

Contents i

CREATE
 COMPUTER

GAMES – DESIGN
AND BUILD YOUR

OWN GAME
by Patrick McCabe

ii

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form

or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except

as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior

written permission of the Publisher. Requests to the Publisher for permission should be addressed

to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,

(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, Dummies.com, and related trade dress are trademarks or

registered trademarks of John Wiley & Sons, Inc. and may not be used without written permission.

All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not

associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO

REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS

OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING

WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY

MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND

STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK

IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING

LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE

IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.

NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM.

THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION

AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR

OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE

OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET

WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS

WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care

Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For

technical support, please visit https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material

included with standard print versions of this book may not be included in e-books or in print-on-

demand. If this book refers to media such as a CD or DVD that is not included in the version you

purchased, you may download this material at http://booksupport.wiley.com. For more information

about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017959162

ISBN: 978-1-119-40418-7 (pbk); ISBN: 978-1-119-40422-4 (ebk); ISBN: 978-1-119-40424-8 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

CREATE COMPUTER GAMES – DES IGN AND BUILD YOUR OWN GAME

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com
https://hub.wiley.com/community/support/dummies

iii

CONTENTS

Introduction ��� ix

About This Book��� ix

Foolish Assumptions ��� ix

Icons Used in This Book ��� x

Where to Go from Here �� x

CHAPTER

01 Chapter 1: What Is Game Design? ���1

Thinking about What Makes Fun Games Fun �� 2

Asking the Right Questions before You Begin ��� 4

Creating Your Game on Paper �� 7

CHAPTER

02
 Chapter 2: Unity: The Software You’ll
Use to Build Your Game ��9

Getting Organized �� 10

Creating a New File �� 12

Understanding How Unity Is Laid Out ��� 12

Navigating the Scene ��� 16

Creating a Game Object ��� 17

Creating and Using Prefabs ��� 20

CHAPTER

03 Chapter 3: Creating Level 1 ��23

Understanding the Importance of Level 1�� 24

Designing Your First Level �� 25

Contentsiv

Creating the Gray-Box Level �� 29

Giving Your Level Objective and Direction ��� 37

CHAPTER

04 Chapter 4: Camera, Character, and Controls ����������������������41

The Three Cs of Game Development �� 42

Creating a Character Stand-In ��� 44

Thinking about Code �� 46

Adding Rigidbody Component and Understanding Box Colliders ���������� 48

Coding Your Player �� 50

Coding Advanced Movement �� 57

Coding Pickup ��� 60

Creating Tags and a User Interface �� 64

Coding Your Camera ��� 67

CHAPTER

05 Chapter 5: Making Your “Game” into a Game �������������������71

Thinking About What a Game Is�� 72

Creating and Coding Your Obstacles ��� 74

Creating Respawn Points ��� 81

Coding Respawn Points ��� 87

CHAPTER

06 Chapter 6: Play Testing ���91

Defining Play Testing �� 92

Knowing When to Start Play Testing ��� 93

Deciding Who Should Play Test Your Game �� 93

Contents v

Knowing What to Look For �� 94

Handling Feedback ��� 96

Finding the Problems in Your Game �� 96

CHAPTER

07 Chapter 7: Fixing and Adjusting Your Game �����������������������99

Turning Criticism into Construction �� 100

Punishing Your Player Less ���101

Creating a User Interface Tutorial �� 102

Preventing Wall Climbing with Raytracing ��� 105

CHAPTER

08 Chapter 8: Animating in Blender ��107

Mixing Things Up with Blender ��� 108

Downloading Blender �� 108

Opening Blender for the First Time ��� 109

Creating a New File in Blender ���111

Figuring Out the Blender Interface���111

Navigating the Interface��117

Editing Your Object ��� 120

CHAPTER

09 Chapter 9: Creating Your Assets���129

Thinking about Theme and Style �� 130

Creating Your First Character ��� 133

Creating the Enemy Grunt ��� 140

Creating an Environmental Hazard ��� 144

Contentsvi

Creating the Moving Platform ��� 152

Creating the Coin Pickups �� 153

Customizing on Your Own ��� 157

CHAPTER

10 Chapter 10: Animating Your Characters �����������������������������159

Defining Animation �� 160

Learning Animation �� 160

Animating Your Player Character��� 165

Animating the Enemy Grunt ��� 179

Animating the Environmental Hazard �� 183

Animating a Moving Platform ��� 186

Animating the Coins �� 188

CHAPTER

11
 Chapter 11: Coloring and Lighting Your
Game Level ���191

Changing the Ground Color �� 192

Editing the Environmental Lighting �� 195

Understanding Lighting ��� 197

Creating Fog �� 200

CHAPTER

12
 Chapter 12: Importing Your Characters
into Your Game ��203

Fixing Your Player Character for Importing into Unity ���������������������������� 204

Importing Your Player Character into Unity ��� 207

Importing the Other Characters and Objects ��� 219

Contents vii

CHAPTER

13 Chapter 13: Play Testing (Again) ��227

Testing the Second Time �� 228

Fixing Your Game �� 230

Wrapping Up the Noticeable Issues ��� 233

CHAPTER

14 Chapter 14: Finalizing Your Game ��235

Creating Multiple Levels �� 236

Resetting the Level ��� 239

Exporting Your Game�� 242

Continuing Your Game Design �� 243

ix

This book explains the basics of game design using the free game devel-
opment tool Unity. This book was created to make Unity accessible for
young adults who are interested in the process of game design but don’t
know where to begin.

Game design is tough. It involves figuring out and understanding
everything from design to coding. Knowing where to begin is daunting
and can feel inaccessible. Just keep in mind that no one starts off great
at game design. You don’t need to know everything to start, and thinking
that you do is one of the hardest challenges to overcome.

This book was written to get people like me to start thinking about game
design in a different way. This book isn’t about making a perfect game or
about teaching you everything about game development or even Unity.
This book is a starting line. It teaches the basics and encourages you to
think about games differently.

ABOUT TH IS BOOK
This book was written with the thought that games are tough to make
and that coding is confusing. Think of this like a cookbook that explains
why you use two eggs instead of three and what the pepper does to
help bring out the flavor. The codes and game development that this
book walks you through are approached from the bottom up. Things
make sense when you understood why certain codes or components are
needed. Just knowing the ingredients to a recipe doesn’t teach you how
to cook.

FOOL ISH ASSUMPTIONS
This book was written for teenagers who have an interest in developing
games. People who have spent years working in game design will find
this book repetitive and probably not useful at all. I don’t pretend that
this teaches everything about game design — I know for a fact that it
doesn’t. This book is an introduction to the field, so it was made for
people who have little to no idea where to even begin when they design
their games. Some rudimentary typing skills and access to a computer
and the Internet are all you really need to read this book. You’ll also need
a copy of Unity, which you can download for free (I’ll show you how).

INTRODUCT ION

Introductionx

WHERE TO GO FROM HERE
This book takes you step by step through the process of designing a 3D
platformer. If you have a clear idea of what game development is and
know about Unity’s interface, you can skip the first two chapters and start
with Chapter 3, where I dive into actually developing a game.

Chapters 8 through 10 use a separate program known as Blender and go
into the basics of animation. If you aren’t interested in adding animation
or you already have animations you want to include in your game, you
can skip those chapters.

All the other chapters build off of each other and are designed to take
you through the steps necessary for developing an example game that
you’ll build with this book.

I CONS USED IN TH IS BOOK
Throughout this book, I use the following icons:

Anything marked by the Remember icon reminds you of
principles or ideas that you should think about through-
out your game development.

Tips give some clarifications or offer shortcuts. I use tips
to help you understand the program better or do things
in an easier way.

CHAPTER
What Is Game Design?

01

Chapter 01 What Is Game Design?2

In this chapter, you’ll ask yourself questions about not just your games
but all games. When you’re designing computer games, you need to
think about the fundamental reasons people play games in the first
place. The reasons people play strategy games aren’t the same rea-
sons they play horror games. Both kinds of games are fun, but for very
different reasons. The goal of this chapter is to help you understand
what those reasons are so that the games you design deliver what your
players are looking for.

Understanding how game mechanics and themes work together to create
a gaming experience will help you better visualize and create your own
game. If the mechanics aren’t fun or don’t fit, it doesn’t matter how cool
the theme is — the game won’t be fun. If the theme doesn’t match the
mechanics, the game might be fun but it won’t be memorable. If you
aim to create great games, you need to understand both mechanics and
themes before you even open the software you’ll use to build your games.

THINKING ABOUT WHAT MAKES FUN GAMES FUN
Have you ever played a game that you couldn’t put down? One that
gave you the ability to shut off your mind without a care in the world
because you were just hooked on it? A game that was just a lot of fun?
I’m sure you have! Otherwise, you wouldn’t be reading this book.

But why were you sucked into the games you love? Why are they so
addicting? What makes them fun?

Fun is where games live and die. If a game isn’t fun, nobody plays it.
The first thing you have to understand, though, is that there are different
types of fun, and different kinds of games:

• Fighting games reward
quick thinking and reading
your opponent’s moves
and figuring out the proper
combo to counter it with.

• Strategy games (like XCOM 2,
shown in Figure 1-1) challenge
you to think and plan for a
variety of situations, some-
times in an instant. Figure 1-1: XCOM 2.

Thinking about What Makes Fun Games Fun 3

• Adventure games push you to explore and discover more about the
world around you.

• Horror games (like Slender: The Arrival, shown in Figure 1-2) get
your adrenaline pumping and push your natural curiosity to its limits.

• Puzzle games reward you for solving different complex puzzles and
for problem solving.

• Platformers (like Super Meat Boy, shown in Figure 1-3) work off of
reward and punishment and challenge you to master the controls
and the timing to perfectly execute a level.

And these are just a fraction of the types of games that are available to
play. Like films, there are many different genres, some broad (like action
games) or specific (like puzzle-based fighting games — look up Super
Puzzle Fighter).

Whether it’s to feel accomplished after beating a challenging level, or
to feel powerless as you wander through the woods while an unknown
monster hunts you, you want a game to provoke some sort of emotion
in you. Fun comes from a game provoking the right emotion at the
right time.

If you think about it, this is the same reason you watch a movie or read a
book. When you want to laugh, you watch a comedy. When you want to
cry, you read a tragedy. Understanding that fun comes in many different
forms and goes beyond a single emotion can open up a variety of game
design that you may not have thought about before.

Figure 1-2: Slender: The Arrival. Figure 1-3: Super Meat Boy.

Chapter 01 What Is Game Design?4

ASKING THE R IGHT QUEST IONS
BEFORE YOU BEGIN

Think of game design like making something good
to eat. You wouldn’t just throw any ingredient into
a pan and hope for the best. To make it taste great,
you need to start by asking yourself what kind of
food you want to make. Are you making a salad?
An appetizer? A soup or dessert? Once you know
what the purpose of the food is — to be a satisfying
entrée or a sweet treat at the end of a meal, for
example — you can choose a recipe that will get
you to your goal. And after you take it out of the
oven or finish combining the ingredients, you might
decorate it or add a garnish to make it look good.

Similarly, before you design a game, you need to
ask yourself what type of game you want to make
and who will be playing the game. In this section,
I’ve listed some of the questions you should ask
yourself.

WHAT IS YOUR GAME ABOUT?

Do you want to make a war game that puts players in the middle of
World War II or a game about a haunted children’s restaurant where
animatronic machines are trying to kill you? What your game is about
can help you think about the story and help contextualize some of the

When you’re designing your game, ask yourself
what type of emotion your game is trying to
provoke — and capitalize on it! Sometimes that
feeling is the excitement you feel in the heat of
a battle. Other times, it’s the sadness you feel
after a game forces you to question your own
mortality and life choices, like in one of my
favorite games, To the Moon (see Figure 1-4).

Tip

Figure 1-4: To the Moon.

You don’t have
to answer these
questions in this
order. Often in game
design, you start by
answering any one
of these questions
and build out from
there. There is no
right or wrong order
to answer these
questions, but you
should answer all
of them before you
start designing your
game.

REMEMBER

Asking the Right Questions Before You Begin 5

decisions you’ll make as you’re design-
ing your game.

WHAT TYPE OF GAME ARE
YOU MAKING?

Is your game a choice based role-
playing game (RPG) or a more linear
platformer? There are many different
types of games that you can make. The
type you choose can drastically change
how people see your game.

Imagine if Skyrim were a 2D platformer, or if Five
Nights at Freddy’s (shown in Figure 1-5) gave you
the ability to move around. Imagine how differ-
ent those games would be.

WHAT TYPE OF FEEL ING ARE YOU AIMING
TO PROVOKE WITH YOUR GAME?

Do I want my player to feel powerful or powerless?
A game that encourages exploration in a vast
wasteland, like Fallout 4 (shown in Figure 1-6),
provokes different feelings than a game that puts
players in a cramped hallway. You want to go into
your game knowing what type of feelings you
want the player to feel. Knowing this can influence
mechanic and story decisions.

WHO IS YOUR PLAYER PLAYING AS?

Is he a soldier in the war fighting for his coun-
try, or is he the civilian just trying to
survive as the war happens around
him? When you make your game, think
of how you want to frame your story
or your characters. The story of a brave
knight trying to vanquish her nemesis,
the evil warlock, is far different than a
story of an evil knight bent on defeat-
ing the good wizard.

Figure 1-5: Five Nights at Freddy’s.

Mechanics com-
plement story.
Whatever type
of game you aim
to make, keep in
mind how different
mechanics can
change the audi-
ence for the game.

REMEMBER

Figure 1-6: Fallout 4.

No matter what,
the player will feel
something when she
plays your game. And
one way to ensure
that she isn’t bored
when she’s supposed
to be excited is to
make the game with
the type of feeling
in mind you aim to
provoke.

REMEMBER

Chapter 01 What Is Game Design?6

WHAT IS THE PLAYER’S OBJECT IVE?

Games have goals. Sometimes the goal is to defeat the villain. Other
times, it’s to survive until morning. Think of your game as a story.
Characters need a purpose. Mario isn’t just running around the mush-
room kingdom for fun. He’s going to rescue the princess. Setting a clear
objective for your player will give her direction in your game. Even
games that focus on exploration set objectives that the player can strive
for. Even if the objective isn’t the most important part of your game, it’s
important to have one.

WHAT OBSTACLES WILL YOUR PLAYER FACE?

What is stopping your player from reaching his goal? Games aren’t fun
without any challenge. You never want your player to be bored in your
game. The easiest way to prevent boredom is to understand what types
of obstacles the player needs to overcome. This can take the shape of
enemy characters trying to kill your player or just puzzles that the player
has to solve.

WHO IS YOUR PLAYER?

The most important question of
all is who you’re designing your
game for. The type of person
who plays a peaceful game like
Minecraft (shown in Figure 1-7)
may not be the same type of
person who plays a fast-paced
fighting game like Street Fighter.
Knowing the type of person you
want to play your game can help
determine the type of game you
create.

Figure 1-7: Minecraft.

If you’re ever in doubt about who your player base is, ask yourself if you
would want to play the game you’re making. Don’t design the game you
think people want to play. Design the game you want to play.

Tip

Creating Your Game on Paper 7

CREATING YOUR GAME ON PAPER
A good exercise is to create a game on paper
before you go into designing a game on the
computer. This will help you understand the
importance of mechanics in your game without
your getting caught up with all the bells and
whistles that come with a theme. Try thinking of
a simple objective-based game that a person can
play with just a pen and paper.

Paper games are
tough because you
need to get the
player interested in
the game without
the fluff or theme.
But in the end, if a
game isn’t fun, a
theme — no matter
how cool — won’t
fix it. Themes are
important, but if
you don’t have an
interesting game
without the theme,
no one will want to
play it.

REMEMBER

CHAPTER
Unity: The Software
You’ll Use to Build

Your Game

02

Chapter 02 Unity: The Software You’ll Use to Build Your Game10

Unity is a program that you can download online for free — just go to
www.unity3d.com/get-unity/download. Developed by Unity Technologies,
this open-source program has opened up game development for a whole
new generation of game developers (like you!). You can use Unity to
develop 2D and 3D games, but for the purposes of this book, I show you
how to develop a 3D game.

In this chapter, you’ll learn some basic organization techniques that will
help you manage your game creation. I show you how to create a new
file in Unity, introduce you to the basic layouts and controls of Unity,
and explain how to create an in-game object. This chapter may not be
the most exciting, but you really need to understand these basics before
beginning your game, so don’t skip ahead!

Similar to the games you play (and will create!), game making is mod-
ular. You have to take things one step at a time. In later chapters, you’ll
dive into more difficult parts of game creation that have way more mov-
ing pieces and files to keep track of. Organizing your files and knowing
the layout of Unity will save you the headache of trying to locate your
files or tools, not to mention hours trying to retrace your steps.

GETT ING ORGANIZED
Whether you’re baking cookies or changing the oil in your car or develop-
ing a computer game, you need to get organized first. Getting organized
isn’t the fun part of any job, but it makes every job easier.

Unity does a lot of heavy lifting when it comes to organizing the files
you need to create your computer game. But before you begin creating
your game, you need to create a directory to store all your games in. This
directory serves two purposes:

• It creates an easy-to-remember spot on your computer for you to
find all your files. The last thing you want to have to do is dig around
through a bunch of folders looking for where you saved your game.

• Creating backups and transferring your files
is much easier when they’re all in the same
spot. You don’t want some files in one place
and other files in another. All your files for your
games should be in the same area. Think of it
the way you think of the notebooks you keep
for your classes. You wouldn’t put your biology
notes in your English notebook and that history
quiz in your French folder — at least not if you
want to pass those classes! The same goes for
the files you use to build your computer games.

Computers are
stupid — they can’t
find files if you
move them. To save
yourself a ton of
time and frustration,
store all your files in
one location.

REMEMBER

http://www.unity3d.com/get-unity/download

Getting Organized 11

When you create games on your own, apart from this book, you
can make these directories as specific or as broad as you want, to
include things like music files, sound files, image files, and so on.
For the purposes of the game you’re building in this book, the
directory described here (shown in Figure 2-1) will serve you
just fine.

Every time you start to create a new game, make a simple directory to store
your files in. Unity automatically creates simple directories for your files,
but for the purposes of the game you’ll be making in this book, you also
need a directory that will include files outside the ones that Unity uses.
To create a directory, follow these steps:

1. Create a folder called Unity_Games in the My Documents folder on your
computer.

2. Inside the Unity_Games folder, create a folder called Boxo_3D_Platformer.

3. Inside the Boxo_3D_Platformer folder, create two folders called
Blender_Files and Unity_Files.

Tip

Figure 2-1: The directory for your new game.

Chapter 02 Unity: The Software You’ll Use to Build Your Game12

CREATING A NEW F ILE
When you have your directory set up (see the preceding section), you’re
ready to create a new file. Follow these steps:

1. Open Unity.

2. Click Create a New File.

The new project screen appears (see Figure 2-2).

3. In the Project Name field, enter Boxo_3D_Platformer.

4. In the Location field, enter Unity_Files.

That’s the folder you create in the preceding section.

5. Select the 3D button.

6. Click Create Project.

A new folder is created within the Unity_Files folder that contains
all your game information, as well as all your assets (components
that are used within the game, game objects, characters, music,
images, and other types of files used in our game are all examples
of assets).

