

			{

						Destroy();

						return	false;

			}

			return	true;

}

Next,	you	loop	over	each	type	of	texture	desired	in	the	G-

buffer	and	create	one	Texture	instance	for	each	type	of

data	(because	they	are	separate	render	targets).	Note

that	you	request	the	GL_RGB32F	format	for	each	texture.

This	means	there	are	three	components	per	texel,	and

each	of	these	components	is	a	32-bit	single-precision

floating-point	value.	You	then	attach	each	texture	to	a

corresponding	color	attachment	slot	with	the

glFramebufferTexture	call.	The	code	takes

advantage	of	the	fact	that	the	OpenGL	definitions	for	the

color	attachments	are	consecutive	numbers.

notenote

Although	GL_RGB32F	yields	a	lot	of	precision	for	the	values	in	the	G-buffer,
the	trade-off	is	that	the	G-buffer	takes	up	a	significant	amount	of	graphics
memory.	Three	GL_RGB32F	textures	at	a	resolution	of	1024×768	(your
screen	resolution)	takes	up	27	MB	of	memory	on	the	GPU.	To	reduce
memory	usage,	many	games	instead	use	GL_RGB16F	(three	half-precision
floats),	which	would	cut	the	memory	usage	in	half.

You	could	further	optimize	the	memory	usage	with	other	tricks.	For	example,
because	a	normal	is	unit	length,	given	the	x	and	y	components	and	the	sign
of	the	z	component,	you	can	solve	for	the	z	component.	This	means	you
could	store	the	normals	in	GL_RG16F	format	(two	half-precision	floats)	and
later	derive	the	z	component.	In	the	interest	of	simplicity,	this	chapter	does
not	implement	these	optimizations,	but	you	should	know	that	many
commercial	games	use	such	tricks.

You	then	create	a	vector	of	all	the	different	color

attachments	and	call	glDrawBuffers	to	set	the	texture

attachments	for	the	G-buffer.	Finally,	you	validate	that

creating	the	G-buffer	succeeds.	If	it	doesn’t,	the

Destroy	function	deletes	all	associated	textures	and

destroys	the	framebuffer	object.

Next,	you	add	a	GBuffer	pointer	to	the	member	data	of

Renderer:

class	GBuffer*	mGBuffer;

Then	in	Renderer::Initialize,	you	create	the

GBuffer	object	and	set	it	to	the	width/height	of	the

screen:

Click	here	to	view	code	image

mGBuffer	=	new	GBuffer();

int	width	=	static_cast<int>(mScreenWidth);

int	height	=	static_cast<int>(mScreenHeight);

if	(!mGBuffer->Create(width,	height))

{

			SDL_Log("Failed	to	create	G-buffer.");

			return	false;

}

In	Renderer::Shutdown,	you	add	code	that	calls	the

Destroy	member	function	on	mGBuffer.

Writing	to	the	G-buffer

Now	that	you	have	a	G-buffer,	you	need	to	write	data

into	it.	Recall	that	mesh	rendering	currently	uses	the

Phong	fragment	shader	to	write	final	(fully	lit)	colors

to	the	default	framebuffer.	However,	this	is

antithetical	to	the	approach	of	deferred	shading.	You

need	to	create	a	new	fragment	shader	that	writes

surface	properties	into	the	G-buffer.

Another	difference	is	that	every	previous	fragment

shader	wrote	only	a	single	output	value.	However,

fragment	shaders	can	have	multiple	output	values,	or

multiple	render	targets.	This	means	that	writing	to

each	texture	in	the	G-buffer	is	just	a	matter	of	writing	to

each	of	the	correct	outputs.	In	fact,	the	GLSL	code	for	the

main	function	of	the	fragment	shader	is	relatively	simple

compared	to	the	code	for	fragment	shaders	you’ve	seen

earlier	in	this	book.	You	sample	the	diffuse	color	from

the	texture	and	simply	pass	along	the	normal	and	world

position	directly	to	the	G-buffer.

Listing	13.8	gives	the	full	GLSL	code	for

GBufferWrite.frag.	Note	that	you	declare	three

different	out	values	for	the	three	different	G-buffer

textures.	You	also	specify	layout	locations	for	each	of	the

outputs;	these	numbers	correspond	to	the	color

attachment	indices	specified	when	creating	the	G-buffer.

Listing	13.8	GBufferWrite.frag	Shader

Click	here	to	view	code	image

#version	330

//	Inputs	from	vertex	shader

in	vec2	fragTexCoord;	//	Tex	coord

in	vec3	fragNormal;			//	Normal	(in	world	space)

in	vec3	fragWorldPos;	//	Position	(in	world	space)

	

//	This	corresponds	to	the	outputs	to	the	G-buffer

layout(location	=	0)	out	vec3	outDiffuse;

layout(location	=	1)	out	vec3	outNormal;

layout(location	=	2)	out	vec3	outWorldPos;

	

//	Diffuse	texture	sampler

uniform	sampler2D	uTexture;

	

void	main()

{

			//	Diffuse	color	is	from	texture

			outDiffuse	=	texture(uTexture,	fragTexCoord).xyz;

			//	Pass	normal/world	position	directly	along

			outNormal	=	fragNormal;

			outWorldPos	=	fragWorldPos;

}

You	then	change	the	shader	loading	code	for	the

mMeshShader	and	mSkinnedShader	to	use

GBufferWrite.frag	as	the	fragment	shader,	instead

of	the	previous	Phong.frag.

Finally,	in	Renderer::Draw,	you	remove	the	call	to

Draw3DScene,	which	draws	to	the	default	framebuffer.

You	instead	want	to	draw	to	the	G-buffer:

Click	here	to	view	code	image

Draw3DScene(mGBuffer->GetBufferID(),	mView,	mProjection,	1.0f,	false);

The	last	Boolean	parameter	is	new;	it	specifies	that

Draw3DScene	should	not	set	any	lighting	constants	on

the	mesh	shaders.	This	makes	sense	because	the

GBufferWrite.frag	shader	doesn’t	have	any	lighting

constants	to	set	in	the	first	place!

Running	the	game	at	this	point	would	yield	an	entirely

black	window	other	than	the	UI	elements.	This	is

because	although	you’re	writing	surface	properties	to	the

G-buffer,	you	aren’t	drawing	anything	to	the	default

framebuffer	based	on	these	surface	properties.	However,

by	using	a	graphics	debugger	such	as	RenderDoc	(see	the

sidebar	“Graphics	Debuggers”),	you	can	view	the	output

to	the	different	textures	in	the	G-buffer.	Figure	13.8

shows	a	visualization	of	the	output	to	the	different

components	of	the	G-buffer,	including	the	depth	buffer.

Figure	13.8	Output	to	the	different	components	of

the	G-buffer

GRAPHICS	DEBUGGERS

One	difficulty	with	writing	increasingly	complex	graphics	code	is	that	it	is
more	difficult	to	debug	than	normal	C++	code.	With	C++	code,	if	there	is
an	issue,	you	can	place	a	breakpoint	and	step	through	the	execution	of
the	code.	However,	if	the	game	does	not	show	the	correct	graphics
output,	it	could	be	one	of	several	issues.	It	might	be	that	you’re	calling
the	wrong	OpenGL	functions,	or	the	data	passed	to	the	shaders	is
wrong,	or	the	GLSL	shader	code	is	wrong.

This	difficulty	in	determining	the	source	of	problems	led	to	the	creation	of
graphics	debuggers.	There	are	several	graphics	debuggers	available,
some	of	which	are	proprietary	to	specific	types	of	graphics	hardware	or
consoles.	At	a	minimum,	these	debuggers	allow	you	to	capture	a	frame
of	graphics	data	and	step	through	the	commands	executed	to	see	how
the	output	to	the	framebuffer	changes.	They	also	allow	you	to	view	all
the	data	sent	to	the	GPU,	including	vertex	data,	textures,	and	shader
constants.	Some	even	allow	you	to	step	through	the	execution	of	a
vertex	or	pixel	shader	to	see	where	it	goes	wrong.

For	Windows	and	Linux,	the	best	graphics	debugger	that	supports
OpenGL	is	RenderDoc	(https://renderdoc.org),	an	open	source	tool
created	by	Baldur	Karlsson.	In	addition	to	OpenGL,	it	supports
debugging	for	Vulkan	as	well	as	Microsoft	Direct3D	11	and	12	(the	latter
two	only	on	Windows).	Unfortunately,	at	this	writing,	RenderDoc	has	no
macOS	support.

https://renderdoc.org

For	macOS	users,	Intel	Graphics	Performance	Analyzers	(GPA)	is	a
great	alternative.	See	https://software.intel.com/en-us/gpa.

Global	Lighting

Now	that	the	game	is	writing	surface	properties	to

the	G-buffer,	the	next	step	is	to	use	these	properties

to	display	a	fully	lit	scene.	This	section	focuses	on

global	lights	such	as	the	ambient	and	a	global

directional	light.	The	basic	premise	is	to	draw	a	quad

the	size	of	the	screen	to	the	default	framebuffer.	For

each	fragment	in	this	quad,	you	sample	surface

properties	from	the	G-buffer.	Then,	using	these

surface	properties,	you	can	compute	the	same	Phong

lighting	equations	from	Chapter	6	to	light	the

fragment.

First,	you	create	a	vertex	and	fragment	shader	in	GLSL

for	global	lighting	from	the	G-buffer.	Because	you’re

ultimately	drawing	a	quad	to	the	screen,	the	vertex

shader	is	identical	to	the	sprite	vertex	shader	from

Chapter	5.	The	fragment	shader,	shown	in	Listing	13.9,

has	some	differences	from	the	Phong	fragment	shader.

First,	the	only	input	from	the	vertex	shader	is	the	texture

coordinates.	This	is	because	the	normal	and	world

positions	at	the	fragment	are	in	the	G-buffer.	Next,	you

add	three	sampler2D	uniforms	for	the	three	different

textures	in	the	G-buffer	(diffuse	color,	normal,	and	world

position).	In	the	main	function	for	the	fragment	shader,

you	sample	the	diffuse	color,	normal,	and	world	position

from	the	G-buffer	textures.	This,	combined	with	the

https://software.intel.com/en-us/gpa

directional	light	uniforms	(as	in	Chapter	6),	gives	all	the

information	needed	to	light	the	fragment	with	the

ambient	and	diffuse	components	of	the	Phong	reflection

model.	You	cannot	calculate	the	specular	component

because	this	depends	on	the	specular	power	of	each

surface,	and	you	currently	do	not	store	the	specular

information	in	the	G-buffer.	(In	Exercise	13.1	you	explore

adding	the	specular	component.)

After	calculating	the	Phong	ambient	and	diffuse

component,	you	multiply	the	diffuse	color	of	the	surface

(from	the	G-buffer)	to	compute	the	final	color	at	the

pixel.

Listing	13.9	GBufferGlobal.frag	Shader

Click	here	to	view	code	image

#version	330

//	Inputs	from	vertex	shader

in	vec2	fragTexCoord;	//	Tex	coord

	

layout(location	=	0)	out	vec4	outColor;

	

//	Different	textures	from	G-buffer

uniform	sampler2D	uGDiffuse;

uniform	sampler2D	uGNormal;

uniform	sampler2D	uGWorldPos;

	

//	Lighting	uniforms	(as	in	Chapter	6)

//	...

	

void	main()

{

			//	Sample	diffuse	color,	normal,	world	position	from	G-buffer

			vec3	gbufferDiffuse	=	texture(uGDiffuse,	fragTexCoord).xyz;

			vec3	gbufferNorm	=	texture(uGNormal,	fragTexCoord).xyz;

			vec3	gbufferWorldPos	=	texture(uGWorldPos,	fragTexCoord).xyz;

	

			//	Calculate	Phong	lighting	(as	in	Chapter	6,	minus	specular)

			//	...

	

			//	Final	color	is	diffuse	color	times	phong	light

			outColor	=	vec4(gbufferDiffuse	*	Phong,	1.0);

}

With	the	global	lighting	vertex	and	fragment	shader	code

written,	the	next	step	is	to	load	these	shaders	in	the

Renderer	class.	You	create	a	Shader*	member	variable

called	mGGlobalShader	and	instantiate	it	in	the

LoadShader	function.	In	this	code,	shown	in	Listing

13.10,	you	first	load	the	vertex	and	fragment	shader	files.

Then,	you	set	some	of	the	uniforms	for	the	shader.

The	SetIntUniform	calls	associate	each	of	the	three

sampler2D	uniforms	in	the	fragment	shader	with	a

specific	texture	index.	The	first	SetMatrixUniform	call

sets	the	view-projection	matrix	to	be	identical	to	the

sprite	view-projection	matrix	(because	you’re	drawing	a

quad).		The	second	call	sets	the	world	transform	to	scale

the	quad	to	the	entire	screen	and	invert	the	y-axis	(to

solve	the	inverted	y	problem,	as	when	drawing	the

mirror	texture	to	the	screen).

Listing	13.10	Loading	the	G-buffer	Global	Lighting

Shader

Click	here	to	view	code	image

mGGlobalShader	=	new	Shader();

if	(!mGGlobalShader->Load("Shaders/GBufferGlobal.vert",

			"Shaders/GBufferGlobal.frag"))

{

			return	false;

}

//	For	the	GBuffer,	we	need	to	associate	each	sampler	with	an	index

mGGlobalShader->SetActive();

mGGlobalShader->SetIntUniform("uGDiffuse",	0);

mGGlobalShader->SetIntUniform("uGNormal",	1);

mGGlobalShader->SetIntUniform("uGWorldPos",	2);

//	The	view	projection	is	just	the	sprite	one

mGGlobalShader->SetMatrixUniform("uViewProj",	spriteViewProj);

//	The	world	transform	scales	to	the	screen	and	flips	y

Matrix4	gbufferWorld	=	Matrix4::CreateScale(mScreenWidth,

			-mScreenHeight,	1.0f);

mGGlobalShader->SetMatrixUniform("uWorldTransform",	gbufferWorld);

Next,	you	add	a	function	to	the	GBuffer	class	that	binds

each	texture	in	the	G-buffer	to	a	corresponding	texture

index:

Click	here	to	view	code	image

void	GBuffer::SetTexturesActive()

{

			for	(int	i	=	0;	i	<	NUM_GBUFFER_TEXTURES;	i++)

			{

						mTextures[i]->SetActive(i);

			}

}

Here,	the	SetActive	function	called	on	each	texture

takes	in	an	index,	which	corresponds	to	the	indices	set

on	the	sampler2D	uniforms	in	GLSL.

The	final	step	is	to	add	a	function	to	Renderer	that

draws	the	G-buffer	quad	using	the	global		lighting

shader.	You	create	a	new	DrawFromGBuffer	function,

as	shown	in	Listing	13.11.	Because	the	first	step	in

Renderer::Draw	is	now	to	draw	the	scene	to	the	G-

buffer,	DrawFromGBuffer	is	now	the	first	code	that

draws	to	the	default	framebuffer.	You	need	to	disable

depth	testing	for	the	quad,	as	you	don’t	want	it	to	affect

the	depth	buffer.	You	then	set	the	G-buffer	shader	and

sprite	quad	vertices	as	active	and	call	the

SetTexturesActive	function	to	activate	all	the	G-

buffer	textures.	You	then	use	the	SetLightUniforms

function,	created	in	Chapter	6,	to	set	all	the	directional

light	uniforms	in	the	G-buffer	shader.	Finally,	you	draw

the	quad,	which	invokes	your	G-buffer	fragment	shader

for	every	fragment	onscreen.

Listing	13.11	Renderer::DrawFromGBuffer

Implementation

Click	here	to	view	code	image

void	Renderer::DrawFromGBuffer()

{

			//	Disable	depth	testing	for	the	global	lighting	pass

			glDisable(GL_DEPTH_TEST);

			//	Activate	global	G-buffer	shader

			mGGlobalShader->SetActive();

			//	Activate	sprite	verts	quad

			mSpriteVerts->SetActive();

			//	Set	the	G-buffer	textures	to	sample

			mGBuffer->SetTexturesActive();

			//	Set	the	lighting	uniforms

			SetLightUniforms(mGGlobalShader,	mView);

	

			//	Draw	the	triangles	for	the	quad

			glDrawElements(GL_TRIANGLES,	6,	GL_UNSIGNED_INT,	nullptr);

}

Next,	you	change	the	code	at	the	start	of

Renderer::Draw	to	first	draw	the	3D	scene	to	the	G-

buffer,	change	the	framebuffer	to	the	default	and	finally

call	DrawFromGBuffer.	After	this,	you	render	the

sprites	and	UI	screens	as	before:

Click	here	to	view	code	image

//	Draw	the	3D	scene	to	the	G-buffer

Draw3DScene(mGBuffer->GetBufferID(),	mView,	mProjection,	false);

//	Set	the	framebuffer	back	to	zero	(screen's	framebuffer)

glBindFramebuffer(GL_FRAMEBUFFER,	0);

//	Draw	from	the	GBuffer

DrawFromGBuffer();

//	Draw	Sprite/UI	as	before

//	...

With	the	global	lighting	shader	code	in	place,	the

rendering	code	now	draws	the	entire	scene	fully	lit	once

again.	Figure	13.9	shows	the	scene	output.	Note	that

because	you	are	no	longer	calculating	the	specular

component	of	the	Phong	lighting	equation,	the	scene

looks	darker	than	before—even	with	a	slightly	higher

ambient	light	value	than	you	had	previously.	However,

you	can	still	see	the	entire	scene,	and	other	than	the

darkness,	it	looks	like	the	forward-rendered	scene.	Also,

note	that	the	mirror	still	works	properly,	even	though

you	still	use	forward	rendering	for	the	mirror	(and

because	of	the	higher	ambient	light,	the	mirror	looks

brighter	than	before).

Figure	13.9	Scene	with	global	lights	calculated	via

deferred	shading

Adding	Point	Lights

Recall	that	one	of	the	main	reasons	to	use	deferred

shading	is	that	it	scales	very	well	as	the	number	of

lights	in	the	scene	increases.	This	section	discusses

how	to	add	support	for	many	non-global	lights.

Suppose	the	game	has	100	different	point	lights.	You

could	create	a	uniform	array	in	the	shader	that	stores	all

the	information	about	these	point	lights,	including

position,	color,	radius,	and	so	on.	Then	in	the

GBufferGlobal.frag	shader	code,	you	could	loop

over	these	point	lights.	Using	the	G-buffer	sampled

world	position,	you	could	figure	out	whether	a	fragment

is	within	range	of	a	point	light	and,	if	so,	compute	the

Phong	equation	for	this.

Although	this	approach	could	work,	there	are	some

issues	with	it.	You	need	to	test	every	fragment	against

every	point	light,	even	for	lights	that	are	nowhere	near

the	fragment.	This	means	a	lot	of	conditional	checks	in

the	shader	code,	which	is	expensive.

The	solution	to	these	problems	is	to	instead	use	light

geometry,	or	meshes	that	represent	the	lights.	Because

a	point	light	has	a	radius,	its	corresponding	light

geometry	is	a	sphere	placed	in	the	world.	Drawing	this

sphere	will	then	trigger	a	fragment	shader	call	for	every

fragment	the	sphere	touches.	Using	the	world	position

information	from	the	G-buffer,	you	can	compute	the

intensity	of	the	light	to	the	fragment.

Adding	a	PointLightComponent	Class
For	point	lights,	you	can	create	a	component	so	that

it’s	easy	to	attach	to	any	actor	to	move	the	light.	First,

you	declare	the	PointLightComponent	class,	as

shown	in	Listing	13.12.	For	simplicity,	you	make	its

member	variables	public.	The	diffuse	color	is	simply

the	diffuse	color	of	the	point	light.	The	inner	and

outer	radius	variables	determine	the	area	of

influence	of	the	point	light.	The	outer	radius	is	the

maximum	distance	from	which	the	point	light	affects

an	object.	The	inner	radius	is	the	radius	at	which

the	point	light	applies	its	full	intensity	of	light.

Anything	inside	the	inner	radius	has	the	full	diffuse

color,	while	the	color	intensity	falls	off	when

approaching	the	outer	radius.	The	point	light	doesn’t

affect	anything	past	the	outer	radius.

Listing	13.12	PointLightComponent	Declaration

Click	here	to	view	code	image

class	PointLightComponent

{

public:

			PointLightComponent(class	Actor*	owner);

			~PointLightComponent();

	

			//	Draw	this	point	light	as	geometry

			void	Draw(class	Shader*	shader,	class	Mesh*	mesh);

	

			//	Diffuse	color

			Vector3	mDiffuseColor;

			//	Radius	of	light

			float	mInnerRadius;

			float	mOuterRadius;

};

You	then	add	a	vector	of	PointLightComponent

pointers	to	the	Renderer	class	called	mPointLights.

The	constructor	for	PointLightComponent	adds	the

light	to	mPointLights,	and	the	destructor	removes	the

light	from	the	vector.

Point	Light	Fragment	Shader
The	next	step	is	to	create	a

GBufferPointLight.frag	fragment	shader	file.

As	in	the	GBufferGlobal.frag	shader,	you	need

to	declare	three	different	sampler2D	uniforms	for

the	three	different	G-buffer	textures.	Unlike	with	the

global	lighting	shader,	however,	you	need	to	store

information	about	a	specific	point	light.	You	declare

a	PointLight	struct	and	add	a	uPointLight

uniform	for	this.	You	also	add	a	uniform,

uScreenDimensions,	that	stores	the	width/height

of	the	screen:

Click	here	to	view	code	image

//	Additional	uniforms	for	GBufferPointLight.frag

struct	PointLight

{

			//	Position	of	light

			vec3	mWorldPos;

			//	Diffuse	color

			vec3	mDiffuseColor;

			//	Radius	of	the	light

			float	mInnerRadius;

			float	mOuterRadius;

};

uniform	PointLight	uPointLight;

//	Stores	width/height	of	screen

uniform	vec2	uScreenDimensions;

The	shader’s	main	function,	given	in	Listing	13.13,	is

different	from	the	global	light	shader	in	several	ways.

With	the	quad	you	drew	for	global	lighting,	you	could

simply	use	the	texture	coordinates	of	the	quad	to	sample

correctly	into	the	G-buffer.	However,	using	the	texture

coordinates	from	the	point	light’s	sphere	mesh	would	not

yield	a	correct	UV	coordinate	to	sample	into	the	G-

buffer.	Instead,	you	can	use	gl_FragCoord,	which	is	a

built-in	GLSL	variable	that	contains	the	position	in

screen	space	of	the	fragment.	In	this	instance,	you	only

care	about	the	x	and	y	coordinates.	However,	because	UV

coordinates	are	in	the	range	[0,	1],	you	need	to	divide	the

screen	space	coordinates	by	the	dimensions	of	the

screen.	The	division	operator	in	this	case	is	a

component-wise	division.

Once	you	have	the	correct	UV	coordinates,	you	use	them

to	sample	the	diffuse,	normal,	and	world	positions	from

the	G-buffer.	Next,	you	compute	the	N	and	L	vectors,

much	as	in	the	previous	Phong	fragment	shader.

Listing	13.13	GBufferPointLight.frag	Main

Function

Click	here	to	view	code	image

void	main()

{

			//	Calculate	the	coordinate	to	sample	into	the	G-buffer

			vec2	gbufferCoord	=	gl_FragCoord.xy	/	uScreenDimensions;

	

			//	Sample	from	G-buffer

			vec3	gbufferDiffuse	=	texture(uGDiffuse,	gbufferCoord).xyz;

			vec3	gbufferNorm	=	texture(uGNormal,	gbufferCoord).xyz;

			vec3	gbufferWorldPos	=	texture(uGWorldPos,	gbufferCoord).xyz;

	

			//	Calculate	normal	and	vector	from	surface	to	light

			vec3	N	=	normalize(gbufferNorm);

			vec3	L	=	normalize(uPointLight.mWorldPos	-	gbufferWorldPos);

			//	Compute	Phong	diffuse	component	for	the	light

			vec3	Phong	=	vec3(0.0,	0.0,	0.0);

			float	NdotL	=	dot(N,	L);

			if	(NdotL	>	0)

			{

						//	Get	the	distance	between	the	light	and	the	world	pos

						float	dist	=	distance(uPointLight.mWorldPos,	gbufferWorldPos);

						//	Use	smoothstep	to	compute	value	in	range	[0,1]

						//	between	inner/outer	radius

						float	intensity	=	smoothstep(uPointLight.mInnerRadius,

																												uPointLight.mOuterRadius,	dist);

						//	The	diffuse	color	of	the	light	depends	on	intensity

						vec3	DiffuseColor	=	mix(uPointLight.mDiffuseColor,

																								vec3(0.0,	0.0,	0.0),	intensity);

						Phong	=	DiffuseColor	*	NdotL;

			}

			//	Final	color	is	texture	color	times	phong	light

			outColor	=	vec4(gbufferDiffuse	*	Phong,	1.0);

}

However,	when	computing	the	diffuse	color,	you	first

calculate	the	distance	between	the	point	light’s	center

and	the	fragment’s	world	position.	Then,	the

smoothstep	function	calculates	a	value	in	the	range	[0,

1].	The	function	returns	0	for	distances	less	than	or	equal

to	the	inner	radius	and	1	for	distances	greater	than	or

equal	to	the	outer	radius.	Distances	in	between	yield

some	value	in	between.	The	smoothstep	function	uses

a	Hermite	function	(a	type	of	polynomial)	to	calculate

this	in-between	value.	The	resulting	value	corresponds	to

an	intensity	of	the	diffuse	light;	the	value	0	means	full

intensity	because	the	fragment	is	within	the	inner	radius,

whereas	the	value	1	means	the	point	light	should	not

affect	the	fragment.