UNDERSTANDING HOW UNITY IS LA ID OUT
When you open Unity, you’re greeted with a scary-looking screen (shown
in Figure 2-3). Do not be scared of Unity. The best way to get over your
natural fear is to understand what every part of the screen is and how it
relates to the game you’re creating.

Figure 2-2: The New Project screen.

Understanding How Unity Is Laid Out 13

Here’s what you’re looking at in Figure 2-3:

• Scene window: The Scene window, one of the two main windows
in Unity, is where you place and set up your game objects.

• Game window: The Game window, the other main window in Unity,
gives you a sense of how your game will look like when you finish.
It’s a preview that lets you see what adjustments you need to make.

• Project window: The Project window allows you to manage the
assets of your project. It organizes files by type. In the upper-right
corner of the Project window, you can search for specific assets.
Later on, the Project window will allow you to access your materials,
scenes, prefabs, scripts, and other assets.

Figure 2-3: This is what you see when you open Unity.

Game objects include everything that helps visualize your game. This
includes objects that the player sees within the game, such as 3D objects
and game text, as well as aspects of the scene that help bring the scene to
life, such as lights and cameras.

Tip

Chapter 02 Unity: The Software You’ll Use to Build Your Game14

• Toolbar: The Toolbar (shown in greater detail in Figure 2-4) is located
at the top of the screen. It gives you control over the scene, allowing
you to transform the objects and move around the entire scene area.
On the Toolbar, you find the controls for playing and pausing the
game and accessing your account on the Unity cloud.

Here are the tools you find on the Toolbar:

• Pan tool: Grabs onto the screen itself and
moves the camera to have a better view of the
game objects or world.

• Translation tool: Moves your objects along
the three axes of 3D (X, Y, and Z).

• Rotation tool: Rotates objects around the
three axes.

• Scale tool: Allows you to adjust the size of
your object, making it bigger or smaller along
the three axes. The square around the dot is
also a scale tool, but it scales from the corners
of the object, as opposed to just the center or
pivot point.

• Gizmo tool: Adjusts where the pivot point
(the point that your object rotates or scales
from) is on the object, as well as what direction
of the axes you follow.

• Play button: Starts the game, along with any
physics or events that start when the game
starts. Pressing the Play button again resets
the game back to the start.

Figure 2-4: The Toolbar.

Your object will be
rotated and moved
a lot throughout
this and other proj-
ects. Understanding
the differences
between local and
global rotations will
help you better con-
trol your scene. The
global axes never
change and remain
in a fixed direction
onscreen, no matter
where or in what
direction the object
is. The local axes
are attached to the
object itself and
change to match the
angle the object is
facing.

REMEMBER

Understanding How Unity Is Laid Out 15

• Pause button: Pauses the game during play.

• Step button: Moves the scene frame by frame after playing.

• Cloud button: Allows you to access Unity’s cloud-based services
(see the nearby sidebar).

• Account drop-down menu: Allows you to access your Unity
account online.

• Layer drop-down menu: Allows you to change which layers or
objects are visible in the scene.

• Layout drop-down menu: Allows you to change Unity’s overall
layout to better suit your style.

For the purposes of this book, keep the Layout drop-down menu set to 2 by 3.

Tip

UNITY’S CLOUD SERVICES
One of Unity’s main selling
points is its large community and
greater opportunities for inde-
pendent developers to find their
way in the field of game develop-
ment. Unity’s cloud services go a
long way toward connecting the
community together by offering:

• Easy ways to back up your
files for a detailed histories of
your game’s progress

• A place to share your work
and get constructive feedback

• A way to connect and share
work with other like-minded
developers and collaborate on
projects that update regularly

Chapter 02 Unity: The Software You’ll Use to Build Your Game16

• Inspector window: The Inspector window allows you to examine
and alter the properties of selected objects. These properties change
from object to object, so the Inspector window’s layout changes the
most throughout your work, but knowing how to work in this win-
dow is vital to creating games.

• Hierarchy: The Hierarchy lists all the game objects in the scene and
how they relate to each other. You can use the Scene window to
select these objects or select them through the Hierarchy. Think of the
Hierarchy as a list of all the things within your project.

• Console window: The Console window is at the very bottom of
Unity’s screen. Its main purpose is to show you messages directly
from Unity. Typically, what you’ll see here are error messages, often
having to do directly with the code of the project. The Console window
is most useful when you’re coding your game because it helps you
narrow down what parts of your game are not functioning and why.

NAVIGATING THE SCENE
Being able to navigate around your scene is important when you’re
creating your game. You need to be able to move and rotate the scene
controls in order to control and create your game. There are three main
ways to do that:

• Panning: Panning moves up–down or left–right in the scene. If
you’re using a mouse, you pan by clicking and holding the middle
mouse button (the wheel in the middle of the mouse). If you’re using
a trackpad on a Mac, you pan by clicking and dragging while holding
the Alt and Command keys.

• Rotating: Rotating moves you around the scene as if you’re stand-
ing in one place and turning around to see everything around you.
You rotate by holding down the Alt key and clicking and dragging on
the scene.

• Zooming: Zooming moves you closer or farther away from the
scene. If you’re using a mouse, you zoom by rolling the middle
mouse button. If you’re using a trackpad on a Mac, you can zoom by
using two fingers and sliding them up and down on your trackpad.

Creating a Game Object 17

CREATING A GAME OBJECT
When you know how to navigate around the scene, you’re ready to
create and manipulate game objects.

There are two ways to create an object in Unity. You can either select the
GameObject menu (near the File and Edit menus) or, under the Hierarchy
tab, select the Create drop-down menu. Whichever method you use,
choose 3D Object ➪ Cube. That’s it! You’ve created a 3D game object!

Before you start playing around with the cube, reset the origin of the
cube to be sure it’s at the center of the screen. To reset the origin of an
object, follow these steps:

1. Select the object whose origin
you want to reset.

2. Go to the Inspector window for
the object (see Figure 2-5).

3. From the Transform menu of the
Inspector window, select the gear
icon at the upper right.

4. Click Reset.

The rotation and position are
both reset to 0 and the scale is
set to 1, centering and resetting
the size of the object. This will
help you better place and move
around your objects in the scene.
It also guarantees that all your objects remain at the same axis of
rotation and exist in the same scale.

You know how the Toolbar can transform your objects, but there is
another more precise way to do this in the Inspector window. The
Transformation section of the Inspector window moves, scales, and
rotates objects by specific numbers along the set axes:

• Position indicates where the box is in relation to the center point of
the scene’s grid.

Figure 2-5: The Inspector window.

Chapter 02 Unity: The Software You’ll Use to Build Your Game18

• Rotation indicates the angle that the box is in relation to each axis.

• Scale indicates the scale of the box in relation to its original size.

Play around with these controls to get used them. Then set the Scale of
the cube to 4 in the X, Y, and Z (the Position and Rotation should remain
0), as shown in Figure 2-6.

You’ve created a cube object, but there are other objects you can create
in Unity. Here’s a brief overview:

• 3D objects: These are the normal game objects within 3D games.
The 3D objects include the following:

• Cube

• Sphere

• Capsule

• Cylinder

• Plane (flat surface)

Figure 2-6: Object Reset at 0,0,4.

Creating a Game Object 19

• Quad (a single face with four sides)

• Rag-doll (a character)

• Terrain

• Tree

• Wind Zone

• 3D Text

• 2D objects: There is only one type of 2D object that you can create
with this menu: sprites. Sprites are images that you can program to
change to show different things for different actions — everything
from a character running to a character shooting a gun or talking.

• Empties: Empties are invisible objects that you place in the scene
to control or mark something about the scene. They won’t show up
when you export your game and act only as controls within your
game.

• Lights: Lights brighten the scene and can change how the game
looks depending on the light setup. Lights are mainly used to
brighten the characters and setting and help render a character in 3D.

• Audio and video: The Audio and Video menus help render videos
and sounds into your game. These can range from background noise/
scenes to music and dialogue.

• UI: UI stands for user interface. This alters what the player sees
onscreen while playing the game. It can range from text informing
the player of the controls to images and health bars.

• Particle systems: Particle systems include a variety of different
effects that can be seen onscreen, ranging from downpouring water
to explosive fire blasts.

• Cameras: Cameras act as the player’s eyes into the game. They can
be stationary or follow the player around, but their primary purpose
is to frame how a game is played. This may not seem important, but
the angle at which a game is played can change a lot about the game
itself. One example: A first-person shooter framed as a top-down
shooter is a vastly different play experience even if the controls are
exactly the same.

Chapter 02 Unity: The Software You’ll Use to Build Your Game20

CREATING AND US ING PREFABS
Prefabs are an easy way to create multiple objects that all have the same
properties and shapes. Creating non-player characters (NPCs) or in-game
objects can be a pain, but with prefabs, you can reuse assets without
having to copy and paste them and create multiple individually editable
objects.

Prefabs are stored game objects that retain the same properties and can
be placed into the game scene at any time. Let’s say you have a collect-
ible (something that your character needs to pick up). Instead of creating
hundreds of the same object over and over again, you can use a prefab
to create all of them and adjust the prefab as necessary. Prefabs are easy
to use and save a ton of time.

Creating a prefab is easy, but first you want to be sure that you create
a folder to store your prefabs in, to keep things organized. Follow these
steps:

1. In the Project window, be sure that nothing else is selected.

2. Click Create New Folder.

The new folder appears within the Assets folder.

3. Name the new folder Prefabs.

4. Select the object that you want to turn into a prefab — in this case,
the 4x4x4 cube.

5. Drag the object from the Hierarchy into the Prefabs folder in the
Project window.

A prefab of the object is created, as shown in Figure 2-7.

After creating a prefab, you can select the prefab in the Project window
to alter and add new components to all the prefabs in the scene. For
example, you can change the size of the object, change its color, or give
it gravity.

Try adding the component Rigidbody to the prefab you have in the
Project window and see what happens:

1. Click Add Component.

2. Select Physics.

3. Select Rigidbody.

4. Press Play on the Toolbar.

Creating and Using Prefabs 21

The cube(s) fall through the sky. This is because you just added gravity
to them. I touch on the Rigidbody component more in Chapter 4, but for
now, follow these steps:

1. Click the Play button again to reset the game.

2. Choose 3D Object ➪ Plane.

This will create a plane in the Scene window.

3. Reset the plane’s origin in the Inspector window, as you did with
the cube earlier (using the gear in the upper right of the Inspector
window).

4. Use the Translation tools to move the cube along the y-axis so that
it’s under the box.

Figure 2-7: Prefabs.

CHAPTER
Creating Level 1

03

Chapter 03 Creating Level 124

In this chapter, you learn some of the core concepts behind your first
level and how to design a good introductory level to your game. Beyond
that, this chapter will also teach you some basics about level design,
which you’ll be able to use going forward to design your own unique
levels for your future games.

In order to create clear and interesting levels, you have to start off by
thinking of them not in their final polished forms but from their most
basic beginnings. A game with pretty images and dull mechanics is just
a boring game, but designers have been drawing people into games for
years, starting back when they were only a few pixels on a screen.

This chapter shows you how to set aside your theme while you design
so that you can create the most compelling gameplay possible from the
beginning.

UNDERSTANDING THE IMPORTANCE OF LEVEL 1
In books or movies, the first ten pages or minutes matter. These are
your hooks, what introduces the audience to the world and grabs
their attention. It’s the title crawl that leads into an epic chase in Star
Wars, or the curious day in the life of Vernon Dursley that ends with a
 lightning-scarred boy on his doorstep in Harry Potter. These introductions
act as gateways to much larger and more complex stories, getting your
attention so that when the actual plot begins, you’re already invested. In
a computer game, this hook is Level 1.

In a game, the first major thing you have to sell to a player is the core
mechanics (the main controls or features of your game). In a platformer,
these are the controls that let you run and jump; in a choice-based story
game, these mechanics may be the dialogue trees. The first level can be
tough to design, because you have to introduce your player to the game
without the game harshly punishing them for making a mistake. At the same
time, you don’t want the first level to be boring. You have to introduce con-
cepts slowly but emphasize the need for urgency to learn those mechanics.

Although not as important as mechanics, the first level also has to intro-
duce players to the world that they’ll be playing in. Interesting worlds
and stories are accomplished partly through dialogue and cutscenes
(short scenes that the player watches but has little to no control in). They
can also be achieved through visuals and design choices.

Designing Your First Level 25

There are some great examples of first levels (or
opening minutes) in gaming history — Super
Mario Bros. (see Figure 3-1), Super Meat Boy (see
Figure 3-2), and Mass Effect 2 (see Figure 3-3), to
name just a few. None of these games’ first levels
or opening minutes feel superfluous. They pres-
ent only the necessary information for players to
better understand the game. Even Mass Effect 2,
which presents a gorgeous display of a planet in
the background, doesn’t feel excessive because
the level is supposed to inspire a sense of awe and
wonder.

Figure 3-1: Mario’s World 1-1.

Figure 3-2: Super Meat Boy World 1-1. Figure 3-3: Mass Effect 2 opening.

Creating a first level
that has too much
going on can be just
as dangerous as
creating a first level
that’s boring. Before
designing the level,
figure out what
your player needs
to know and build
from there. You can
fill later levels with
insane obstacles
and crazy set pieces,
but there has to be
a natural sense of
progression within
the game, especially
when it comes to
the mechanics of
the game.

REMEMBER

DESIGNING YOUR F IRST LEVEL
Designing your first level is similar to trying to solve your first algebraic
equation or make your first layup: You won’t get it perfect the first time.
In fact, it’s impossible to design a perfect level on your first attempt, so
don’t stress about it!

Chapter 03 Creating Level 126

THINKING ABOUT MECHANICS AND THEME

Before starting your game, make sure you know what core mechanics
you want in the game. This information will be helpful when you start
designing your level. Ask yourself what the mechanics of your game
are, and understand how those mechanics relate to the theme of your
game.

Knowing not only your mechanics but the story they relate to will help
you figure out the best way to introduce the different controls of the
game and in what order. Do your mechanics and theme fit with a tra-
ditional tutorial? Or does the game lend itself to a subtler approach?

When you start designing Level 1, think about the best way to introduce
your player to the game. Should you start with a more action-packed
scene to put the player directly into the world? Or should your game start
off with a calmer approach?

The game you’ll be building in this book is a 3D platformer that takes
place in a cartoony world. Because of this, you’ll be following the Super

Mario Bros. format by slowly introducing con-
cepts through the level and gradually increasing
the difficulty as the level progresses.

DRAWING THE ROUGH DRAFTS

Before worrying about specific measurements or
the scale of your level, you need to get an idea of
what your level will look like. For this, I suggest
you use a blank piece of paper or a white board
so that you can erase and rework your ideas
as you get them. Think of this process as being
similar to an outline for an essay. It allows you to
get all your ideas out in an unpolished fashion.
Then you can refine, add, and cut as you please.

The major point of
the rough draft is
to get an idea of
the basic aspects of
your level. What are
the enemies of the
level going to be?
How are you going
to introduce players
to the concepts of
the level? What is
the level going to
look like?

REMEMBER

Design is all about refining and asking questions. Keep practicing and
seeing what works and what doesn’t, until your Level 1 is just right.

Tip

Designing Your First Level 27

In the example in Figure 3-4, you can see
notes on what are important in the level.
I’ve included the enemies, inclines, and
drops as important parts of the games
design. You also see some moving
platforms, as well as some spikes toward
the end of the level. This isn’t a perfect
representation of what the final level will
look like, but it gives a solid idea of what
needs to be translated into the more
in-depth design of the level.

Use this time to consider how players are
 introduced to new mechanics or aspects of your
game. Level 1 shouldn’t just start with steep
drops or punishing game moments. It should be
a learning experience that builds on what hap-
pened earlier. Later levels can up the difficulty, but
 without proper early levels teaching the player
about the mechanics, any later difficulty spikes
will feel unearned or even harsh to new players.

You never want your player to feel cheated by
your game, so give players time to learn the
tricks of the game before pushing them into the deep end. If you intro-
duce difficulty correctly, the payoff to completing the level will outweigh
the frustration of failure.

GRAPHING YOUR F IRST LEVEL TO SCALE

After you build the outline of your level, it’s time to figure out the scale
of the level. The best way to do this is to use a grid or some graph paper
to draw out a more finalized design of your level. Figure out a ratio of
box-to-unit measurement in Unity before you begin drawing. But once

This is an outline, so don’t worry about the details. Just focus on the
overall look of the level.

Tip

Figure 3-4: Boxo Level 1 draft.

When you design
your first draft,
leave room for inter-
pretation and don’t
be discouraged by
imperfect ideas. This
step is just to help
you get your ideas
out on paper.

REMEMBER

Chapter 03 Creating Level 128

you figure out that ratio, you should draw out a more fully realized level
based on your designs from earlier.

Figure 3-5 uses a one-to-one scale with each box on the grid representing
one unit of measurement within Unity. In Chapters 9 and 12, I cover how
Unity’s scale relates to other programs such as Blender, but for now you
just need to recognize how objects relate to each other in Unity’s scale.
From a cursory glance at Figure 3-5, you’ll notice that Boxy (the player
character) is four units large in Unity. Keep the scale of the character
in mind while designing the rest of the level. Everything in the level
is based on the scale of Boxy and is designed around the scale of the
character.

Why does scale matter in game design?

• It helps you determine the difficulty and understand the necessary
movement requirements of your characters. If you determine that a
character’s max jump distance is five units, you won’t create dis-
tances that are impossible for the character to overcome.

• It helps you keep track of how objects relate to each other. If a wall
and spike path are properly scaled, you’re more easily able to build
an interesting level.

Using graph paper, you’ll be better able to translate that scale into your
game and will more effectively be able to build your game. Keeping scale
will prevent you from building objects or scenery that doesn’t fit to scale
with the rest of the environment. It would be very jarring for your char-
acter to climb a staircase only to come to a wall that is impossible to get
past because the scale is off and doesn’t match how high your character
can jump. Remember: Organization saves lives — and that goes for your
scale as well.

Figure 3-5: Boxo Level 1.

Creating the Gray-Box Level 29

CREATING THE GRAY-BOX LEVEL
A gray-box level is the bare minimum design of your game that you
need to make the game playable. Think of it as a practice run to make
sure that your game works on a mechanical level without theme getting
in the way.

Gray-box levels are similar to storyboards in film, which are a way to
visually express a film before any filming is actually done. In film, story-
boards are used to check whether a story is understandable when it’s pre-
sented. Although some of the more glaring issues can be caught through
script readings and editing, storyboards gives filmmakers a chance to
see which parts of the film work and which parts don’t work when they’re
presented as a whole, sequentially. Sometimes storyboards might help
the filmmaker to see that she needs to move a scene or two around or
remove scenes or storylines entirely to make the film flow better.

Level design is similar. Although you can see some glaring issues in the
early level drafts and drawings, you can’t catch all of the problems until
players have a chance to play it for themselves. By creating a gray-box
level, you’re able to program and fix your game before you put too much
effort into making the game look good.

You want to find any problems with the game before you spend hours
building a detailed environment around those bugs. Finding bugs early
is key to creating a good game! Think of your gray-box level as your test
run. You’re making sure the mechanics of the
game work and are fun before you spend hours
on a project only to discover that the game is
broken on a fundamental level. The earlier you
discover the failings of your game, the less heart-
breaking it will be for you.

CREATING YOUR PREFABS

The first thing you want to do when you open
Unity to build your level is to create all the
prefabs that will be used throughout your game.
Keep in mind that for the game that you’ll be
designing throughout this book, the direction the
character travels is along the z-axis (left to right).

Look through your latest design of your level
and make note of all the objects or charac-
ters that are used multiple times throughout

Prefabs are objects
within the game
that you can create
multiples of and
have the ability to
alter all at once
without needing to
change each one
individually. Prefabs
are especially useful
for objects that
you’ll be using a lot
of throughout the
levels, such as stairs
and walls. (See
Chapter 2 for more
on prefabs.)

REMEMBER

Chapter 03 Creating Level 130

the level. I cover how to construct animated characters or objects in
Chapters 9 and 10, but for now, simple stand-ins for these animations
will do just fine. In Figure 3-2, there are several different prefabs that you
can create, including some stairs, walls, and a stand-in for the moving
platforms that you’ll include later.

Let’s start with the stairs. To do that, you’ll work with a cube. Follow these
steps:

1. Create a cube, and reset the cube’s position and rotation by clicking
the gear in the upper right of the Inspector.

2. Set the scale of the cube to (X=8, Y=2, Z=6).
This creates the bottom step of the three-step staircase. If you want a
longer staircase, increase the Z scale.

3. Set the name of the cube to “Stairs.”

4. Create a new cube, and reset its position and rotation.

5. Set the scale to (X=8, Y=2, Z=4).
This stair step has to be a little shorter than the previous one because
there has to be a gradual progression.

6. Change the position of this cube to (X=0, Y=2, Z=1).

7. Rename the cube to “Step 2” using the Inspector.

8. Create a third cube, and reset its position and rotation.

The object is moved from its center or pivot point. In the objects you’ll be
creating in this game, both are at the center of the object. Whenever you
move the object, keep in mind that it moves from its center. If an object
has a total size of 1, that means that if you want to move it so one end is
touching a line, you have to add 0.5 to whatever the location of the line is.

Tip

Creating the Gray-Box Level 31

9. Set the scale to (X=8, Y=2, Z=2).

10. Change the position of this cube
to (X=0, Y=4, Z=2).

11. Rename the cube to “Step 3”
using the Inspector.
See Figure 3-6 for an example of what
you should have.

12. Using the hierarchy menu drag Step 3 into Step 2 to create a Parent.
Then drag Step 2 into Stairs to parent both Step 2 and Step 3 to
Stairs.
Parents control children (at least in games!). When an object is parented
to something, it means that the object is affected by the rotation,
translation, and scale of that object. When the parent is changed, so is
the child, but the child’s personal scale, rotation,
and translation remains unaffected, which will
be important when we bring animated objects
into the game in Chapter 12.

13. Drag Stairs from the Hierarchy menu into
the previously created Prefabs folder (see
Chapter 2) to create a Stairs prefab that
will actually change not only Stairs but
also the objects parented to the stairs.

Figure 3-6: Stairs.

Have you saved?
Now would be a
great time to do
so! Press Ctrl+S
(Windows) or
Command+S (Mac)
to save your game.

REMEMBER

Saving is wonderful, but there are two types of saves in Unity: Save Scene
and Save Project. Save Scene will save whatever scene you’re currently
working on in your game, so any changes you make within your scene will
be saved. Save Project will only save things that affect the wider project,
such as interactions between scenes. Saving Project will not save your
scene, and you’ll lose any changes you make. Be sure to choose the right
version of save; otherwise, you could lose a lot of vital work. The keyboard
shortcut saves the scene, not the project.

Tip

Chapter 03 Creating Level 132

After you create your stairs prefab, you’ll notice when you select it that in
the Inspector there is now a Prefab section near the top. Next to “Prefab,”
there are three buttons:

• Select: Selects the Prefab in the Project window

• Revert: Undoes any changes you made to your prefab back to the
standard prefab settings

• Apply: Changes all of the objects that go off that prefab to match
the one you’ve selected

To test this out, follow these steps:

1. Drag out a second and third staircase onto the Scene window.

2. Create a new material using the Create drop-down in the Project
window and choose Material.

3. Change the color of the material.

4. Drag that new material to one of the staircases.

5. Select the staircase and click Apply.

All your objects that go off of that prefab will now change to match
this color.

Now delete the staircase. You don’t need to worry about having to do it
again. After you create a prefab of the object, Unity will automatically
have a copy of the prefab to refer to. So now whenever you need stairs,
you’ll be able to simply drag and drop the stairs into the scene.

The next prefabs that you should create are

• A wall: The walls should be tall enough that your character has to
jump over them and wide enough to prevent players from simply
walking around them. For the purposes of the game in this book the
X-scale should be 30, because that will be how wide our level will be.
The wall measurements should be (X=30, Y=2, Z=2).

• A stand-in for the moving platforms: As a stand-in for moving plat-
forms, you’ll create planks that will go across the long gaps between
some sections of the level. These planks should be much thinner than
the walls or stairs and should be easy to climb on. They also need to
be long across the Z-axis to reach across. Using Figure 3-2, you can
determine that one of these planks need to be at least 31 long. The
plank measurements should be (X=4, Y=0.5, Z=31).

Creating the Gray-Box Level 33

• Stand-ins for the enemy characters and spikes: The enemy charac-
ter stand-ins can just be still moving cubes for now, located at the
center point of where the enemy characters will be moving in. You’ll
be animating their movement in Blender, so you only need a still
stand-in for the purposes of building the level and to test the death
mechanics with. The enemy stand-in measurements should be (X=2,
Y=2, Z=2).

The spikes will also be made in Blender, so you’ll be using a similar
stand-in for those. You don’t need any fancy characters or objects
because the purpose of the gray-box level is to test the game mechan-
ically. Squares, spheres, capsules, and cylinders work just as well
for designing the game as any character would. The spike stand-in
measurements should be (X=1, Y=1, Z=1).

Be sure you drag all of these different objects from
the hierarchy window into the Prefabs folder so that
you can access them later.

BUILD ING YOUR LEVEL

Now that you have all your prefabs made, it’s time to actually start build-
ing the first level of your game. When you begin your game, you need
to start by building the base of all your platforms before adding any of
the prefabs. Graph paper will help you figure out how long each section
should be.

As an example, the first platform in Figure 3-2 has the measurements
(X=30, Y=4, Z=56). The first platform has an indent in it, so only measure
up to that indent to find the starting height you need to plug in for your
platform. Create a cube and use the values above to scale it to its proper
size. Then change the Y-position to 2 so that the bottom of the cube is on
the platform, and change the X-position of the cube to 28 so that the back
of the cube is at the 0 location.

After you place the base of your first platform and reset the location and
rotation back to 0, it’s time to build up on top of that platform:

1. Create two more cubes, and reset their rotation scale and position.

2. Change the Y-scale of both to 6 and the X-scale to 30.

3. Change the Y position of both to 7.

Normally this would be 5 but because we changed the bottom
platform so that the bottom of the platform is on the grid, objects
on top of the platform have to be twice as high.

Save your work.

REMEMBER

Chapter 03 Creating Level 134

4. Change one cube’s Z-scale
to 24 and its Z-position to
12 so that it is placed at
the top and front of the
platform.

5. Change the other cube’s
Z-scale to 23 and its
Z-position to 44.5 (see
Figure 3-7 as an example).

To finish up this platform, there is still one cube that has to be
placed at the top of the platform.

6. After you create this cube, reset its rotation, scale, and location.

7. Change the scale of the cube to (X=30 Y=6 Z=11).

8. Change the location of the cube to (X=0 Y=13 Z=50.5).

After finishing up building the first platform, start measuring and cre-
ating the second platform, which is three units away. Figure 3-8 gives
a breakdown of all the measurements to create the level. Reference it
when creating the rest of the level.

Whenever you’re trying to place an object, add half their size to the point
you’re trying to move them to. For example, if on the grid the Z-position
(the pink line going vertically) reads Z = 114, you would have to add half
the size of the object to properly place it on the z-axis. So the Z-position
of that platform would be 114 + (54 ÷ 2) = 114 + 27 = 141.

The horizontal lines represent the Y-positions, and the same math has to
be used to place the cubes and platforms along that axis.

Figure 3-7: Starting platform.

You should always do this out of habit. Resetting your location, rotation,
or scale right at the start will prevent you from ever accidentally parenting
or scaling something the wrong way. If an object is placed and not reset,
when it’s parented it isn’t parented from 0,0,0, which can cause issues later
on in the actual gameplay performance by causing certain objects to end up
in the wrong spot. Resetting from the get-go prevents this.

Tip

Creating the Gray-Box Level 35

PLACING YOUR PREFABS

After you finish building the base platforms of the level, it’s now time
to begin placing your prefabs throughout the level. Let’s start with the
stairs. Open your Prefabs folder and drag a staircase out.

At this point, you can do a very similar thing to what you did earlier, but
there’s actually another way to place objects. By pressing V on your key-
board, you activate Vertex Snapping, which will allow you to grab a
vertex (corner) of a GameObject and snap (place directly) to another
object’s vertex. This can save you a lot of time and headache when building
out a level — especially when you need to place a GameObject on a level
that doesn’t have as precise measurements as we’ve been working with.

The problem with Vertex Snapping is that it only really works within
Unity’s orthographic views.

Figure 3-8: Level 1 with number breakdown.

Orthographic views flatten out a 3D object so that you can view it in 2D. This
helps when you want to place objects in certain spots because you naturally
want to convert images into 2D shapes. By working in Orthographic mode
and alternating between the top, right, and front views, you’re able to get
a more realized and precisely placed design for your level. You can switch
between Orthographic and Perspective modes by clicking the tiny cube in
the upper-right corner of the scene window. If you click the X, Z, or Y cones
around it, they’ll bring you to the Front (Z), Right (X), or Top(Y) views.

Tip

Chapter 03 Creating Level 136

Another shortcut that can help you
place objects on top of each other with-
out having to do as much math is the
Surface Snapping tool. Press Shift+Ctrl
(Windows) or Shift+Command (Mac),
and you’ll be able to move objects so
that they’ll snap to the surfaces of other
objects, making it far easier to place
things like stairs, monsters, or planks.

First, begin by using Surface Snapping to place the stairs on the level.
See Figure 3-9 for an example of how it should look.

You’ll immediately notice that the stairs are too big for the middle sec-
tion in between the two upper platforms. Luckily, one of the great things
about prefabs is that you can alter one without altering all the others in
the scene. Simply delete the top step of the stairs and rotate and place
it into the proper spot. As long as you don’t hit the Apply button in the
Inspector, this change won’t affect the other prefabs in the scene.

After you finish placing all the stairs in the scene,
you’ll begin placing the plank stand-ins for the
moving platforms. Because these will be acting as
stand-ins until you can create moving objects in
Blender, you want them to still give a similar sense

of challenge that the moving platforms will when they’re added in. The
best way to do this is to place the planks across the gaps but at an angle,
as in Figure 3-10. When placing the planks, you’ll notice that they may
not be big enough or may be too big for the gap you created. As with the
stairs, you can alter the shape and size of these planks to better fit your
needs without altering the rest of the prefabs in the sequence.

At this stage, you want your game to be
the bare bones of what your eventual
game will end up being. Do your best
to capture the overall feeling you’re
aiming to go for in this game, even
at this stage. Creating the tension of
walking across a narrow plank can give
the same fear of falling as jumping
from a moving platform. Always think
about how your player may react to a
situation. You can even make it so that

the player actually has to jump between two different planks to get to the
other side just to add a sense of tension because of height.

Save your work.

REMEMBER

Figure 3-10: The planks being placed across
the gaps.

Figure 3-9: Level 1 with stairs.

Giving Your Level Objective and Direction 37

Go further into your level and customize it more to fit what you want it to
be. Add more planks or obstacles that the player has to overcome. Add
more placeholders for when you make enemies to place in Chapters 9
through 12.

Game design is about making a game that you would want to play.
When you’re designing a level, ask yourself what would intrigue you and
add it in.

After you finish your level, make sure that you aren’t missing anything
or that there aren’t gaps too big for the player. Make sure the game has
a logical sense of progression that will reward the player and not punish
them. Adjust where necessary. See Figure 3-11 as an example.

GIV ING YOUR LEVEL OBJECT IVE AND D IRECT ION
Objectives are the lifeblood of a game. Without a clear objective, players
don’t know why they’re playing. When you’re designing your first level,
you have to decide what the goal of the player is. Is it to save the prince
from the castle, to survive until 6 a.m., or to escape a zombie-infested city?

Building an objective — especially an objective in a level — is a huge
part of level design. Objectives have to stand out to the player and draw
the player’s attention. Often in videogames, a lot is going at once. Even
in a game like Super Mario Bros., there are a ton of creatures waddling

Figure 3-11: The finished gray-box level.

Chapter 03 Creating Level 138

around that try to demand the player’s attention. So how, as a game
designer, do you build an objective that can stand out?

In the case of Super Mario Bros., the objective was built into the mystery
of going further to discover more. It may seem strange, but part of the
thrill of playing Super Mario Bros. was that you never knew what was
going to come next! You had to be prepared for all sorts of monsters, as
indicated early on in the game. The main objective was to rescue the prin-
cess, but the minor objective of each level was to get to the flag at the end.

Other games use other techniques to indicate direction. Some use coins
or pickup items to give the player something to follow. Other games
give players direction by putting them into a dark room and having only
one door lit up at the end. Sometimes objectives fuel direction; other
times direction fuels objectives. As players, we hunt for answers to
these questions. We want to know what the purpose of the game is. As a
designer, your job is to clearly indicate where the player should be going
and reward the player for going there, either by giving the player more
coins or by advancing the plot.

When you finish designing your
level, you have to give the player a
reason to go forward. For the purposes
of your platformer, this reasoning will
be items that the player can collect
while going through the game. The
following steps will take you through
how to create a pickup item (see
Figure 3-12):

1. Create a cube, sphere, or cylinder that will act as the pickup item in
the game.

2. Name the GameObject “Pickup.”

3. Create a prefab for this object.

4. Begin placing the object copies throughout your level.

You can even place some in the air where the character will be
encouraged to jump.

By setting the object around the level leading from the beginning to
the end, you give your player a path for them to follow.

The pickup item doesn’t really stand out from the background. So, how
do you make the pickup item stand out from the rest of the scene? There
are multiple ways to do this:

Figure 3-12: Pickup item.

Giving Your Level Objective and Direction 39

• You can have the object be moving slightly.

• You can put a light on the object so it glows when you look
toward it.

• You can make the object an unusual shape or size compared to the
things around it.

• You change the object’s color or hue so it stands out from the
background.

For this chapter, you’ll be follow-
ing the last example. You already
placed all the objectives around
the map, but the use of prefabs
prevents this from being a far
more tedious task than it needs to
be. Simply create a new material
and apply it to an object (see
Figure 3-13).

After you’ve applied the material
to the object, go to the Inspector and click
Apply. Your color will be applied to all the
objective prefabs. Now you have a level
with objectives that not only stand out but
lead players in the direction you want them
to go!

Figure 3-13: A standout objective.

Save your work!

REMEMBER

CHAPTER
Camera, Character,

and Controls

04

Chapter 04 Camera, Character, and Controls42

In this chapter, you’ll be learning the fundamental basis behind game
development: coding. This chapter explains how you can make your
game interactive so that people will be able to play your game. I’ll show
you a simple movement code that you can use as a jumping-off point for
coding in the future. I’ll also explain the different aspects of the code and
the core thoughts behind every piece of code.

Here, you’ll also learn how to program your character so that she’ll pick
up the pickup items you created in Chapter 3, which involves creating
and applying object tags. You’ll learn about how to write a simple code
that will allow your camera to follow your character through the level.
These codes will act as an introduction to some more complex codes
that I’ll cover in Chapter 5. What you’ll learn in this chapter will be
expanded upon in the next chapter.

THE THREE CS OF GAME DEVELOPMENT
When you make a game, keep in mind the three Cs of game develop-
ment: camera, character, and control. These three Cs act as the player’s
main introduction into the world that you hope to create. They’re the only
aspects of your game that your player will always be dealing with. When
you understand the role of each of these three Cs in your game, you’ll bet-
ter understand not only your game, but all games that you create or play.

CAMERA

The camera is the player’s window into your game. It’s what the player
sees and responds to. Camera placement in a game is vital because the
player’s basic understanding of your game world will come through the
camera.

In film, the camera shows only what the cinematographer and director
want the audience to see. Changing the location of the camera can
change the entire feeling of the scene or, in some cases, break the scene
entirely.

Your game camera should be treated in much the same way as a film
camera. The problem is that, in games, you can’t always control where
the player (or camera) goes. When you create your camera, you have to
decide how much control you want your player to have over the camera
and whether you’ll limit that control in any way. A camera that is locked

The Three Cs of Game Development 43

behind the player character will reveal different
information than one that is located above or
to the side of the player character. Cameras
that players have complete control over or that
players can rotate reveal to the player informa-
tion from all over the world — but they may also
reveal aspects of the game that you wouldn’t
otherwise want players to see.

CHARACTER

The character is who the player is playing as
in the game. This can be deceptive because the
theme of the character doesn’t matter at this
point in game development. Whether the char-
acter is a super-detailed soldier or a box is irrelevant when you’re coding
your game. What you need to think about when you think of character
is what exactly your character does within the game. Ask yourself the
following questions:

• Does the character jump? If so, how high?

• Does the character have four-directional movement (forward,
backward, left, right) or does the character only move forward and
backward?

• Does my character have any weapons or tools? If so, what are they?

How your character moves not only changes what your game is but how
you’ll go about coding your game. A first-person shooter has an entirely
different code than a platformer. Even different types of platformers can
have a variety of different codes simply because of the types of controls
you want the character to have.

CONTROL

Control is how your player interacts with the game. The thing that
separates games from every other type of entertainment medium is their
unique ability to engage with an audience. Players don’t just read or
watch the events play out as they do with books, movies, or TV shows.
They play an active role in the experience and are invested in the charac-
ters because they are the characters.

Cameras are all
about revealing
information to the
player. When you
design your game
camera, ask yourself
what in your game
is the most import-
ant for your player
to know and what
you want to keep
hidden.

REMEMBER

Chapter 04 Camera, Character, and Controls44

Controls make or break a game. A game with
a poor control setup will never engage players
on the same level as one with good controls, no
matter how good the graphics or story is. You play
games because they make you feel in control, so
when you design your game, you have to think
about how controls interact with the player and
how you can make the game accessible for the
greatest number of people.

For example, when you think about movement in
a computer game, what buttons do you think of?
Probably the W, A, S, and D keys. But why? Why
don’t gamed designers use the 6, Caps Lock, Enter,
and Spacebar keys instead? After all, those keys
also relate to the different directions. The reason
designers typically use W, A, S, and D is because
they don’t want the player to have to put a lot
of effort into playing the game for each desired
effect. If you have to move your hand too much,
or stop and think about the controls, that can
break your immersion in the game, which kills it.
You want the time it takes for a player to think of
something and the time it takes for her to enact
it to be minimal so that players never break their
immersion within the game.

CREATING A CHARACTER
STAND- IN
In Chapter 3, you created a completed gray-box
level to act as the skeleton for your game. This
gray-box level (shown in Figure 4-1) allowed you
to test out the controls and make sure the game
as a whole was fun before you added the skin (the

exterior look for the game — character designs, settings, and so on). A
gray-box level is an unpolished base for your game that you can use to
test your game before you spend hours creating characters and other
assets that will make up your overall game.