You	then	compute	the	applied	DiffuseColor	based	on

the	intensity	value.	Here,	the	mix	function	performs	a

linear	interpolation	between	the	point	light’s	diffuse

color	and	pure	black.	Remember	that	you	do	not

calculate	the	specular	component	of	the	Phong	reflection

here	because	you	currently	do	not	have	access	to	the

specular	power	in	the	G-buffer.

It’s	important	to	understand	that	because	point	light

rendering	occurs	after	the	global	light	G-buffer

calculations,	each	fragment	in	the	framebuffer	already

has	a	color.	You	don’t	want	the	point	light	shader	to

overwrite	the	colors	that	are	already	there.	For	example,

if	a	fragment’s	world	position	says	it’s	out	of	range	of	the

point	light,	the	shader	will	return	black.	If	you	just	set

the	fragment	to	black,	you	lose	all	the	color	that	was

already	there	from	the	global	lighting	pass.

Instead,	you	want	to	add	the	output	of	the	point	light

shader	to	whatever	color	is	already	there.	Adding	black

to	the	color	does	not	change	any	of	the	RGB	values,

which	means	it	preserves	the	existing	light.	On	the	other

hand,	if	you	add	a	green	value,	that	makes	the	fragment

greener.	Adding	the	output	color	to	the	existing	color

doesn’t	require	any	changes	to	the	fragment	shader	code

itself;	instead,	you	can	do	this	on	the	C++	side	of	things.

Drawing	Point	Lights
You	need	to	add	some	glue	code	to	Renderer	and

PointLightComponent	before	you	can	draw	the

point	lights	in	DrawFromGBuffer.	First,	you	add	a

new	shader	member	variable	called

mGPointLightShader.	You	then	load	this	shader

in	LoadShaders.	For	the	vertex	shader,	you	use	the

BasicMesh.vert	shader	from	Chapter	6	because

the	point	light’s	sphere	mesh	doesn’t	need	any

special	behavior.	For	the	fragment	shader,	you	use

the	GBufferPointLight.frag	shader.

As	with	the	global	lighting	shader,	you	need	to	set	the

uniforms	for	the	different	samplers	to	bind	them	to

specific	G-buffer	textures.	You	also	set	the

uScreenDimensions	uniform	to	the	width	and	height

of	the	screen.

You	also	add	a	mPointLightMesh	member	variable

that	simply	points	to	the	mesh	you	want	to	use	for	the

point	lights.	You	load	the	mesh	when	initializing	the

Renderer	and	save	it	in	the	variable;	the	mesh	in

question	is	a	sphere.

Now	you	add	additional	code	to	DrawFromGBuffer,

shown	in	Listing	13.14.	This	code	goes	after	all	the	code

that	drew	the	full-screen	quad	that	applied	global

lighting.	The	first	part	of	this	code	copies	the	depth

buffer	from	the	G-buffer	to	the	default	framebuffer’s

depth	buffer.	Because	you’re	drawing	the	3D	scene	to	the

G-buffer,	its	depth	buffer	contains	the	actual	depth

information	for	every	fragment.	Because	you	want	to

depth	test	the	point	light	spheres,	you	need	to	copy	over

this	information	to	the	default	depth	buffer.

Listing	13.14	Drawing	Point	Lights	in
Renderer::DrawFromGBuffer

Click	here	to	view	code	image

//	Copy	depth	buffer	from	G-buffer	to	default	framebuffer

glBindFramebuffer(GL_READ_FRAMEBUFFER,	mGBuffer->GetBufferID());

int	width	=	static_cast<int>(mScreenWidth);

int	height	=	static_cast<int>(mScreenHeight);

glBlitFramebuffer(0,	0,	width,	height,

			0,	0,	width,	height,

			GL_DEPTH_BUFFER_BIT,	GL_NEAREST);

//	Enable	depth	test,	but	disable	writes	to	depth	buffer

glEnable(GL_DEPTH_TEST);

glDepthMask(GL_FALSE);

	

//	Set	the	point	light	shader	and	mesh	as	active

mGPointLightShader->SetActive();

mPointLightMesh->GetVertexArray()->SetActive();

//	Set	the	view-projection	matrix

mGPointLightShader->SetMatrixUniform("uViewProj",

			mView	*	mProjection);

//	Set	the	G-buffer	textures	for	sampling

mGBuffer->SetTexturesActive();

//	The	point	light	color	should	add	to	existing	color

glEnable(GL_BLEND);

glBlendFunc(GL_ONE,	GL_ONE);

	

//	Draw	the	point	lights

for	(PointLightComponent*	p	:	mPointLights)

{

			p->Draw(mGPointLightShader,	mPointLightMesh);

}

Next,	you	reenable	the	depth	test	(because	you	disabled

it	when	drawing	the	full-screen	quad	for	the	global

lighting),	but	you	disable	the	depth	mask.	This	means

that	when	you	try	to	draw	fragments	for	each	point

light’s	sphere,	they	need	to	pass	the	depth	test,	but	these

fragments	do	not	write	new	depth	values	to	the	depth

buffer.	This	ensures	that	the	point	light	sphere	meshes

do	not	interfere	with	the	existing	depth	buffer	values.

Because	you’re	disabling	depth	buffer	writes	here,	you

add	a	corresponding	call	to	the	beginning	of

Draw3DScene	that	reenables	writes	to	the	depth	buffer.

(Otherwise,	you	can’t	clear	the	depth	buffer!)

Then	you	activate	the	shader	for	the	point	lights	as	well

as	the	corresponding	point	light	mesh.	You	need	to	set

the	view-projection	matrix	just	as	for	any	other	object

rendered	in	the	world	to	make	sure	the	point	light	has

the	correct	location	onscreen.	You	also	need	to	bind	the

G-buffer	textures	to	their	respective	slots.

Because	you	want	to	add	to	the	colors	already	in	the

color	buffer,	you	enable	blending.	The	blend	function

with	GL_ONE	as	both	parameters	says	that	you	just	want

to	directly	add	the	two	colors,	without	considering	the

alpha	values	or	any	other	parameters.

Finally,	you	loop	over	all	the	point	lights	and	call	the

Draw	function	on	each	point	light.	The	code	for

PointLightComponent::Draw,	shown	in	Listing

13.15,	doesn’t	look	that	much	different	from	the	code	for

drawing	any	other	mesh.	For	the	world	transform

matrix,	you	need	to	scale	based	on	the	outer	radius	of	the

light.	You	divide	by	the	radius	of	the	mesh	because	the

point	light	mesh	does	not	have	a	unit	radius.	The

translation	is	just	based	on	the	position	of	the	light,

which	comes	from	the	owning	actor.

Furthermore,	you	need	to	set	the	different	uniforms	for

this	specific	point	light,	which	isn’t	different	from	how

you’ve	set	the	uniforms	before.	Finally,	the

glDrawElements	call	draws	the	light	geometry	for	the

point	light,	which	is	your	sphere	mesh.	You	don’t	need	to

set	the	vertex	array	as	active	because	the	Renderer	does

this	before	calling	Draw.

Once	you	draw	all	the	point	light	meshes,	for	every

fragment	you	calculate	the	contribution	of	the	point	light

to	the	color	of	the	fragment.	You	then	add	this	additional

light	color	to	the	already	existing	color	from	the	global

lighting	pass.

Listing	13.15	PointLightComponent::Draw

Implementation

Click	here	to	view	code	image

void	PointLightComponent::Draw(Shader*	shader,	Mesh*	mesh)

{

			//	Scale	world	transform	to	the	outer	radius	(divided	by

			//	the	mesh	radius)	and	positioned	to	the	world	position

			Matrix4	scale	=	Matrix4::CreateScale(mOwner->GetScale()	*

						mOuterRadius	/	mesh->GetRadius());

			Matrix4	trans	=	Matrix4::CreateTranslation(mOwner->GetPosition());

			Matrix4	worldTransform	=	scale	*	trans;

			shader->SetMatrixUniform("uWorldTransform",	worldTransform);

			//	Set	point	light	shader	constants

			shader->SetVectorUniform("uPointLight.mWorldPos",				mOwner->GetPosition());

			shader->SetVectorUniform("uPointLight.mDiffuseColor",	mDiffuseColor);

			shader->SetFloatUniform("uPointLight.mInnerRadius",	mInnerRadius);

			shader->SetFloatUniform("uPointLight.mOuterRadius",	mOuterRadius);

	

			//	Draw	the	sphere

			glDrawElements(GL_TRIANGLES,	mesh->GetVertexArray()->GetNumIndices(),

						GL_UNSIGNED_INT,	nullptr);

}

To	demonstrate	the	point	light	rendering,	this	chapter’s

game	project	creates	several	point	lights	with	different

colors	along	the	floor.	Figure	13.10	illustrates	these	point

lights,	powered	by	deferred	shading.

Figure	13.10	Numerous	point	lights	in	the	game

project

Improvements	and	Issues

Although	deferred	shading	is	a	very	powerful

rendering	technique	used	by	many	modern	games,	it

isn’t	perfect.	One	problem	is	that	it	can’t	handle

partially	transparent	objects	such	as	windows.

Because	the	G-buffer	can	only	store	a	single	surface’s

properties,	drawing	such	an	object	into	the	G-buffer

would	overwrite	the	objects	behind	it.	The	solution

for	this	case	is	to	draw	transparent	objects	in	a

separate	pass	after	drawing	the	rest	of	the	scene.

Also,	for	some	types	of	games,	the	overhead	of	setting	up

the	G-buffer	and	rendering	to	multiple	targets	is	not

worth	it.	If	a	game	takes	place	largely	during	the	day	or

has	a	very	small	number	of	lights,	the	cost	of	the	deferred

shading	setup	every	frame	might	be	higher	than	the	cost

of	a	forward-rendering	approach.	Many	virtual-reality

games,	which	need	a	very	high	frame	rate,	use	forward

rendering	for	this	reason.

Another	issue	is	that	the	light	geometry	has	many	edge

cases	to	consider	and	fix.	For	example,	if	the	point	light

sphere	partially	intersects	with	a	wall,	the	point	light	will

affect	both	sides	of	the	wall	in	the	current	approach.

Also,	if	you	create	a	very	big	point	light	but	place	the

camera	inside	the	light,	you	don’t	see	the	effect	of	that

light.	To	fix	these	light	geometry	issues,	you	need	to	use	a

stencil	buffer,	which	is	a	different	type	of	output	buffer.

GAME	PROJECT
This	chapter’s	game	project	provides	the	full

implementation	of	deferred	shading.	In	addition,	it

uses	both	mipmapping	and	anisotropic	aliasing	to

improve	texture	quality.	The	project	includes	the

mirror	texture	that’s	forward	rendered.	The	code	is

available	in	the	book’s	GitHub	repository,	in	the

Chapter13	directory.	Open	Chapter13-

windows.sln	in	Windows	and	Chapter13-

mac.xcodeproj	on	Mac.

There	are	no	changes	to	the	controls	or	character	from

the	previous	chapter.	The	player	still	uses	the	WASD	keys

to	move	the	character	around.	To	demonstrate	the	point

lights,	several	point	lights	are	provided	in

Game::LoadData.

SUMMARY
This	chapter	covers	a	handful	of	intermediate

graphics	techniques.	First,	it	looks	at	how	texture

filtering	works—both	nearest-neighbor	filtering	and

bilinear	filtering.	Mipmapping	can	reduce	sampling

artifacts	when	reducing	the	size	of	textures	because	it

generates	several	lower-resolution	textures.

However,	for	oblique	surfaces,	mipmapping	may

appear	blurry.	In	this	case,	anisotropic	filtering

improves	the	quality	of	the	textures.

Another	powerful	technique	is	rendering	the	scene	to

textures.	OpenGL	allows	creation	of	arbitrary

framebuffer	objects	associated	with	textures.	Then,	you

can	choose	to	draw	the	3D	scene	to	this	texture.	One	use

of	this	technique	is	to	draw	a	high-quality	reflection,

such	as	for	a	mirror.

Finally,	this	chapter	explores	deferred	shading,	which	is

a	two-pass	approach	to	lighting.	In	the	first	pass,	you

write	the	object’s	surface	properties,	such	as	diffuse

color,	normals,	and	world	position,	into	a	G-buffer.	In

the	second	pass,	you	read	from	the	G-buffer	to	calculate

lighting	equations.	For	lights	with	limited	ranges,	such	as

point	lights,	you	render	lighting	geometry	to	ensure	that

the	light	affects	only	the	fragments	in	range.	Deferred

shading	is	an	excellent	approach	when	there	are	many

lights	in	the	scene,	though	there	are	some	issues,	such	as

the	inability	to	handle	partially	transparent	objects.

ADDITIONAL	READING
As	mentioned	in	Chapter	6,	Real-Time	Rendering	by

Thomas	Akenine-Moller	et	al.	is	the	go-to	book	when

it	comes	to	rendering	techniques	and	games.	Jason

Zink	et	al.	give	a	good	overview	of	many	techniques,

including	deferred	shading,	even	though	the	book

focuses	on	Direct3D	11	instead	of	OpenGL.	Matt

Pharr	et	al.	cover	physically	based	rendering,	which

is	a	newer	technique	games	use	to	achieve	more

realistic	lighting.	Wolfgang	Engel’s	books	are	always

on	the	cutting	edge	of	what	graphics	programmers	in

the	video	game	industry	are	using.	Phil	Djonov

discusses	how	to	eliminate	the	need	for	the	world

position	in	the	G-buffer.	Finally,	sometimes	to

understand	how	various	OpenGL	extensions	work,

you	need	to	read	the	official	registry.

Akenine-Moller,	Thomas,	Eric	Haines,	and

Naty	Hoffman.	Real-Time	Rendering,	3rd

edition.	Natick:	A	K	Peters,	2008.

Djonov,	Phil.	“Deferred	Shading	Tricks.”

Shiny	Pixels.	Accessed	November	26,	2017.

http://vec3.ca/code/graphics/deferred-

shading-tricks/.

Engel,	Wolfgang,	ed.	GPU	Zen:	Advanced

Rendering	Techniques.	Encinitas:	Black	Cat

Publishing,	2017.

Khronos	Group.	OpenGL	Extensions

Registry.	Accessed	October	16,	2017.

https://github.com/KhronosGroup/OpenGL-

http://vec3.ca/code/graphics/deferred-shading-tricks/
https://github.com/KhronosGroup/OpenGL-Registry

Registry.

Pharr,	Matt,	Wenzel	Jakob,	and	Greg

Humphreys.	Physically	Based	Rendering:

From	Theory	to	Implementation,	3rd

edition.	Cambridge:	Elsevier,	2017.

Zink,	Jason,	Matt	Pettineo,	and	Jack

Hoxley.	Practical	Rendering	and

Computation	with	Direct3D	11.	Boca

Raton:	CRC	Press,	2012.

EXERCISES
In	this	chapter’s	exercises,	you	explore	improving	the

deferred	shading	techniques	covered	in	the	latter	half

of	the	chapter.

Exercise	13.1

Add	support	for	the	specular	component	to	both	the

global	G-buffer	lighting	(the	directional	light)	and

the	point	lights.	To	do	this,	first	you	need	a	new

texture	in	the	G-buffer	that	stores	the	specular	power

of	the	surface.	Add	this	new	texture	to	the	relevant

parts	of	code	(both	in	C++	and	in	GLSL).

Next,	change	the	PointLightComponent	class,	the

PointLightComponent::Draw	function,	and	the

shader	code	for	point	lights	and	the	global	light.	For	the

point	lights,	use	the	intensity	to	interpolate	the	specular

color,	as	is	done	for	the	diffuse	color.	Calculate	the

specular	component	according	to	the	Phong	equations,

as	before.

Exercise	13.2

Adding	a	new	type	of	light	to	deferred	shading

requires	a	new	type	of	light	geometry.	Add	support

for	spotlights.	To	do	so,	you	need	to	create	a

SpotLightComponent	as	well	as	a	corresponding

shader	to	draw	these	lights	after	the	point	lights.

Use	the	provided	SpotLight.gpmesh	file	(which	is	a

cone)	as	the	mesh	for	spotlights.	A	spotlight	should	have

parameters	like	those	of	a	point	light,	but	it	also	needs	a

variable	for	its	angle.	To	be	able	to	change	the	angle,	the

mesh	needs	to	also	scale	non-uniformly.	The	default

mesh	has	a	half	angle	of	30	degrees.

CHAPTER	14

LEVEL	FILES	AND
BINARY	DATA

This	chapter	explores	how	to	load	and	save

JSON-based	level	files	representing	the	game

world.	These	level	files	store	global

properties	as	well	as	properties	of	all	the

actors	and	components	in	the	game.

In	addition,	this	chapter	explores	the	trade-

offs	of	using	text-based	file	formats	versus

binary	file	formats.	As	an	example,	it

discusses	an	implementation	of	a	binary

mesh	file	format.

LEVEL	FILE	LOADING
To	this	point,	this	book	hasn’t	used	a	data-driven

approach	to	the	placement	of	objects	in	the	game

world.	Instead,	the	Game::LoadData	function	code

dictates	the	actors	and	components	in	the	game,	as

well	as	global	properties,	such	as	the	ambient	light.

The	current	approach	has	several	disadvantages,

most	notably	that	even	small	changes,	such	as

placement	of	a	cube	in	a	level,	requires	recompilation

of	the	source	code.	A	designer	who	wants	to	change

the	placement	of	objects	in	the	game	shouldn’t	have

to	change	the	C++	source	code.

The	solution	is	to	create	a	separate	data	file	for	the	level.

This	data	file	should	be	able	to	specify	which	actors	the

level	contains	and	which	properties	and,	optionally,

adjust	the	components	of	these	actors.	This	level	file

should	also	include	any	needed	global	properties.

For	a	2D	game,	using	a	basic	text	file	works	perfectly

well.	You	can	simply	define	different	ASCII	characters

for	different	objects	in	the	world	and	create	a	text	grid	of

these	objects.	This	makes	the	level	file	look	like	ASCII

art.	Unfortunately,	this	approach	doesn’t	work	very	well

for	a	3D	game	because	each	object	in	the	game	world

could	be	at	some	arbitrary	3D	coordinate.	Furthermore,

in	the	game	object	model	used	in	this	book,	actors	can

have	components,	so	you	may	need	to	also	save

properties	of	each	attached	component.

For	all	the	reasons	just	listed,	you	need	a	file	format

that’s	more	structured.	As	with	the	rest	of	the	book,	in

this	chapter	you	once	again	use	a	text-based	JSON

format	for	data.	However,	this	chapter	also	explores	the

trade-offs	that	any	text	format	makes,	as	well	as

techniques	needed	for	binary	file	formats.

This	section	explores	building	up	a	JSON-level	file

format.	You	start	with	global	properties	and	slowly	add

additional	features	to	the	file	so	that	the

Game::LoadData	function	has	barely	any	code	other

than	a	function	call	that	specifies	the	level	file	to	load.

Unlike	earlier	chapters,	this	chapter	explores	the	usage

of	the	RapidJSON	library	to	parse	in	the	JSON	file.

Loading	Global	Properties

The	only	global	properties	the	game	world	really	has

are	the	lighting	properties—the	ambient	light	and	the

global	directional	light.	With	such	a	limited	number

of	properties,	this	is	a	good	starting	point	for

defining	the	JSON	level	file	format.	Listing	14.1

shows	how	you	might	specify	the	global	lighting

properties	in	the	level	file.

Listing	14.1	Level	with	Global	Lighting	Properties

(Level0.gplevel)

Click	here	to	view	code	image

{

			"version":	1,

			"globalProperties":	{

						"ambientLight":	[0.2,	0.2,	0.2],

						"directionalLight":	{

									"direction":	[0.0,	-0.707,	-0.707],

									"color":	[0.78,	0.88,	1.0]

						}

			}

}

Listing	14.1	shows	several	constructs	that	you	commonly

encounter	in	a	level	file.	First,	at	its	core,	a	JSON

document	is	a	dictionary	of	key/value	pairs	(or

properties)	called	a	JSON	object.	The	key	name	is	in

quotes,	and	then	the	value	follows	the	colon.	Values	can

be	of	several	types.	The	basic	types	are	strings,	numbers,

and	Booleans.	The	complex	types	are	arrays	and	JSON

objects.	For	this	file,	the	globalProperties	key

corresponds	to	a	JSON	object.	This	JSON	object	then	has

two	keys:	one	for	the	ambient	light	and	one	for	the

directional	light.	The	ambientLight	key	corresponds	to

an	array	of	three	numbers.	Similarly,	the

directionalLight	key	corresponds	to	another	JSON

object,	with	two	additional	keys.

This	nesting	of	JSON	objects	and	properties	drives	the

implementation	of	the	parsing	code.	Specifically,	you	can

see	common	operations	where,	given	a	JSON	object	and

a	key	name,	you	want	to	read	in	a	value.	And	in	your	C++

code,	the	types	you	have	are	far	more	varied	than	the

JSON	format,	so	you	should	add	code	to	assist	with

parsing.

To	parse	these	global	properties	in	code,	you	begin	by

declaring	a	LevelLoader	class.	Because	loading	the

level	from	a	file	affects	the	state	of	the	game,	but	not	the

level	loader	itself,	you	declare	the	LoadLevel	function

as	a	static	function,	as	follows:

Click	here	to	view	code	image

class	LevelLoader

{

public:

			//	Load	the	level	--	returns	true	if	successful

			static	bool	LoadLevel(class	Game*	game,	const	std::string&	fileName);

};

Note	that	in	addition	to	the	filename,	the	LoadLevel

function	takes	in	the	pointer	to	the	Game	object.	This	is

necessary	because	creating	or	modifying	anything

requires	access	to	the	game.

The	first	step	in	LoadLevel	is	to	load	and	parse	the

level	file	into	a	rapidjson::Document.	The	most

efficient	approach	is	to	first	load	the	entire	file	into

memory	and	then	pass	this	buffer	to	the	Parse	member

function	of	the	Document.	Because	loading	a	JSON	file

into	a	Document	is	a	common	operation,	it	makes	sense

to	create	a	helper	function.	This	way,	gpmesh,	gpanim,

and	any	other	asset	types	that	need	to	load	in	a	JSON	file

can	also	reuse	this	function.

Listing	14.2	shows	the	implementation	of	LoadJSON.

This	function	is	also	a	static	function.	It	takes	in	the

filename	and	a	reference	to	the	output	document.	The

first	step	loads	the	file	into	an	ifstream.	Note	that	you

load	the	file	in	binary	mode	instead	of	text	mode.	This	is

for	efficiency	purposes	because	all	you	need	to	do	is	load

the	entire	file	into	a	character	buffer	(array)	and	pass

that	buffer	directly	to	RapidJSON.	You	also	use	the

std::ios::ate	flag	to	specify	that	the	stream	should

start	at	the	end	of	the	file.

If	the	file	loads	successfully,	you	use	the	tellg	function

to	get	the	current	position	of	the	file	stream.	Because	the

stream	is	at	the	end	of	the	file,	this	corresponds	to	the

size	of	the	entire	file.	Next,	you	have	the	seekg	call	set

the	stream	back	to	the	beginning	of	the	file.	You	then

create	a	vector	with	enough	space	to	fit	the	entire	file

plus	a	null	terminator	and	have	the	read	function	read

the	file	into	the	vector.	Finally,	you	call	the	Parse

function	on	outDoc	to	parse	the	JSON	file.

Listing	14.2	LevelLoader::LoadJSON

Implementation

Click	here	to	view	code	image

bool	LevelLoader::LoadJSON(const	std::string&	fileName,

																											rapidjson::Document&	outDoc)

{

			//	Load	the	file	from	disk	into	an	ifstream	in	binary	mode,

			//	loaded	with	stream	buffer	at	the	end	(ate)

			std::ifstream	file(fileName,	std::ios::in	|

																						std::ios::binary	|	std::ios::ate);

			if	(!file.is_open())

			{

						SDL_Log("File	%s	not	found",	fileName.c_str());

						return	false;

			}

	

			//	Get	the	size	of	the	file

			std::ifstream::pos_type	fileSize	=	file.tellg();

			//	Seek	back	to	start	of	file

			file.seekg(0,	std::ios::beg);

	

			//	Create	a	vector	of	size	+	1	(for	null	terminator)

			std::vector<char>	bytes(static_cast<size_t>(fileSize)	+	1);

			//	Read	in	bytes	into	vector

			file.read(bytes.data(),	static_cast<size_t>(fileSize));

	

			//	Load	raw	data	into	RapidJSON	document

			outDoc.Parse(bytes.data());

			if	(!outDoc.IsObject())

			{

						SDL_Log("File	%s	is	not	valid	JSON",	fileName.c_str());

						return	false;

			}

	

			return	true;

}

You	then	call	LoadJSON	at	the	start	of	LoadLevel:

Click	here	to	view	code	image

rapidjson::Document	doc;

if	(!LoadJSON(fileName,	doc))

{

			SDL_Log("Failed	to	load	level	%s",	fileName.c_str());

			return	false;

}

Given	a	JSON	object,	you	need	to	read	in	keys	and

extract	their	corresponding	values.	You	shouldn’t	assume

that	a	given	key	will	always	be	there,	so	you	should	first

validate	that	the	key	exists	and	matches	the	expected

type.	If	it	does,	you	read	in	the	value.	You	can	implement

this	behavior	in	another	class	with	a	static	function

called	JsonHelper.	Listing	14.3	shows	the

JsonHelper::GetInt	function.	It	tries	to	find	the

property,	validates	that	it	matches	the	expected	type,	and

then	returns	true	if	successful.

Listing	14.3	JsonHelper::GetInt	Implementation

Click	here	to	view	code	image

bool	JsonHelper::GetInt(const	rapidjson::Value&	inObject,

																									const	char*	inProperty,	int&	outInt)

{

			//	Check	if	this	property	exists

			auto	itr	=	inObject.FindMember(inProperty);

			if	(itr	==	inObject.MemberEnd())

			{

						return	false;

			}

	

			//	Get	the	value	type,	and	check	it's	an	integer

			auto&	property	=	itr->value;

			if	(!property.IsInt())

			{

						return	false;

			}

	

			//	We	have	the	property

			outInt	=	property.GetInt();

			return	true;

}

You	can	then	use	the	GetInt	function	in	LoadLevel	to

validate	that	the	loaded	file’s	version	matches	the

expected	version:

Click	here	to	view	code	image

int	version	=	0;

if	(!JsonHelper::GetInt(doc,	"version",	version)	||

			version	!=	LevelVersion)

{

			SDL_Log("Incorrect	level	file	version	for	%s",	fileName.c_str());

			return	false;

}

Here,	the	JSON	object	in	question	is	the	overall

document	(the	root	JSON	object).	You	first	make	sure

that	GetInt	returns	a	value	and,	if	it	does,	you	check

that	its	value	matches	the	expected	value	(a	const	called

LevelVersion).

You	also	add	similar	functions	to	JsonHelper	to	extract

other	basic	types:	GetFloat,	GetBool,	and

GetString.	However,	where	this	paradigm	really

becomes	powerful	is	for	non-basic	types.	Specifically,

many	properties	in	this	game	are	of	type	Vector3	(such

as	ambientLight),	so	having	a	GetVector3	function

is	very	useful.	The	overall	construction	of	the	function	is

still	the	same,	except	you	need	to	validate	that	the

property	is	an	array	with	three	members	that	are	floats.

You	can	similarly	declare	a	GetQuaternion	function.

Ambient	and	Directional	Lights
With	the	helper	functions	in	place,	you	can	create	a

function	to	load	in	the	global	properties.	Because	the

global	properties	are	varied	and	may	not	necessarily

need	the	same	class	types,	you	must	manually	query

the	specific	properties	you	need.	The

LoadGlobalProperties	function	in	Listing	14.4

demonstrates	how	to	load	the	ambient	light	and

directional	light	properties.	Notice	that	for	the	most

part,	you	call	the	helper	functions	you’ve	created	for

these	properties.

Note	that	you	can	access	a	property	as	a

rapidjson::Value&	directly	through	operator[].

The	dirObj["directionalLight"]	call	gets	the

value	with	the	directionalLight	key	name,	and	then

the	IsObject()	call	validates	that	the	type	of	the	value

is	a	JSON	object.

Another	interesting	pattern	for	the	directional	light	is	to

have	direct	access	to	variables	you	want	to	set.	In	this

case,	you	do	not	need	to	add	any	conditional	checks	on

the	GetVector3	calls.	This	is	because	if	the	property

requested	does	not	exist,	the	Get	functions	guarantee

not	to	change	the	variable.	If	you	have	direct	access	to	a

variable	and	don’t	care	if	the	property	is	unset,	then	this

reduces	the	amount	of	code.

Listing	14.4
LevelLoader::LoadGlobalProperties

Implementation

Click	here	to	view	code	image

void	LevelLoader::LoadGlobalProperties(Game*	game,

			const	rapidjson::Value&	inObject)

{

			//	Get	ambient	light

			Vector3	ambient;

			if	(JsonHelper::GetVector3(inObject,	"ambientLight",	ambient))

			{

						game->GetRenderer()->SetAmbientLight(ambient);

			}

			//	Get	directional	light

			const	rapidjson::Value&	dirObj	=	inObject["directionalLight"];

			if	(dirObj.IsObject())

			{

						DirectionalLight&	light	=	game->GetRenderer()->GetDirectionalLight();

						//	Set	direction/color,	if	they	exist

						JsonHelper::GetVector3(dirObj,	"direction",	light.mDirection);

						JsonHelper::GetVector3(dirObj,	"color",	light.mDiffuseColor);

			}

}

You	then	add	a	call	to	LoadGlobalProperties	in

LoadLevel,	immediately	after	the	validation	code	for

the	level	file	version:

Click	here	to	view	code	image

//	Handle	any	global	properties

const	rapidjson::Value&	globals	=	doc["globalProperties"];

if	(globals.IsObject())

{

			LoadGlobalProperties(game,	globals);

}

You	can	then	add	a	call	to	LoadLevel	in

Game::LoadData,	which	loads	in	the

Level0.gplevel	file:

Click	here	to	view	code	image

LevelLoader::LoadLevel(this,	"Assets/Level0.gplevel");

Because	you’re	now	loading	in	the	light	properties	from

the	level	file,	you	can	also	remove	the	code	in	LoadData

that	hard-coded	the	ambient	light	and	directional	light.

Loading	Actors

Loading	in	the	actors	means	the	JSON	file	needs	an

array	of	actors,	and	each	actor	has	property

information	for	that	actor.	However,	you	need	some

way	to	specify	which	type	of	Actor	you	need

(because	there	are	subclasses).	In	addition,	you	want

to	avoid	having	a	long	set	of	conditional	checks	in	the

level	loading	code	to	determine	which	Actor

subclass	to	allocate.

As	before,	it	helps	to	first	visualize	what	the	data	might

look	like.	Listing	14.5	shows	one		method	to	specify	the

actors	in	the	JSON	file.	This	example	only	shows	actors

of	type	TargetActor,	but	the	type	can	easily	specify	any

other	Actor	subclass.	Note	that	in	addition	to	the	type

are	any	other	properties	to	specify	for	that	actor.	Here,

the	only	properties	set	are	position	and	rotation,	but

these	could	conceivably	be	any	property	the	actor	has.

Listing	14.5	Level	with	Actors	(Level1.gplevel)

Click	here	to	view	code	image

{

			//	Version	and	global	properties

			//	...

			"actors":	[

						{

									"type":	"TargetActor",

									"properties":	{

												"position":	[1450.0,	0.0,	100.0]

									}

						},

						{

									"type":	"TargetActor",

									"properties":	{

												"position":	[0.0,	-1450.0,	200.0],

												"rotation":	[0.0,	0.0,	0.7071,	0.7071]

									}

						},

						{

									"type":	"TargetActor",

									"properties":	{

												"position":	[0.0,	1450.0,	200.0],

												"rotation":	[0.0,	0.0,	-0.7071,	0.7071]

									}

						}

]

}

Assuming	for	a	moment	that	you	have	a	method	to

construct	an	actor	of	a	specific	type,	you	also	need	to	be

able	to	load	properties	for	the	actor.	The	simplest

approach	is	to	create	a	virtual	LoadProperties

function	in	the	base	Actor	class,	shown	in	Listing	14.6.

Listing	14.6	Actor::LoadProperties	Function

Click	here	to	view	code	image

void	Actor::LoadProperties(const	rapidjson::Value&	inObj)

{

			//	Use	strings	for	different	states

			std::string	state;

			if	(JsonHelper::GetString(inObj,	"state",	state))

			{

						if	(state	==	"active")

						{

									SetState(EActive);

						}

						else	if	(state	==	"paused")

						{

									SetState(EPaused);

						}

						else	if	(state	==	"dead")

						{

									SetState(EDead);

						}

			}

	

			//	Load	position,	rotation,	and	scale,	and	compute	transform

			JsonHelper::GetVector3(inObj,	"position",	mPosition);

			JsonHelper::GetQuaternion(inObj,	"rotation",	mRotation);

			JsonHelper::GetFloat(inObj,	"scale",	mScale);

			ComputeWorldTransform();

}

Then,	for	some	subclass	of	Actor,	you	can	override	the

LoadProperties	function	to	load	any	additional

properties,	as	needed:

Click	here	to	view	code	image

void	SomeActor::LoadProperties(const	rapidjson::Value&	inObj)

{

			//	Load	base	actor	properties

			Actor::LoadProperties(inObj);

	

			//	Load	any	of	my	custom	properties

			//	...

}

Now	that	you	have	a	way	to	load	properties,	the	next	step

is	to	solve	the	issue	of	constructing	an	actor	of	the	correct

type.	One	approach	is	to	create	a	map	where	the	key	is

the	string	name	of	the	actor	type,	and	the	value	is	a

function	that	can	dynamically	allocate	an	actor	of	that

type.	The	key	is	straightforward	because	it’s	just	a	string.

For	the	value,	you	can	make	a	static	function	that

dynamically	allocates	an	actor	of	a	specific	type.	To	avoid

having	to	declare	a	separate	function	in	each	subclass	of

Actor,	you	can	instead	create	a	template	function	like

this	in	the	base	Actor	class:

Click	here	to	view	code	image

template	<typename	T>

static	Actor*	Create(class	Game*	game,	const	rapidjson::Value&	inObj)

{

			//	Dynamically	allocate	actor	of	type	T

			T*	t	=	new	T(game);

			//	Call	LoadProperties	on	new	actor

			t->LoadProperties(inObj);

			return	t;

}

Because	it’s	templated	on	a	type,	it	can	dynamically

allocate	an	object	of	the	specified	type	and	then	call

LoadProperties	to	set	any	parameters	of	the	actor

type,	as	needed.

Then,	back	in	LevelLoader,	you	need	to	create	the

map.	The	key	type	is	std::string,	but	for	the	value,

you	need	a	function	that	matches	the	signature	of	the

Actor::Create	function.	For	this,	you	can	once	again

use	the	std::function	helper	class	to	define	the

signature.

First,	you	use	an	alias	declaration	(which	is	like	a

typedef)	to	create	an	ActorFunc	type	specifier:

Click	here	to	view	code	image

using	ActorFunc	=	std::function<

			class	Actor*(class	Game*,	const	rapidjson::Value&)

>;

The	template	parameters	to	std::function	specify

that	the	function	returns	an	Actor*	and	takes	in	two

parameters:	Game*	and	rapidjson::Value&.

Next,	you	declare	the	map	as	a	static	variable	in

LevelLoader:

Click	here	to	view	code	image

static	std::unordered_map<std::string,	ActorFunc>	sActorFactoryMap;

Then	in	LevelLoader.cpp,	you	construct	the

sActorFactoryMap	to	fill	in	the	different	actors	you

can	create:

Click	here	to	view	code	image

std::unordered_map<std::string,	ActorFunc>	LevelLoader::sActorFactoryMap

{

			{	"Actor",	&Actor::Create<Actor>	},

			{	"BallActor",	&Actor::Create<BallActor>	},

			{	"FollowActor",	&Actor::Create<FollowActor>	},

			{	"PlaneActor",	&Actor::Create<PlaneActor>	},

			{	"TargetActor",	&Actor::Create<TargetActor>	},

};

This	initialization	syntax	sets	up	entries	in	the	map	with

a	key	as	the	specified	string	name	and	the	value	as	the

address	of	an	Actor::Create	function,	templated	to

create	the	specific	type	of	Actor	subclass.	Note	that	you

don’t	call	the	various	create	functions	here.	Instead,	you

just	get	the	memory	address	of	a	function	and	save	it	for

later	use.

With	the	map	set	up,	you	can	now	create	a	LoadActors

function,	as	in	Listing	14.7.	Here,	you	loop	over	the

actors	array	in	the	JSON	file	and	get	the	type	string	for

the	actor.	You	use	this	type	to	then	look	up	in

sActorFactoryMap.	If	you	find	the	type,	you	call	the

function	stored	as	the	value	in	the	map	(iter-

>second),	which	in	turn	calls	the	correct	version	of

Actor::Create.	If	you	don’t	find	the	type,	you	have	a

helpful	debug	log	message	output.

Listing	14.7	LevelLoader::LoadActors

Implementation

Click	here	to	view	code	image

void	LevelLoader::LoadActors(Game*	game,	const	rapidjson::Value&	inArray)

{

			//	Loop	through	array	of	actors

			for	(rapidjson::SizeType	i	=	0;	i	<	inArray.Size();	i++)

			{

						const	rapidjson::Value&	actorObj	=	inArray[i];

						if	(actorObj.IsObject())

						{

									//	Get	the	type

									std::string	type;

									if	(JsonHelper::GetString(actorObj,	"type",	type))

									{

												//	Is	this	type	in	the	map?

												auto	iter	=	sActorFactoryMap.find(type);

												if	(iter	!=	sActorFactoryMap.end())

												{

															//	Construct	with	function	stored	in	map

															Actor*	actor	=	iter->second(game,	actorObj["properties"]);

												}

												else

												{

															SDL_Log("Unknown	actor	type	%s",	type.c_str());

												}

									}

						}

			}

}

You	then	add	a	call	to	LoadActors	inside	LoadLevel,

immediately	after	loading	in	the	global	properties:

Click	here	to	view	code	image

const	rapidjson::Value&	actors	=	doc["actors"];

if	(actors.IsArray())

{

			LoadActors(game,	actors);

}

With	this	code,	you’re	now	loading	in	actors	and	setting

their	properties.	However,	you		are	not	yet	able	to	adjust

properties	of	components	nor	add	additional

components	in	the	level	file.

Loading	Components

Loading	data	for	components	involves	many	of	the

same	patterns	as	for	actors.	However,	there	is	one

key	difference.	Listing	14.8	shows	a	snippet	of	the

declaration	of	two	different	actors	with	their

components	property	set.	The	base	Actor	type

does	not	have	any	existing	components	attached	to

it.	So	in	this	case,	the	MeshComponent	type	means

that	you	must	construct	a	new	MeshComponent	for

the	actor.	However,	the	TargetActor	type	already

has	a	MeshComponent,	as	one	is	created	in	the

constructor	for	TargetActor.	In	this	case,	the

properties	specified	should	update	the	existing

component	rather	than	create	a	new	one.	This	means

the	code	for	loading	components	needs	to	handle

both	cases.

Listing	14.8	Actors	with	Components	in	JSON	(Excerpt

from	the	Full	File)

Click	here	to	view	code	image

"actors":	[

			{

						"type":	"Actor",

						"properties":	{

									"position":	[0.0,	0.0,	0.0],

									"scale":	5.0

						},

						"components":	[

									{

												"type":	"MeshComponent",

												"properties":	{	"meshFile":	"Assets/Sphere.gpmesh"	}

									}

]

			},

			{

						"type":	"TargetActor",

						"properties":	{	"position":	[1450.0,	0.0,	100.0]	},

						"components":	[

									{

												"type":	"MeshComponent",

												"properties":	{	"meshFile":	"Assets/Sphere.gpmesh"	}

									}

]

			}

]

To	determine	whether	Actor	already	has	a	component

of	a	specific	type,	you	need	a	way	to	search	through	an

actor’s	component	vector	by	type.	While	you	might	be

able	to	use	the	built-in	type	information	in	C++,	it’s	more

common	for	game	programmers	to	use	their	own	type

information	(and	disable	the	built-in	functionality).	This

is	mainly	because	of	the	well-documented	downsides	of

the	built-in	C++	Run-type	type	information	(RTTI)	not

obeying	the	“you	only	pay	for	what	you	use”	rule.

There	are	many	ways	to	implement	your	own	type

information;	this	chapter	shows	a	simple	approach.	First,

you	declare	a	TypeID	enum	in	the	Component	class,

like	so:

Click	here	to	view	code	image

enum	TypeID

{

			TComponent	=	0,

			TAudioComponent,

			TBallMove,

			//	Other	types	omitted

			//	...

			NUM_COMPONENT_TYPES

};

Then,	you	add	a	virtual	function	called	GetType	that

simply	returns	the	correct	TypeID	based	on	the

component.	For	example,	the	implementation	of

MeshComponent::GetType	is	as	follows:

Click	here	to	view	code	image

TypeID	GetType()	const	override	{	return	TMeshComponent;	}

Next,	you	add	a	GetComponentOfType	function	to

Actor	that	loops	through	the	mComponents	vector	and

returns	the	first	component	that	matches	the	type:

Click	here	to	view	code	image

Component*	GetComponentOfType(Component::TypeID	type)

{

			Component*	comp	=	nullptr;

			for	(Component*	c	:	mComponents)

			{

						if	(c->GetType()	==	type)

						{

									comp	=	c;

									break;

						}

			}

			return	comp;

}

The	disadvantage	of	this	approach	is	that	every	time	you

create	a	new	Component	subclass,	you	must	remember

to	add	an	entry	to	the	TypeID	enum	and	implement	the

GetType	function.	You	could	automate	this	somewhat

by	using	macros	or	templates,	but	the	code	here	does	not

do	so	for	the	sake	of	readability	and	understanding.

Note	that	this	system	also	assumes	that	you	won’t	have

multiple	components	of	the	same	type	attached	to	one

actor.	If	you	wanted	to	have	multiple	components	of	the

same	type,	then	GetComponentOfType	would

potentially	have	to	return	a	collection	of	components

rather	than	just	a	single	pointer.

Also,	the	type	information	does	not	give	inheritance

information;	you	can’t	figure	out

SkeletalMeshComponent	is	a	subclass	of

MeshComponent,	as	GetType	for

SkeletalMeshComponent	just	returns

TSkeletalMeshComponent.	To	support	inheritance

information,	you	would	need	an	approach	that	saves

some	hierarchy	information	as	well.

With	the	basic	type	system	in	place,	you	can	move	on	to

more	familiar	steps.	As	with	Actor,	you	need	to	create	a

virtual	LoadProperties	function	in	the	base

Component	class	and	then	override	it	for	any	subclasses,

as	needed.	The	implementations	in	the	various

subclasses	are	not	necessarily	straightforward.	Listing

14.9	shows	the	implementation	of	LoadProperties	for

MeshComponent.	Recall	that	MeshComponent	has	an

mMesh	member	variable	that’s	a	pointer	to	the	vertex

data	to	draw.	You	don’t	want	to	specify	the	vertex

directly	in	the	JSON	file;	instead,	you	want	to	reference

the	gpmesh	file.	The	code	first	checks	for	the	meshFile

property	and	then	gets	the	corresponding	mesh	from	the

renderer.

Listing	14.9	MeshComponent::LoadProperties

Implementation

Click	here	to	view	code	image

void	MeshComponent::LoadProperties(const	rapidjson::Value&	inObj)

{

			Component::LoadProperties(inObj);

	

			std::string	meshFile;

			if	(JsonHelper::GetString(inObj,	"meshFile",	meshFile))

			{

						SetMesh(mOwner->GetGame()->GetRenderer()->GetMesh(meshFile));

			}

	

			int	idx;

			if	(JsonHelper::GetInt(inObj,	"textureIndex",	idx))

			{

						mTextureIndex	=	static_cast<size_t>(idx);

			}

	

			JsonHelper::GetBool(inObj,	"visible",	mVisible);

			JsonHelper::GetBool(inObj,	"isSkeletal",	mIsSkeletal);

}

The	next	step	is	to	add	a	static	templated	Create

function	for	Component,	which	is	very	similar	to	the	one

in	Actor	except	that	the	parameters	are	different.	(It

takes	in	Actor*	as	the	first	parameter	instead	of

Game*.)

You	then	need	a	map	in	LevelLoader.	You	use

std::function	again	to	create	a	helper	type	called

ComponentFunc:

Click	here	to	view	code	image

using	ComponentFunc	=	std::function<

			class	Component*(class	Actor*,	const	rapidjson::Value&)

>;

Then,	you	declare	the	map.	However,	unlike	with	the

sActorFactoryMap,	which	has	only	a	single	value,	in

this	case,	you	need	a	pair	of	values.	The	first	element	in

the	pair	is	an	integer	corresponding	to	the	TypeID	of	the

component,	and	the	second	element	is	the

ComponentFunc:

Click	here	to	view	code	image

static	std::unordered_map<std::string,

			std::pair<int,	ComponentFunc>>	sComponentFactoryMap;

Then,	in	LevelLoader.cpp,	you	instantiate	the

sComponentFactoryMap:

Click	here	to	view	code	image

std::unordered_map<std::string,	std::pair<int,	ComponentFunc>>

LevelLoader::sComponentFactoryMap

{

			{	"AudioComponent",

					{	Component::TAudioComponent,	&Component::Create<AudioComponent>}

			},

			{	"BallMove",

					{	Component::TBallMove,	&Component::Create<BallMove>	}

			},

			//	Other	components	omitted

			//	...

};

You	then	implement	a	LoadComponents	helper

function	in	LevelLoader,	as	shown	in	Listing	14.10.	As

with	LoadActors,	it	takes	in	an	array	of	the

components	to	load	and	loops	through	this	array.	You

then	use	the	sComponentFactoryMap	to	find	the

component	type.	If	it	is	found,	you	then	check	if	the	actor

already	has	a	component	of	the	type.	The	iter->

second.first	accesses	the	first	element	of	the	value

pair,	which	corresponds	to	the	type	ID.	If	the	actor

doesn’t	already	have	a	component	of	the	requested	type,

then	you	create	one	by	using	the	function	stored	in	the

second	element	of	the	value	pair	(iter-

>second.second).	If	the	component	already	exists,	you

can	then	just	directly	call	LoadProperties	on	it.

Listing	14.10	LevelLoader::LoadComponents

Implementation

Click	here	to	view	code	image

void	LevelLoader::LoadComponents(Actor*	actor,

			const	rapidjson::Value&	inArray)

{

			//	Loop	through	array	of	components

			for	(rapidjson::SizeType	i	=	0;	i	<	inArray.Size();	i++)

			{

						const	rapidjson::Value&	compObj	=	inArray[i];

						if	(compObj.IsObject())

						{

									//	Get	the	type

									std::string	type;

									if	(JsonHelper::GetString(compObj,	"type",	type))

									{

												auto	iter	=	sComponentFactoryMap.find(type);

												if	(iter	!=	sComponentFactoryMap.end())

												{

															//	Get	the	typeid	of	component

															Component::TypeID	tid	=	static_cast<Component::TypeID>

																		(iter->second.first);

															//	Does	the	actor	already	have	a	component	of	this	type?

															Component*	comp	=	actor->GetComponentOfType(tid);

															if	(comp	==	nullptr)

															{

																		//	It's	a	new	component,	call	function	from	map

																		comp	=	iter->second.second(actor,	compObj["properties"]);

															}

															else

															{

																		//	It	already	exists,	just	load	properties

																		comp->LoadProperties(compObj["properties"]);

															}

												}

												else

												{

															SDL_Log("Unknown	component	type	%s",	type.c_str());

												}

									}

						}

			}

}

Finally,	you	add	code	in	LoadActors	that	accesses	the

components	property,	if	it	exists,	and	calls

LoadComponents	on	it:

Click	here	to	view	code	image

//	Construct	with	function	stored	in	map

Actor*	actor	=	iter->second(game,	actorObj["properties"]);

//	Get	the	actor's	components

if	(actorObj.HasMember("components"))

{

			const	rapidjson::Value&	components	=	actorObj["components"];

			if	(components.IsArray())

			{

						LoadComponents(actor,	components);

			}

}

With	all	this	code	in	place,	you	can	now	load	the	entire

level	from	a	file,	including	the	global	properties,	actors,

and	any	components	associated	with	each	actor.

SAVING	LEVEL	FILES
Saving	to	a	level	file	is	conceptually	simpler	than

loading	from	a	file.	First,	you	write	the	global

properties	for	the	level.	Then,	you	loop	through	every

actor	in	the	game	and	every	component	attached	to

every	actor.	For	each	of	these,	you	need	to	write	out

the	relevant	properties.

The	implementation	details	are	bit	involved	because	the

RapidJSON	interface	is	slightly	more	complicated	for

creating	JSON	files	than	for	reading	in	files.	However,

overall	you	can	use	techniques	like	those	used	for	loading

the	level	file.

First,	you	create	helper	Add	functions	in	JsonHelper	so

that	you	can	quickly	add	additional	properties	to	an

existing	JSON	object.	For	example,	the	AddInt	function

has	the	following	syntax:

Click	here	to	view	code	image

void	JsonHelper::AddInt(rapidjson::Document::AllocatorType&	alloc,

			rapidjson::Value&	inObject,	const	char*	name,	int	value)

{

			rapidjson::Value	v(value);

			inObject.AddMember(rapidjson::StringRef(name),	v,	alloc);

}

The	last	three	parameters	are	identical	to	the	parameters

of	the	GetInt	function,	except	the	Value	is	now	not

const.	The	first	parameter	is	an	allocator	that

RapidJSON	uses	when	needing	to	allocate	memory.

Every	call	to	AddMember	requires	an	allocator,	so	you

must	pass	one	in.	You	can	get	the	default	allocator	just

from	a	Document	object,	but	you	could	conceivably	use	a

different	allocator	if	desired.	You	then	create	a	Value

object	to	encapsulate	the	integer	and	use	the	AddMember

function	to	add	a	value	with	the	specified	name	to

inObject.

The	rest	of	the	Add	functions	are	similar,	except	for

AddVector3	and	AddQuaternion,	for	which	you	must

first	create	an	array	and	then	add	float	values	to	that

array.	(You’ll	see	this	array	syntax	when	looking	at	the

global	properties.)