Too many controls,
confusing controls,
or just awkwardly
spaced controls
can prevent players
from ever becoming
too invested in a
game. Think about
games that have felt
like they just flow
naturally when you
play them. This is
likely because the
controls have been
designed so that
players have to put
in minimal thought
to accomplish what
they want to do.
This doesn’t mean
that there can’t be
complex combina-
tions that come from
mastering these
controls (think of
how fighting games
combos work). But
these complexities
should come natu-
rally and flow with
the game. When
you’re designing
controls, think about
how you want your
game to flow.

REMEMBER

Creating a Character Stand-In 45

Similarly, character stand-ins are a way for you
to program and test your character, controls,
and camera without needing to invest time in
creating a detailed character first. Stand-ins
help you focus on your character’s fundamental
controls and movements without being tempted
to focus too heavily on the theme of your char-
acter. You’re forced to think primarily about the
player’s enjoyment of the game rather than the
game itself.

As with the gray-box level, your character
stand-in doesn’t need to be super complex to
get the point across. The one thing a stand-in
character should do is stand apart from the
background. To create your stand-in character,
follow these steps:

1. Go to GameObject and create a Cube.

2. Drag the cube to the start of the level using the translation tools.

It doesn’t need to be placed directly on the top of the level, but it
should be above it at the very least.

Figure 4-1: The completed gray-box level.

Always keep your
player in mind when
you’re designing
your game. You can
think you have the
greatest game in
the world, but if no
one wants to play it,
it doesn’t accom-
plish the one goal
all games have: to
be played!

REMEMBER

Chapter 04 Camera, Character, and Controls46

3. Go to your Assets folder in your project window, and create a new
folder called Materials.

4. Move any existing materials into this folder.

5. Create a new material, and apply it to the cube.

6. Change the color of the material so that the player distinctly stands
out from the background.

See Figure 4-2 for what the character should look like.

THINKING ABOUT CODE
What is coding? When you think about coding,
you probably think about movie hackers shifting
through walls of ones and zeroes to crack the code

into the vault or something. You think of it as something that requires a
bunch of math and computing to figure out.

Coding does rely on math, but its more akin to learning a new language
than doing math. Coding is just telling the computer or game what you
want it to do in a language that it can understand. The problem is that
computers are stupid, so when you code, you have to code everything.

Figure 4-2: Your stand-in character.

Save your scene
and project.

REMEMBER

Thinking about Code 47

For example, let’s say you have a robot and you want to program it to
make a peanut butter and jelly sandwich. In order to do this, you have
to program each step involved in creating this sandwich. Try writing out
all the steps that are needed to create a peanut butter jelly sandwich and
then come back to this book. I’ll wait!

It’s very likely that the list you came up with isn’t as detailed as it needs
to be. In order to program a robot to make a peanut butter and jelly
sandwich you have to have these steps:

1. Turn to point toward cabinet.

2. Move toward cabinet.

3. Open hand.

4. Rotate arm up to handle.

5. Close hand around handle.

6. Open cabinet.

7. Release handle.

8. Move hand to peanut butter.

9. Grab peanut butter.

10. Take peanut butter out of cabinet.

11. Put peanut butter on counter.

12. Move hand to jelly.

And these are just the steps for taking out the peanut butter and jelly! In
the real code, you would have to program what the total distance of a
step is for the robot and how many steps it requires to go to the cabinet.
You would also have to program it to know what jelly and peanut butter
are, as well as bread slices, a plate, and a knife.

Coding is all about laying out clear directions
for the computer to follow. In games, your
code not only has to act on its own, but also
has to react to what the player does within
the game.

Computers are
stupid.

REMEMBER

Chapter 04 Camera, Character, and Controls48

ADDING R IG IDBODY COMPONENT AND
UNDERSTANDING BOX COLL IDERS
Before you begin to code your character, Unity offers a way for you to
easily apply physics and other forces to your object. You don’t have to
worry about coding gravity and other forces because it’s all included
in the Rigidbody component. The Rigidbody component makes it so
that outside forces and objects can actually have an effect on the object
within the game.

For example, let’s say you make a cube in an empty scene. When you
click Play, without a Rigidbody constraint, the cube will remain in the air
because the cube is unaffected by any outside forces and will stay still.
If you were to add a Rigidbody component to the cube and then click
Play, the cube would fall forever because there is nothing keeping it up.
Now that gravity can be applied to it, it will fall infinitely. If you were to
add a separate object or plane below the cube, the cube would land on
that object or plane. This is because of another component that is already
added to all the 3D objects: a collider.

A collider is an invisible outline that wraps around the 3D game objects
that signals when one object “collides” with another object. The colliders
of different objects interact with each other and signal when two objects
touch. You can access the collider by selecting your object and going to
the Inspector window. You can adjust the size of a collider to be larger or
smaller than the object.

You can also adjust the center point of the collider, which will move it
around your object. Most objects have a collider naturally, but if they
don’t, you can always add a collider.

Colliders indicate when two objects interact. Having a smaller or larger
collider can change how far away a character has to be to interact with
another object, and even what parts of the character will interact with
another object. If your character is human and has a box collider around
them, then a hit can register even if the character’s body isn’t touching
anything.

Tip

Adding Rigidbody Component and Understanding Box Colliders 49

To add a collider, follow these steps:

1. In the Inspector window, at the bottom you’ll see an Add
Component button.

2. Click Add Component and then select Physics.

3. From the Physics menu, select your desired collider (see
Figure 4-3).

Different colliders have different shapes. A mesh collider is the most
versatile. It’s able to wrap around different types of meshes. You can
also use the Add Component button to add multiple colliders to an bject.

Adding a Rigidbody component to the player character will make it so
that you can give your character the ability to jump and fall on top of
the basic forward and sideway movements. To add a Rigidbody to your
character, first make sure that you have the right object selected in your
Scene window. Then follow steps 1 through 2 from earlier. When you get
to Step 3, instead of selecting the collider, select Rigidbody.

To test the Rigidbody on your object, simply
click the Play button on the top of the screen. The
object should fall and land on the level that you
created. Now that your object is affected by grav-
ity, it’s time to program it so that you can make it
move and jump around using the keyboard.

Figure 4-3: Adding a Rigidbody component.

Save your scene
and project.

REMEMBER

Chapter 04 Camera, Character, and Controls50

CODING YOUR PLAYER
When you create code in Unity, you actually create the code separately
from the object and later attach it to the object, as opposed to coding
to the object directly. The benefit to this approach is that you’re easily
able to transfer the code you create to other objects as you create them,
making the transfer from a gray-box level and stand-in character incredi-
bly simple. But this means that you need to create the code separate and
have it stored someplace else.

The first step is to create a new folder in your assets folder in the Project
window and name the folder Code. This will be where you store all the
codes you’ll be making in this game. It’s a good habit to get into —
proper organization can save you hours of superfluous work.

After you create a folder to store all your code in, you have to create the
file that you’ll use to write your code in:

1. Make sure that the Code folder is selected.

2. Click Create.

3. Choose Create ➪ C# Script.

4. Name the script Char (short for character), as shown in Figure 4-4.

Figure 4-4: Creating a C# code.

Coding Your Player 51

This will create a C# code that you’ll be able to go into and change
to include the code for your character. There are many different lan-
guages in coding. For the purposes of this project, you’ll be using C#
(pronounced “C Sharp”). C# is a powerful programing language used
in Unity and a variety of other programs. It’s type-safe and focuses on
object-oriented goals within the code (for example, “Do this thing and
this happens”).

Selecting the C# code and double-clicking it will open up Unity’s included
code-writing software, MonoDevelop (shown in Figure 4-5). When
MonoDevelop opens, you’ll see what looks at first like a word-processing
program but with the lines clearly numbered. This is the basic code-
writing software that you’ll use when making your Unity games.

When you open this code, you’ll notice that part of the code is already
written out for you. Unity automatically writes some of the basic parts of
the code for you when it creates a new script. To better understand cod-
ing, let’s breakdown what every part of this code is doing for the game as
a whole, using Figure 4-5 as a reference point.

The first three lines of this code determine the systems and engines that
the code will be accessing in the code as reference. You’ll notice that the
first two are System.Collections and System.Collections.Generic.

Figure 4-5: MonoDevelop.

Chapter 04 Camera, Character, and Controls52

These are the two namespaces that give access to a variety of codes and
classes that will be used in C#. These are aspects of the code that make up
the bulk of how your codes will be working. On line 3, the code is access-
ing the Unity engine, which indicates that it will be controlling some basic
aspects through the Untiy engine. Later in this chapter, you’ll be adding
a new engine for the code to access and alter, but for now, just leave
it alone.

Note how there are spaces between the different sections of Unity’s
code. These spaces act simply as ways to break up large blocks of code
and make the code more accessible and readable. There is no reason
within the code to break apart the lines, but by doing so you’ll create a
code that is easier to understand and work in. When you code, be sure to
create breaks within the code to give yourself more space to work in.

In C#, classes act as templates that classify game objects within the code.
A void acts as an indicator that the following method will not accept any
parameters and will not return any value back. A void Start indicates a
method that will begin at the start of the game (when you first press the
Play button). A void Update updates every frame of the game.

Whenever you see // in code, it indicates a dead line of code. When // is
added in a line, everything following that grays out to indicate that it’s no
longer active. Often programmers use // as a way to make notes within
the code that can help them better understand what’s going on in the
code. Other punctuation in coding has purposes of their own. These are
the most common within coding:

• { } indicates the start and end points of a particular string. A string
is a particular part of the code. You can have multiple strings within
each other in a code.

• () acts as further qualification for a method to begin. You’ll use
these in if statements to set up why a certain code will begin when
it begins.

• ; indicates the end of a particular line of code. Think of semicolons as
the period in a sentence of the code while the { } indicates the total
paragraph or essay.

Now that you’ve examined some of the starting code, it’s time to add
your code into the mix. You’ll start with a simple movement code that
indicates how fast the character will move, what direction it will move in,
and when it will move.

Coding Your Player 53

In Figure 4-6, you’ll notice that a public float was added underneath
the class. Floats act as a reference point that later parts of the code
can use. In this case, you can see that the code reads public float
Speed = 5f;. In this case, public float indicates the type of code that
you’re creating, Speed is the name of the float you’re creating, = indicates
that the following number directly relates and changes the Speed, and
5f stands for 5 float integers. So whatever is affected by Speed will
change by 5 of a particular integer.

The next difference in the code shows what exactly
Speed is affecting. Below void Start, you should
add void FixedUpdate(){, which will update
the code every second as opposed to every frame.
Inside the FixedUpdate, you should type if (Input.
GetKey(KeyCode.W)) {.

The if tells the game that the following string
will happen only if the statement in the parenthe-
ses happens. In this example, when the player
inputs a particular key on the keyboard, with that
key defined by the KeyCode as w, than the follow-
ing code happens:

transform.position += Vector3.forward *
Time.deltaTime * Speed; }

The code indicates that the object, when clicked, will

• transform (change) its position by +=
(a distance in a direction).

Figure 4-6: The movement code.

All parentheses and
brackets have to be
closed. Otherwise,
they’ll register
as broken codes.
Every time you see
an open bracket
or parenthesis, try
to find where it
closes. If you can’t
find one, then close
it. Keep in mind
that if you have
multiple strings,
the brackets within
the bracket must all
be closed before the
top bracket can be
closed.

REMEMBER

Chapter 04 Camera, Character, and Controls54

• The direction is indicated by Vector3 as a direction on the XYZ axis.
(Vector2 indicates only along the 2D axis.)

• .forward determines which way the object is moving. It’s moving
forward relative to its direction multiplied by Time.deltaTime *
Speed, which you defined earlier as 5.

The final code should look like this:

FixedUpdate {
(Input.GetKey(KeyCode.W)) {
 transform.position += Vector3.forward * Time.
deltaTime * Speed; }
}

So your character is moving 5 units forward along the XYZ axis when-
ever the W button is pressed. To get your character to move every
direction, you must simply copy the pre-existing code and alter it as
necessary for the different directions. See Figure 4-7 for an example.

The only parts of the code that you need to fix are the keys pressed
and the directions that the character will be moving. Everything else is
predefined and has no need to be adjusted:

• KeyCode.A plus Vector3.Left causes the character to move left
when A is pressed.

• KeyCode.S plus Vector3.Back causes the character to move back
when S is pressed.

• KeyCode.D plus Vector3.Right causes the character to move
right when D is pressed.

After finishing this part of the code, you should save and go back to Unity
to test it. To attach the code to a character, simply click and drag the code

Figure 4-7: All the directions.

Coding Your Player 55

from the Project window over to your character on the Scene window.
Once the code is attached, all you need to do is press Play, and you’ll be
able to move your character around.

After the basic movement code is complete, the next part of the code
you’ll be working on is the jump code (see Figure 4-8). Jump codes are
actually very similar to your standard movement code. The only difference
is that, because your character has the Rigidbody component, gravity will
be acting opposite of this movement. As Isaac Newton put it, what goes
up must come down.

If an error message appears, check your code and make sure that you’re
using the correct punctuation, you’re capitalizing only in the noted areas, and
that all the brackets are closed. Generally most errors in codes come from
one or two simple spelling errors or misplaced punctuation marks. When an
error occurs, Unity and MonoDevelop will refer to what line and column the
error is occurring in, which can help you determine the exact problem.

Tip

Figure 4-8: The jump code.

Chapter 04 Camera, Character, and Controls56

The first thing you need to do for the jump code is define another float
for the jump to go off of. You can use the Speed float to adjust the height
of your jump, or to change how fast the character is moving, but it’s
important that you can do so without changing the other. So first, you’ll
create a new public float and give it the name jump:

public float jump = 10f;

Set the float integer to 10f to make it double the
base movement, and give the character a solid
jump height so that they can clear the gaps
created in your level and eventually, the enemies
you’ll create later in this book. Next, you have to
reference the float later in the code and define
when and how it will be used.

The code for the jump is the same code you
used for the other movement codes, but you’ll
need to change the keycode (which key on the
keyboard it uses) and the Vector3 direction.
For the keycode, the common jump key for

most computer games is the Spacebar, so you’ll be using that in your
game. (Make sure that the S is capitalized.) As for the direction, this
will cause the character to move simply use the direction “up.” This will
create a simple jump code that will allow the character to jump. Save
your code and test it in your game. You’ll notice that the character’s
jump is really high, so go back into the code and change the float
 integer to 5f:

Note that the jump name’s first letter is lowercase and the Speed name’s
first letter is uppercase. It doesn’t matter whether you use uppercase or
lowercase when naming your floats — the names act as placeholders for a
specific value. That said, whatever casing you do use needs to remain con-
sistent for the name throughout the rest of the code, or the computer will
not recognize it. When you’re coding your own project, I suggest you pick a
certain casing scheme (camel case is the most common for coding) so that
you won’t need to double-check that you’re using the proper casing.

Tip

Camel case is when
two or more words
are put together
without spacing
and the different
sections of the word
are indicated by an
uppercase letter
(like camelCase).

REMEMBER

Coding Advanced Movement 57

(Input.GetKey(KeyCode.Space)) {
 transform.position += Vector3.up
* Time.deltaTime * jump; }

CODING ADVANCED MOVEMENT
After you finish your basic movement codes, it’s time to create codes to
allow your character to sprint and to prevent your character from double
jumping or just continuously floating. These may seem like small adjust-
ments, but a simple sprint code can go a long way toward improving a
player’s enjoyment.

Starting with the top of the code in Figure 4-9, you’ll notice that another
float has been added along with two public bools. The new float,
SSpeed, represents the sprinting speed in your game. The way you’ll be
coding your game, this sprint speed will be added to your normal speed
when your character is moving. The bools operate in a similar way to the
floats, but unlike the floats, bools only have two possible values: true
and false. Set both bools to false and the SSpeed to 10f.

Save your scene
and project.

REMEMBER

Figure 4-9: Advanced movement code.

Chapter 04 Camera, Character, and Controls58

The next change to the code is within the void Start. Inside the void
Start, the code refers back to one of the bools, gc, and changes its
value from false to true, which will directly relate to a later part of the
code, indicating that that part of the code should begin when the game is
started.

In the FixedUpdate string you made earlier, a new if statement relating
to the W keycode has been added. The code is similar to the first code
you made, with one major difference: There is a second Input indicated in
this code.

If you ever need to have multiple aspects acting on a string at once or
multiple parts that need to be referenced for a string to work properly,
you can do so by adding a && to the code in between the two parts. In
this case, in order to activate the if statement, two buttons need to be
pressed on the keyboard: W and LeftShift. So you define each keycode
normally, but in order to link the two together you include them in the
same parenthesis next to the if statement and link them with &&. The
other change to this code is minimal because all it does is simply replace
the Speed float with the SSpeed. You’ll notice that the basic forward
movement also remains unchanged after this string. That’s because you
want to keep the player’s ability to sprint and to move both possible but
separate. Only the forward sprint was added to this part of the code, but
to add sprinting to every direction simply use the same base of the code
and apply it to each of the directions. Here’s an example:

(Input.GetKey(KeyCode.W) &&
(Input.GetKey(KeyCode.LeftShift)) {

 transform.position += Vector3.forward *
Time.deltaTime * SSpeed;

}

The final change to the code is at the very bottom of the code and refer-
ences the bools. This code prevents the object from being able to double
jump (or remain floating when holding the Spacebar) by using a raycast.
Raycasts cast a ray out from a specific part of the object in a direction to
measure if there are any colliders nearby. If a raycast is set to 10f in the
forward direction, then when a collider is measured that is 10 units in
front of the object, the raycast will pick it up. This can be used to create
messages that warn of colliders nearby or trigger an interaction between
the two objects. Think of trainer battles in Pokémon. When you pass a
certain distance in front of a trainer in Pokémon, a battle begins. This
prevents you from needing to adjust the collider size of the object and
instead note the distance between two objects. In this case, the raycast
indicates when your object is touching the ground and prevents your

Coding Advanced Movement 59

character from jumping when the character is not within that distance
from the ground:

Vector3 gc = transform.TransformDirection (Vector3.down);
if (Physics.Raycast (transform.position, gc, .5f)) {
GroundTouch = true;
}

First, the code indicates the direction the raycast is pointing with the gc’s
direction being transformed to the Vector3 direction down. This tells the
raycast that the direction that it should be measuring in is down, which
will point it toward the ground. Next, in the if statement, physics gives
us access to raycast. It’s considered a physics code, and from there the
code defines how far the raycast is stretching. In this code, the raycast
is stretching, along the gc, .5F (or half a unit). When that distance is
measured, the code indicates that the character is touching the ground.
Save your code and test it in Unity (see Figure 4-10). See if you can pick
up the objects.

Something you may have noticed that hasn’t yet been addressed is the
new component in the Inspector window when you have your character
selected. This component is the script you just made, but you’ll also
notice that the names of the floats and bools you made are available
to alter here as well. Part of making the floats public gives you the ability
to alter these values even outside of the code. This is useful because it

Figure 4-10: The character in Unity.

Chapter 04 Camera, Character, and Controls60

allows you to adjust your character’s speed, jump distance, and sprinting
speed during testing. The only thing you have to remember when doing
so is that any changes you make to these numbers while your game is
running will not be recorded. You must not be in play mode when making
these changes.