You	then	create	a	skeleton	for	the

LevelLoader::SaveLevel	function,	as	shown	in

Listing	14.11.	First,	you	create	the	RapidJSON	document

and	make	an	object	for	its	root	via	SetObject.	Next,

you	add	the	version	integer.	Then,	you	use	the

StringBuffer	and	PrettyWriter	to	create	a	pretty-

printed	output	string	of	the	JSON	file.	Finally,	you	use	a

standard	std::ofstream	to	write	out	the	string	to	a

file.

Listing	14.11	LevelLoader::SaveLevel

Implementation

Click	here	to	view	code	image

void	LevelLoader::SaveLevel(Game*	game,

			const	std::string&	fileName)

{

			//	Create	the	document	and	root	object

			rapidjson::Document	doc;

			doc.SetObject();

	

			//	Write	the	version

			JsonHelper::AddInt(doc.GetAllocator(),	doc,	"version",	LevelVersion);

	

			//	Create	the	rest	of	the	file	(TODO)

			//	...

	

			//	Save	JSON	to	string	buffer

			rapidjson::StringBuffer	buffer;

			//	Use	PrettyWriter	for	pretty	output	(otherwise	use	Writer)

			rapidjson::PrettyWriter<rapidjson::StringBuffer>	writer(buffer);

			doc.Accept(writer);

			const	char*	output	=	buffer.GetString();

	

			//	Write	output	to	file

			std::ofstream	outFile(fileName);

			if	(outFile.is_open())

			{

						outFile	<<	output;

			}

}

For	now,	this	function	only	writes	out	the	version	to	the

output	file.	But	with	this	skeleton	code,	you	can	start

adding	the	remaining	output.

Saving	Global	Properties

Next,	you	need	to	add	a	SaveGlobalProperties

function	to	LevelLoader.	We	omit	the

implementation	here,	as	it’s	very	similar	to	the	other

functions	written	thus	far.	You	simply	need	to	add

the	properties	for	the	ambient	light	and	the

directional	light	object.

Once	this	function	is	complete,	you	integrate	it	into	your

SaveLevel	function	as	follows:

Click	here	to	view	code	image

rapidjson::Value	globals(rapidjson::kObjectType);

SaveGlobalProperties(doc.GetAllocator(),	game,	globals);

doc.AddMember("globalProperties",	globals,	doc.GetAllocator());

Saving	Actors	and	Components

To	be	able	to	save	actors	and	components,	you	need	a

way	to	get	a	string	name	of	the	type,	given	an	Actor

or	Component	pointer.	You	already	have	a	TypeID

for	components,	so	to	get	a	corresponding	string,	you

need	only	declare	a	constant	array	of	the	different

names	in	Component.	You	declare	this	array	in

Component.h	as	follows:

Click	here	to	view	code	image

static	const	char*	TypeNames[NUM_COMPONENT_TYPES];

And	then	in	Component.cpp,	you	fill	in	the	array.	It’s

important	that	you	maintain	the	same	ordering	as	the

TypeID	enum:

Click	here	to	view	code	image

const	char*	Component::TypeNames[NUM_COMPONENT_TYPES]	=	{

			"Component",

			"AudioComponent",

			"BallMove",

			//	Rest	omitted

			//	...

};

By	maintaining	the	ordering,	you	make	it	easy	to	get	the

name	of	a	component,	given	the	type,	using	a	snippet	like

this:

Click	here	to	view	code	image

Component*	comp	=	/*	points	to	something	*/;

const	char*	name	=	Component::TypeNames[comp->GetType()];

To	do	the	same	thing	for	the	Actor	and	its	subclasses,

you	need	to	add	a	TypeID	enum	to	Actor	as	well.	This

is	essentially	the	same	as	the	code	for	TypeIDs	in

components	earlier	in	this	chapter,	so	we	omit	it	here.

You	then	need	to	create	a	virtual	SaveProperties

function	in	both	Actor	and	Component	and	then

override	it	in	every	subclass	that	needs	to	do	so.	This

ends	up	playing	out	very	similarly	to	the

LoadProperties	functions	written	when	loading	in	the

level	files.	As	an	example,	Listing	14.12	shows	the

implementation	of	Actor::SaveProperties.	Note

that	you	liberally	use	the	Add	functions	in

LevelLoader,	and	you	need	to	pass	in	the	allocator

because	all	the	Add	functions	need	it.

Listing	14.12	Actor::SaveProperties

Implementation

Click	here	to	view	code	image

void	Actor::SaveProperties(rapidjson::Document::AllocatorType&	alloc,

			rapidjson::Value&	inObj)	const

{

			std::string	state	=	"active";

			if	(mState	==	EPaused)

			{

						state	=	"paused";

			}

			else	if	(mState	==	EDead)

			{

						state	=	"dead";

			}

	

			JsonHelper::AddString(alloc,	inObj,	"state",	state);

			JsonHelper::AddVector3(alloc,	inObj,	"position",	mPosition);

			JsonHelper::AddQuaternion(alloc,	inObj,	"rotation",	mRotation);

			JsonHelper::AddFloat(alloc,	inObj,	"scale",	mScale);

}

With	all	these	pieces	in	place,	you	can	then	add

SaveActors	and	SaveComponents	functions	to

LevelLoader.	Listing	14.13	shows	the	SaveActors

function.	First,	you	get	the	vector	of	actors	from	the

game	by	const	reference.	Then,	you	loop	through	every

actor	and	create	a	new	JSON	object	for	it.	You	then	add

the	string	for	the	type	by	using	the	TypeID	and

TypeNames	functionality.	Next,	you	create	a	JSON

object	for	the	properties	and	call	the	actor’s

SaveProperties	function.	You	then	create	an	array	for

the	components	before	calling	SaveComponents.

Finally,	you	add	the	actor’s	JSON	object	into	the	JSON

array	of	actors.

Listing	14.13	LevelLoader::SaveActors

Implementation

Click	here	to	view	code	image

void	LevelLoader::SaveActors(rapidjson::Document::AllocatorType&	alloc,

			Game*	game,	rapidjson::Value&	inArray)

{

			const	auto&	actors	=	game->GetActors();

			for	(const	Actor*	actor	:	actors)

			{

						//	Make	a	JSON	object

						rapidjson::Value	obj(rapidjson::kObjectType);

						//	Add	type

						AddString(alloc,	obj,	"type",	Actor::TypeNames[actor->GetType()]);

	

						//	Make	object	for	properties

						rapidjson::Value	props(rapidjson::kObjectType);

						//	Save	properties

						actor->SaveProperties(alloc,	props);

						//	Add	the	properties	to	the	JSON	object

						obj.AddMember("properties",	props,	alloc);

	

						//	Save	components

						rapidjson::Value	components(rapidjson::kArrayType);

						SaveComponents(alloc,	actor,	components);

						obj.AddMember("components",	components,	alloc);

	

						//	Add	actor	to	inArray

						inArray.PushBack(obj,	alloc);

			}

}

You	similarly	implement	a	SaveComponents	function.

With	all	this	code	implemented,	you	can	now	save	all	the

actors	and	components	to	the	file.	For	testing	purposes,

pressing	the	R	key	in	this	chapter’s	game	project	saves	to

the	Assets/Save.gplevel	level	file.

notenote

With	some	work,	you	could	create	a	single	serialize	function	that	both	load
and	saves	properties.	This	way,	you	could	avoid	having	to	update	two
different	functions	every	time	you	add	a	new	property	to	an	actor	or	a
component.

While	this	code	will	save	almost	everything	in	the	game,

it	doesn’t	quite	fully	capture	the	current	state	of	the	game

at	a	specific	point	in	time.	For	example,	it	does	not	save

the	state	of	any	active	FMOD	sound	events.	To

implement	this,	you	would	need	to	ask	FMOD	for	the

current	timestamp	of	the	sound	events,	and	then	when

loading	the	game	from	the	file,	you	would	need	to	restart

the	sound	events	with	those	timestamps.	It	takes	some

additional	work	to	go	from	saving	a	level	file	to	being

usable	as	a	save	file	for	the	player.

BINARY	DATA
You’ve	used	JSON	file	formats	throughout	this	book:

for	meshes,	animations,	skeletons,	text	localization,

and	now	for	level	loading.	The	advantages	of	using	a

text-based	file	format	are	numerous.	Text	files	are

easy	for	humans	to	look	at,	find	errors	in,	and	(if

needed)	manually	edit.	Text	files	also	play	very	nicely

with	source	control	systems	such	as	Git	because	it’s

very	easy	to	see	what	changed	in	a	file	between	two

revisions.	During	development,	it’s	also	easier	to

debug	loading	of	assets	if	they	are	text	files.

However,	the	disadvantage	of	using	text-based	file

formats	is	that	they	are	inefficient,	both	in	terms	of	disk

and	memory	usage	as	well	as	in	terms	of	performance	at

runtime.	Formats	such	as	JSON	or	XML	take	up	a	lot	of

space	on	disk	simply	because	of	the	formatting

characters	they	use,	such	as	braces	and	quotation	marks.

On	top	of	this,	parsing	text-based	files	at	runtime	is	slow,

even	with	high-performance	libraries	such	as

RapidJSON.	For	example,	on	my	computer,	it	takes

about	three	seconds	to	load	in	the

CatWarrior.gpmesh	file	in	a	debug	build.	Clearly,	this

would	lead	to	slow	load	times	for	a	larger	game.

For	the	best	of	both	worlds,	you	may	want	to	use	text

files	during	development	(at	least	for	some	members	of

the	team)	and	then	binary	files	in	optimized	builds.	This

section	explores	how	to	create	a	binary	mesh	file	format.

To	keep	things	simple,	in	the	code	that	loads	in	the

gpmesh	JSON	format,	you	will	first	check	if	a

corresponding	gpmesh.bin	file	exists.	If	it	does,	you’ll

load	that	in	instead	of	the	JSON	file.	If	it	doesn’t	exist,

the	game	will	create	the	binary	version	file	so	that	next

time	you	run	the	game,	you	can	load	the	binary	version

instead	of	the	text	version.

Note	that	one	potential	downside	of	this	approach	is	that

it	may	lead	to	bugs	that	occur	only	with	the	binary

format	but	not	the	text	one.	To	avoid	this,	it’s	important

that	you	continue	to	use	both	formats	throughout

development.	If	one	of	the	two	formats	becomes	stale,

then	there’s	a	greater	chance	that	format	will	stop

working.

Saving	a	Binary	Mesh	File

With	any	binary	file	format,	an	important	step	is	to

decide	on	a	layout	for	the	file.	Most	binary	files	begin

with	some	sort	of	header	that	defines	the	contents

of	the	file	as	well	as	any	specific	size	information

that’s	needed	to	read	in	the	rest	of	the	file.	In	the	case

of	a	mesh	file	format,	you	want	the	header	to	store

information	about	the	version,	the	number	of

vertices	and	indices,	and	so	on.	Listing	14.14	shows

the	MeshBinHeader	struct	that	defines	the	layout	of

the	header.	In	this	example,	the	header	is	not

packed	(reduced	in	size	as	much	as	possible),	but	it

gives	the	general	idea	of	what	you	might	want	to

store	in	a	header.

Listing	14.14	MeshBinHeader	Struct

Click	here	to	view	code	image

struct	MeshBinHeader

{

			//	Signature	for	file	type

			char	mSignature[4]	=	{	'G',	'M',	'S',	'H'	};

			//	Version

			uint32_t	mVersion	=	BinaryVersion;

			//	Vertex	layout	type

			VertexArray::Layout	mLayout	=	VertexArray::PosNormTex;

			//	Info	about	how	many	of	each	you	have

			uint32_t	mNumTextures	=	0;

			uint32_t	mNumVerts	=	0;

			uint32_t	mNumIndices	=	0;

			//	Box/radius	of	mesh,	used	for	collision

			AABB	mBox{	Vector3::Zero,	Vector3::Zero	};

			float	mRadius	=	0.0f;

};

The	mSignature	field	is	a	special	4-byte	magic	number

that	specifies	the	file	type.	Most	popular	binary	file	types

have	some	sort	of	signature.	The	signature	helps	you

figure	out	what	a	file	type	is	from	its	first	few	bytes

without	knowing	anything	other	than	the	signature	to

look	for.	The	rest	of	the	data	is	information	you	need	to

reconstruct	the	mesh	data	from	the	file.

After	the	header	is	the	main	data	section	of	the	file.	In

this	case,	there	are	three	main	things	to	store:	the

filenames	for	associated	textures,	the	vertex	buffer	data,

and	the	index	buffer	data.

With	the	file	format	decided	on,	you	can	then	create	the

SaveBinary	function,	as	shown	in	Listing	14.15.	This

function	takes	in	a	lot	of	parameters	because	there’s	a	lot

of	information	needed	to	create	the	binary	file.	In	total,

you	need	the	filename,	a	pointer	to	the	vertex	buffer,	the

number	of	vertices,	the	layout	of	these	vertices,	a	pointer

to	the	index	buffer,	the	number	of	indices,	a	vector	of	the

texture	names,	the	bounding	box	of	the	mesh,	and	the

radius	of	the	mesh.	With	all	these	parameters,	you	can

save	the	file.

Listing	14.15	Mesh::SaveBinary	Implementation

Click	here	to	view	code	image

void	Mesh::SaveBinary(const	std::string&	fileName,	const	void*	verts,

			uint32_t	numVerts,	VertexArray::Layout,

			const	uint32_t*	indices,	uint32_t	numIndices,

			const	std::vector<std::string>&	textureNames,

			const	AABB&	box,	float	radius)

{

			//	Create	header	struct

			MeshBinHeader	header;

			header.mLayout	=	layout;

			header.mNumTextures	=

						static_cast<unsigned>(textureNames.size());

			header.mNumVerts	=	numVerts;

			header.mNumIndices	=	numIndices;

			header.mBox	=	box;

			header.mRadius	=	radius;

	

			//	Open	binary	file	for	writing

			std::ofstream	outFile(fileName,	std::ios::out

						|	std::ios::binary);

			if	(outFile.is_open())

			{

						//	Write	the	header

						outFile.write(reinterpret_cast<char*>(&header),	sizeof(header));

	

						//	For	each	texture,	we	need	to	write	the	size	of	the	name,

						//	followed	by	the	string,	followed	by	a	null	terminator

						for	(const	auto&	tex	:	textureNames)

						{

									uint16_t	nameSize	=	static_cast<uint16_t>(tex.length())	+	1;

									outFile.write(reinterpret_cast<char*>(&nameSize),

												sizeof(nameSize));

									outFile.write(tex.c_str(),	nameSize	-	1);

									outFile.write("\0",	1);

						}

	

						//	Figure	out	number	of	bytes	for	each	vertex,	based	on	layout

						unsigned	vertexSize	=	VertexArray::GetVertexSize(layout);

						//	Write	vertices

						outFile.write(reinterpret_cast<const	char*>(verts),

									numVerts	*	vertexSize);

						//	Write	indices

						outFile.write(reinterpret_cast<const	char*>(indices),

									numIndices	*	sizeof(uint32_t));

			}

}

The	code	in	Listing	14.15	does	quite	a	lot.	First,	you

create	an	instance	of	the	MeshBinHeader	struct	and	fill

in	all	its	members.	Next,	you	create	a	file	for	output	and

open	it	in	binary	mode.	If	this	file	successfully	opens,	you

can	write	to	it.

Then	you	write	the	header	of	the	file	with	the	write

function	call.	The	first	parameter	write	expects	is	a

char	pointer,	so	in	many	cases	it’s	necessary	to	cast	a

different	pointer	to	a	char*.	This	requires	a

reinterpret_cast	because	a	MeshBinHeader*

cannot	directly	convert	to	a	char*.	The	second

parameter	to	write	is	the	number	of	bytes	to	write	to	the

file.	Here,	you	use	sizeof	to	specify	the	number	of	bytes

corresponding	to	the	size	of	MeshBinHeader.	In	other

words,	you	are	writing	sizeof(header)	bytes	starting

at	the	address	of	header.	This	is	a	quick	way	to	just

write	the	entire	struct	in	one	fell	swoop.

warningwarning

WATCH	OUT	FOR	ENDIANNESS:	The	order	in	which	a	CPU	platform	saves
values	larger	than	1	byte	is	called	endianness.	The	method	used	here	to
read	and	write	MeshBinHeader	will	not	work	if	the	endianness	of	the
platform	that	writes	out	the	gpmesh.bin	file	is	different	from	the	endianness
of	the	platform	that	reads	the	gpmesh.bin	file.

Although	most	platforms	today	are	little	endian,	endianness	can	still	be	a
potential	issue	with	code	of	this	style.

Next,	you	loop	through	all	the	texture	names	and	write

each	of	them	to	the	file.	For	each	filename,	you	first	write

the	number	of	characters	in	the	filename	(plus	one	for

the	null	terminator)	and	then	write	the	string	itself.	Note

that	this	code	assumes	that	a	filename	can’t	be	larger

than	64	KB,	which	should	be	a	safe	assumption.	The

reason	you	write	the	number	of	characters	and	the	name

is	for	loading.	The	header	only	stores	the	number	of

textures	and	not	the	size	of	each	string.	Without	storing

the	number	of	characters,	at	load	time	you	would	have

no	way	of	knowing	how	many	bytes	to	read	for	the

filename.

After	writing	all	the	filenames,	you	then	write	all	the

vertex	and	index	buffer	data	directly	to	the	file.	You	don’t

need	to	include	the	sizes	here	because	they	already

appear	in	the	header.	For	the	vertex	data,	the	number	of

bytes	is	the	number	of	vertices	times	the	size	of	each

vertex.	Luckily,	you	can	use	a	VertexArray	helper

function	to	get	the	size	of	each	vertex	based	on	layout.

For	the	index	data,	you	have	a	fixed	size	(32-bit	indices),

so	the	total	number	of	bytes	is	easier	to	calculate.

Then	in	Mesh::Load,	if	the	binary	file	doesn’t	exist,	the

code	loads	the	JSON	file	and	creates	the	corresponding

binary	file.

Loading	a	Binary	Mesh	File

Loading	a	binary	mesh	file	is	like	writing	to	it	but	in

reverse.	The	steps	are	to	load	in	the	header,	check	the

validity	of	the	header,	load	in	the	textures,	load	in	the

vertex	and	index	data,	and	finally	create	the	actual

VertexArray	(which	will	upload	the	data	to	the

GPU	via	OpenGL).	Listing	14.16	shows	the	outline	of

the	code	for	Mesh::LoadBinary.

Listing	14.16	Mesh::LoadBinary	Outline

Click	here	to	view	code	image

void	Mesh::LoadBinary(const	std::string&	filename,

			Renderer*	renderer)

{

			std::ifstream	inFile(fileName,	/*	in/binary	flags	...	*/);

			if	(inFile.is_open())

			{

						MeshBinHeader	header;

						inFile.read(reinterpret_cast<char*>(&header),	sizeof(header));

	

						//	Validate	the	header	signature	and	version

						char*	sig	=	header.mSignature;

						if	(sig[0]	!=	'G'	||	sig[1]	!=	'M'	||	sig[2]	!=	'S'	||

									sig[3]	!=	'H'	||	header.mVersion	!=	BinaryVersion)

						{

									return	false;

						}

	

						//	Read	in	the	texture	file	names	(omitted)

						//	...

	

						//	Read	in	vertices/indices

						unsigned	vertexSize	=	VertexArray::GetVertexSize(header.mLayout);

						char*	verts	=	new	char[header.mNumVerts	*	vertexSize];

						uint32_t*	indices	=	new	uint32_t[header.mNumIndices];

						inFile.read(verts,	header.mNumVerts	*	vertexSize);

						inFile.read(reinterpret_cast<char*>(indices),

									header.mNumIndices	*	sizeof(uint32_t));

	

						//	Now	create	the	vertex	array

						mVertexArray	=	new	VertexArray(verts,	header.mNumVerts,

									header.mLayout,	indices,	header.mNumIndices);

	

						//	Delete	verts/indices

						delete[]	verts;

						delete[]	indices;

	

						mBox	=	header.mBox;

						mRadius	=	header.mRadius;

	

						return	true;

			}

	

			return	false;

}

First,	you	open	the	file	for	reading	in	binary	mode.	Next,

you	read	in	the	header	via	the	read	function.	Much	as

with	write,	read	takes	in	a	char*	for	where	to	write

and	the	number	of	bytes	to	read	from	the	file.	Next,	you

verify	that	the	signature	and	version	in	the	header	match

what	is	expected;	if	they	don’t,	you	can’t	load	the	file.

After	this,	you	read	in	all	the	texture	filenames	and	load

them,	though	we	omit	that	code	from	Listing	14.16	to

save	space.	Next,	you	allocate	memory	to	store	the	vertex

and	index	buffers,	and	you	use	read	to	grab	the	data

from	the	file.	Once	you	have	the	vertex	and	index	data,

you	can	construct	the	VertexArray	object	and	pass	in

all	the	information	it	needs.	You	need	to	make	sure	to

clean	up	the	memory	and	set	the	mBox	and	mRadius

members	before	returning.

Note	that	LoadBinary	returns	false	if	the	file	fails	to

load.	This	way,	the	Mesh::Load	code	first	tries	to	load

the	binary	file.	If	it	succeeds,	that’s	it.	Otherwise,	it	can

proceed	using	the	JSON	parsing	code	from	before:

Click	here	to	view	code	image

bool	Mesh::Load(const	std::string&	fileName,	Renderer*	renderer)

{

			mFileName	=	fileName;

			//	Try	loading	the	binary	file	first

			if	(LoadBinary(fileName	+	".bin",	renderer))

			{

						return	true;

			}

			//	...

With	the	switch	to	binary	mesh	file	loading,	the

performance	improves	significantly	in	debug	mode.	The

CatWarrior.gpmesh.bin	file	now	loads	in	one	second

as	opposed	to	three—meaning	a	3x	performance	gain

over	the	JSON	version!	This	is	great	because	you’ll	spend

most	of	your	development	time	running	in	debug	mode.

Unfortunately,	in	an	optimized	build,	the	performance	of

both	the	JSON	and	binary	path	is	almost	identical.	This

could	be	due	to	several	factors,	including	the	RapidJSON

library	being	very	optimized	or	other	aspects	being	the

primary	overhead,	such	as	transferring	the	data	to	the

GPU	or	loading	in	the	textures.

On	the	disk	space	side	of	things,	you	save	space.	While

the	JSON	version	of	the	Feline	Swordsman	is	around	6.5

MB	on	disk,	the	binary	version	is	only	2.5	MB.

GAME	PROJECT
This	chapter’s	game	project	implements	the	systems

discussed	in	this	chapter.	Everything	loads	from	a

gplevel	file,	and	pressing	the	R	key	saves	the

current	state	of	the	world	into

Assets/Saved.gplevel.	The	project	also

implements	the	binary	saving	and	loading	of	mesh

files	in	the	.gpmesh.bin	format.	The	code	is

available	in	the	book’s	GitHub	repository,	in	the

Chapter14	directory.	Open	Chapter14-

windows.sln	in	Windows	and	Chapter14-

mac.xcodeproj	on	Mac.

Figure	14.1	shows	the	game	project	in	action.	Notice	that

it	looks	identical	to	the	game	project	from	Chapter	13,

“Intermediate	Graphics.”	However,	the	entire	contents	of

the	game	world	now	load	directly	from	the

Assets/Level3.gplevel	file,	which	was	in	turn

created	by	saving	the	level	file.	The	first	time	the	game

runs,	it	creates	a	binary	mesh	file	for	every	mesh	loaded.

Subsequent	runs	load	meshes	from	the	binary	files

instead	of	JSON.

Figure	14.1	Chapter	14	game	project

SUMMARY
This	chapter	explores	how	to	create	level	files	in

JSON.	Loading	from	a	file	requires	several	systems.

First,	you	create	helper	functions	that	wrap	the

functionality	of	the	RapidJSON	library	to	easily	be

able	to	write	the	game’s	types	to	JSON.	You	then	add

code	to	set	global	properties,	load	in	actors,	and	load

in	components	associated	with	the	actors.	To	do	this,

you	need	to	add	some	type	information	to

components,	as	well	as	maps	that	associate	names	of

types	to	a	function	that	can	dynamically	allocate	that

type.	You	also	need	to	create	virtual

LoadProperties	functions	in	both	Component

and	Actor.

You	also	need	to	create	code	to	save	the	game	world	to

JSON,	and	you	create	helper	functions	to	assist	with	this

process.	At	a	high	level,	saving	the	file	requires	saving	all

the	global	properties	first	and	then	looping	through	all

the	actors	and	components	to	write	their	properties.	As

with	file	loading,	you	have	to	create	virtual

SaveProperties	functions	in	both	Component	and

Actor.

Finally,	this	chapter	discusses	the	trade-offs	involved	in

using	a	text-based	file	format	instead	of	a	binary	one.

While	a	text	format	is	often	more	convenient	to	use	in

development,	it	comes	at	a	cost	of	inefficiency—both	in

performance	and	disk	usage.	This	chapter	explores	how

to	design	a	binary	file	format	for	mesh	files,	which

involves	writing	and	reading	from	files	in	binary	mode.

ADDITIONAL	READING
There	are	no	books	devoted	specifically	to	level	files

or	binary	data.	However,	the	classic	Game

Programming	Gems	series	has	some	articles	on	the

topic.	Bruno	Sousa’s	article	discusses	how	to	use

resource	files,	which	are	files	that	combine	several

files	into	one.	Martin	Brownlow’s	article	discusses

how	to	create	a	save-anywhere	system.	Finally,	David

Koenig’s	article	looks	at	how	to	improve	the

performance	of	loading	files.

Brownlow,	Martin.	“Save	Me	Now!”	Game

Programming	Gems	3.	Ed.	Dante	Treglia.

Hingham:	Charles	River	Media,	2002.

Koenig,	David	L.	“Faster	File	Loading	with

Access	Based	File	Reordering.”	Game

Programming	Gems	6.	Ed.	Mike

Dickheiser.	Rockland:	Charles	River	Media,

2006.

Sousa,	Bruno.	“File	Management	Using

Resource	Files.”	Game	Programming	Gems

2.	Ed.	Mark	DeLoura.	Hingham:	Charles

River	Media,	2001.

EXERCISES
In	this	chapter’s	first	exercise,	you	need	to	reduce	the

size	of	the	JSON	files	created	by	SaveLevel.	In	the

second	exercise	you	convert	the	Animation	file

format	to	binary.

Exercise	14.1

One	issue	with	the	SaveLevel	code	is	that	you	write

every	property	for	every	actor	and	all	its	components.

However,	for	a	specific	subclass	like	TargetActor,

few	if	any	of	the	properties	or	components	change

after	construction.

To	solve	this	problem,	when	it’s	time	to	save	the	level,

you	can	create	a	temporary	TargetActor	and	write	out

the	JSON	object	for	that	actor	by	using	the	normal

writing	techniques.	This	JSON	object	serves	as	the

template,	as	it’s	the	state	of	TargetActor	when	it’s

originally	spawned.	Then,	for	each	TargetActor	to

save	in	the	level,	compare	its	JSON	object	to	the

template	one	and	write	only	the	properties	and

components	that	are	different.

You	can	then	use	this	process	for	all	the	different	types	of

actors.	To	assist	with	this,	RapidJSON	provides

overloaded	comparison	operators.	Two

rapidjson::Values	are	equal	only	if	they	have	the

same	type	and	contents.	This	way,	you	can	eliminate

setting	at	least	most	of	the	components	(because	they

won’t	change).	It	will	require	a	bit	more	work	to	do	this

on	a	granular	(per-property)	level.

Exercise	14.2

Applying	the	same	binary	file	techniques	you	used

for	the	mesh	files,	create	a	binary	file	format	for	the

animation	files.	Because	all	the	tracks	of	bone

transforms	are	the	same	size,	you	can	use	a	format

where,	after	writing	the	header,	you	write	the	ID	for

each	track	followed	by	the	entire	track	information.

For	a	refresher	on	the	animation	file	format,	refer	to

Chapter	12,	“Skeletal	Animation.”

APPENDIX	A

INTERMEDIATE	C++
REVIEW

This	appendix	provides	a	quick	review	of

intermediate	C++	concepts	used	throughout

the	book.	The	concepts	roughly	correspond

to	typical	topics	in	Computer	Science	1	and	2

courses.	If	you	are	rusty	with	C++,	you

should	spend	extra	time	reviewing	this

material.

REFERENCES,	POINTERS,	AND
ARRAYS
Although	references,	pointers,	and	arrays	might

seem	like	separate	concepts,	they	are	closely	related.

Furthermore,	because	pointers	are	often	stumbling

points	for	C++	programmers,	it’s	worthwhile	to

spend	some	time	reviewing	their	intricacies.

References

A	reference	is	a	variable	that	refers	to	another

variable	that	already	exists.	To	denote	a	variable	as	a

reference,	add	an	&	immediately	after	the	type.	For

example,	here	is	how	you	can	declare	r	as	a	reference

to	the	already	existing	integer	i:

int	i	=	20;

int&	r	=	i;	//	r	refers	to	i

By	default,	functions	pass	parameters	by	value	(pass-

by-value),	meaning	that	when	you	call	a	function,	the

parameter	copies	to	a	new	variable.	When	passing	by

value,	modifications	to	parameters	do	not	persist	beyond

the	function	call.	For	example,	here	is	an	(incorrect)

implementation	of	a	Swap	function	that	swaps	two

integers:

void	Swap(int	a,	int	b)

{

			int	temp	=	a;

			a	=	b;

			b	=	temp;

}

The	problem	with	Swap	is	that	a	and	b	are	copies	of	the

parameters,	which	means	the	function	cannot	truly	swap

the	parameters	as	desired.	To	solve	this	problem,	you

should	instead	declare	the	parameters	of	Swap	as

references	to	integers:

Click	here	to	view	code	image

void	Swap(int&	a,	int&	b)

{

			//	(The	body	of	the	function	is	identical	to	the	previous)

}

When	passing	a	parameter	by	reference	(pass-by-

reference),	any	changes	made	to	that	parameter	within

the	function	will	persist	after	the	function	ends.

One	caveat	is	that	because	a	and	b	are	now	references	to

integers,	they	must	reference	existing	variables.	You

can’t	pass	in	temporary	values	for	the	parameters.	For

example,	Swap(50,100)	is	invalid	because	50	and	100

are	not	declared	variables.

warningwarning

PASS-BY-VALUE	IS	DEFAULT:	By	default,	all	parameters	in	C++,	even
objects,	pass	by	value.	In	contrast,	languages	like	Java	and	C#	default	to
passing	objects	by	reference.

Pointers

To	understand	pointers,	it	first	helps	to	remember

the	way	computers	store	variables	in	memory.

During	program	execution,	entering	a	function

automatically	allocates	memory	for	local	variables	in

a	segment	of	memory	called	the	stack.	This	means

that	all	local	variables	in	a	function	have	memory

addresses	known	to	the	C++	program.

Table	A.1	shows	code	snippets	and	possible	locations	of

their	variables	in	memory.	Notice	that	each	variable	has

an	associated	memory	address.	The	table	shows	the

memory	addresses	in	hexadecimal	simply	because	that’s

the	typical	notation	for	memory	addresses.

Table	A.1	Variable	Storage

Code Variable Memory	Address Value

int	x	=	50; x 0xC230 50

int	y	=	100; y 0xC234 100

int	z	=	200; z 0xC238 200

The	address-of	operator	(also	&)	queries	the	address	of

a	variable.	To	get	the	address	of	a	variable,	place	a	&	in

front	of	the	variable.	For	example,	given	the	code	in

Table	A.1,	the	following	code	outputs	the	value	0xC234:

std::cout	<<	&y;

A	pointer	is	a	variable	that	stores	an	integral	value

corresponding	to	a	memory	address.	The	following	line

declares	the	pointer	p	that	stores	the	memory	address	of

the	variable	y:

int*	p	=	&y;

The	*	after	the	type	signifies	a	pointer.	Table	A.2	shows

the	pointer	p	in	action.	Note	that,	just	like	any	other

variable,	p	has	both	a	memory	address	and	a	value.	But

because	p	is	a	pointer,	its	value	corresponds	to	the

memory	address	of	y.

Table	A.2	Variable	Storage	(with	Pointers)

Code Variable Memory	Address Value

int	x	=	50; x 0xC230 50

int	y	=	100; y 0xC234 100

int	z	=	200; z 0xC238 200

int*	p	=	&y; p 0xC23C 0xC234

The	*	operator	also	dereferences	a	pointer.

Dereferencing	a	pointer	accesses	the	memory	“pointed

to”	by	the	pointer.	For	example,	the	last	line	in	Table	A.3

changes	the	value	of	y	to	42.	This	is	because

dereferencing	p	goes	to	the	memory	address	0xC234,

which	corresponds	to	the	location	of	y	in	memory.	Thus,

writing	the	value	42	at	this	memory	address	overwrites

the	value	of	y.

Table	A.3	Variable	Storage	(with	Dereferencing)

Code Variable Memory	Address Value

int	x	=	50; x 0xC230 50

int	y	=	100; y 0xC234 42

int	z	=	200; z 0xC238 200

int*	p	=	&y; p 0xC23C 0xC234

*p	=	42;

Unlike	references,	which	must	refer	to	something,

pointers	can	point	to	nothing.	A	pointer	that	points	to

nothing	is	a	null	pointer.	To	initialize	a	pointer	as	null,

use	the	nullptr	keyword,	as	in	the	following	code:

char*	ptr	=	nullptr;

Dereferencing	a	null	pointer	crashes	the	program.	The

error	message	varies	depending	on	the	operating	system,

but	typically	“access	violation”	or	“segmentation	fault”

errors	occur	when	dereferencing	a	null	pointer.

Arrays

An	array	is	a	collection	of	multiple	elements	of	the

same	type.	The	following	code	declares	an	array	of	10

integers	called	a	and	then	sets	the	first	element	in

the	array	(index	0)	to	50:

int	a[10];

a[0]	=	50;

By	default,	the	elements	in	an	array	are	uninitialized.

While	you	could	manually	initialize	each	element	in	an

array,	it’s	more	convenient	to	use	either	the	initializer

syntax	or	a	loop.	The	initializer	syntax	uses	braces,	like

this:

int	fib[5]	=	{	0,	1,	1,	2,	3	};

Alternatively,	you	could	use	a	loop.	The	following

initializes	each	of	the	50	elements	in	array	to	0:

int	array[50];

for	(int	i	=	0;	i	<	50;	i++)

{

			array[i]	=	0;

}

warningwarning

ARRAYS	DON’T	BOUND	CHECK:	Requesting	invalid	indices	can	lead	to
memory	corruption	and	other	errors.	Several	tools	exist	to	help	find	bad
memory	accesses,	such	as	the	AddressSanitizer	tool	available	in	Xcode.

C++	stores	arrays	contiguously	in	memory.	This	means

that	the	data	for	index	0	is	right	next	to	the	data	for

index	1,	which	is	right	next	to	index	2,	and	so	on.	Table

A.4	shows	an	example	of	a	five-element	array	in	memory.

Keep	in	mind	that	the	variable	array	(without	the

subscript)	references	the	memory	address	of	index	0	(in

this	case,	0xF2E0).	Because	of	this,	you	can	pass	a

single-dimensional	array	to	a	function	via	a	pointer.

Table	A.4	An	Array	in	Memory

Code Variable Memory

Address

Value

int	array[5]	=	{

			2,	4,	6,	8,	10

};

array[0] 0xF2E0 2

array[1] 0xF2E4 4

array[2] 0xF2E8 6

array[3] 0xF2EC 8

array[4] 0xF2F0 10

A	POINTER	BY	ANY	OTHER	NAME...

The	C	programming	language	(the	precursor	to	C++)	does	not	support
references.	Thus,	the	concept	of	passing	by	reference	does	not	exist	in
C.	Instead	of	using	references,	you	must	use	pointers.	For	example,	in
C,	you	would	write	the	Swap	function	as	follows:

void	Swap(int*	a,	int*	b)
{
			int	temp	=	*a;
			*a	=	*b;
			*b	=	temp;
}

Calling	this	version	of	Swap	then	requires	the	address-of	operator:

int	x	=	20;
int	y	=	37;
Swap(&x,	&y);

At	program	execution	time,	there	is	no	difference	between	how
references	and	pointers	work.	However,	keep	in	mind	that	a	reference
must	refer	to	something,	whereas	a	pointer	can	be	nullptr.

In	C++,	many	developers	prefer	passing	by	reference	over	passing	by
pointer.	This	is	because	passing	by	pointer	implies	that	nullptr	is	a
valid	parameter.	However,	for	stylistic	reasons,	this	book	typically	passes
dynamically	allocated	objects	by	pointer,	even	in	cases	where
references	would	work.

You	also	can	declare	multidimensional	arrays.	For

example,	the	following	code	creates	a	2D	array	of	floats

with	four	rows	and	four	columns:

float	matrix[4][4];

To	pass	a	multidimensional	array	into	a	function,	you

must	explicitly	specify	the	dimensions,	like	this:

Click	here	to	view	code	image

void	InvertMatrix(float	m[4][4])

{

			//	Code	here...

}

Dynamic	Memory	Allocation

As	discussed	earlier,	memory	allocation	for	local

variables	is	automatic	in	C++.	These	variables	end	up

in	memory	on	the	stack.	This	is	great	for	temporary

variables	and	function	parameters.	However,	local

variables	are	sometimes	not	enough.

First,	the	stack	has	a	limited	amount	of	memory

available—typically	much	less	than	the	amount	of

memory	an	average	program	might	want	to	use.	For

example,	the	Microsoft	Visual	C++	compiler	has	a

default	stack	size	of	1	MB.	Such	a	small	amount	of

memory	won’t	be	enough	for	all	but	the	simplest	games.

Second,	local	variables	have	a	fixed	lifetime.	They	are

only	available	from	the	point	of	declaration	until	the	end

of	the	containing	scope.	This	scope	is	typically	within	a

function,	as	global	variables	are	stylistically	undesirable.

In	dynamic	memory	allocation,	the	programmer

controls	allocation	and	deallocation	of	variables	in

memory.	Dynamic	allocations	go	into	the	heap,	which	is

a	separate	part	of	memory.	The	heap	is	much	larger	in

size	compared	to	the	stack	(several	gigabytes	on	current

machines),	and	data	on	the	heap	persists	until	either	the

programmer	deletes	the	data	or	the	program	ends.

Recall	that	in	C++,	the	new	and	delete	operators

allocate	and	deallocate	memory	on	the	heap.	The	new

operator	allocates	memory	for	the	requested	type	of

variable,	and	for	classes	and	structs,	it	calls	the

constructor.	The	delete	operator	performs	the

opposite:	It	calls	the	destructor	for	class/struct	types	and

deallocates	the	memory	for	the	variable.

For	example,	this	code	dynamically	allocates	memory	for

a	single	int	variable:

int*	dynamicInt	=	new	int;

To	free	the	memory	of	a	dynamically	allocated	variable,

use	delete:

delete	dynamicInt;

Forgetting	to	delete	a	dynamically	allocated	variable

causes	a	memory	leak,	meaning	that	the	memory	is

unusable	for	the	remaining	life	span	of	the	program.	For

programs	that	run	for	a	long	time,	small	memory	leaks

accumulate	over	time	and	eventually	cause	the	heap	to

run	out	of	memory.	If	the	heap	runs	out	of	memory,	the

program	will	almost	always	crash	soon	afterward.

Of	course,	dynamically	allocating	just	a	single	integer

doesn’t	take	advantage	of	all	the	available	memory	on	the

heap.	You	can	also	dynamically	allocate	arrays:

Click	here	to	view	code	image

char*	dynArray	=	new	char[4*1024*1024];

dynArray[0]	=	32;	//	Set	the	first	element	to	32

Note	that	when	dynamically	allocating	an	array,	you

place	square	brackets	immediately	after	the	type	and

specify	the	size	there.	Unlike	with	a	statically	allocated

array,	with	a	dynamically	allocated	array,	you	can	specify

a	size	at	runtime.

To	delete	a	dynamically	allocated	array,	use	delete[]:

delete[]	dynArray;

ASSORTED	CLASS	TOPICS
Recall	that	C++	supports	object-oriented

programming	through	classes.	This	section	assumes

familiarity	with	the	basics	of	classes	in	C++:	classes

versus	objects,	how	to	declare	a	class	with	member

variables	and	functions,	the	constructor,	and

inheritance	and	polymorphism.	It	instead	focuses	on

certain	topics	that	cause	some	issues	when	using

classes	in	C++.

References,	const,	and	Classes

Passing	objects	by	value	to	functions	is	inefficient.

This	is	because	copying	the	object	can	be	expensive,

especially	if	the	object	has	a	lot	of	data.	Thus,	a	best

practice	is	to	pass	objects	by	reference.

However,	one	issue	with	references	is	that	they	allow	the

function	to	modify	the	parameter.	For	example,	suppose

an	Intersects	function	takes	in	two	Circle	objects

and	returns	whether	these	circles	intersect.	If	the

function	takes	in	these	circles	by	reference,	it	could

choose	to	modify	the	centers	or	radii	of	the	circles.

The	solution	is	to	instead	use	a	constant	(const)

reference.	A	const	reference	guarantees	that	the

function	can	only	read	from	the	reference	but	not	write

to	it.	So,	a	more	correct	declaration	of	Intersects	uses

const	references:

Click	here	to	view	code	image

bool	Intersects(const	Circle&	a,	const	Circle&	b);

You	can	also	mark	member	functions	as	const

member	functions	to	guarantee	that	a	member

function	does	not	modify	member	data.	For	example,	a

GetRadius	function	for	Circle	shouldn’t	modify

member	data,	which	means	it	should	be	a	const

member	function.	To	denote	that	a	member	function	is

const,	add	the	const	keyword	immediately	after	the

closing	parenthesis	of	the	function	declaration,	as	in

Listing	A.1.

Listing	A.1	Circle	Class	with	const	Member

Function

Click	here	to	view	code	image

class	Circle

{

public:

			float	GetRadius()	const	{	return	mRadius	}

			//	Other	functions	omitted

			//	...

private:

			Point	mCenter;

			float	mRadius;

};

To	summarize,	the	best	practices	when	it	comes	to

references,	const,	and	classes	are	as	follows:

Pass	non-basic	types	by	reference,	const	reference,	or	pointers,	to

avoid	making	copies.

Pass	by	const	reference	when	a	function	does	not	need	to	modify	a

reference	parameter.

Mark	member	functions	that	don’t	modify	data	as	const.

Dynamic	Allocation	of	Classes

Just	as	with	any	other	type,	you	can	dynamically

allocate	classes.	Listing	A.2	shows	a	declaration	for	a

Complex	class	that	encapsulates	a	real	part	and	an

imaginary	part.

Listing	A.2	A	Complex	Class

Click	here	to	view	code	image

class	Complex

{

public:

			Complex(float	real,	float	imaginary)

						:	mReal(real)

						,	mImaginary(imaginary)

			{	}

private:

			float	mReal;

			float	mImaginary;

};

Notice	how	the	constructor	for	Complex	takes	two

parameters.	To	dynamically	allocate	an	instance	of

Complex,	you	must	pass	in	these	parameters:

Click	here	to	view	code	image

Complex*	c	=	new	Complex(1.0f,	2.0f);

As	with	dynamic	allocation	of	other	types,	the	new

operator	returns	a	pointer	to	the	dynamically	allocated

object.	Given	a	pointer	to	an	object,	the	->	operator

accesses	any	public	members.	For	example,	if	the

Complex	class	had	a	public	Negate	member	function

that	takes	no	parameters,	the	following	would	call	the

function	on	the	object	c:

c->Negate();

You	can	also	dynamically	allocate	arrays	of	objects.	This

works	only	if	the	class	has	a	default	constructor	(a

constructor	that	takes	in	no	parameters).	This	is	because

there’s	no	way	to	specify	constructor	parameters	when

dynamically	allocating	an	array.	If	you	don’t	define	any

constructors	for	a	class,	C++	automatically	creates	a

default	constructor	for	you.	However,	if	you	declare	a

constructor	that	takes	in	parameters,	then	C++	will	not

automatically	create	a	default	constructor.	In	this	case,	if

you	want	a	default	constructor	you	must	declare	it

yourself.	In	the	case	of	Complex,	because	you	declared	a

non-default	constructor,	there	is	no	default	constructor.

Destructors

Suppose	you	needed	to	dynamically	allocate	arrays	of

integers	several	times	throughout	a	program.	Rather

than	manually	write	this	code	repeatedly,	it	might

make	sense	to	encapsulate	this	functionality	inside	a

DynamicArray	class,	as	in	Listing	A.3.

Listing	A.3	A	Basic	Declaration	for	DynamicArray

Click	here	to	view	code	image

class	DynamicArray

{

public:

			//	Constructor	takes	in	size	of	element

			DynamicArray(int	size)

						:	mSize(size)

						,	mArray(nullptr)

			{

						mArray	=	new	int[mSize];

			}

			//	At	function	used	to	access	an	index

			int&	At(int	index)	{	return	mArray[index];	}

private:

			int*	mArray;

			int	mSize;

};

With	this	DynamicArray	class,	you	could	create	a

dynamic	array	with	50	elements	by	using	the	following

code:

DynamicArray	scores(50);

However,	as	previously	discussed,	every	call	to	new	must

have	a	matching	call	to	delete.	In	this	case,

DynamicArray	dynamically	allocates	an	array	in	its

constructor,	but	there’s	no	matching	delete[]

anywhere.	This	means	that	when	the	scores	object	goes

out	of	scope,	there	is	a	memory	leak.

The	solution	is	to	use	another	special	member	function

called	the	destructor.	The	destructor	is	a	member

function	that	automatically	runs	when	destroying	the

object.	For	objects	allocated	on	the	stack,	this	happens

when	the	object	goes	out	of	scope.	For	dynamically

allocated	objects,	the	delete	call	on	the	object	also

invokes	the	destructor.

The	destructor	always	has	the	same	name	as	the	class,

except	prefaced	with	a	tilde	(~).	So	for	DynamicArray,

this	is	the	destructor:

DynamicArray::~DynamicArray()

{

			delete[]	mArray;

}

If	you	add	this	destructor,	when	scores	goes	out	of

scope,	the	destructor	deallocates	mArray,	eliminating

the	memory	leak.

The	Copy	Constructor

The	copy	constructor	is	a	special	constructor	that

creates	an	object	as	a	copy	of	another	object	of	the

same	type.	For	example,	suppose	you	declare	the

following	Complex	object:

Click	here	to	view	code	image

Complex	c1	=	Complex(5.0f,	3.5f);

You	could	then	instantiate	a	second	instance	of	Complex

as	a	copy	of	c1:

Complex	c2(c1);

In	most	cases,	C++	provides	a	copy	constructor

implementation	if	the	programmer	doesn’t	declare	one.

This	default	copy	constructor	directly	copies	all	member

data	from	the	original	object	to	the	new	object.	For

Complex,	this	works	perfectly	fine;	for	example,	it

means	that	c2.mReal	and	c2.mImaginary	directly

copy	from	the	corresponding	members	of	c1.

However,	for	classes	with	pointers	to	data,	such	as

DynamicArray,	directly	copying	member	data	doesn’t

give	the	desired	result.	Suppose	you	run	the	following

code:

Click	here	to	view	code	image

DynamicArray	array(50);

DynamicArray	otherArray(array);

With	the	default	copy	constructor,	you	directly	copy	the

mArray	pointers	rather	than	copying	the	underlying

dynamically	allocated	array.	This	means	that	if	you	next

modify	otherArray,	you	also	modify	array	at	the

same	time!	Figure	A.1	illustrates	this	problematic

behavior,	called	a	shallow	copy.

Figure	A.1	A	shallow	copy	of	mArray

If	the	default	copy	constructor	is	insufficient,	as	is	the

case	for	DynamicArray,	you	must	declare	a	custom

copy	constructor:

Click	here	to	view	code	image

DynamicArray(const	DynamicArray&	other)

			:	mSize(other.mSize)

			,	mArray(nullptr)

{

			//	Dynamically	allocate	my	own	data

			mArray	=	new	int[mSize];

			//	Copy	from	other's	data

			for	(int	i	=	0;	i	<	mSize;	i++)

			{

						mArray[i]	=	other.mArray[i];

			}

}

Note	that	the	only	parameter	to	the	copy	constructor	is	a

const	reference	to	another	instance	of	the	class.	The

implementation	in	this	case	dynamically	allocates	a	new

array	and	then	copies	over	the	data	from	the	other

DynamicArray.	This	is	as	a	deep	copy	because	the	two

objects	now	have	separate	underlying	dynamically

allocated	arrays.

In	general,	classes	that	dynamically	allocate	data	should

implement	the	following	member	functions:

A	destructor	to	free	the	dynamically	allocated	memory

A	copy	constructor	to	implement	deep	copies

An	assignment	operator	(discussed	in	the	next	section),	also	to

implement	deep	copies

If	it’s	necessary	to	implement	any	of	these	three

functions,	then	you	should	implement	all	three.	This

problem	is	so	common	in	C++	that	developers	coined	the

term	rule	of	three	to	remember	it.

notenote

In	the	C++11	standard,	the	rule	of	three	expands	to	the	rule	of	five,	as	there
are	two	additional	special	functions	(the	move	constructor	and	the	move
assignment	operator).	While	this	book	does	use	some	C++11	features,	it
does	not	use	these	additional	functions.

Operator	Overloading

C++	gives	programmers	the	ability	to	specify	the

behavior	of	built-in	operators	for	custom	types.	For

example,	you	can	define	how	the	arithmetic

operators	work	for	the	Complex	class.	In	the	case	of

addition,	you	can	declare	the	+	operator	as	follows:

Click	here	to	view	code	image

friend	Complex	operator+(const	Complex&	a,	const	Complex&	b)

{

			return	Complex(a.mReal	+	b.mReal,

																		a.mImaginary	+	b.mImaginary);

}

Here,	the	friend	keyword	means	that	operator+	is	a

standalone	function	that	can	access	Complex’s	private

data.	This	is	a	typical	declaration	signature	for	binary

operators.

After	overloading	the	+	operator,	you	can	use	it	to	add

two	complex	objects,	like	so:

Complex	result	=	c1	+	c2;

You	can	also	override	binary	comparison	operators.	The

only	difference	is	that	these	operators	return	a	bool.	For

example,	the	following	code	overloads	the	==	operator:

Click	here	to	view	code	image

friend	bool	operator==(const	Complex&	a,	const	Complex&	b)

{

			return	(a.mReal	==	b.mReal)	&&

						(a.mImaginary	==	b.mImaginary);

}

You	can	also	overload	the	=	operator	(or	assignment

operator).	As	with	the	copy	constructor,	if	you	don’t

specify	an	assignment	operator,	C++	gives	you	a	default

assignment	operator	that	performs	a	shallow	copy.	So,

you	usually	only	need	to	overload	the	assignment

operator	in	the	“rule	of	three”	case.