Now as you play the game, you’ll also notice that your character is not
picking up the items you made in Chapter 3 for the character to pick up.
That’s because you haven’t created a code for the character to pick up the
items yet. All they’re acting as right now are objects that the character
can bump into while the character is going through the level. Now it’s
time for you to add a pickup code and point system into your level.

CODING P ICKUP
Collectables are simple ways to indicate a goal in your game. Attaching
numerical value to the items will help reinforce the idea that players
should pick up the items. Unfortunately, your code has no way to express
that the player is doing anything as of right now. In order to give the
code the ability to alter text on a screen, you must first give it control
over the user interface (UI) in the game.

Underneath where the code accesses the Unity engine, add using
UnityEngine.UI; (see Figure 4-11). This will give the code the ability to
alter any UI you add to your game, which will allow it to print messages
to the player as well as indicate the player’s score.

This would also be a good time to change the name of cube to Player so
that you can better recognize it right away when working within Unity.

Tip

Figure 4-11: The code for accessing the
Unity UI.

Coding Pickup 61

Now part of the pickup code is not only to allow your character to pick up
the objectives but also to have the objective disappear when it collides
with your character and for the UI to indicate an increase to a “score”
that will increase by one every time your character passes through any
of the objectives. That’s a lot to code. To make it easier, I’ll break this code
into two halves: the beginning of the code where you define the text and
integers that will be affected by the code and change, as well as setting up
the beginning of the count, and the end of the code where you define how
and why those text and integers change and how they relate to each other.

At the top of your code (see Figure 4-12) is where you previously added
floats and bools. You’ll be adding two new types of codes that will be
affecting your game and other parts of your code:

• Text: Text codes relate directly to the UI and are determined in the
code. These can be simple messages that appear during the game or
even values that change as things happen in the game.

• int: int codes are integers. They’re number codes that are deter-
mined during the code and increase or decrease in value depending
on the code that you write. These can be used to define a countdown
clock or a point system.

You’ll also notice that while both the texts are public (which means
that their values are broadcasted outside of the code to other aspects of the
game or codes), the int code is private, which means its value is only used
within this particular code and does not affect other parts of the game.

The text codes that you want to make are countText and winText.
Similar to the floats, the names here don’t actually matter beyond their

Figure 4-12: The beginning of the code.

Chapter 04 Camera, Character, and Controls62

value as an indication of a further code. These codes will be used to
count the player’s score, and once the player has hit a certain score
indicates that the player has “won” the game.

You want to name the int code count. Again, the name doesn’t matter,
but count will indicate to you or any other person who looks at this code
that this integer is directly relating to counting something. In this case, the
integer is counting the amount of pickup items that the player has collected.

After you add these codes, go down to the void Start string where
you’ll add two new codes:

• Count = 0;: This will set the count integer to zero at the beginning
of the level. After setting it to zero, you’ll be able to make the number
increase later during the code.

• SetCountText ();: This code refers to the text code you’ll have
later. After every integer change, this code will record the change and
send it to the text code to change its number accordingly.

At the bottom of the code (see Figure 4-13), two voids have been added
in the void FixedUpdate: void OnTriggerEnter (Collider other)
and void SetCountText ():

Void OnTriggerEnter (Collider other) {
 If (other.gameObject.CompareTag("Pickup")
 {

Figure 4-13: The end of the code.

Coding Pickup 63

 other.gameObject.SetActive (false);
 count = count + 1;
 Set CountText ();
 }
}

The onTriggerEnter only activates when a certain event happens, in
the parentheses that event is defined when the object’s collider is in
contact with another collider. What that means is whenever the character
touches another object, this code begins to run, but to limit this code
to only affect the pickup items within this string is an if statement: if
(other.gameObject.CompareTag("Pickup")). So now the code has
determined that whenever the object collides with another, if that other
object’s tag is Pickup, the next part of the string happens.

The first line in this part of the string indicates that when this collides
with the other object, it will change its SetActive to false. This will
cause the other object to disappear in the game, making it look like it was
picked up when in reality it’s just no longer being rendered in the game.
The next line sets our count integer to count + 1, which increases the
total count by 1. Finally, in the third line, the code resets the countText
with the integer.

Now whenever the game character touches an object with the Pickup,
that object will disappear and the player’s score will increase by 1.

SetCountText () has already been referred to multiple times in this
code. This string does define what happens when SetCountText is
referred to. Inside this string, the code refers back to the countText
public text that was set up earlier.

countText.text = "Count: " + count.ToString ();

This will define the countText and tell a user interface (UI) what to text to
display. You determine that this is a text file and, thus, has words that
have to be defined. Within the quotation marks, you specify the words
that countText will display and indicate that it will also include the inte-
ger count at the end of the words. By adding the +, the computer knows
to add the integer to the end of the stated phrase. Because every time the
character picks up an object the code refers back to this string, the value
at the end of the string will grow as you collect more items.

At the very end of SetCountText() is an if statement that determines
when to display winText. When count is equal to or greater than 12, the
winText will display the message “CONGRATS YOU WON!!!” This value
can differ depending on the amount of pickup items you have scattered
throughout the level, but the code will work regardless of the exact

Chapter 04 Camera, Character, and Controls64

number. Just change the number to match how many pickup items are
on the level. Here’s the finished code:

void SetCountText ()
 {
 countText.text = "count: " + count.ToString;
 if (count >= 12)
 {
 winText.text = "CONGRATS YOU WON!!!"
}

}

Save the code, and return to Unity to test it out (see Figure 4-14).

As of right now, the code will not work because
you have yet to set up a UI interface and cre-
ate a tag that will allow the pickup items to be
collected.

CREATING TAGS AND A USER INTERFACE
The code works fine, but the problem is that the game has no way to rec-
ognize the code. There is no UI for the code to change and nothing that
will make the pickup items recognize that the code is referring to them.

Save your scene
and project.

REMEMBER

Figure 4-14: The game with completed character code.

Creating Tags and a User Interface 65

CREATING A USER INTERFACE

Creating a UI is actually very simple. Like any other game object simply
go to GameObject, scroll down to UI, and select Text. This will create
a canvas with text on it. Where the canvas is and how large it is don’t
matter because the UI is automatically fitted into the camera’s view. The
text settings do matter, though.

First, in the Inspector window, change the name of the text to Count
Text so that you can easily find it when you need to link the UI to
the code. Next, the goal is to have the count text in the upper-left
corner of the screen, so first adjust the position to (X=0,Y=0,Z=0). At
the upper left of the Inspector, there will be an anchor point indicator.
Click that indicator and select the upper-left corner and then move the
position so that the text will be seen on the upper left of the game
window. In my game, X = 95, Y = –34, and Z = 0, but this could differ-
ent for your game. Toward the bottom of the Inspector window, you’ll
see some basic text settings that will change the color, size, and font
of the text. Find what works best for your game. Click the Best Fit box,
which will fit the text to the screen to make it as readable as possible
without covering too much of the actual screen. Don’t worry about
the actual text because your code will replace text when it connects
to the UI.

After you finish creating this UI, create another UI and name it Win Text.
Instead of placing it toward the left corner, center it and make sure it’s
bold and italic (select the font style and select bold and italic). Also click
Best Fit for this one, but change its maximum size to 60 and it minimum
size to 10. Finally, delete all the text in this box because while the text will
replace this text, it will not do so until the end, so having it empty will
make sure that the game window is empty until you win.

Now that you created the UI, you have to link the text on the UI to your
code. Luckily Unity makes this very simple.

1. Select your player.

2. Scroll down on the Inspector until you reach your Char (Script)
component.

3. Select the target next to Count Text.

A Select Text pop-up window will appear.

4. Select Count Text.

5. Repeat for Win Text (selecting Win Text instead).

Chapter 04 Camera, Character, and Controls66

This will attach the UI to your code and will make it so that the UI text
will be changed by the code.

CREATING A TAG

Tags are references that can be assigned to one or more game objects.
Used with codes, tags can help determine things like certain items being
able to be picked up or enemies being able to destroy the character on
contact. It’s a way to assign a value to multiple objects at once. Earlier
in this chapter, you already defined a tag that will be affected by our
 character, Pickup. Now you have create that tag and assign it to the
object you want the character to pick up.

To create a tag, simply click any object. In the upper left of the Inspector
window, you’ll see a Tag drop-down menu. Selecting this menu will show
some already created tags that are in Unity:

• Untagged

• Respawn

• Finish

• EditorOnly

• MainCamera

• Player

• GameController

To create your own tag, scroll to the bottom of the tag list and select
Add Tag. This will open up a Tags & Layers window. In this window, in
the Tags drop-down, simply click the + to create a new tag and name it
Pickup. This will create a Pickup tag.

If you create the wrong tag, simply select the tag and hit the – to delete it.

Tip

Coding Your Camera 67

After you create this tag, go to the Prefabs folder and select your Pickup
prefab. Assign it the tag Pickup, and save your scene and project.

Before you play your scene, in order for the collider to work properly,
go to the box collider in the Inspector window and open the drop-down.
Make sure that the box next to Trigger is checked; otherwise, nothing will
happen when the character collides with the object.

Press Play to test out your game. Now whenever your character crosses
paths with any of the pickups it will pick them up and the score will increase.

CODING YOUR CAMERA
The last thing you need to code for your game in this chapter is your
camera. Right now, the camera just stays still as your character moves
around the screen, but what you want the camera to do is follow your
character around the level. To do this, you have to first create a new code
specifically for your camera. Create a new C# code in your code folder
and name it Cam. Then open that code up.

The camera code isn’t as in depth as the character code (see Figure 4-15),
but it still adds some new codes. The first five lines of the code remain
the same and do not need to be changed. After the public class, you
want to add a public and a private:

• public GameObject Player;: This gives the camera code the
ability to select a particular object and determine its value as Player.
It works similar to the text code created in the char code.

Figure 4-15: The camera code.

Chapter 04 Camera, Character, and Controls68

• private Vector3 offset;: This part of the code allows you to
freely move around the camera in Unity to create the angle you want
it to follow the player on. This way, in the code, you don’t have to
define what the distance and rotation is.

In the void Start string, write offset = transform.position -
Player.Transform.position;. This will link the offset of the camera
(how far away from its target it is) to the Player GameObject you created
earlier. The transform position of the camera is directly linked to the
position of the player from the start:

void Start () {
 offset = transform.position -

Player.Transform.position;

}

In void LateUpdate (which will replace void Update), write transform.
position = Player.transform.position + offset;. This will ensure
that as the subject’s position changes, the camera’s offset will update every
second of the game. That way the camera will always be the exact same
distance away from the character.

void LateUpdate () {
 transform.position = Player.transform.position

+ offset;
}

In this code, you determine what the camera is following, how it follows
the character, and what the offset is.

Save the code and return to Unity.

After you finish the code, simply drag and drop it onto the Camera in
the scene window. The camera won’t start following the character just
yet because you still have to determine within Unity the character that
the camera is following and the angle/distance at which it follows the
character.

Select the camera and scroll to the bottom of the Inspector where you’ll
see Cam (Script) component. Inside the component, you’ll see Player
with a target next to it. Select the target, and a window listing all the
objects in the scene will pop up. Scroll until you find Player and select it.
Save your scene and project and press Play. Now when you move your
character, the camera will follow behind the player (see Figure 4-16).

Coding Your Camera 69

After you finish setting up the camera to follow the player, adjust the
angle of the camera using the position and rotation transformations to
best follow your character while providing the best view of the level.

Figure 4-16: The camera following the character at an angle.

Having the camera be above the character at a slight angle works best in
3D platformers.

Tip

CHAPTER
Making Your “Game”

into a Game

05

Chapter 05 Making Your “Game” into a Game72

In this chapter, you’ll create obstacles for players to avoid, as well as
code negative effects that will happen when the player doesn’t avoid
these obstacles. The obstacles you create here will act as stand-ins for
more detailed enemies or traps that you’ll add in Chapter 12.

You’ll also program a death message that will appear when the character
dies. You’ll set up a limit to how far the character can fall before being
forced to respawn. You’ll learn how to program the character to relocate
to a spawn point after it dies from falling, as well as how to set up multi-
ple spawn points in a level.

THINKING ABOUT WHAT A GAME IS
What makes a game a game? A game is only a game when there is
some sense of challenge to it. There has to be a goal and an obstacle.
Even games as open-ended as Minecraft have a sense of purpose and
a type of challenge to them. The purpose of Minecraft is to build and
explore, and the challenge is finding the right materials to use and
surviving against creatures. Games need challenge to draw interest. If
a game has no challenge or goal, it ceases to be a game and is just an
application.

As an exercise, think of three games that you play, and write down what
the goal of each game is and what’s preventing you from achieving that
goal. In multiplayer games, this challenge becomes other players. In
puzzle games, it’s the puzzle that you have to solve. And in choice-based
story games, the challenge is trying to figure out what options will lead
to the outcome you want.

When you create your game, ask yourself what type of obstacle will pre-
vent the player from reaching her goal and how the player can overcome
this obstacle. In the game that you’re making in this book, the obstacle
takes the form of enemy characters and spikes that the player can’t hit
without losing health and dying.

Thinking About What a Game Is 73

CHALLENGING VERSUS PUNISHING
Why is a game like Super Meat
Boy fun? The game’s difficulty is
grueling, and the levels require
near perfect timing to complete.
Despite how challenging the
game is, it never crosses into
punishing. This is mainly due to
its near-instantaneous respawn
time in each level. Before you can
even realize how you died, you’re
already back to playing the game.

Death doesn’t hurt the flow of
the game. This is one of the key
reasons why Super Meat Boy was
as successful as it was. If every
time you died in Super Meat Boy
you were forced to wait just 10
seconds to respawn, the game’s
difficulty would no longer add
to the fun of the game. Instead,
the difficulty would detract from
it. Games have to be challenging
enough to feel rewarding when
accomplished while not being so
difficult or punishing as to make
them feel tedious.

The line between challenging and
punishing is thin. Keep that line
in mind whenever you design
your levels or challenges. This
doesn’t mean that games can’t be
difficult or even punish players
harshly for their mistakes, but
it does mean that as a designer
you have to understand how you
can keep a player interested in
a game even when the difficulty
begins to spike. Super Meat Boy
does this by never making the

respawn time too long so that
players never feel punished for
making a mistake, even when
later levels ramp up the difficulty
of the game. Games like Dark
Souls, which are famous for their
difficulty, never punish players
without giving them ample
warning or hints that something
will happen. The game’s chal-
lenge is in finding those subtle
hints and learning to recognize
them throughout the game. As
discussed in Chapter 3, many
games get away with extremely
difficult levels because of natural
progression inside and outside
of the game. Players learn and
apply what they learn from one
level to the next.

When you make your game, you
have to think about how you
can progress your player slowly
enough that they don’t hit a wall
during play that they can’t over-
come, but fast enough that they
don’t get bored. Games thrive
on challenge. Players appreciate
failure — to some degree. Games
teach players about failure and
offer tools to learn from those
failures. Players don’t hate
failing — they hate being pun-
ished unevenly. If a punishment
is too harsh for the mistake, it
alienates players. But if it’s too
tame, it bores them. Consider this
when making the obstacles and
respawns for your game.

Chapter 05 Making Your “Game” into a Game74

CREATING AND CODING YOUR OBSTACLES
Now that you’ve completed the basic controls and layout for your level
(see Figure 5-1), you need to add something that can give players a
challenge to overcome.

You already have gaps for them to leap over, but that’s different from an
actual obstacle. Like a Goomba in Super Mario Bros. or a spike trap, you
should have things in your game that players have to avoid or overcome.
Enemies are probably the simplest version of this concept, so that’s what
you’re going to make.

As has become a pattern in the early
levels of the game, you should start
off with a stand-in that you can add
the code to and that you can replace
later with the more polished game
object. You need to make sure that the
code and placement work properly
before you spend time and effort on
an animation or model. In this case,
start by creating a cube and placing it near the first platform’s edge (see
Figure 5-2).

The problem with this stand-in is that, like the original pickup stand-ins,
the enemy character doesn’t stand out from the background. So, before
you even make a prefab of the enemy, you should change the color of

Figure 5-1: Your level.

Figure 5-2: Placing the enemy stand-in.

Creating and Coding Your Obstacles 75

the character so it stands out from the background. A color that works
well for an enemy character is red because of people’s natural associa-
tion of the color red with anger and the word stop. Most people see red
as a dangerous color, so using it as the enemy color — at least for the
stand-in — can help indicate that it’s bad and should be avoided.

Another thing you can do to make the enemy seem dangerous is to make
it larger. This serves two purposes:

• It creates a larger object that the character will have to avoid.

• It makes the character stand out and seem imposing.

A scale of (X=2,Y=2,Z=2) should be enough to create a simple stand-in
that you can later replace with a moving enemy.

Finally, be sure to assign this object a tag that you can later use in the code
to indicate that it has negative conse-
quence. Create a new tag and name it
enemy. After you assign the tag to the
character, make sure that the Trigger box
is checked off in the box collider and
make a prefab for the character. When
you’re done, you should have some-
thing that looks similar to Figure 5-3.

Save your project/scene and open your Char code.

Figure 5-3: The finished enemy stand-in.

Whenever you code, ask yourself what exactly you want your code to do.
The best way to code is to go in understanding what you want out of the
code. As of right now, your character code gives your player the ability to

• Move in four directions

• Jump

• Pick up items

• Sprint

• Count how many items you’ve picked up

• Display a win message when you’ve collected a certain number of items

Tip

Chapter 05 Making Your “Game” into a Game76

Now you want to add code that gives the character the ability to recog-
nize when it runs into an enemy, have its score reduced by 1 every time it
touches an enemy, bounce back away from the enemy when it hits it, and
die when it runs into an enemy with a score of 0.

To start, create a float that determines how far back the character will
go when it runs into an enemy. It should be more than any of the other
speeds so that when a player accidentally runs into an enemy, she
doesn’t accidentally do it twice. As in Figure 5-4, name this float hurt
and give it a value of 30f.

Public float hurt = 30f;

This value may have to be adjusted later when you’re testing the game,
but for now it will act as a good placeholder value because it’s larger
than any of the other values.

Now it’s time to write the code for what happens when your character
bumps into an enemy character (see Figure 5-5). This code should be
placed in the void OnTriggerEnter (Collider other) section of

Codes are like blocks — they build off of each other. As you code more in
the future, ask yourself what problem each piece of code solves and how
it relates to the rest of the code. Memorizing codes can be helpful, but
understanding the meaning behind each code can help you more creatively
use coding in the future. There is no one solution for any coding problem.
Sometimes a single solution can work for multiple problems.

Tip

Figure 5-4: The upper half of the code.

Creating and Coding Your Obstacles 77

the code. Similar to the pickup code, the first part of this code tells the
player that when he crosses an object with the tag Enemy, the following
event will happen.

If (other.gameObject.CompareTag("Enemy")){
transform.position += Vector3.back * Time.deltaTime *

Hurt;
count = count – 1;
SetCountText ();
if (count <= -1) {
 Destroy (gameObject);
 winText.text = "You lose :(";
}
}

Thinking back to the movement codes, you don’t need to limit events
that change the position of the character to just pressing keys on the
keyboard. In this case, whenever your character touches an enemy,
the character’s position is transformed backward by hurt, which you
defined in Figure 5-4. You can test this code by saving and playing your
game in Unity. When you run into the enemy, your character will now
jump back.