There’s	one	big	difference	between	an	assignment

operator	and	a	copy	constructor.	With	a	copy

constructor,	you’re	constructing	a	new	object	as	a	copy	of

an	existing	one.	With	an	assignment	operator,	you’re

overwriting	an	already	existing	instance	of	an	object.

For	example,	the	following	code	invokes	the	assignment

operator	for	DynamicArray	on	the	third	line	because

the	first	line	previously	constructed	a1:

Click	here	to	view	code	image

DynamicArray	a1(50);

DynamicArray	a2(75);

a1	=	a2;

Because	the	assignment	operator	overwrites	an	already

existing	instance	with	new	values,	it	needs	to	deallocate

any	previously	dynamically	allocated	data.	For	example,

this	is	the	correct	implementation	of	the	assignment

operator	for	DynamicArray:

Click	here	to	view	code	image

DynamicArray&	operator=(const	DynamicArray&	other)

{

			//	Delete	existing	data

			delete[]	mArray;

			//	Copy	from	other

			mSize	=	other.mSize;

			mArray	=	new	int[mSize];

			for	(int	i	=	0;	i	<	mSize;	i++)

			{

						mArray[i]	=	other.mArray[i];

			}

			//	By	convention,	return	*this

			return	*this;

}

Note	that	the	assignment	operator	is	a	member	function

of	the	class,	not	a	standalone	friend	function.	Also,	by

convention,	the	assignment	operator	returns	a	reference

to	the	reassigned	object.	This	allows	for	code	(albeit	ugly

code)	that	chains	assignments,	such	as	the	following:

a	=	b	=	c;

You	can	override	nearly	every	operator	in	C++,	including

the	subscript	[]	operator,	new,	and	delete.	However,

with	great	power	comes	great	responsibility.	You	should

try	to	overload	an	operator	only	when	it’s	clear	what	the

operator	does.	It	makes	sense	that	the	+	operator	does

addition,	but	you	should	avoid	reassigning	the	meaning

of	an	operator.

For	example,	some	math	libraries	override	|	and	^	for

the	dot	and	cross	products,	even	though	|	and	^	are	the

bitwise	OR	and	bitwise	XOR	for	integral	types.

Overusing	operator	overloading	in	this	manner	leads	to

code	that	is	difficult	to	understand.	Amusingly,	the	C++

library	itself	breaks	this	best	practice:	Streams	overload

the	>>	and	<<	operators	for	input	and	output	(which	are

bitshift	operators	for	integral	types).

COLLECTIONS
A	collection	provides	a	way	to	store	elements	of

data.	The	C++	Standard	Library	(STL)	provides

many	different	collections,	and	so	it’s	important	to

understand	when	to	utilize	which	collections.	This

section	discusses	the	most	commonly	used

collections.

Big-O	Notation

Big-O	notation	describes	the	rate	at	which	an

algorithm	scales	as	the	problem	size	scales.	This	rate

is	also	known	as	the	time	complexity	of	the

algorithm.	You	can	use	Big-O	to	understand	the

relative	scaling	of	specific	operations	on	collections.

For	example,	an	operation	with	a	Big-O	of	O(1)

means	that	regardless	of	the	number	of	elements	in

the	collection,	the	operation	will	always	take	the

same	amount	of	time.	On	the	other	hand,	a	Big-O	of

O(n)	means	that	the	time	complexity	is	a	linear

function	of	the	number	of	elements.

Table	A.5	lists	the	most	common	time	complexities,	from

the	fastest	to	the	slowest.	Algorithms	that	are

exponential	or	slower	are	too	slow	to	see	real	use	beyond

very	small	problem	sizes.

Table	A.5	Common	Time	Complexities	in	Big-O

Notation	(Fastest	to	Slowest)

Big-O Described

As

Examples

O(1) Constant Insertion	into	the	front	of	a	linked	list,

array	indexing

O(log

n)

Logarithmic Binary	search	(given	an	already	sorted

collection)

O(n) Linear Linear	search

O(n	log

n)

“n	log	n” Merge	sort,	quick	sort	(average	case)

O(n2) Quadratic Insertion	sort,	bubble	sort

O(2n) Exponential Integer	factorization

O(n!) Factorial Brute-forcing	the	traveling	salesperson

problem

Although	Big-O	notation	says	how	an	algorithm	scales,

for	certain	problem	sizes,	algorithms	with	worse	time

complexity	may	perform	better.	For	example,	a	quick

sort	has	an	average	time	complexity	of	O(n	log	n),	while

an	insertion	sort	has	a	time	complexity	of	O(n2).

However,	for	small	problem	sizes	(such	as	n<20),	the

insertion	sort	has	a	faster	execution	time	because	it	does

not	use	recursion.	Thus,	it’s	as	important	to	consider	the

actual	execution	performance	of	an	algorithm	as	its

specific	use	case.

Vector

A	vector	is	a	dynamic	array	that	automatically

resizes	based	on	the	number	of	elements	in	the

collection.	To	insert	elements	into	a	vector,	use	the

push_back	(or	emplace_back)	member	function.

This	adds	an	element	to	the	end	(back)	of	the	vector.

For	example,	the	following	code	declares	a	vector	of

floats	and	then	adds	three	elements	at	the	end	of	the

vector:

Click	here	to	view	code	image

//	#include	<vector>	to	use	std::vector

std::vector<float>	vecOfFloats;

vecOfFloats.push_back(5.0f);		//	Contents:	{	5.0f	}

vecOfFloats.push_back(7.5f);		//	Contents:	{	5.0f,	7.5f	}

vecOfFloats.push_back(10.0f);	//	Contents:	{	5.0f,	7.5f,	10.0f	}

Once	the	vector	has	elements,	you	can	use	array

subscript	notation	to	access	specific	elements	in	the

vector.	So	given	the	vector	from	the	preceding	snippet,

vecOfFloats[2]	accesses	the	third	element	in	the

vector,	yielding	10.0f.

In	the	long	run,	insertion	into	the	back	of	a	vector

averages	out	to	O(1).	However,	because	a	vector	exists	in

one	contiguous	block	of	memory,	as	in	Figure	A.2,

insertion	at	an	arbitrary	position	in	the	vector	is	O(n).

Because	of	this,	you	should	avoid	arbitrary	insertion	into

a	vector.	But	an	advantage	of	this	contiguous	memory

layout	is	that	accessing	an	element	at	an	index	is	O(1).

Figure	A.2	The	internal	memory	layout	of	a	vector

is	contiguous,	as	with	arrays

Linked	List

A	linked	list	is	a	collection	that	stores	each	element

at	a	separate	location	in	memory	and	links	them

together	with	pointers.	The	std::list	collection

allows	for	insertion	to	both	the	front	and	the	back	of

the	list.	Use	the	push_front	(or	emplace_front)

function	to	insert	into	the	front,	and	push_back	(or

emplace_back)	for	the	back.	The	following	code

creates	a	linked	list	of	integers	and	inserts	a	handful

of	elements:

Click	here	to	view	code	image

//	#include	<list>	to	use	std::list

std::list<int>	myList;

myList.push_back(4);

myList.push_back(6);

myList.push_back(8);

myList.push_back(10);

myList.push_front(2);

Figure	A.3	illustrates	myList	after	completing	all	the

insertions.	Note	that,	by	definition,	the	elements	in	the

linked	list	are	not	next	to	each	other	in	memory.	One

advantage	of	a	linked	list	is	that	insertion	to	either	end	of

the	list	is	O(1).	If	you	have	a	pointer	to	an	element	in	the

list,	you	can	also	insert	before	or	after	that	element	in

O(1)	time.

Figure	A.3	myList	with	elements	inserted	into	it

However,	one	disadvantage	of	a	linked	list	is	that

accessing	the	nth	element	of	the	list	is	O(n).	For	this

reason,	the	implementation	of	std::list	does	not

allow	indexing	via	array	subscripting.

EFFICIENCY:	LINKED	LIST	OR	VECTOR?

In	cases	where	each	individual	element	in	the	collection	is	small	(less
than	64	bytes),	a	vector	almost	always	outperforms	a	linked	list.	This	is
because	of	the	way	a	CPU	accesses	memory.

Reading	values	from	memory	is	very	slow	for	the	CPU,	so	when	it	needs
to	read	a	value	from	memory,	it	also	loads	neighboring	values	into	a
high-speed	cache.	Because	elements	in	a	vector	are	contiguous	in
memory,	accessing	an	element	at	a	specific	index	also	loads	its
neighboring	indices	into	the	cache.

However,	because	elements	in	a	linked	list	are	not	contiguous,	loading
one	element	also	loads	unrelated	memory	into	the	cache.	Thus,
operations	such	as	looping	over	an	entire	collection	are	much	more
efficient	with	a	vector	than	with	a	linked	list,	even	though	both	operations
have	a	time	complexity	of	O(n).

Queues

A	queue	exhibits	first-in,	first-out	(FIFO)

behavior,	much	like	waiting	in	a	line	at	a	store.	With

a	queue,	you	cannot	remove	elements	in	any

arbitrary	order.	With	a	queue,	you	must	remove

elements	in	the	same	order	in	which	they	were

added.	Although	many	books	use	enqueue	to

reference	insertion	into	a	queue	and	dequeue	to

reference	removal	from	a	queue,	the	implementation

of	std::queue	uses	push	(or	emplace)	for

insertion	and	pop	for	removal.	To	access	the	element

at	the	front	of	the	queue,	use	front.

The	following	code	inserts	three	elements	into	a	queue

and	then	removes	each	element	from	the	queue,

outputting	the	values:

Click	here	to	view	code	image

//	#include	<queue>	to	use	std::queue

std::queue<int>	myQueue;

myQueue.push(10);

myQueue.push(20);

myQueue.push(30);

for	(int	i	=	0;	i	<	3;	i++)

{

			std::cout	<<	myQueue.front()	<<	'	';

			myQueue.pop();

}

Because	queues	operate	in	a	FIFO	manner,	the	above

code	outputs	the	following:

10	20	30

The	std::queue	implementation	guarantees	O(1)	time

complexity	for	insertion,	accessing	the	front	element,

and	removal.

Stack

A	stack	exhibits	last-in,	first-out	(LIFO)

behavior.	For	example,	if	you	add	the	elements	A,	B,

and	C	to	a	stack,	you	can	only	remove	them	in	the

order	C,	B,	A.	You	use	the	push	(or	emplace)

function	to	add	an	element	onto	the	stack	and	the

pop	function	to	remove	an	element	from	the	stack.

The	top	function	accesses	the	element	on	the	“top”

of	the	stack.	The	following	code	shows	std::stack

in	action:

Click	here	to	view	code	image

//	Include	<stack>	to	use	std::stack

std::stack<int>	myStack;

myStack.push(10);

myStack.push(20);

myStack.push(30);

for	(int	i	=	0;	i	<	3;	i++)

{

			std::cout	<<	myStack.top()	<<	'	';

			myStack.pop();

}

Because	of	the	LIFO	behavior	of	a	stack,	the	above	code

outputs	the	following:

30	20	10

As	with	queue,	the	major	operations	for	std::stack

all	have	constant	time	complexity.

Maps

A	map	is	an	ordered	collection	of	{key,	value}	pairs,

sorted	by	key.	Each	key	in	the	map	must	be	unique.

Because	a	map	has	both	a	key	type	and	a	value	type,

you	must	specify	both	types	when	declaring	a	map.

The	recommended	way	to	add	an	element	to	a	map	is

with	the	emplace	function,	which	takes	in	the	key

and	values	as	parameters.	For	example,	the	following

code	creates	a	std::map	of	months,	where	the	key	is

the	number	of	the	month	and	the	value	is	the	string

name	of	the	month:

Click	here	to	view	code	image

//	#include	<map>	to	use	std::map

std::map<int,	std::string>	months;

months.emplace(1,	"January");

months.emplace(2,	"February");

months.emplace(3,	"March");

//	...

The	easiest	way	to	access	an	element	from	a	map	is	by

using	the	[]	operator	and	passing	in	the	key.	For

example,	the	following	would	output	February:

std::cout	<<	months[2];

However,	this	syntax	works	as	expected	only	if	the	key	is

in	the	map.	To	determine	if	a	key	is	in	a	map,	use	the

find	function.	This	returns	an	iterator	to	the	element,	if

found.	(We	discuss	iterators	in	a	moment.)

Internally,	the	std::map	implementation	uses	a

balanced	binary	search	tree.	This	means	that	std::map

can	find	an	element	by	key	in	O(log	n)	(logarithmic)

time.	Insertion	and	removal	from	the	map	are	also

logarithmic.	Furthermore,	due	to	the	binary	search	tree,

looping	over	the	contents	of	a	map	is	in	ascending	order

of	the	keys.

Hash	Maps

While	a	regular	map	maintains	an	ascending	order	of

the	keys,	a	hash	map	is	unordered.	In	exchange	for

the	lack	of	ordering,	insertion,	removal,	and	search

are	all	O(1).	Thus,	in	cases	where	you	need	a	map	but

don’t	need	ordering,	a	hash	map	yields	better

performance	than	a	regular	map.

The	C++	hash	map	std::unordered_map	has	the

same	functions	as	std::map,	just	without	any

guaranteed	ordering.	To	use	the	hash	map	class,	use

#include	<unordered_map>.

Iterators,	Auto,	and	Range-Based	For
Loops

For	looping	over	all	the	elements	in	a	vector	you	can

use	the	same	syntax	as	for	looping	over	an	array.

However,	many	of	the	other	C++	STL	collections,

such	as	list	and	map,	do	not	support	this	array

syntax.

One	way	to	loop	over	these	other	containers	is	with	an

iterator,	which	is	an	object	that	helps	traverse	the

collection.	Every	C++	STL	collection	supports	iterators.

Each	collection	has	a	begin	function	that	returns	an

iterator	to	the	first	element	and	an	end	function	that

returns	an	iterator	to	the	last	element.	The	type	of	the

iterator	is	the	type	of	the	collection	followed	by

::iterator.	For	example,	the	following	code	creates	a

list	and	then	uses	an	iterator	to	loop	over	each	element	in

the	list:

Click	here	to	view	code	image

std::list<int>	numbers;

numbers.emplace_back(2);

numbers.emplace_back(4);

numbers.emplace_back(6);

for	(std::list<int>::iterator	iter	=	numbers.begin();

			iter	!=	numbers.end();

			++iter)

{

			std::cout	<<	*iter	<<	std::endl;

}

Note	that	the	iterator	is	dereferenced	with	*,	the	same

way	a	pointer	is	dereferenced.	The	syntax	for	looping

over	other	collections	with	iterators	is	similar.

In	the	case	of	a	map,	the	iterator	actually	points	to	a

std::pair.	So,	given	an	iterator	to	an	element	in	a

map,	you	must	use	first	and	second	to	access	the	key

and	value,	respectively.	Returning	to	the	months	map

from	earlier,	you	can	get	an	iterator	to	an	element	and

output	its	data	with	the	following	code:

Click	here	to	view	code	image

//	Get	an	iterator	to	the	element	with	the	key	2

std::map<int,	std::string>	iter	=	months.find(2);

if	(iter	!=	months.end())	//	This	is	only	true	if	found

{

			std::cout	<<	iter->first	<<	std::endl;	//	Outputs	2

			std::cout	<<	iter->second	<<	std::endl;	//	Outputs	February

}

Typing	out	the	long	type	names	for	iterators	is	annoying.

C++11	provides	the	auto	keyword	to	help	reduce	this

pain.	auto	tells	the	compiler	to	deduce	the	type	of	a

variable	for	you,	based	on	the	assigned	value.	For

example,	because	the	begin	function	returns	an	iterator

of	a	very	specific	type,	auto	can	deduce	that	correct	type.

There	is	no	performance	penalty	for	using	auto,	though

some	programmers	find	the	code	harder	to	understand.

Using	auto,	you	can	rewrite	the	list	loop	as	follows:

Click	here	to	view	code	image

//	auto	is	deduced	to	be	std::list<int>::iterator

for	(auto	iter	=	numbers.begin();

			iter	!=	numbers.end();

			++iter)

{

			std::cout	<<	*iter	<<	std::endl;

}

The	code	in	this	book	uses	auto	only	when	it	provides	a

benefit	in	readability.

Even	with	auto,	the	code	for	looping	via	iterators	is

clunky.	Many	other	programming	languages	provide	a

foreach	construct	for	looping	over	collections.	C++11

has	a	similar	construct	called	a	range-based	for	loop.

To	loop	over	the	numbers	list	with	a	range-based	for

loop,	use	the	following	syntax:

Click	here	to	view	code	image

for	(int	i	:	numbers)

{

			//	i	stores	the	element	for	the	current	loop	iteration

			std::cout	<<	i	<<	std::endl;

}

This	loop	makes	a	copy	of	each	element	in	the	list	as	it

iterates	over	it.	However,	you	can	also	pass	by	reference

if	you	want	to	modify	elements	in	the	collection.

Similarly,	you	can	use	const	references.

You	can	also	use	auto	for	the	type	when	writing	a	range-

based	for	loop.	However,	as	with	using	an	explicit	type,

this	makes	a	copy	of	each	element.	However,	you	can

also	use	const	and	&	with	auto,	if	needed.

One	disadvantage	of	a	range-based	for	loop	is	that	you

can’t	add	or	remove	elements	in	the	collection	during	the

loop.	So,	if	you	need	this	behavior,	you	must	use	another

type	of	loop.

ADDITIONAL	READING
There	are	many	excellent	resources	available	online

to	help	you	learn	and	practice	the	fundamentals	of

C++.	One	such	website	is	LearnCPP.com,	which

contains	a	very	in-depth	progression	of	topics.	If	you

prefer	traditional	books,	you	should	see	Stephen

Prata’s	book,	which	provides	coverage	of	the	basics.

Eric	Roberts’s	book	covers	both	the	fundamentals	of

C++	and	relevant	data	structures.

Both	of	Scott	Meyers’s	books	are	great	resources	for	best

practices	in	C++.	They	are	short	reads	that	provide	many

tips	on	how	to	achieve	maximum	effectiveness	from	C++

code.

There	is	also	a	great	deal	of	information	available	on	the

C++	Standard	Library.	Bjarne	Stroustrup,	the	creator	of

C++,	devotes	a	large	section	of	his	book	to	the	C++

collection	implementations.

LearnCpp.com.	Last	modified	April	28,

2016.	http://www.learncpp.com.

Meyers,	Scott.	Effective	C++,	3rd	edition.

Boston:	Addison-Wesley,	2005.

Meyers,	Scott.	Effective	Modern	C++.

Sebastopol:	O’Reilly	Media,	2014.

Prata,	Stephen.	C++	Primer	Plus,	6th

edition.	Upper	Saddle	River:	Addison-

Wesley,	2012.

Roberts,	Eric.	Programming	Abstractions

in	C++.	Boston:	Pearson,	2014.

Stroustrup,	Bjarne.	The	C++	Programming

Language,	4th	edition.	Upper	Saddle	River:

Pearson,	2013.

http://www.learncpp.com

INDEX

SYMBOLS
∗	operator,	63
+	operator,	64

=	operator,	469

==	operator,	469

−	operator,	62

NUMBERS
2D	coordinate	systems,	151

2D	graphics,	14–15

drawing,	19–21

filtering	analog	sticks,	267–269

implementing,	18–21

Initialize	function,	19

scrolling	backgrounds,	51–53

Shutdown	function,	19

sprites,	42

animating,	48–50

drawing,	44–48

2D	transformations

rotation	matrix,	157–158

scale	matrix,	157

translation	matrices,	158–159

3D

Actor	transform,	184,	189–190

BasicMesh	shader,	203–204

calculating	view-projection	matrix,	200

Euler	angles,	185–186

lighting.	See	lighting

MeshComponent,	204–206

quaternions,	186–187

in	code,	188–189

combining	rotations,	187

quaternion-to-rotation	matrix,	188

rotating	vectors,	188

spherical	linear	interpolation	(Slerp),	188

transform	matrices,	184–185

transforming	clip	space

projection	matrix,	197–200

view	matrix,	196–197

updating	vertex	attributes,	193–194

z-buffering,	201–203

3D	AABB,	308

3D	coordinate	system,	184

3D	meshes,	drawing,	195–196

3D	models

choosing	formats,	191–193

loading,	190

vertex	and	index	buffers,	133–138

3D	positional	audio,	233–234

setting	up	listeners,	234–236

4x4	matrices,	184–185

A
A*,	106,	111–113

optimizing,	113

AABB	(axis-aligned	bounding	box),	303–306

AABB	contains	point	tests,	308

AABB	versus	AABB	test,	311–312

acceleration,	79

Actor	transform,	3D,	184,	189–190

Actor::LoadProperties,	436–437

actors

adding	to	world	transforms,	159–161

associating	with	sound	events,	AudioComponent,

237–238

jumping,	248–251

loading	in	level	files,	435–439

saving	in	level	files,	446–448

Actor::SaveProperties,	446–447

adaptive	refresh	rate,	18

AddButton,	349

adding

an	aiming	reticule,	352–354

flipY	option	to	UIScreen::DrawTexture,	406

pitch	to	first-person	cameras,	278–280

point	lights,	418

PointLightComponent	class,	419

positional	functionality	to	SoundEvent,	236–237

radar,	354–358

shaders	to	games,	146

springs	to	follow	cameras,	283–285

text	maps,	359–361

world	transforms,	to	actors,	159–161

AddInt,	444

addition,	vector	addition,	63–64

AddSprite,	46

AddTarget,	352

adjacency	lists,	99

admissible,	heuristics,	104

adversarial,	116

AI	(artificial	intelligence),	91

designing	state	machines,	92–93

game	trees,	116–118

alpha-beta	pruning,	121–124

incomplete	game	trees,	120–121

minimax,	118–119

graphs,	98–100

BFS	(breadth-first	search),	100–103

implementing	state	machines,	93–95

pathfinding	98

Dijkstra’s	Algorithm,	113–114

following	paths,	114–115

heuristics,	104–105

navigation	meshes,	115–116

path	nodes,	115

state	machine	behaviors,	92

states,	as	classes,	95–98

AIComponent	class,	93–95

AIComponent::Update	function,	94,	96

AIDeath	state,	97

aiming	reticule,	adding,	352–354

AIPatrol	class,	97

AIState,	95

Alarm	state,	93

Alert	state,	93

alpha,	121

alpha	blending,	178–180

alpha	values,	14–15

alpha-beta	pruning,	121–124

AlphaBetaDecide,	121–122

AlphaBetaMax,	122–123

AlphaBetaMin,	123

ambient	light,	207–208

loading	global	properties,	434–435

analog	sticks,	264–267

filtering,	267–269

anchors,	361

angle	summation,	309

angles

converting	from	forward	vectors,	67–68

converting	to	forward	vectors,	66–67

determining	between	two	vectors,	dot	product,	68–70

animating	sprites,	48–50

animation,	skeletal	animation.	See	skeletal	animation

Animation	class,	381–382

animation	data,	371–372

loading	for	skeletal	animation,	380–385

animations,	updating,	386–389

AnimSpriteComponent,	49,	50,	53–54

anisotropic	filtering,	399–400

API	(application	programming	interface),	3

Apple	macOS,	setting	up	development	environments,	2

application	programming	interface	(API),	3

architecture,	InputSystem,	251–253

arctangent,	67–68

arrays,	460–461,	462

artificial	intelligence.	See	AI	(artificial	intelligence)

ASCII,	358–359

AStarScratch,	111

Asteroid	constructor,	74–75

Asteroids,	84–86

atan2	function,	67

Attack	state,	93

attenuates,	233

attributes

OpenGL,	129

skinning	vertex	attributes,	drawing	with,	374–378

vertex	attributes,	updating,	193–194,	206

audio

3D	positional	audio,	233–234

setting	up	listeners,	234–236

audio	systems,	creating,	224–226

AudioComponent,	creating	to	associate	actors	with

sound	events,	237–238

banks,	loading/unloading,	227–229

bootstrapping,	222

buses,	242–243

Doppler	effect,	240–241

effects,	241–242

equalization,	242

FMOD,	222–223

banks	and	events,	226–227

event	instances,	229–230

installing,	223–224

listeners,	in	third-person	games,	239–240

mixing,	241–242

occlusion,	243–244

positional	functionality,	adding	to	SoundEvent,

236–237

reverb,	242

snapshots,	243

SoundEvent	class,	230–233

audio	systems,	creating,	224–226

AudioComponent,	creating	to	associate	actors	with

sound	events,	237–238

AudioComponent::PlayEvent,	238

AudioComponent::StopAllEvents,	238

AudioComponent::Update,	238

AudioSystem::PlayEvent	Implementation	with	Event

IDs,	230–231

AudioSystem::SetListener,	235–236

AudioSystem::UnloadAllBanks,	228

AudioSystem::Update,	231

auto,	475–476

axis,	filters,	265

axis-aligned	bounding	box.	See	AABB	(axis-aligned

bounding	box)

B
back	buffer,	17

backgrounds,	scrolling	backgrounds,	51–53

ball	collisions

with	SegmentCast,	327–328

testing	in	PhysWorld,	329–331

BallActor,	328

balls

drawing,	20–23

updating	position	of,	28–30

banks

FMOD,	226–227

loading/unloading,	227–229

basic	input	processing,	11–13

Basic.frag	file,	141

BasicMesh	shader,	203–204

BasicMesh.vert	shader,	421

Basic.vert	file,	writing	basic	shaders,	139–140

beta,	121

BFS	(breadth-first	search),	100–103

BGSpriteComponent,	51

BGTexture,	51

bidirectional	light,	214

bidirectional	reflectance	distribution	function	(BRDF),

209

Big-O	notation,	470–471

bilinear	filtering,	169,	394,	395–397,	400

bilinear	interpolation,	396

binary	data,	448–449

binary	mesh	files,	loading,	452–454

saving,	binary	mesh	files,	449–452

binary	mesh	files

loading,	452–454

saving,	449–452

bind	pose,	368

Feline	Swordsman,	378

blank	windows,	creating,	10–11

Blended,	339

blitting,	131

bone	hierarchy,	367–368

Bone	struct,	370

bones,	366

BoneTransform,	369,	371–372

bootstrapping,	audio,	222

bounding	spheres,	303

bounding	volume	tests,	310

AABB	versus	AABB	test,	311–312

capsule	versus	capsule	test,	313–314

sphere	versus	AABB	test,	312–313

sphere	versus	sphere	tests,	311

bounding	volumes,	302–303

AABB	(axis-aligned	bounding	box),	303–306

capsules,	306–307

convex	polygons,	307

OBB	(oriented	bounding	box),	306

spheres,	303

BoxComponent	class,	324–325

BRDF	(bidirectional	reflectance	distribution	function),

209

breadth-first	search	(BFS),	100–103

broadphase	techniques,	331

buses,	242–243

Button	class,	346–350

buttons

controllers,	262–264

mouse	input,	256–258

user	interfaces,	346–350

Button::SetName,	347

C
C++	Standard	Library,	3

calculating

lighting,	407–408

normal	vectors,	70–72

points	on	line	segments,	298

view-projection	matrix,	200

weighted	averages,	in	bilinear	filtering,	396

world	transform	matrix,	189

camera	position,	computing,	282

CameraComponent,	277–278

cameras,	34

first-person	camera,	276

adding	pitch,	278–280

cameras	without	pitch,	277–278

first-person	models,	280–281

movement,	276–277

follow	cameras,	281–283

adding	springs,	283–285

orbit	cameras,	286–288

spline	cameras,	289–292

unprojection,	292–294

without	pitch,	277–278

capsule	contains	point	tests,	309

capsule	versus	capsule	test,	313–314

capsules,	306–307

Catmull-Rom	spline,	289

CCD	(continuous	collision	detection),	321

ChangeState	function,	94,	96,	98

channels,	15,	222

character.jump(),	249

characters,	jumping,	248–251

choosing	3D	model	formats,	191–193

CircleComponent	subclass,	creating,	83–84

circle-versus-circle	intersection,	82

class	hierarchies,	game	objects,	34–36

classes,	464–465

dynamic	allocation	of,	465

states	as,	95–98

clip	space,	transforming

with	projection	matrix	(3D),	197–200

with	view	matrix	(3D),	196–197

from	world	space,	161–163

closed	set,	GBFS	(greedy	best-first	search),	106

collections,	470

collision	detection,	81

ball	collisions

with	SegmentCast,	327–328

testing	in	PhysWorld,	329–331

bounding	volumes,	302–303

AABB	(axis-aligned	bounding	box),	303–306

capsules,	306–307

convex	polygons,	307

OBB	(oriented	bounding	box),	306

spheres,	303

BoxComponent	class,	324–325

CircleComponent	subclass,	creating,	83–84

circle-versus-circle	intersection,	82

dynamic	objects,	321–323

geometric	types,	298

line	segments,	298–301

planes,	301–302

intersection	tests.	See	intersection	tests

line	segment	tests

line	segment	versus	AABB	test,	318–320

line	segment	versus	plane	test,	314–315

line	segment	versus	sphere	test,	315–317

PhysWorld	class,	325–327

player	collision,	against	walls,	331–333

CollisionInfo,	326

color	buffer,	15–16

color	depth,	15

column	vectors,	155,	156

combining

equations,	154

rotation,	for	3D,	187

transformations,	152–153,	159

vectors,	63–64

compatibility	profiles,	OpenGL,	129

CompileShader,	142–143

Complete	transition,	Alarm	state,	93

Component	class,	440

component	declaration,	39–40

component-based	game	object	model,	36–38

ComponentFunc,	442

components

game	objects,	36–38

as	hierarchy,	38–40

loading,	in	level	files,	439–444

saving,	in	level	files,	446–448

composite,	248

ComputeGlobalInvBindPose,	379

ComputeMatrixPalette,	384,	389

computing

camera	position,	282

positions,	with	Euler	integration,	80

const,	464–465

contains	point	tests,	308

AABB	contains	point	tests,	308

capsule	contains	point	tests,	309

convex	polygon	contains	point	(2D)	tests,	309–310

sphere	contains	point	tests,	308

ContainsPoint,	347

context,	OpenGL,	130

continuous	collision	detection	(CCD),	321

controller	input,	261

buttons,	262–264

disabling	controllers,	262

enabling	single	controllers,	261–262

multiple	controllers,	269–270

ControllerState,	263,	267

converting

from	angles	to	forward	vectors,	66–67

forward	vectors,	to	angles,	67–68

convex	polygon	contains	point	(2D)	tests,	309–310

convex	polygons,	307

coordinate	systems

3D	coordinate	system,	184

left-handed	coordinate	system,	184

UV	coordinates,	395

coordinates,	NDC	(normalized	device	coordinates),

132–133

copy	constructor,	467–468

core	profile,	OpenGL,	129

Create,	410

CreateMirrorTarget,	404

CreateMirrorTexture,	402

CreateRotationZ,	160

CreateScale,	160

CreateTranslation,	160

CreateWorldTransform,	160

cross	product,	70–72

crosshair	texture,	drawing,	353

cross-platform	libraries,	3

D
dead	zones,	265

Death	state	transition,	92

debug	logging,	initializing,	225

Debug_Initialize,	225

deferred	shading,	407–408,	424–425

G-buffer

creating,	408–411

writing	to,	412–414

global	lighting,	414–418

point	lights,	418–419

drawing,	421–424

deleting,	dynamically	allocated	arrays,	463

delta	time,	24–28

dependency	injection,	39

depth	buffer,	201

depth	buffering.	See	z-buffering

designing,	state	machines,	AI	(artificial	intelligence),

92–93

Destroy,	411

destructors,	466–467

development	environments,	setting	up,	2

Apple	macOS,	2

Microsoft	Windows,	2

dialog	boxes,	349–352

diamond	inheritance,	36

DiffuseColor,	421

digital	signal	processing	(DSP),	241

Dijkstra’s	Algorithm,	113–114

directed,	98

directed	edges,	100

directional	light,	208

loading	global	properties,	434–435

directions,	vectors,	65–66

disabling	controllers,	262

distance,	vectors,	64–65

Doppler	effect,	240–241

Dot	function,	70

dot	product,	68–70

double	buffering,	16–18

Draw	function,	52

Draw3DScene,	404–405,	413

DrawComponent,	36

DrawFromGBuffer,	416–417

drawing

2D	graphics,	19–21

3D	meshes,	195–196

balls,	20–23

crosshair	texture,	353

mirror	texture,	in	HUD,	406–407

paddles,	20–23

point	lights,	421–424

radar,	357

with	skinning	vertex	attributes,	374–378

sprites,	44–48

textures,	47

triangles,	146–148

transformations,	148–149

walls,	20–23

DrawScreen,	348

DSP	(digital	signal	processing),	241

dynamic	memory	allocation,	462–463

dynamic	memory	allocation	of	classes,	465

dynamic	objects,	collision	detection,	321–323

DynamicArray,	466,	467

E
edges,	98

effects,	audio,	241–242

encapsulating	buttons,	346

endianness,	451

equalization,	242

equations,	combining,	154

ES	profiles,	OpenGL,	129

Escape	key,	256

Euclidean	distance	heuristic,	105

Euler	angles,	185–186

Euler	integration,	80

event	instances,	FMOD,	229–230

event	processing,	11–12

EventInstances,	229–230

events,	11

FMOD,	226–227

input	devices,	251

exchange	formats,	191

extensions

.frag	extension,	139

.vert	extension,	139

F
falloff	function,	233

falloff	radius,	208

FBO	(framebuffer	objects)

creating,	402–404

rendering,	404–405

Feline	Swordsman,	bind	pose,	378

FIFO	(first-in,	first	out),	473

Filter1D,	265–267

Filter2D,	268–269

filtering,	400

analog	sticks,	267–269

anisotropic	filtering,	399–400

bilinear	filtering,	394,	395–397,	400

nearest-neighbor	filtering,	395

trilinear	filtering,	398,	399,	400

filters,	for	axis,	265

first-in,	first-out	(FIFO),	473

first-person	camera,	276

adding	pitch,	278–280

cameras	without	pitch,	277–278

first-person	models,	280–281

movement,	276–277

first-person	models,	280–281

first-person	movement,	276–277

FixCollisions,	332–333

flat	shading,	211

flipY	option,	adding	to	UIScreen::DrawTexture,	406

FMOD,	222–223

audio	systems,	creating,	224–226

banks	and	events,	226–227

event	instances,	229–230

installing,	223–224

occlusion,	244

positional	audio,	234

snapshots,	243

FMOD	Studio,	223

buses,	242–243

DSP	(digital	signal	processing),	242

FMOD_VECTOR,	234–235

FMOD_ErrorString,	225

follow	cameras,	281–283

adding	springs,	283–285

FollowCamera,	282

FollowCamera::Update,	283,	284–285

following	paths,	AI	(artificial	intelligence),	114–115

font	rendering,	338–340

Font::Load,	338–339

Font::RenderText,	339,	340,	359

For	loops,	475–476

force,	79–80

force	feedback,	5

formats,	3D	model	formats,	choosing,	191–193

forward	rendering,	407–408

forward	vectors

converting	from	angles,	66–67

converting	to	angles,	67–68

FPS	(frames	per	second),	4

FPS	angular	speed,	277

FPSActor::FixCollisions,	332–333

FPSCamera,	278

FPSCamera::Update,	279

.frag	extension,	139

fragment	shaders,	139,	412

frame	buffer,	201

frame	limiting,	25–26

frame	rate,	4

framebuffer,	15

framebuffer	objects

creating,	402–404

rendering,	404–405

frames,	4–6

rendering,	in	OpenGL,	131

frames	per	second	(FPS),	4

front	buffer,	17

G
game	classes

main	function,	10–11

skeleton	game	class,	6–7

Initialize	function,	7–9

RunLoop	function,	9–10

Shutdown	function,	9

Game	Declaration,	skeleton	game	class,	7

game	loops,	4

frames,	4–6

integrating	game	objects	into,	40–42

single-threaded	game	loop,	5

game	object	models,	40

game	objects	as	class	hierarchies,	34–36

game	objects	as	hierarchy	with	components,	38–40

game	objects	with	components,	36–38

game	objects,	34

as	class	hierarchies,	34–36

with	components,	36–38

as	hierarchy	with	components,	38–40

integrating,	into	game	loops,	40–42

types	of,	34

game	projects

3D	graphics,	216

Asteroids,	84–86

audio,	244–245

cameras,	295

collision	detection,	333–334

convertingAstroids	game	to	OpenGL,	180

intermediate	graphics,	425

level	files	and	binary	data,	454–455

moving	spaceships,	271–272

skeletal	animation,	389–390

sprites,	53–55

tower	defense	game,	124

user	interfaces,	362

game	time,	24

game	trees,	116–118

AI	(artificial	intelligence)

alpha-beta	pruning,	121–124

incomplete	game	trees,	120–121

minimax,	118–119

Game::GenerateOutput	function,	147

Game::LoadData,	430

Game::LoadShaders,	166

games

adding	shaders	to,	146

Asteroids,	84–86

Pac-Man	game,	pseudocode,	6

Pong.	See	Pong

tic-tac-toe,	game	trees,	116–117

tower	defense	game,	124

updating,	23

delta	time,	24–28

game	time,	24

real	time,	24

GameState,	120

gamut,	14

GBFS	(greedy	best-first	search),	105–111

G-buffer,	408

creating,	408–411

writing	to,	412–414

GBuffer	class,	creating,	408–411

GBuffer::Create,	410

GBufferGlobal.frag	shader,	415–416,	418

GBufferPointLight.frag	shader,	419–421

GBufferWrite.frag,	412

geometric	types,	298

line	segments,	298–301

planes,	301–302

GetCircle	function,	84

GetComponentOfType,	441

GetEventInstance,	232

GetFont,	339

GetGlobalPoseAtTime,	382–383,	387–388

GetInt,	JsonHelper,	433

GetKeyState,	254,	255

GetKeyValue,	254,	255

GetLeftTrigger(),	267

GetMesh,	195

GetName	function,	95

GetNextPoint	function,	115

GetPossibleMoves,	120

GetRightTrigger(),	267,	276

GetScore	function,	118,	120

GetType,	441

GetVector3,	434

GL_ARRAY_BUFFER,	136

GL_ELEMENT_ARRAY_BUFFER,	136

GL_LINEAR,	399

GL_RGB,	402

GL_RGB16F,	411

GL_RGB32F,	410–411

GL_STATIC_DRAW,	136

GL_TEXTURE_2D,	171

glAttachShader,	145

glBindBuffer,	136

glBindFramebuffer,	402,	404

glBindTexture,	173

glBlendFunc,	179

glBufferData,	174

glCheckFrameBuffer,	403,	404

glClear,	131,	202

glCreateProgram,	145

glDrawBuffers,	403

glDrawElements,	146–147

glEnable,	179

GLEW,	initializing,	130–131

glFramebufferTexture,	403

glGenerateMipmap,	399

glGenFrameBuffers,	402

glGenTextures,	171

glGetError,	130

glGetShaderiv,	144

global	lighting,	414–418

properties,	loading,	430–431

global	pose,	368

global	properties

loading,	430–434

saving,	446

globally	unique	IDs	(GUIDs),	229

GLSL,	138

Basic.frag	file,	141

Basic.vert	file,	139–140

glTexImage2D,	171

glVertexAttribIPointer,	376

glVertexAttribPointer,	376

goal	nodes,	100

Gouraud	shading,	211

gpmesh	files,	loading,	194–195

graphics

2D	graphics.	See	2D	graphics

intermediate	graphics.	See	intermediate	graphics

graphics	debuggers,	414

GraphNode,	100

graphs,	AI	(artificial	intelligence),	98–100

BFS	(breadth-first	search),	100–103

Grassmann	product,	187

greedy	best-first	search),	105–111

GUIDs	(globally	unique	IDs),	229

H
HandleKeyPress,	344

hash	maps,	475

heads-up	display.	See	HUD	(heads-up	display)