But you want to do more than push a character back. The next part of this
string determines the consequence of running into a character.

In Chapter 4, you defined that whenever the character picks up one of the
pickup items, its score increases by 1. You’re going to link that score to
the player’s health. Every time the character hits enemy, the character
loses 1 point. If those points go below 0, the player loses the game.

Figure 5-5: The lower half of the code.

Chapter 05 Making Your “Game” into a Game78

The code itself is fairly straightforward. It’s the opposite of the pickup
code in Chapter 4:

• Instead of the Count = Count + 1, the code changes to Count =
Count - 1 so that the count goes down every time the character hits
the enemy.

• SetCounntText() remains the same because every time this hap-
pens you want the count to change on the screen.

• Add another if statement within the code so that when the character
runs into the enemy, if its score is equal to or less than –1, the char-
acter is destroyed and the winText UI displays “You Lose” instead of
“You Win.”

• Destroy() removes something from the game when it’s activated. In
this case, it removes gameObject, which refers to the object the code
is attached to.

With the exception of Destroy, no code within this if statement was
new. They were all codes you used in previous parts that accomplish
different goals.

The problem with using the pickup items as a way to measure health is
that you can’t have the goal of the level be to pick up a certain number
of them because if the player loses too much health, there is no way for
them to complete the level. To rectify this problem, add a clearer objec-
tive at the end of the level for the player to reach. Similar to the flag at
the end of a Mario level or the sign at the end of the Sonic level, there
has to be something that marks the end of the level for the player and
tells the game that the level is over.

This can be a flag or a special-looking pickup item, but for the purposes
of coding ease, just add a new tag and name it Finish. Then follow
these steps to create an endpoint like the one in Figure 5-6:

Don’t be afraid to reuse codes. Coding is deceptive in its simplicity. It looks
far more intimidating than it actually is, but when you know the core of the
language, you can do anything!

Tip

Creating and Coding Your Obstacles 79

1. Place a pickup prefab at the very end of the level.

2. Create a new material and change its color.

Gold works well.

3. Assign the new material to the new pickup.

4. Change the tag of this pickup to Finish.

Figure 5-6: The end point.

At this point, your level has a lot of different game objects in the level and
your hierarchy can feel crowded. An easy solution is to create some empties
that you can parent your objects to by type. This way, you can organize
your hierarchy without worrying too much about where everything is. You
want to parent it to a new empty — this is just for organization, so you
don’t want to link different objects together that may have codes that could
interfere with each other. For example, if you parent all the pickup items to
a single one, when that one is picked up, the rest will disappear. Using an
empty as the parent will prevent this from happening. Be sure to name the
empties.

Tip

Chapter 05 Making Your “Game” into a Game80

After you create the finish object, you still have to code the character
so that when they cross the Finish, they actually display the victory
message.

When programing the end code (like the one in Figure 5-7), you need
to first delete your original winText code that you had in an if statement
in the SetCountText (). Instead, write out an if statement similar to
your pickup and enemy codes but instead for Finish. Then write out
the code to display the winText that was used in SetCountText. Now
when your character crosses the finish line, the game will display the text
“CONGRATS YOU WON!!!” As with the other codes with CompareTag,
this should be in the collider section of the code.

If (other.gameObject.CompareTag
("Finish"))

{
winText.text = "CONGRATS YOU WON!!!";
}

After testing out your game and making sure that
the codes work, use the enemy prefab created
earlier in the chapter and begin placing them
throughout your level. Although these characters
don’t move right now, give them space to move
for when you animate the enemies later. After
adding a few enemies, you should also make

Figure 5-7: The end code.

Save your project
and scene.

REMEMBER

Creating Respawn Points 81

a new box at the end of the level and give it the red material. For this
one, though, make the box spread across the entire platform so that
the player has no choice but to jump over it. This object will act as a
placeholder for a large trap in the level. Instead of an enemy, this one
represents a spike trap or a similar environmental hazard the player has
to avoid. Create a new tag and name it EnviroHazard03. (This will be a
hazard in the third respawn point section.)

Make sure that the trap is avoidable. In Figure 5-8, the trap’s height is
only 1. That way, the player has the ability to jump over it easily. In the
final game, this trap will be a crushing trap that the player will have to
jump through before it crushes down, but right now the trap should act
as something the player can easily avoid. When the player runs into it,
he’ll will be forced to respawn.

CREATING RESPAWN POINTS
Why create respawn points? If a player has to start from the beginning
of the level every time she falls off the edge or loses a life, the game isn’t
fun and just becomes frustrating. Having to do the same thing over and
over again just to get back to the point that was challenging can aggra-
vate a player and break immersion. Have you ever played a game and
gotten to a difficult boss fight that has an unskippable cutscene in front
of it? It’s aggravating because you have to sit through the same cutscene
over and over just to get an attempt at the boss again. The cutscene in
Figure 5-9 is just one example of many games that have done this.

Figure 5-8: The environmental trap.

Chapter 05 Making Your “Game” into a Game82

Respawn points act as a reprieve to such frustrations — they lessen the
punishment for failure by making it so that the player has to go through
less of the level. Many games, especially ones with long levels, have
some sort of respawn point within the game so that players don’t have
to redo entire levels over and over again. These come in the form of auto-
matic respawn points that appear when the player gets a certain distance
into the level or save points that players can use to save their progress
into the level or game.

For the purposes of your game, use the former method of respawn for
your levels. These respawn points will be where players spawn after
they fall off the edge of the level or hit an environmental hazard. They’ll
remove a coin similar to the enemies but will also not work if a player
falls off the edge or hits an environmental hazard when they’re at zero
health because that will result in a game over.

Now, before creating the actual spawn points, you should give an indica-
tion to the player as to the location of the spawn points so that he has an
idea of where he’ll respawn when he falls off an edge or hits a hazard. In
Figure 5-10, this is represented by changing the color of a platform where
the respawn will be placed. I suggest having one or two respawn points

Figure 5-9: Kingdom Hearts HD 1.5 Remix: Riku/Ansem
boss fight cutscene.

If you ever make a game with a cutscene, give the player the ability to skip
the cutscene. If the story is good enough, the player won’t choose to skip
the cutscene, but it prevents a lot of frustration on the part of the player.

Tip

Creating Respawn Points 83

within a level, depending on how long the level is, with more added in
even longer levels. For level 1, there are two respawn points.

Changing a color or adding some sort of marker to a spot can help
indicate to the player that there is a respawn point there and guide the
player toward it. It also serves another purpose in giving the player some
smaller objectives throughout the game that they can aim to reach for,
especially when the actual objective may not even be in sight of the
player.

After you determine the location of the two
respawn points, it’s time to start making the
actual points that the character will respawn to.
When creating a respawn point, you need two
things: a trigger and a target.

• Trigger: In this case, a trigger is what causes
the character to need to respawn. In games,
this could be enemies or a zone outside the
game area that, when a player crosses, causes
the player to respawn. In this game, the trig-
gers you’ll set up will activate when the player
falls off the edge of the level.

• Target: Targets are the actual respawn points
that the character will spawn at. These are

Figure 5-10: Respawn indication.

The goal of level 1
is to encourage and
teach the player
about the game.
Slowly introducing
the player to the
game and giving
some easy, small
objectives in the
game can help
encourage the
player to learn and
move forward in the
game.

REMEMBER

Chapter 05 Making Your “Game” into a Game84

objects or spots that the player is moved to when the player dies or
falls off the edge. In the level, despite the fact that you have only two
noticeable respawn points, to the player there will actually be three
targets for respawn: two at the locations previously determined and
one at the very start of the level. If a character falls off an edge before
reaching the first respawn, the character spawns back to the begin-
ning of the level. But like everything in game design, this also has to
be coded; otherwise, it won’t happen.

After indicating where you want the player to respawn to, it’s time to
place your respawn points around the level. I’ve found that the best
game objects to use for respawn points are empties. Create three emp-
ties and name them Respawn. Place the respawn points in order in the
level where you want the character to respawn to. See Figure 5-11 for an
example of how and where to place the empties.

These respawn points will act as our targets that the character will be
able to use as a reference for when he needs to respawn. The character
when responding will copy the position of the empty and match it.

Next you have to set up triggers so that when the character falls off the
edge of the map, they’ll be forced to respawn instead of falling forever.
For a trigger, I prefer to use a quad from the 3D Object menu. Follow
these steps:

Figure 5-11: Placing your respawn points.

Creating Respawn Points 85

1. Go to GameObject.

2. Scroll down to 3D Object.

3. Select Quad.

Any object would work for this, but the two best to use are quads
and planes, and quads have less geometry to deal with, so I prefer
to use them for the trigger.

4. Rotate the quad 90 degrees on the x-axis.

5. Place the quad below the bottom of the level.

6. Size it so that part of the quad reaches to before the start of the
level until it touches the area where you determined the first
respawn point is.

The sides of the quad should stick out past the sides of the levels
(see Figure 5-12).

You also want to make sure that the quad is invisible, so after you finish
placing the mesh so that it matches or is similar to Figure 5-12, create a
new material. Making an invisible material requires you to change the
rendering mode the material uses. In the upper right of the Inspector
window, when you make a new material, you’ll see the Rendering

Figure 5-12: The first trigger.

Chapter 05 Making Your “Game” into a Game86

Mode drop-down menu. When you open that menu, you have four
options:

• Opaque

• Fade

• Cutout

• Transparent

For the purposes of making an invisible object, I find that either Fade
or Cutout works the best. Select one of those two and then select the
Albedo color. When you select the Albedo, a color picker window pops
up. At the bottom of the color picker window, you’ll see four letters next
to color sliders:

• R for Red

• G for Green

• B for Blue

• A for Alpha

Using the different color sliders allows you to change how much influ-
ence each color has, but Alpha determines how transparent or opaque
(solid) an object is. This option is only available in the Fade, Cutout, or
Transparent render settings.

Transparent doesn’t work as well as the other
two because it’s more for rendering glass so it
still has a glare. Dragging the Alpha all the way
down to 0 will make the material completely
invisible. After creating the material, assign it to
the quad that you created, and now the quad will
be invisible at the bottom of the level.

Name this quad DeathZone1 and save it. You
want to create two more DeathZones and place
one in between the two respawn points, and the

other one from the last respawn point until just past the end of the level,
as shown in Figure 5-13.

In order for the
trigger to affect
the character, you
have to be sure that
in the Inspector
window, in the box
collider component
Is Trigger is checked.

REMEMBER

Coding Respawn Points 87

There should be no empty space between any of the zones. This is to
make sure that each respawn point has a corresponding zone that will
spawn characters back to the respawn point. After you’ve created all the
respawn points and zones, it’s time to code them.

CODING RESPAWN POINTS
To code the respawn points, you’ll use a slightly different system than
you did for the other colliders. For one thing, instead of using tags, you’ll
instead be using a public GameObject.

At the top of the code, create six public GameObjects (see Figure 5-14),
one for each trigger and target. The first three you should name death
Zone01, deathZone02, and deathZone03; these will attach to the trigger
zones created earlier in the chapter. Use the following as an example of
how to write the code, replace the name for each one:

Public GameObject deathZone01;

The next three name respawnPoint1, respawnPoint2, and respawn
Point3. These will target the respawn empties made earlier.

Figure 5-13: The first trigger.

Chapter 05 Making Your “Game” into a Game88

In Chapter 4, you created a public GameObject to attach the camera to
the player character. Public GameObjects allow you to choose specific
targets that the code will affect. They can be useful if you want to have
the same code for multiple levels because it’s easy to target different
objects for different levels. Thinking of it through respawn points, you
want to be able to easily set up respawn points in every level, and tags
don’t work because each respawn needs to be coded individually so the
fastest and most reliable way is to use GameObjects.

In Figure 5-15, you can see that the Respawn code itself is minimal,
but you’ll notice something that you haven’t seen before. Instead of
the usual CompareTag code that you’ve written before this code, you’ll
notice that the code has two equal signs.

if (other.gameObject == deathZone01) {
transform.position = respawnPoint1.transform.position;
}

When the value is numerical, you only need to use one equal sign to
say the object’s value is equal to it, but for non-numerical instances —
such as when the object collision has to match a certain object — it will
require two equal signs for it to work properly.

In this if statement, if the other GameObject that is being touched is the
deathzone01 GameObject, then the position is transformed to match

Figure 5-14: Public GameObjects.

Figure 5-15: The respawn code.

Coding Respawn Points 89

the position of the respawnPoint1. After finishing this
code, save your file and switch to a Unity window to test
out the code.

Select the player and go to the Inspector window. In the
Char (Script) component, you’ll now see a list of all the
GameObjects you made in the code. Select the target
next to Death Zone 01 and choose the first DeathZone
that you created. Do the same for the respawn point (as
shown in Figure 5-16). Save your scene and project and
press Play. Now when your character falls off the edge of
the level, it will respawn back at the start.

After you’ve tested the code and seen that it works, click
the targets for the rest of the death zones and respawn
points. Before you can test it, though, you’ll need to
repeat the same codes for the other targets and triggers.

The only thing left to code for the falling respawn is the
reduction to the total score count. For this, you just use
the same code you made for the enemy codes. By setting this code up
whenever the character falls off the edge, his score is reduced by 1 every
time he respawns, and if he falls off the edge with no health, he will be
destroyed. Coding this to happen is similar to the enemy codes before,
setting it so that the count decreases by 1. If it goes under –1, it will end
the game.

if (other.gameObject == deathZone01) {
transform.position = respawnPoint1.transform.position;
count = count – 1;
SetCountText ();
 if (count <=-1){
 Destroy (gameObject)
 winText.text = "You lose :(";
}
}

See Figure 5-17 for what the final code should look like.

Using this code as a basis you can also add a code for the environmental
hazards. Instead of using the if (other.gameObject == code, use the
CompareTag code and copy the rest of the code from the GameObject
codes. Make sure that the environmental hazard respawns to the third
respawn point.

If (other.gameObject.CompareTag("EnviroHazard03")){
transform.position = respawnPoint3.transform.position;

Figure 5-16: Setting
the GameObjects.

Chapter 05 Making Your “Game” into a Game90

count = count – 1;
SetCountText ();
 if (count <=-1){
 Destroy (gameObject)
 winText.text = "You lose :(";
}
}

After you finish coding the environmental hazards and the respawn
points, you’ve finally completed your gray box level (see Figure 5-18).
Save your scene and project.

Figure 5-17: The final respawn code.

Figure 5-18: The finished gray box level.

CHAPTER
Play Testing

06

Chapter 06 Play Testing92

In this chapter, you’ll play test your game for the first time. Play testing
may be the hardest part of game design, especially for independent
game developers who work by themselves or in a small team. It’s
hard for artists to show their work to someone for the first time with
the sole purpose of getting criticism. People who have been artists or
game developers for years still struggle with this fundamental part of
art, so don’t worry if it’s hard for you. Putting your work out there is
challenging.

This chapter helps you overcome some of the fears or mental blocks
you may have when you think about play testing. This chapter also gives
you some tips about what to look for whenever you test your game. No
two games are the same, and no one set of answers exist for all games.
The goal of this chapter is not to give you the answers for every game
ever, but to give you the tools you’ll need to better test your game in the
future — and become a better game developer in the process!

DEF IN ING PLAY TEST ING
When you think of play testing, the alpha or beta testers that developers
bring in toward the latter half of the development cycle probably come
to mind. You may think of play testers as people who are paid to play the
game early and determine whether it’s fun. But that’s not all play testing is!

For one thing, play testers aren’t just playing the game. They meticu-
lously examine every part of the game and report any bugs or issues
that come up. Play testers don’t really even play the game. Instead, they
dissect it to determine what works and what doesn’t work on every level
of the game.

As a game developer, you need to understand the importance of having
a good play tester. When you look for play testers, you need to be sure
that they’re willing to not only play the game but take it apart piece
by piece to determine what parts of the game work and what parts
don’t work.

Play testing isn’t something to take lightly. When you play test your
games, the purpose is to improve aspects of your game that may not
be as developed as the others. Play testing is all about finding the parts
of the game that aren’t working and determine what exactly the game
needs to fix — from bugs in the code to uneven spikes in the difficulty.
Play testing is a stress test for your game. In play testing, you generally
aren’t examining the game as a whole. Instead, you’re looking at individ-
ual aspects of the game as you play it. You’ll probably want multiple play
testers to help catch as many flaws within the game as possible.

Deciding Who Should Play Test Your Game 93

KNOWING WHEN TO START PLAY TEST ING
Play testing can never start too early. In fact, the earlier you begin to play
test your game, the better off you’ll be in the long run. Game develop-
ment takes a lot of time and energy, and a lot of things depend on the
different aspects of the game working together. Any one thing in the
game requires multiple aspects of the game working at once to be sure
that everything is going properly. The earlier you play test your game,
and the more frequently you do so, the more it can help make sure that
you don’t have to redo entire sections of code or work just to fix one
minor issue. The later in the game development a change is made, the
more expensive and time consuming the mistake is. Something that
would only take a few moments to fix in the early code can take hours or
days to fix in a completed game.

Play testing shouldn’t just happen early, it should happen often. If
mistakes remain part of the code or design too long, the rest of the game
begins to develop around those mistakes and interconnect other parts of
the game to them. The more code or designs that are linked to a mistake,
the longer and costlier the mistake becomes. Play testing is the only way
to understand what works and what doesn’t work about your game.

DEC ID ING WHO SHOULD PLAY TEST YOUR GAME
The hardest part about play testing is recognizing that you are your
worst play tester. While you’re designing your game, you make decisions
based on what you would want to play. The problem with play testing
your own game is that you go in knowing some of the problems in your
game. You have blinders on about other problems and you’re just looking
for those problems — and missing others — from the start. You are your
worst play tester — not because you don’t understand what your game
is doing, but because you understand it almost too well.

Think about your game like a story you’re writing. When you write a
story, you have a very clear idea of what that story is about. The char-
acters all make sense to you, and their motivations are crystal clear
because you wrote them. The problem that a lot of amateur writers run
into is actually conveying those ideas on the page. This is why writers
have editors. Just because something makes sense to you doesn’t mean
it will make sense to someone else. Game development is the same.

When you grab a play tester, ask yourself who you want to play your
game. What’s your target audience? Find friends or family members who
match this description and let them play the game.

Chapter 06 Play Testing94

After they finish playing, listen to what they tell
you about your game. Make notes on what does
and doesn’t work or what they found confusing.
What may seem obvious to you won’t necessar-
ily be obvious to them, and this is an important
criticism because you want your game to be
accessible to as many people as possible.

If possible, have multiple people test your game.
The best thing you can do is test as many ages
or demographics as possible, not just your target
audience. Although you should take the criti-

cisms of your target audience into heavier consideration, don’t under-
estimate the advice of groups that are not your target. To make a game
that people enjoy, you have to understand the importance of different
perspectives.

Even if you decide that the criticism or suggestion is not what is best for
your game, it’s important to at least consider the suggestion. Even if you
don’t take the suggestion, you’ll be forced to think about your game on
a deeper level and understand more about what your game is and what
you find is important. By using other people to test your game, questions
will come up that you may never have even considered. There is no such
thing as a bad question in game design.

KNOWING WHAT TO LOOK FOR
After your play testers have finished playing the game, try asking them
questions about the game to determine what worked and what didn’t
work. Right now, you’re testing the mechanics and basics of your game,
so the questions you should be asking in this chapter are radically differ-
ent than ones you may ask later on in the development cycle.

Here are some examples of what to ask at this stage:

• What was the goal of the game? Although this may seem like an
obvious question to you, it might not have been as obvious to the
players. Ask if they were able to easily determine what they had to
do in the game. If necessary, see if there is anything you can do to
make the objectives clearer.

• Did you experience any bugs or glitches within the game? If so, what
were they? You probably have an idea of what most of the bugs
in your game are at this point, if you noticed any at all. The game is

Don’t tell them
anything about the
game, not even the
controls. Use this
as a good chance to
see if the controls
come naturally or
need to be added in.

REMEMBER

Knowing What to Look For 95

still in its early stages so the bugs should be at a minimum at this
point, but you never know if some of the pickup items aren’t working
or if a platform may not act the way it should. Playing the game can
indicate some early bugs that are easily fixed.

• What were the controls? This question seems obvious, but
you never know what players may have struggled with early on.
Sometimes players may not even know all the controls to get
through a game or level. I’ve played games before where I didn’t
know about a game mechanic until I was a few levels in because
there was nothing in the game to indicate its existence. If players
miss a key control or even just the Sprint button, it can negatively
effect their gameplay experience. Knowing if all the controls were
easily understood from the early stages can help you determine if
you could’ve given more information to the player.

• Did you find the controls easy to learn? Why or why not? This
question goes into how long it took them to learn the controls. Keep
in mind that you may know the controls off the bat, but what may
seem obvious to you can be difficult to figure out for someone pick-
ing up the game for the first time. Ask how hard it was for the player
to figure out the controls. Also, ask what you could do to make the
process easier. The sooner players don’t have to think about controls,
the more fun they’ll have playing the game.

• How many times did you die in the game? What happened? This
number represents how steep a learning curve there is to your game.
Because you’re currently testing the first level, that number should
be low. Understanding how many times and why the player died can
give you information about whether your game is clear on what the
player is supposed to do. If the player kept dying bumping into the
enemy, maybe the enemy wasn’t clearly enough depicted. If they
kept falling off the edge, maybe the jump button wasn’t working or
wasn’t clearly indicated.

• Did the game make sense? It’s still early in the game’s development,
so there’s probably not much to understand beyond the general
mechanics of the game, but it’s still important that even something as
simple as what an enemy does and what a pickup item does are clear
to the player.

• What would you change at this stage? This question is probably the
trickiest of the questions because it can be affected by personal pref-
erences. Still, it’s a question I find important to ask because, while
you’re developing your game, there will be ideas that you just won’t
think of or will miss. Even something that you won’t use can be

Chapter 06 Play Testing96

invaluable in any artistic medium. It forces you to think about what
the game you want to make really is. It could also give you new and
interesting directions that you never thought of taking with the game.

These are questions that I have found helped me get the most out of
play testing. It’s often hard to give criticism to a person — especially
a friend — so asking your play testers these questions may help them
open up and be honest about the game. No matter what advice you do
or don’t take, honest feedback is never a bad thing.

HANDLING FEEDBACK
Constructive feedback is always a good thing,
especially when it’s negative. There is always
room for improvement on any game, and having
feedback on what does or doesn’t work prevents a
game from falling stagnant. Asking people to play
your game and give honest constructive feedback
can be scary, but the sooner you overcome that
fear, the better a game developer you’ll be.

F INDING THE PROBLEMS IN
YOUR GAME
Even the game you make in this book is not
immune from critique and improvements.
Games can always be improved on. This game
also has its fair share of bugs and design
problems that are in the game. You’ll probably
find problems that were missed in this chapter.
Be sure to have someone test the game even
beyond the problems addressed here. As an
example, I’ve answered some of the questions
listed earlier and expanded on what does and
doesn’t work in the game:

• What was the goal of the game? The game’s
goal isn’t defined. Although there are definitely

distinctive differences between the pickup items and the enemies,
there is nothing to indicate what the player is supposed to accom-
plish in the game.

Always seek
feedback and
suggestions — you
won’t improve your
work unless you
actively try to! It
can be tempting to
shield your art —
keeping it hidden
from the world —
especially when you
put so much effort
into it. Your game is
important because
it’s something you
put effort into, so
when someone
criticizes it, that
criticism can feel
personal. Whenever
you ask for feedback,
just remember
that your work can
always be improved.
Just because it
isn’t perfect doesn’t
mean it’s bad.

REMEMBER

Finding the Problems in Your Game 97

The main objective, the final pickup item in the level, has nothing
beyond a simple color palette swap to indicate its importance. When
designing the game’s goals, there should be a larger emphasis to
differentiate it from the rest of the items in the game. The goals need
to be better defined from the start to give a the player direction.

• Did you experience any bugs or glitches within the game? If so, what
were they? There is a glitch within the game that happens when the
character is against the wall. When the character jumps when on a
wall, the character is actually able to climb the wall because the char-
acter is reading the wall as part of the ground. This makes some of
the areas in the game far less difficult than they were supposed to be.

• What were the controls? The controls are fairly straightforward, but
the addition of the Shift key is easy to miss as you play the game,
making sections of the game impossible to get through. The game
needs to introduce the controls to the players. Without that, players
will have a tough time figuring out all the controls of the game.

• Did you find the controls easy to learn? Why or why not? The con-
trols in the game are straightforward enough that they don’t really
need much introduction, but there should be a guide to help the
players figure out what the controls are initially. Without this guide,
players may struggle to figure out the controls in the beginning. At
the very least, there should be an indication about the Sprint button.

• How many times did you die in the game? What happened? The
major problem in the game was that the first object that you can
interact with can kill you, which can deter you from collecting the
pickup items. Most players will die right away, not realizing that the
pickup items act as health against the enemy creatures. The best
solution for this would be to add another pickup item at the start of
the level.

• Did the game make sense? The game does make sense, even if the
goals are initially unclear. When the player understands the mechan-
ics of the game and knows what items are bad and good, there is a
consistency to the rest of the game.

• What would you change at this stage? The biggest change that
needs to be made at this stage of the game is an inclusion of some
guidelines that teach the player the controls of the game. The other
part that should be added at this stage of the game is an ability to
easily leave the game-over screen. Right now, the only way for the
player to get out of a game-over is to restart the entire game, which
kills flow and prevents the player from trying the game over. It’s
unintentionally punishing.

Chapter 06 Play Testing98

The camera is also locked at an angle that doesn’t work the entire
time. The player should be able to adjust the camera as needed,
depending on what’s going on in the level. Although the first level is
uncomplicated and can be played without camera adjustments, any
future levels that are more intricate will fall apart.

A lot of these problems were left intentionally
so that you can learn what types of problems a
proper play test looks for. The goal is to look for
problems that can break the player’s immersion
in the game. The worst crime a game can commit
is to break the player immersion, so anything
like large bugs in the code or unfavorable design
choices can cause players to step out of the game
and lose interest.

Play testing is a
developer’s best
way to determine
what parts of the
game work and
what parts don’t.
You’ll learn the ways
to fix the problems
found during play
testing in Chapter 7,
but the important
takeaway from this
chapter is how play
testing can be used
to help improve
your final game.

REMEMBER

CHAPTER
Fixing and Adjusting

Your Game

07

Chapter 07 Fixing and Adjusting Your Game100

In this chapter, you fix some of the issues in your game that I cover in
Chapter 6. Not every issue will be fixed within this chapter — I cover
resetting your game and camera controls in Chapter 14. Here, you adjust
your level design to better introduce players to the game as well as add a
very basic user interface (UI) tutorial that will change as the game needs.

This chapter also teaches you more about raycasting and using it to
prevent your player from simply climbing the walls. This chapter’s main
goal is to go into more detail about some of the concepts discussed
in previous chapters and give a quick rundown of what you’ve learned
before continuing into animation and modeling in Chapter 8.

TURNING CR IT IC ISM INTO CONSTRUCT ION
After every play test, make a list of things that were discussed or found
within the play test — good and bad. This list will allow you to see all the
things in your game that are and aren’t working, as well as allow you to
prioritize what parts of the game are important to address now and what
parts will need to be addressed later.

When you develop games, you have to prioritize problems and bugs that
come up. Some problems will need to be solved earlier than others. In
a world filled with deadlines, bugs that break the game need to be fixed
before aesthetic problems. Think of it like homework: Some projects or
assignments need to be prioritized due to the day that they’re due or
their importance to your overall grade. Game making is similar, except
the only person who can determine the importance of certain problems
over others is you! Ask yourself what problems are actually hurting the
gameplay experience the most and what problems can wait for later.

In the case of this game, here are the major problems:

• Players are punished unfairly. This breaks the game by killing the
player early on and giving the players a “game over” right in the
beginning.

• Players have issues early in the game learning the different controls.
To fix this you want to add a tutorial that will actually change as
players learn the controls and demonstrate them in game.

• Players are climbing the walls. In a platformer, you want your play-
ers to learn how to jump and master the controls. If there are easy
workarounds for the player that they can use instead, the challenging
parts that make the game a game will be ineffective. And, as the

Punishing Your Player Less 101

game gets harder, the difficulty spike will feel uneven because the
less challenging parts meant to teach the controls and parts of the
game will just be ignored.

In the following sections, I walk you through solving each of these three
problems.

PUNISHING YOUR PLAYER LESS
When players start the game, everything is new to them. They aren’t sure
what’s a good thing and what’s an enemy. In the early parts of the game,
all players have is the information you provide them. In your game, the
first major object that players interact with gives them a “game over”
screen, which creates a poor association between the player and the
other objects within the game, including the good ones. You can use
visual clues all you want to help indicate which things are good and
which things are bad, but these visual clues aren’t guaranteed to work.
As a general rule, the first mistakes the players make should be learning
opportunities for later in the game.

The best way to fix this problem is to lessen the punishment for making
the mistake. But instead of changing the code to prevent the instant
death, there is a simpler way to give players a second chance after that
mistake: Place a pickup right before the first enemy (see Figure 7-1).

Figure 7-1: Adding a pickup item.

Chapter 07 Fixing and Adjusting Your Game102

This may seem like a small change, but not every change in game design
has to be large to make a huge difference. By adding a pickup item
before the first obstacle, you’re teaching two lessons with one item:

• Players learn the benefit of the pickup items early because they see
their scores increase from the start. That way, they’ll associate the
two things with each other.

• Players learn that there are beneficial items in the game from the
start, giving a positive reinforcement.

After they see this pickup item, they’ll see the enemy character and one
of two things will happen:

• They’ll realize that the character is an enemy and avoid it.

• They’ll bump into the character and lose one point.

The brilliance of adding just one pickup item
before the enemy is that players not only learn
that pickup items are good, but also learn that ene-
mies are bad without having to restart the game.
They’re punished, but not too harshly. They learn
what to avoid and what can be interacted with.

CREATING A USER INTERFACE
TUTORIAL
Players can figure out a lot on their own, but
a simple tutorial can go a long way toward

preventing players from feeling frustrated. Games are only fun when you
know how to play them. If you don’t know how to play them, games can
become more tedious than they’re worth. Tutorials are a simple way to
help address the problem of learning how to play.

Because the game you’re working on doesn’t have any really complex
controls, the tutorial itself doesn’t need to be very complicated — but
it’s still necessary. In the days of Super Mario Bros. or the arcade games,

The punishment
must match the
mistake, or players
will stop playing
the game. Adding
a pickup before the
first enemy helps
reduce the first
punishment so that
players learn and
don’t get annoyed.

REMEMBER

Creating a User Interface Tutorial 103

tutorials weren’t necessary because there were so few controls and
 buttons that the player could actually use — figuring out the controls
only took a minute or so. These days, games have at least ten buttons
on the controllers and over a hundred on keyboards. And that doesn’t
include all the different combinations of controls that are now available
through coding. Learning how to play a game isn’t as simple for people
who’ve never played before.

To create a UI tutorial for your game, you need to create a new UI. Follow
these steps:

1. Choose GameObject ➪ UI ➪ Text.

2. Adjust the text so that it’s in the lower left of the canvas and it’s a
color that will stick out and can be clearly read.

3. Delete all the text in the text box.

4. From the Text (script) drop-down, there is a paragraph section. In
that section you will see Horizontal Overflow with a drop-down
next to it. Change it from Wrap to Overflow.

This prevents the text from being cut off if it’s too long.

5. Rename it “Direction Text.”

6. Open the Char code.

7. At the very top of the code, enter public Text directionText; below
where the winText and countText are.

8. In the void Start () string, enter directionText.text =
"W=Forward A=Left S=Back D=Right".

This displays the tutorial text at the start of the game. The start of
the tutorial should just give the basic controls so that players are
able to see the initial controls right off the bat and get the hang of
them before moving onto the next codes.

The next codes are actually going to be placed within the if statements
that control the keys.

The first one will be put into the key that controls just the forward move-
ment (W). The code shown in Figure 7-2 gives the tutorial the cue to change.

Chapter 07 Fixing and Adjusting Your Game104

Currently, if the W key is pressed, all that happens is that the character
moves forward.

1. Add an if statement inside of this code: if (directionText.
text == "W=Forward A=Left S=Back D=Right") {.

This will make it so that if you press the W key, and if the direction
Text is the starting text, the following code will happen.

2. Inside this if statement, add directionText.text == "Press
Space to Jump";.

This will change the directionText to the next step in the tutorial.

3. Go to the jump code (KeyCode.Space).

4. Follow steps 1 and 2 but change the directionText.text in Step
1 from W=Forward A=Left S=Back D=Right to Press Space to
Jump and change the directionText.text in Step 2 from Press
Space to Jump to Left Shift to Sprint.

5. Go to the forward sprint code (KeyCode.W && KeyCode.
LeftShift).

6. Follow steps 1 and 2 (again) but change the directionText.text
in Step 1 from Press Space to Jump to Left Shift to Sprint
and change the directionText.text in Step 2 from Left Shift
to Sprint to " ".

Figure 7-2: The tutorial code.

Preventing Wall Climbing with Raytracing 105

Now the players will be taken through a tutorial. When they do what the
tutorial suggests, the tutorial’s text will change. Save the code and exit
out to Unity. Use the target next to “Direction Test” to select the object
“Direction Text.”

PREVENTING WALL CL IMBING WITH RAYTRACING
Raytracing works by determining whether an object is touching another
object. It creates a cone in one direction that gives the player the ability to
read when it’s touching another object or is close to another object. You
can indicate when objects are approaching or are around the object or
determine if a player is a certain distance away from the ground or wall.

Before you do anything else, you need to add an extra bit of code to the
jump string. As it is right now, the code will work and make sure that
the character is touching the ground when the character is jumping.
At the end of the if statement, add && Groundtouch == True. This
way, the code will know that the only time the player can jump is when
the player presses the Spacebar and is touching the ground.

Now, before you can add the wall touching code, you need to add a new
bool at the top of the code. public bool wc = false is similar to the
gc code. That’s because all you’re doing is using the gc code as a refer-
ence point for the wc code.

Right under the Vector3 for gc, add a new Vector3 that is the exact
same as the gc code but instead of down, the direction is Vector3.
Forward. That way, the player will be using the raytrace forward and will
be able to tell that there is an object right in front of it. The difference
between the codes comes in the result of the code. The gc code was
created to determine if the player is touching the ground or not, and the
wc code prevents players from climbing the walls.

The easiest solution to this problem is to prevent the character from
being able to move forward past the wall. Like the enemy code before,
this can be accomplished by moving the character a distance back every
time the player touches the object from the front. At the top of the code,
add a new float for the code. Add to the top of the wall public float
wall = 20f. This will prevent the character from being able to progress
through the level without jumping over the gaps. The number 20 works
because it’s faster backward than the sprint is forward so there is no way
to use the sprint with the jump bottom to just undercut the parts of the
game with jumping.

Chapter 07 Fixing and Adjusting Your Game106

Underneath the Vector3 gc code, place the wc code shown in Figure 7-3.
Then create an if statement underneath it: if (Physics.Raycast
(transform.position, wc. 0.5f)). This determines when there is
an object in front of the character. When there is, the character will move
backward by the wall distance defined earlier. This code will prevent the
character from climbing the wall, but it will also create a problem with how
your character interacts with the enemy characters. For this, I find 0.4f actu-
ally works better than 0.5f because it gives just enough distance so that the
walls are still causing the character to move back and prevents climbing,
but it also keeps the enemy characters from bouncing right off of you.

Save this code and go back into Unity. While in Unity, select any one of
the enemy characters. Go into the Inspector window and go down to the
box collider. Change the collider’s size to (0.5,0.5,0.5,). Now the charac-
ter will be unable to simply climb the walls and still be affected by the
enemy characters.

The raytracing needs a complete number for it to work. Right now, the code
as listed as .5. You need to change that to 0.5. Otherwise, computers won’t
recognize the number as a decimal and assume it’s just 5.

Tip

Figure 7-3: The wall touch code.

CHAPTER
Animating in Blender

08

Chapter 08 Animating in Blender108

Unity is excellent game-developing software, but it’s limited in its ability
to actually create characters or environments for your game. In this
 chapter, you’ll learn about another program that you can use to help
bring life to your game: Blender. This chapter will help you learn the
basics of Blender so that you can model and animate your characters
and obstacles within your game.

Blender can be intimidating when you first open it. This chapter helps
you navigate the interface without getting lost in all the things that
Blender is able to do. In this chapter, you’ll create and edit a single
object, as well as learn about the different parts of a 3D mesh and how
you can use them to bring your characters to life.

MIXING TH INGS UP WITH BLENDER
Blender is a open-source 3D animation creation suite. What that means
is that it’s a program with multiple uses in 3D development. Modeling,
rigging, animation, motion tracking, and even editing and game devel-
opment are all things that Blender can be used to work on. It does this
through community-driven updates. Users are not only able to but are
encouraged to work on and change the code that Blender runs off of. This
has led to a strong community within Blender that has been crucial to
Blender being the versatile and free program that it is today.

For your game, you’ll mostly be using Blender’s modeling and anima-
tion capabilities to help craft the characters and obstacles that will be
within your game. Creating assets is a key part of developing your game,
because this is the part of game design that is about bringing to life the
original vision for your game. This is not an animation book, nor is it a
book about Blender. But by learning the basics of Blender and how to
bring files and models you created from Blender into your game, you’ll
be able to customize and personalize your game in ways you wouldn’t be
able to simply within Unity.

DOWNLOADING BLENDER
Before you can use Blender you have to download it. Luckily Blender is
available to everyone for free across all computer platforms — Windows,
Mac, and Linux.

1. Go to www.blender.org (see Figure 8-1).

https://www.blender.org

Opening Blender for the First Time 109

2. At the top of the page, click Download.

Blender will automatically determine what type of platform you’re
using (Windows, Mac, or Linux).

3. Click Download Blender.

The file will download.

4. Move the file into the applications folder on your computer.

OPENING BLENDER FOR THE F IRST T IME
When you open Blender the first time, you’ll see the screen shown in
Figure 8-2. Here, you’ll see the version number of Blender that you
downloaded, along with some links to other things about Blender, includ-
ing a place to donate to Blender and a link to the website. You’ll also see
a Recent section, which will be empty because you haven’t created a
project yet. To get rid of this screen overlay, click to the side of it; you’ll be
brought to the base Blender interface.