heuristics,	104–105

A*,	111–113

GBFS	(greedy	best-first	search),	105–111

hierarchies,	game	objects	with	components,	38–40

high-quality	reflections,	401

homogenous	coordinates,	158

horizontal	field	of	view	(FOV),	199

hot	swapping,	261,	270

HUD	(heads-up	display),	337

drawing,	mirror	texture,	406–407

UI	screen	stack,	342–344

UI	screens,	340–342

HUD	elements,	352

adding

an	aiming	reticule,	352–354

radar,	354–358

HUD::Draw,	353

HUD::UpdateCrosshair,	353

HUD::UpdateRadar,	356–357

I
IDE	(integrated	development	environment),	2

image	files,	loading,	43–44

IMG_Load,	43

implementing

2D	graphics,	18–21

lighting,	212–216

skeletal	animation,	373–374

drawing	with	skinning	vertex	attributes,	374–378

skeleton	game	class,	6–7

Initialize	function,	7–9

RunLoop	function,	9–10

Shutdown	function,	9

state	machines,	AI	(artificial	intelligence),	93–95

improving	texture	quality,	394

inadmissible,	heuristics,	104

incomplete	game	trees,	120–121

index	buffers,	133–138

inheritance,	diamond	inheritance,	36

Initialize	function

2D	graphics,	19

skeleton	game	class,	7–9

initializing

debug	logging,	225

GLEW,	130–131

OpenGL,	128

input	devices,	248

analog	sticks,	264–267

controller	input,	261

analog	sticks.	See	analog	sticks

buttons,	262–264

enabling	single	controllers,	261–262

multiple	controllers,	269–270

events,	251

keyboards,	253–256

mouse,	256

buttons	and	position,	256–258

relative	motion,	258–259

scroll	wheels,	260–261

polling,	248

positive	and	negative	edges,	248–251

triggers,	264

input	mappings,	270–271

InputComponent	class,	creating,	76–79

InputSystem,	architecture,	251–253

InputSystem::Filter2D,	268–269

InputSystem::Initialize,	263

installing

FMOD,	223–224

Xcode,	2

instantaneous	tests,	321

integrated	development	environment	(IDE),	2

integrating	game	objects	into	game	loops,	40–42

intermediate	graphics

anisotropic	filtering,	399–400

deferred	shading,	407–408

drawing	mirror	texture	in	HUD,	406–407

global	lighting,	414–418

improving	texture	quality,	394

mipmapping,	397–399

rendering	to	textures,	400–401

creating	framebuffer	objects,	402–404

creating	textures,	401–402

texture	sampling,	395–397

interpolate,	186

Intersect	function,	83,	315,	319–320

intersection,	circle-versus-circle	intersection,	82

intersection	tests,	307

bounding	volume	tests,	310

AABB	versus	AABB	test,	311–312

capsule	versus	capsule	test,	313–314

sphere	versus	AABB	test,	312–313

sphere	versus	sphere	tests,	311

contains	point	tests,	308

AABB	contains	point	tests,	308

capsule	contains	point	tests,	309

convex	polygon	contains	point	(2D)	tests,	309–310

sphere	contains	point	tests,	308

inverse	bind	pose	matrix,	371

IsCompiled,	143–144

IsTerminal,	120

IsValidProgram,	145

iterative	deepening,	124

iterators,	475–476

J
joints,	366

JSON	(JavaScript	Object	Notation),	191,	448–449

level	files

loading	actors,	435–439

loading	components,	439–444

loading	global	properties,	430–434

saving,	444–446

saving	actors	and	components,	446–448

saving	global	properties,	446

JsonHelper,	433,	444

JsonHelper::GetInt,	433

jumping	characters,	spacebar,	248–251

K
keyboards,	248

input,	253–256

KeyboardState,	254

L
last-in,	first-out	(LIFO),	474

left-handed	coordinate	system,	184

length,	vectors,	64–65

Length	()	function,	65

LengthSquared()	function,	65

level	files

loading,	430

actors,	435–439

components,	439–444

global	properties,	430–434

saving,	444–446

actors,	446–448

components,	446–448

global	properties,	446

LevelLoader,	437

LevelLoader	class,	431

LevelLoader::LoadActors,	438–439

LevelLoader::LoadComponents,	443–444

LevelLoader::LoadGlobalProperties,	434–435

LevelLoader::LoadJSON,	431–433

LevelLoader::SaveActors,	447–448

LevelLoader:SaveLevel,	445

LevelLoader::SaveLevel,	445

libraries

3D	positional	audio	library,	234–235

C++	Standard	Library,	3

OpenGL.	See	OpenGL

SDL	(Simple	DirectMedia	Layer)	library,	4

SDL	TTF	library,	338

LIFO	(last-in,	first-out),	474

lighting,	206

ambient	light,	207–208

loading	global	properties,	434–435

bidirectional	light,	214

deferred	shading.	See	deferred	shading

directional	light,	208

global	lighting,	414–418

implementing,	212–216

Phong	reflection	model,	209–211

point	lights,	208

adding,	418–419

drawing,	421–424

spotlight,	209

vertex	attributes,	206–207

lighting	calculations,	407–408

line	segment	tests,	314

line	segment	versus	AABB	test,	318–320

line	segment	versus	plane	test,	314–315

line	segment	versus	sphere	test,	315–317

line	segment	versus	AABB	test,	318–320

line	segment	versus	plane	test,	314–315

line	segment	versus	sphere	test,	315–317

line	segments,	298–301

linear	mechanics,	79–80

LineSegment::MinDistSq,	300–301,	309

linked	lists,	472

listeners,	233

setting	up	for	3D	positional	audio,	234–236

in	third-person	games,	239–240

listings

AABB::Rotate	Implementation,	305–306

Abbreviated	Render	Declaration,	195–196

Actor	Declaration,	38–39

Actor::ComputeWorldTransform	Implementation,	161

Actor::LoadProperties	Function,	436–437

Actor::RotateToNewForward,	327–328

Actors	with	Components	in	JSON	(Excerpt	from	the

Full	File),	440

Actor::SaveProperties	Implementation,	447

Adding	a	flipY	Option	to	UIScreen::DrawTexture,	406

AIComponent::ChangeState	Implementation,	96

AlphaBetaDecide	Implementation,	122

AlphaBetaMin	Implementation,	123

AlphaBetaMax	Implementation,	123

Animation	Declaration,	381–382

AnimSpriteComponent	Declaration,	49

AnimSpriteComponent::Update	Implementation,	50

Asteroid	Constructor,	74–75

AudioComponent	Declaration,	237

AudioSystem::LoadBank	Implementation,	227–228

AudioSystem::PlayEvent	Implementation	with	Event

IDs,	230–231

AudioSystem::SetListener	Implementation,	235–236

AudioSystem::Update	Implementation	with	Event	IDs,

231

Basic	InputSystem	Declarations,	252

Basic.frag	Code,	141

Basic.vert	Code,	140

The	Beginning	of	a	Skeleton	Data,	370

The	Beginning	of	an	Animation	Data,	380–381

BGSpriteComponent	Declaration,	51

BoxComponent	Declaration,	324

BoxComponent::OnUpdateWorldTransform

Implementation,	325

Breadth-First	Search,	102

Button	Declaration,	346

Circle	Class	with	const	Member,	464

CircleComponent	Declaration,	83

CircleComponent	Intersection,	83

Component	Declaration,	39–40

ComputeGlobalInvBindPose,	379–380

ComputeMatrixPalette,	384

Constructing	a	Plane	from	Three	Points,	301

ConvexPolygon::Contains	Implementation,	310

Creating	a	Texture	for	Rendering,	401–402

Creating	the	Mirror	Framebuffer,	403–404

Cube.gpmesh,	192

Current	Implementation	of	SpriteComponent::Draw,

166–167

Declaring	Vertex	Attributes	in	the	VertexArray

Constructor,	375–376

directional	light,	loading	global	properties,	434–435

Drawing	MeshComponents	in	Renderer::Draw,	205

Drawing	Point	Lights	in	Renderer::DrawFromGBuffer,

422

English.gptext	Text	Map	File,	359

Filter1D	Implementation,	266

Final	Version	of	GetGlobalPoseAtTime,	387–388

First	Version	of	GetGlobalPoseAtTime,	382–383

FollowCamera::Update	Implementation	(with	Spring),

284–285

Font	Declaration,	338

Font::Load	Implementation,	339

Font::RenderText	Implementation,	340

FPS	Angular	Speed	Calculation	from	the	Mouse,	277

FPSActor::FixCollisions,	332–333

FPSCamera::Update	Implementation	(with	Pitch

Added),	279

FPSCamera::Update	Implementation	(Without	Pitch),

278

Game	Declaration,	7

Game::GenerateOutput	Attempting	to	Draw	Sprites,

147

Game::ProcessInput	Implementation,	13

Game::UpdateGame	Implementation,	26

Game::UpdateGame	Updating	Actors,	41–42

GBuffer	Declaration,	409

GBuffer::Create	Implementation,	410

GBufferGlobal.frag	Shader,	415–416

GBufferPointLight.frag	Main	Function,	420–421

GBufferWrite.frag	shader,	412

Greedy	Best-First	Search,	110–111

HUD::UpdateCrosshair,	353

HUD::UpdateRadar	Implementation,	356–357

Initial	AudioSystem	Declaration,	224

Initial	ControllerState,	263

Initial	MouseState	Declaration,	258

Initial	Shader	Declaration,	142

Initial	UIScreen	Declaration,	341–342

InputComponent	Declaration,	77

InputComponent::ProcessInput	Implementation,

77–78

InputSystem::Filter2D,	268–269

InputSystem::ProcessEvent	Implementation	for	the

Scroll	Wheel,	260

JsonHelper::GetInt	Implementation,	433

KeyboardState	Declaration,	254

KeyboardState::GetKeyState,	255

Level	with	Actors	(Level1.gplevel),	435–436

Level	with	Global	Lighting	Properties,	430–431

LevelLoader::LoadActors	Implementation,	438–439

LevelLoader::LoadComponents	Implementation,

443–444

LevelLoader::LoadGlobalProperties,	434–435

LevelLoader::LoadJSON,	432

LevelLoader::SaveActors	Implementation,	447–448

LevelLoader:SaveLevel	Implementation,	445

Line	Segment	Versus	AABB	Helper	Function,	319

Line	Segment	Versus	AABB	Intersection,	320

Line	Segment	Versus	Plane	Intersection,	315

Line	Segment	Versus	Sphere	Intersection,	317

LineSegment::MinDistSq	Implementation,	300–301

Loading	the	G-buffer	Global	Lighting	Shader,	416

Loop	over	the	Adjacent	Nodes	in	an	A*	Search,	112–113

main	Implementation,	10

MaxPlayer	and	MinPlayer	Functions,	118–119

MaxPlayerLimit	Implementation,	120

Mesh	Declaration,	194

MeshBinHeader	Struct,	449–450

MeshComponent	Declaration,	204

MeshComponent::Draw	Implementation,	205

MeshComponent::LoadProperties	Implementation,

442

Mesh::LoadBinary	Outline,	452–453

Mesh::SaveBinary	Implementation,	450–451

MoveComponent	Declaration,	73

MoveComponent::Update	Implementation,	74

MoveComponent::Update	Implementation	with

Quaternions,	190

OrbitCamera::Update	Implementation,	287–288

Pac-Man	Game	Loop	Pseudocode,	6

Phong.frag	Lighting	Uniforms,	212

Phong.frag	Main	Function,	215

Phong.vert	Main	Function,	214

PhysWorld::SegmentCast,	326–327

PhysWorld::TestPairWise,	329

PhysWorld::TestSweepAndPrune,	330–331

PointLightComponent	Declaration,	419

PointLightComponent::Draw	Implementation,

423–424

Quaternion	Functions	of	Note,	189

Renderer::Draw	Updated	to	Render	Both	Mirror	and

Default	Passes,	405

Renderer::Draw3DScene	Helper	Function,	404–405

Renderer::DrawFromGBuffer	Implementation,	417

Renderer::GetScreenDirection	Implementation,	294

Renderer::Unproject	Implementation,	293

Requesting	OpenGL	Attributes,	129

Shader::CompileShader	Implementation,	143

Shader::IsCompiled	Implementation,	144

Shader::Load	Implementation,	144–145

Shader::SetMatrixUniform,	165

Ship	Declaration,	54

SkeletalMeshComponent	Declaration,	377

Skeleton	Declaration,	378–379

Skeleton	PhysWorld	Declaration,	325–326

Skinned.vert	Main	Function,	385–386

SoundEvent	Declaration,	232

SoundEvent's	Is3D	and	Set3DAttributes

Implementation,	236–237

SplineCamera::Update,	291–292

Spline::Compute	Implementation,	290

SpriteComponent	Declaration,	45–46

SpriteComponent::Draw	Implementation,	48

Sprite.frag	Implementation,	177

Sprite.vert	Implementation,	176

Swept-Sphere	Intersection,	323

Texture	Declaration,	170–171

Texture::Load	Implementation,	172–173

Transform.vert	Vertex	Shader,	164

UIScreen::ProcessInput,	348–349

Updating	Position	and	Rotation	of	the	First-Person

Model,	280

Using	SegmentCast	for	Ball	Movement,	328

VertexArray	Declaration,	135

Z-Buffering	Pseudocode,	202

Load	function,	144–145,	338–339,	379

LoadActors,	438

LoadBank,	227–228

LoadBinary,	452–453

LoadComponents,	443–444

LoadData	function,	44

LoadGlobalProperties,	434

loading

3D	models,	190

animation	data,	skeletal	animation,	380–385

banks,	227–229

binary	mesh	files,	452–454

G-buffer	global	lighting	shader,	416

global	properties,	430–434

gpmesh	files,	194–195

image	files,	43–44

level	files,	430

actors,	435–439

components,	439–444

global	properties,	430–434

shaders

adding	shaders	to	games,	146

CompileShader,	142–143

IsCompiled,	143–144

IsValidProgram,	145

Load,	144–145

OpenGL,	141–142

SetActive,	145

Unload,	146

skeletons,	378–380

textures,	170–173

LoadJSON,	431–433

LoadLevel	function,	431

LoadProperties,	436,	441

LoadShaders,	146,	415

LoadText,	359

local	lighting	model,	209

local	pose,	368

localization,	358,	361

text	maps,	adding,	359–361

Unicode,	358–359

look-at	matrix,	196

low-pass	filter,	occlusion,	243

low-quality	reflections,	401

M
Mac,	installing	FMOD,	223

macros

offsetof	macro,	175

SDL_BUTTON	macro,	257

main	function,	10–11

Manhattan	distance	heuristics,	104–105

maps,	474–475

hash	maps,	475

mass,	79–80

Math::Clamp,	266

Math::Cos,	67

Math.h	library

Dot	function,	70

Normalize(),	66

Math::Max,	313

Math::NearZero	function,	73–74

Math::Sin,	67

Math::ToDegrees,	47

matrices

inverse	bind	pose	matrix,	371

look-at	matrix,	196

transformations,	matrix	multiplication,	154–155

transformations	and,	154

transforming	points,	155–157

view	matrix	(3D),	196–197

view-projection	matrix,	calculating,	200

matrix	multiplication,	154–155,	156

matrix	palettes,	385

max	players,	116

maxAngularSpeed,	277

maxMouseSpeed,	277

MaxPlayer,	119

MaxPlayerLimit	function,	120

mCurrFrame,	50

membership	tests,	106

memory	allocation,	462–463

memory	usage,	reducing,	375

Mesh,	194–195

MeshBinHeader,	449–450

MeshBinHeader*,	451

MeshComponent,	439

3D,	204–206

MeshComponent::GetType,	441

MeshComponent::LoadProperties,	442

meshes,	drawing	3D	meshes,	195–196

Mesh::Load,	195,	452

Mesh::LoadBinary,	452–453

Mesh::SaveBinary,	450–451

Microsoft	Visual	Studio	Community	2017,	2

Microsoft	Windows

API	(application	programming	interface),	3

setting	up	development	environments,	2

min	players,	116

MinDistSq,	300–301,	313

minimax,	118–119

MinimaxDecide,	119

mirror	framebuffer,	creating,	403–404

mirror	texture,	drawing	in	HUD,	406–407

MirrorCamera,	405

mirrors,	rendering	framebuffer	objects,	404–405

mixing	audio,	241–242

monolithic	hierarchy,	36

mouse,	256

buttons	and	position,	256–258

FPS	angular	speed,	277

relative	motion,	258–259

scroll	wheels,	260–261

MouseState,	257–258

MoveComponent,	190,	276

creating,	73–75

movement,	270

first-person	camera,	276–277

InputComponent	class,	creating,	76–79

MoveComponent	class,	creating,	73–75

multiple	controllers,	269–270

multiplying	vectors,	62–63

N
narrowphase	techniques,	331

nav	mesh,	115–116

NavComponent,	114

navigation	meshes,	115–116

NDC	(normalized	device	coordinates),	132–133

nearest-neighbor	filtering,	395

nearest-neighbor	mipmapping,	398

negative	edges,	248–251

Newtonian	physics,	79

linear	mechanics,	79–80

node	adoption,	111

nodes,	98

goal	nodes,	100

parent	nodes,	100

path	nodes,	115

start	nodes,	100

NodeToPointerMap,	101

non-player	characters	(NPCs),	115

normal	vectors,	calculating,	70–72

normalization,	unit	vectors,	65–66

Normalize(),	66

normalized	device	coordinates	(NDC),	132–133

NPCs	(non-player	characters),	115

numeric	integration,	80–81

O
OBB	(oriented	bounding	box),	306

object	space,	149–150

occlusion,	243–244

offsetof	macro,	175

OnClick,	347,	349

OnEnter,	95

OnExit,	95

OnUpdateWorldTransform,	324–325

open	set,	GBFS	(greedy	best-first	search),	106

OpenGL

alpha	blending,	178–180

anisotropic	filtering,	399

context,	130

initializing,	128

loading	shaders,	141–142

adding	shaders	to	games,	146

CompileShader,	142–143

IsCompiled,	143–144

IsValidProgram,	145

Load,	144–145

SetActive,	145

Unload,	146

mipmapping,	399

rendering	frames,	131

requesting	attributes,	129

setting	up	OpenGL	window,	128–129

texture	mapping,	167–170

updating	vertex	format,	173–175

UBOs	(uniform	buffer	objects),	165

vertex	array	object,	134–135

writing	basic	shaders,	139–141

operator	overloading,	468–470

operator+,	469

optimizing	A*,	113

orbit	cameras,	286–288

OrbitCamera	class,	287

OrbitCamera::Update,	287–288

oriented	bounding	box	(OBB),	306

orthographic	projection,	197

outMap,	101

overdraw,	200

overloading	operators,	468–470

P
Pac-Man	game

partial	class	hierarchy,	36

pseudocode,	6

state	machine	behaviors,	92

paddles

drawing,	20–23

updating	position	of,	26–28

painter’s	algorithm,	issues	with	in	3D,	200–201

parallax	effect,	53

parameters,	sound	events,	223

parent	nodes,	100

pass	by	value,	459

path	nodes,	115

path-cost	component,	111

pathfinding,	AI	(artificial	intelligence),	98

BFS	(breadth-first	search),	100–103

Dijkstra’s	Algorithm,	113–114

following	paths,	114–115

heuristics,	104–105

navigation	meshes,	115–116

path	nodes,	115

Patrol	state,	92,	94–95

pause	menu,	344–345

perspective	divide,	199

perspective	projection,	197

phantom	inputs,	265

Phong	reflection	model,	209–211

Phong	shading,	211

physics,	Newtonian	physics,	79

linear	mechanics,	79–80

PhysWorld	class,	325–327

testing	ball	collisions,	329–331

PhysWorld::TestPairWise,	329

pitch,	185

pixels,	14

PlaneActor,	331,	333

planes,	301–302

platform	specific	libraries,	3

player	collision,	against	walls,	331–333

PlayEvent,	229,	230,	238

playing	event	instances,	229–230

PNG	files,	43

point	light	fragment	shaders,	419–421

point	lights,	208

adding,	418–419

drawing,	421–424

pointers,	459–460

PointLightComponent	class,	adding,	419

PointLightComponent::Draw,	423–424

points,	transforming,	with	matrices,	155–157

polling,	248

polygons,	131–132

Pong

drawing	walls,	balls,	and	paddles,	20–23

updating

ball’s	position,	28–30

paddle’s	position,	26–28

poses,	skeletons	and,	367–370

position	of

balls,	updating,	28–30

mouse,	256–258

paddles,	updating,	26–28

positional	functionality,	adding	to	SoundEvent,	236–237

positions,	computing	with	Euler	integration,	80

positive	edges,	248–251

PosNormTex	format,	191–192

PrepareForUpdate,	255,	264

printf	function,	8

processing,	basic	input	processing,	11–13

ProcessInput,	11–12,	13,	251,	343

InputComponent	class,	76

ProcessKeyboard	function,	54

projection	matrix	(3D),	transforming,	clip	space,

197–200

properties,	loading	global	properties,	430–434

Q
quality,	improving	texture	quality,	394

quaternions,	186–187

in	code,	188–189

combining,	rotations,	187

MoveComponent,	190

quaternion-to-rotation	matrix,	188

rotating	vectors,	188

spherical	linear	interpolation	(Slerp),	188

quaternion-to-rotation	matrix,	188

queues,	473–474

quit	dialog	box,	351

R

radar

adding,	354–358

drawing,	357

Random	function,	75

range-based	For	loops,	475–476

RapidJSON,	194,	430,	449

saving	level	files,	444–446

raster	graphics,	14

real	time,	24

red,	green,	blue	(RGB),	14

reducing	memory	usage,	375

references,	458–459,	464–465

reflections,	401

refresh	rate,	16

RegisterState	function,	96

relative	motion,	mouse	input,	258–259

RemoteTarget,	352

RemoveActor,	41

Renderer,	abbreviated	declaration,	195–196

renderer,	19

Renderer::Draw,	343,	377,	405

Renderer::DrawFromGBuffer,	417

Renderer::GetScreenDirection,	294

Renderer::Initialize,	404,	411

Renderer::Shutdown,	404,	411

rendering

framebuffer	objects,	404–405

frames,	OpenGL,	131

to	textures,	400–401

creating	framebuffer	objects,	402–404

creating	textures,	401–402

RenderText,	338,	340,	347

repositories,	3

requesting	OpenGL,	attributes,	129

resolution,	14

supporting	multiple	resolutions,	361–362

reticule,	adding,	aiming	reticule,	352–354

reverb,	242

RGB	(red,	green,	and	blue),	14

RGBA,	14–15

roll,	185

RotateToNewForward,	327–328

rotating	vectors,	quaternions,	188

rotation,	152

combining	for	3D,	187

Euler	angles,	3D,	185–186

quaternions,	3D,	186–187

quaternion-to-rotation	matrix,	188

rotation	matrix,	157–158

row	vectors,	155

RunLoop	function,	9–10

S

sample	data,	226–227

SaveActors,	447–448

SaveBinary,	450–451

SaveComponents,	448

SaveLevel,	445,	446

saving

binary	mesh	files,	449–452

level	files,	444–446

actors,	446–448

components,	446–448

global	properties,	446

scalar	multiplication,	62–63

scale,	151–152

scale	matrix,	157

scaling	vectors,	62–63

screen	tearing,	16–17

scroll	wheels,	mouse	input,	260–261

scrolling	backgrounds,	51–53

SDL	(Simple	DirectMedia	Layer)	library,	4

input	devices,	251

SDL	2D	coordinate	system,	mouse	position,	257

SDL	controller	axis	constants,	264

SDL	Image,	43

SDL	image	file	formats,	43

SDL	subsystem	flags,	8

SDL	TTF	library,	338

SDL_BUTTON	macro,	257

SDL_CreateRenderer,	19

SDL_CreateTextureFromSurface,	43

SDL_CreateWindow	function,	8,	128

SDL_DestroyRenderer,	19

SDL_Event,	12

SDL_GameControllerAddMappingsFromFile,	262

SDL_GameControllerGetAxis,	267

SDL_GameControllerGetButton,	264

SDL_GameControllerOpen,	261

SDL_GetKeyboardState,	13,	248,	253

SDL_GetMouseState,	256–258

SDL_GetRelativeMouseState,	259,	277

SDL_GetTicks,	25

SDL_INIT_AUDIO,	8

SDL_INIT_GAMECONTROLLER,	8

SDL_INIT_HAPTIC,	8

SDL_INIT_VIDEO,	8

SDL_Log	function,	8

SDL_PollEvent	function,	11–12

SDL_QueryTexture,	46

SDL_QUIT,	12

SDL_Rect,	21

SDL_RenderClear,	20

SDL_RenderCopy,	47

SDL_RenderCopyEx,	47

SDL_Renderer,	128

SDL_RenderFillRect,	20,	22

SDL_RenderPresent,	20

SDL_SCANCODE,	13

SDL_SetRenderDrawColor,	20

SDL_ShowCursor,	256

SDL_Surface,	43,	339

SDL_Texture,	44

SDL_WINDOW_FULLSCREEN,	9

SDL_WINDOW_FULLSCREEN_DESKTOP,	9

SDL_WINDOW_OPENGL,	9

SDL_WINDOW_RESIZABLE,	9

SegmentCast,	326

ball	collisions,	327–328

Set3DAttributes,	236–237

set3DSettings,	241

SetActive,	137,	145,	416

SetAnimTextures	function,	50

SetIntUniform,	415–416

SetListener,	235,	236

SetMatrixUniform,	164,	165,	386

setMatrixUniform,	415–416

SetName,	347

SetTexture	function,	46

SetTexturesActive,	416–417

setting	up

development	environments,	2

Apple	macOS,	2

Microsoft	Windows,	2

listeners,	for	3D	positional	audio,	234–236

OpenGL	window,	128–129

SetViewMatrix,	277–278

SetVolume,	242

shader	programs,	145

shaders,	138

adding	shaders	to	games,	146

BasicMesh	shader,	203–204

BasicMesh.vert	shader,	421

fragment	shaders,	139

loading,	141–142

CompileShader,	142–143

IsCompiled,	143–144

IsValidProgram,	145

Load,	144–145

SetActive,	145

Unload,	146

point	light	fragment	shaders,	419–421

skinning	vertex	shaders,	385–387

updating,	175–176

Sprite.frag	shader,	176–178

to	use	transform	matrices,	163–167

vertex	shaders,	138–139

writing	basic	shaders,	139

Basic.frag	file,	141

Basic.vert	file,	139–140

Ship::UpdateActor	function,	54

Shutdown	function,	2D	graphics,	19

Shutdown	function,	9

Simple	DirectMedia	Layer.	See	SDL

Simple	OpenGL	Image	Library	(SOIL),	170

SimpleViewProjection	matrix,	163

single	controllers,	enabling,	261–262

single-threaded	game	loop,	5

skeletal	animation,	365–367

animation	data,	371–372

drawing	with	skinning	vertex	attributes,	374–378

implementing,	373–374

inverse	bind	pose	matrix,	371

loading	animation	data,	380–385

loading	skeletons,	378–380

skeletons	and	poses,	367–370

skinning,	372–373

skinning	vertex	shader,	385–387

updating,	386–389

skeletal	hierarchy,	367–368

SkeletalMeshComponent,	376–377,	380,	383–384,	441

SkeletalMeshComponent::Draw,	386

SkeletalMeshComponent::Update,	388–389

skeleton	game	class,	6–7

Initialize	function,	7–9

RunLoop	function,	9–10

Shutdown	function,	9

skeletons

loading,	378–380

poses	and,	367–370

skinned	animation.	See	skeletal	animation

Skinned.vert,	374,	385–386

skinning,	372–373

skinning	vertex	attributes,	drawing	with,	374–378

skinning	vertex	shaders,	385–387

Slerp	(spherical	linear	interpolation),	188

smoothstep	function,	421

SnapToIdeal,	285

SOIL	(Simple	OpenGL	Image	Library),	170,	172

sound	effects,	third-person	games,	239–240

sound	events,	223

sound	occlusion,	243–244

SoundEvent	class,	230–233

adding	positional	functionality	to,	236–237

SoundEvent::IsValid,	233

sounds.	See	audio

source	code,	3

source	control	systems,	3

space

clip	space.	See	clip	space,	161–163

object	space,	149–150

world	space,	150

transforming,	150–151

sphere	contains	point	tests,	308

sphere	versus	AABB	test,	312–313

sphere	versus	sphere	tests,	311

spheres,	303

spherical	linear	interpolation	(Slerp),	188

spline	cameras,	289–292

SplineCamera	class,	290

SplineCamera::Update,	291–292

Spline::Compute,	290

splines,	Catmull-Rom	spline,	289

spotlight,	209

springs,	adding	to	follow	cameras,	283–285

SpriteComponent,	45–46,	166

SpriteComponent::Draw,	47–48,	166–167,	173

Sprite.frag	shader,	176–178

sprites,	42,	148

animating,	48–50

drawing,	44–48

texture-mapped	sprites,	178

Sprite.vert	shader,	175–176

stacks,	474

start	nodes,	100

state	machine	behaviors,	AI	(artificial	intelligence),	92

state	machines

designing,	92–93

implementing,	93–95

transitions,	94

states,	as	classes,	95–98

static	objects,	34

std::function,	346,	437,	442

std::map,	475

std::pair,	476

std::queue,	474

std::string,	359,	437

std::unordered_map,	475

std::vector,	319,	370

strafe	speed,	276

streaming	data,	226–227

subtraction,	vectors,	61–62

supporting	multiple	resolutions,	361–362

surround	sound,	234

Swap,	462

sweep-and-prune,	331

swept-sphere	intersection,	323

swizzle,	213–214

T
TargetActor,	435

TargetComponent,	353,	354

testing	ball	collisions	in	PhysWorld,	329–331

TestPairWise,	329

tests

contains	point	tests.	See	contains	point	tests

instantaneous	tests,	321

intersection	tests.	See	intersection	tests

line	segment	tests.	See	line	segment	tests

TestSweepAndPrune,	330–331

texel	density,	394

texels,	394

text,	localization,	361

text	maps,	adding,	359–361

texture	coordinates,	168,	395

texture	mapping,	167–170

updating,	vertex	format,	173–175

texture	quality,	improving,	394

texture	sampling,	395–397

Texture::Load,	172–173

texture-mapped	sprites,	178

textures

drawing,	47

loading,	170–173

rendering	to,	400–401

creating	framebuffer	objects,	402–404

creating	textures,	401–402

Texture::SetActive,	173

Texture::Unload,	173

third-person	games,	listeners,	239–240

tic-tac-toe,	game	trees,	116–117

ToMatrix,	369

tower	defense	game,	124

tracking

event	instances,	230

loaded	banks	and	events,	227

tracks,	380

transform	matrices

3D,	184–185

updating	shaders,	163–167

transformation	matrix,	155

transformations,	148–149

combining,	152–153,	159

matrices,	154

matrix	multiplication,	154–155

TransformComponent,	37–38

transforming

clip	space

projection	matrix	(3D),	197–200

view	matrix	(3D),	196–197

points,	with	matrices,	155–157

from	world	space,	to	clip	space,	161–163

world	space,	150–151,	157

rotation,	152

rotation	matrix,	157–158

scale,	151–152

scale	matrix,	157

translation,	151

translation	matrices,	158–159

Transform.vert,	163

TransformWithPerspDiv,	293

transitions,	92

state	machines,	94

translation,	151

translation	matrices,	158–159

triangles,	131–132

drawing,	146–148

transformations,	148–149

fragment	shaders,	139

normalized	device	coordinates	(NDC),	132–133

texture	mapping,	167–170

vertex	and	index	buffers,	133–138

vertex	shaders,	138–139

triggers,	34,	264

trilinear	filtering,	398,	399,	400

TTF_OpenFont,	338

TTF_Quit,	338

TTF_RenderText_Blended,	339

turning	on	anisotropic	filtering,	400

TurnTo	function,	114

types	of	game	objects,	34

U
UBOs	(uniform	buffer	objects),	165

UI	screen	stack,	342–344

UI	screens,	340–342

UIScreen,	340–342

UIScreen::DrawScreen,	348

UIScreen::DrawTexture,	406

UIScreen::ProcessInput,	348–349

undirected,	98

Unicode,	358–359

uniform	buffer	objects	(UBOs),	165

uniform	cost	search,	114

unit	quaternions,	186

unit	vectors,	65–66

Unload	function,	146

unloading	banks,	227–229

Unproject,	294

unprojection,	292–294

unweighted	graphs,	98–99

Update	function,	39,	50,	388–389

UpdateActor,	39

UpdateComponents,	39

UpdateCrosshair,	353

UpdateGame,	25,	26,	41–42

UpdateMinMax,	304,	305

updating

animations,	skeletal	animation,	386–389

balls,	position	of,	28–30

games,	23

delta	time,	24–28

game	time,	24

real	time,	24

paddles,	position	of,	26–28

shaders

Sprite.frag	shader,	176–178

Sprite.vert	shader,	175–176

to	use	transform	matrices,	163–167

vertex	attributes,	193–194

vertex	format,	173–175

user	interfaces	(UI)

buttons,	346–350

dialog	boxes,	349–352

font	rendering,	338–340

localization,	358,	361

text	maps,	359–361

Unicode,	358–359

pause	menu,	344–345

supporting	multiple	resolutions,	361–362

UI	screen	stack,	342–344

UI	screens,	340–342

UTF-8,	358

UV	coordinates,	395

V
VAO	(vertex	array	object),	150

variable	time	steps,	80–81

VecToFMOD,	234–235

vector	addition,	63–64

vector	subtraction,	61–62

vectors,	59–61,	471–472

column	vectors,	155,	156

combining,	63–64

converting	forward	vectors	to	angles,	67–68

converting	from	angles	to	forward	vectors,	66–67

determining	angles	between,	dot	product,	68–70

determining	directions,	65–66

determining	distance,	length,	64–65

normal	vectors,	calculating,	70–72

rotating,	with	quaternions,	188

row	vectors,	155

scaling,	62–63

velocity,	79–80

.vert	extension,	139

vertex	array	object	(VAO),	150

vertex,	creating,	163

vertex	attributes

lighting,	206–207

updating,	193–194

vertex	buffers,	133–138

vertex	format,	updating,	173–175

vertex	normal,	206

vertex	shaders,	138–139

VertexArray	class,	135,	452

VertexArray	constructor,	375–376

vertical	synchronization	(vsync),	17

vertices,	98

view	matrix	(3D),	transforming,	clip	space,	196–197

view-projection	matrix,	162

calculating,	200

Visual	Studio,	2

vsync	(vertical	synchronization),	17

W
walls

drawing,	20–23

player	collision	against,	331–333

waypoint	graphs,	115

weighted	graphs,	99

weights,	edges,	98–99

Window	Creation	flags,	9

Windows,	FMOD,	installing,	223

windows,	creating	blank	windows,	10–11

world	space,	150

combining	transformations,	152–153

transforming,	150–151,	157

to	clip	space,	161–163

rotation,	152

rotation	matrix,	157–158

scale,	151–152

scale	matrix,	157

translation,	151

translation	matrices,	158–159

world	transform	matrix,	calculating,	189

world	transforms,	adding	to	actors,	159–161

writing

basic	shaders,	139

Basic.frag	file,	141

Basic.vert	file,	139–140

to	G-buffer,	412–414

X
Xcode,	installing,	2

.xyz	syntax,	213–214

Y
yaw,	185

Z
z-buffer,	201

z-buffering,	201–203

Code	Snippets

	Contents
	Cover Page
	About This E-Book
	Game Programming in C++
	Title Page
	Copyright Page
	Dedication Page
	Contents at a Glance
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1: Game Programming Overview
	Chapter 2: Game Objects and 2D Graphics
	Chapter 3: Vectors and Basic Physics
	Chapter 4: Artificial Intelligence
	Chapter 5: OpenGL
	Chapter 6: 3D Graphics
	Chapter 7: Audio
	Chapter 8: Input Systems
	Chapter 9: Cameras
	Chapter 10: Collision Detection
	Chapter 11: User Interfaces
	Chapter 12: Skeletal Animation
	Chapter 13: Intermediate Graphics
	Chapter 14: Level Files and Binary Data
	Appendix A: Intermediate C++ Review
	Index
	Game Programming in C++
	Code Snippets
	Images
	Images
	Images
	Images
	Images
	Images
	Images
	Images
	Images
	Images
	Images
	Images
	Images
	Code Snippets