Part of the appeal of Blender is its customizability. You can change the
interface to match your style of working, but for the purposes of this
book, I suggest sticking to the base interface.

In the center of the window is the 3D View. This is similar to the Scene
view in Unity. It’s where the majority of your work will be focused. In the
3D View, you’ll notice a grid with a box in the center. This grid shows the
x-, y-, and z-axes. The first major difference you’ll notice between Unity
and Blender is the fact that the y- and z-axes are swapped with each

Figure 8-1: Blender’s website.

Chapter 08 Animating in Blender110

other, with the y-axis going along the grid and the z-axis going toward
and away from the grid. Unity will automatically adjust for this when
importing the files from Blender into Unity so it won’t cause an issue, but
it is something you’ll want to keep in mind when creating your characters
and animations.

On the top of the screen, you’ll notice the Information window. This is
where the majority of the configuration settings are located. You can also
save using this section.

At the bottom of the screen, you’ll see the Timeline. This controls
the animations that you’ll be making, giving you the ability to insert
 keyframes and adjust your animation along the frame count.

In the upper-right corner of the screen, you’ll see the 3D Outliner.
This shows you all the objects that are in the scene. Underneath the
outliner, you’ll see the Properties Editor. This is where you can adjust
the properties of the scene or object, change the material, or even add
modifiers or constraints to an object.

Figure 8-2: Blender’s opening screen.

Figuring Out the Blender Interface 111

CREATING A NEW F ILE IN BLENDER
To create a new file in Blender, choose File ➪ New. When a popup
appears, click Reload Start-Up File.

Whenever you create a new file, the scene will reset to include just a
cube, a camera, and a light. This is the standard setup in Blender. To
delete an object such as a camera, light, or cube in the scene, simply
select the item you want to delete and press X on your keyboard. A
popup will appear asking if you’re sure that you want to delete this
object. Click yes or simply press X again. The object will then be deleted.

F IGURING OUT THE BLENDER INTERFACE
Blender is a great program for animation and modeling, but like Unity,
it’s intimidating to open the first time. In the following section, I intro-
duce you to the different parts of Blender’s interface and explain how to
properly use the program. Knowing the layout of Blender will be invalu-
able when using this program to help build the characters and objects for
your game.

TABS

On the left side of the 3D View section, there is a menu. On the far left
of the menu, there are multiple tabs that you can select. The tabs differ
depending on what mode you’re in.

The only two tabs that you need to worry about in Chapters 9 and 10 are
the Create and Tools tabs.

When you’re creating your characters or objects for your game, you’ll want
to delete the camera and the light because you don’t want them to be
transferred over to Unity, which already has a light and camera in the scene.

Tip

Chapter 08 Animating in Blender112

TOOLS TAB

The Tools tab (see Figure 8-3) alters the
selected object.

When you’re in Object mode, this involves the
transformation controls, mirroring, deleting,
changing the origin, and the type of shading.

When you’re in Edit Mode, the Tools tab
opens up different options for editing your
object, from extruding to deleting faces.

CREATE TAB

The Create tab (see Figure 8-4) allows you
to create different objects within the scene,
from a square to a sphere. It also allows
you to create paths, cameras, and even light
sources for the scene.

When you create an object in Object mode,
both objects are the same unless you com-
bine or join them together later.

Do not use create in Edit Mode unless you
absolutely need to.

RELATIONS TAB

The Relations tab shows you the various
grouping options you have for an object. It can parent objects to one
another, create group of objects, or link objects together.

ANIMATION TAB

The Animation tab gives you the ability to create and delete keyframes in the
animation, as well as bake certain motions (create all the individual frames
in a sequence as opposed to the computer just inferring that motion).

PHYSICS TAB

The Physics tab allows you to adjust the mass of an object and apply
physics with a rigid body similar to how Unity does it.

Figure 8-3: The Tools tab.

Figure 8-4: Create tab.

Figuring Out the Blender Interface 113

GREASE PENC IL TAB

The Grease Pencil tab is a way to add annotations and animation notes
into the scene that you can use as reference points. Grease pencils can
also be used to assist in 2D animation within Unity.

SHADING AND UV TAB

The shading and UV tab gives you the ability to modify the way the
object is rendered (whether its lines are hard or smooth in the
render), as well as how to fix or adjust faces on the object that may
be inversed.

UV mapping is also available to help texture the character or object by
creating or marking “seams.”

OPTION TAB

This is the mesh option menu, which gives you control over the X-mirror
and Edge Select mode. The X-mirror tools allow you to edit your object
symmetrically. If you make a change on one side of the object, that
change will happen on the other side along the x-axis. The Edge Select
mode gives you the ability to adjust the edge’s path, giving it a curve or
bevel.

THE OUTL INER

On the upper right of the screen, you’ll
see the Outliner for the project (see
Figure 8-5). The Outliner serves three
purposes:

• It allows you to select different
objects without needing to locate
them within the scene.

• It allows you to parent objects to
each other by simply dragging the
object you want to parent into its
parent.

• It allows you to adjust which objects can be viewed, selected, or
rendered.

Figure 8-5: The Outliner.

Chapter 08 Animating in Blender114

• The eyeball next to the object determines if the object can be
seen in the scene. Selecting it will turn the object invisible in the
scene, but the object will still be rendered if you render the scene.

• Clicking the cursor will stop the object from being able to be
selected in the scene, locking it from being changed beyond any
changes that have already been made to it within the scene.

• The camera determines what objects are rendered when you
render the animation. If you select the camera, it will still be seen
within the scene but not within the final render.

Clicking the plus sign to the left of the object will show all the different
objects linked or parented to the object. Think of all the objects in the
scene as automatically coming with an external empty that they’re par-
ented to because, within this list, you’ll find the mesh. Inside the mesh
will be linked the material the object is using, and inside the material will
be the texture the material uses.

T IMEL INE

The Timeline (shown in Figure 8-6) is located at the bottom of the screen
and is primarily used to control the animation within the scene. Adjusting
the Timeline will adjust where the time is within the animation.

You’ll notice at the bottom of the Timeline that there are numbers. These
numbers do not stand for seconds within the animation — they stand for
frames. In animation frames are the pictures that fly by at a fraction of a
second to create the illusion of movement. There are different frame rates
for different media, but the three that you should know are as follows:

• 24 frames per second (FPS): Standard film

• 30 FPS: Minimum game standard

• 60 FPS: High definition

Figure 8-6: The Timeline.

Figuring Out the Blender Interface 115

For your game, you’ll be going off of 30 FPS. The numbers at the bottom
of the screen will indicate what frame you’re on, as well as the start and
end frames for the animation.

Also on the Timeline you’ll find a control panel that will allow you to play,
rewind, fast-forward, or pause your animation. You’ll also see a red button,
which turns on automatic keyframing, so whenever you move or adjust
your object in the scene, Blender will automatically record a keyframe to
mark the position change. If you move along the Timeline and then move
the object, Blender will make another keyframe instead of overwriting,
causing your object or character to move. You can also turn off automatic
keyframing by simply clicking the autokeyframing button again.

PROPERT IES SECT ION

Similar to the Create and Tools tabs, the Properties section of the window
has different tabs for the objects. The first four tabs are for the properties
not relating directly to the object:

• Camera: Render settings. Render settings are how you can export
an animation. Think of these as setting up a camera to shoot a part of
a movie. The render settings translate the animations and 3D objects
into pictures/movies that can be watched.

In the render settings, you can set the following (and more):

• Resolution: How detailed the animation is.

• Frame count: The amount of frames (pictures) per second there
are in animation. Thirty frames per second is the average for
games.

• Output location: Where the final animation/picture will be saved
to on the computer.

• Pictures: Render layer settings. The render layers show what layers
in the animation are visible when rendered. It is possible to layer
your animation like a Photoshop file or collage and make different
layers visible at any moment.

• Light, Sphere, and Cylinder: The scene settings. In the scene settings,
you can adjust the settings of the scene itself, including choosing a
main camera to render the animation out of and adjusting the scene to
include audio or even add gravity and rigidbody settings to the scene.

Chapter 08 Animating in Blender116

• World: The environmental/background settings. These settings con-
trol the color of the background when the scene is rendered, giving
you control over the horizon and the natural lighting within the scene.

• Cube: The object settings. These settings control the transformation
controls, display options, and group settings of the object. In this tab,
you can move the object around the scene, place it in different layers
in the scene, and group the object with other objects for importing
and exporting purposes.

• Chain: Constraint controls. These controls allow you to link objects
together. Unlike the group controls, which do not alter the objects,
the constraint controls will directly affect how the object moves in the
scene. Objects that are parented to other objects move when those
objects are moved. The constraint controls give you a variety of ways
to link two objects together in a scene within the drop-down.

• Wrench: Modifier controls. The modifier controls can alter the
shape, size, or even smoothness of the objects. In the modifier
controls, you can select from the drop-down a number of different
modifiers that can alter your object.

• Upside-down triangle: Object data. The object data of an object con-
tains the texture space, vertex groups, and shape keys for an object.
This is a breakdown of different changes to the data of an object. As
an example, the shape keys in this menu can be used to alter the
shape of the object to different key positions.

• Sphere: Material settings. The materials are the colors and look of
your object. In here, you can change those visual settings to give
your object different colors, transparencies, and even reflections.

• Checkerboard: The texture settings. Textures are like pictures or
patterns that you put on top of a material. The texture settings give
you the ability to add pictures or bump maps to your object to help
give the object more life and dimension.

Blender has a ton of redundant controls within it. There are usually multiple
ways to do the same thing. The object settings are just one example of
this — all the tools available in it are able to be done in different parts of
Blender. Keep that in mind when looking through Blender.

Tip

Navigating the Interface 117

• Stars: The particle effect controller. Gives you the option of adding
particle effects to your animations, such as rain or explosions. These
settings can also be used to create other things such as hair or grass
on your object.

• Ball Bouncing: The physics control on the object. This controls all
the physics settings on the object. These can include the rigidbody
settings on a specific object or even fluid simulations.

NAVIGATING THE INTERFACE
This section explains how to navigate a 3D space within Blender. The
navigation settings are similar to the ones you use in Unity, but it’s still
important to understand the differences between the programs. In order
to properly use Blender, you must be comfortable navigating a 3D space
within the program.

PANNING, ROTATING, AND ZOOMING

As with Unity, your best friends in a 3D space are your navigation tools.
The Panning, Rotating, and Zooming tools in Blender are similar to those
in Unity, but there some differences in how these tools work in Blender:

• Panning: To pan on the screen, click and hold the middle mouse
button while also holding down the Shift key and moving the mouse.

• Rotating: To rotate around the scene, hold down the middle mouse
button and move the mouse.

• Zooming: To Zoom in and out of the scene, roll the middle mouse
button in and out. Rolling the middle mouse button toward you
zooms the camera toward the scene. Rolling the middle mouse
button away from you zooms the camera out of the scene.

When you’re working with Blender, you should use a mouse, not a track-
pad. Blender’s interface wasn’t designed for trackpads. There are ways to
adjust the settings to use a trackpad, but it’s not as well developed as the
mouse.

Tip

Chapter 08 Animating in Blender118

TRANSFORMATION TOOLS

The transformation tools adjust the position, rotation, and scale of the
selected object. In Edit Mode, these tools can also be used to transform
the vertices, edges, or faces of an object.

At the bottom of the Scene window and above the Timeline, you’ll see
three different blue buttons next to a Global drop-down. These are the
transformation tools:

• Global/Local: The Global drop-down shows the different axes that the
object can be adjusted along. The only two you need to know are the
global and local axes. The global axis aligns with the world’s axis and
will never change. The local axis changes along the axis of the object.

• Translation tool (see Figure 8-7): The button with the arrow pointing
up is the Translation tool. Selecting this button will show three arrows
along the axis (global or local) that you can choose to move the
object along.

The Translation tool changes the position of
the object. Another way to access this tool is to
press G (for grab) on your keyboard. This will
pick up the object so that you can move it along
the 3D space, but if you want to move it along
a certain axis, just select the axis you want to
move it along (X, Y, or Z) and press the corre-

sponding key on the keyboard (the X key for the x-axis, the Y key
for the y-axis, and the Z key for the z-axis). Doing so will lock to the
object on that axis.

You can also right-click the box to pick it up and move it to a different
position, but you must left-click to place the object. If you right-click
again, the object will reset back to its origin.

• Rotation tool (Figure 8-8): The curved-line button is the Rotation
tool. When you click it, your object will be surrounded by three dif-
ferent lines for rotating around a particular axis. The white circle will
rotate along the view’s axis.

The Rotation tool changes the rotation of the object. You can also
rotate the object by pressing R (for rotate) on your keyboard. This will
rotate the object along the view’s axis, but by pressing the button on
the keyboard that corresponds with the axis, you want the object will
rotate around those particular axes.

Green is the y-axis,
blue is the z-axis,
and red is the x-axis.

REMEMBER

Navigating the Interface 119

• Scale tool (see Figure 8-9): The button marked with a line with a
square at the end is the Scale tool. Clicking this button will show
lines along the axes with cubes around them. Clicking and dragging
these cubes will scale along that particular axis from the origin point
of the object.

Figure 8-7: The Translation tool.

Figure 8-8: The Rotation tool.

Chapter 08 Animating in Blender120

The Scale tool changes the size of the object. You can also scale
the object by pressing S on your keyboard. This will scale the box
uniformly (all at once), but by pressing the button on the keyboard
that corresponds with the axis you want, the object will scale along
that same axis.

ED IT ING YOUR OBJECT
You use Blender to create the assets for your videogame because you
can create complex shapes within Blender. You can alter the shape of
your objects by switching to Edit Mode (see Figure 8-10). You can switch
to Edit Mode in two ways.

The first way to switch to Edit Mode is to go down above the Timeline
where it says Object Mode and select from the Edit Mode drop-down
menu.

The other way to get to Edit Mode is by pressing the Tab key on your
keyboard. This will switch to Edit Mode from whatever mode you’re in. If
you’re already in Edit Mode, pressing Tab will switch your mode back to
the last mode you were in before Edit Mode.

There are several other modes that Blender has that you won’t be using
but should know about:

Figure 8-9: The Scale tool.

Editing Your Object 121

• Object Mode: Allows you to move objects around and animate your
character.

• Sculpt Mode: Gives you the ability to sculpt the shape of the object
as if it were like clay. (It requires many vertices to use.)

• Weight Paint: Helps you rig your characters to a skeletal structure.
This is useful for creating characters that move and emote.

• Texture Paint: Paints textures onto the object.

• Vertex Paint: Similar to Texture Paint but paints the vertices directly.

VERTICES , EDGES, AND FACES

When you enter Edit Mode, you’re changing the mesh (shape) of the
object. There are three parts that make up a mesh: the vertices, the
edges, and the faces. You can change the mesh by altering the position,
rotation, size, or number of vertices, edges, or faces. Next to where you
found the transformation tools, you’ll see three new orange buttons:

• Vertex Select tool: The small orange dot at the edge of a cube
button is the Vertex Select tool. Vertices (shown in Figure 8-11) are
the points of any object. They mark the points on the object where an
edge ends. Vertices are the smallest part of an object.

Figure 8-10: Edit Mode.

Chapter 08 Animating in Blender122

• Edge Select tool: The orange line on the cube button is the Edge Select
tool. Edges (shown in Figure 8-12) are the lines between two vertices.
They mark the lines on the object and are used to make up a face.

• Face Select tool: The orange square on the front of the cube button
is the Face Select tool. Faces (shown in Figure 8-13) are made up
of at least three edges and make up the visual part of an object.
Whenever you see an object, you’re seeing the faces of the object as
they wrap around to make the mesh.

Figure 8-11: Vertices.

Figure 8-12: Edges.

Editing Your Object 123

ED IT ING TOOLS

There are a ton of different options when it comes to the tools you can
use to edit your object. On the Tools tab, you have at the least 34 different
tools you can use to change your object, and that’s not counting the
 different variations some of the tools offer. For now, you only need to
really know four of these tools:

• Loop-Cut Slide (Ctrl+R): The Loop-Cut Slide tool (shown in Figure 8-14)
creates a new edge that wraps around the object. This creates new
edges and vertices that can be edited and cuts the faces in two. When
you use the Loop-Cut Slide tool, select one of the edges that you
want your line to go around. It will appear as a pink line wrapping
around the edge. When you have the edge you want, left-click it. This
will change the line to a yellow line, but it hasn’t been placed yet.
After you clicked the first time, the line can now be adjusted along
the edge selected. When the new edge is where you want it to be,
simply left-click again to place the edge loop.

Figure 8-13: Faces.

Whenever you create a new object, you want all the faces to be quads (four
sides) if possible. If the mesh ever has to be deformed or changed, quads
are able to do so easier than faces with three or five or more sides. Quads
are your best friend.

Tip

Chapter 08 Animating in Blender124

• Extrude (E): The Extrude tool (shown in Figure 8-15) helps you build
out from a face or edge (vertices, too, but these don’t work as well).
The Extrude tool expands the selected face or edge out and creates
new edges or faces to keep the face connected to the overall mesh.
This tool allows you to build out and customize an object from
the different faces or edges. When you use the Extrude tool, it will
extrude the face toward or away from the mesh (you can extrude
inward as well). Left clicking after you extrude will place the extru-
sion, which you can then adjust the size and position of.

Figure 8-14: Loop-Cut Slide tool.

Figure 8-15: The Extrude tool.

Editing Your Object 125

• Inset Face (I): The Inset face tool (see Figure 8-16) creates a face
within the selected face(s). This face will shrink in from the edges and
have edges connecting its vertices to the vertices of the face that’s
being inset. This tool can be used to create smaller faces within the
different faces to create objects such as staircases or windows. When
you use the Inset Face tool, be sure not to shrink the Face tool too
much to cross the vertices. The tool should create quads along its
edges. Left-click to confirm the inset face.

Keep vertex count low. High vertex counts make meshes smoother, but
it’s nearly impossible to keep track of all the vertices and edit the object.
It’s always better to use as few vertices as possible when creating your
mesh, and subdivide the mesh later using the subdivide surface modifier at
the end. Don’t extrude or inset too much because it can result in to many
vertices.

Tip

Figure 8-16: The Inset Face tool.

Chapter 08 Animating in Blender126

• Insert Face (F): The Insert Face tool creates a face in between two
edges if no face exists. As an example of this, delete one of the faces
on your mesh. Select the face and press X. When you’re asked if you
want to delete the face, confirm that you do. Now switch to Edge
Select Mode and select two edges that are opposite of each other
(hold Shift to select multiple edges or faces at once). Click the Insert
Face tool, and a new face will appear in its place. Connect to both
edges as well as any other edges connected to those vertices. This
can be useful because the inside of the face doesn’t render properly.
Only the exterior of a face renders properly so to create doorways,
you’ll have to create and combine faces.

• Creating your own: After you test out the different tools discussed
here, switch back to Object Mode and delete the object by pressing
X. Go to the Create tab and create a new object and place it on the
grid. Use the Inset Face, Extrude, Loop-Cut Slide, and Insert Face
tool to create your own object — a fancy water fountain, an Aztec
temple (see Figure 8-17), or something else of your own creation.
In Chapter 9, you’ll create assets for the game, but before you do
so, make sure that you have a firm grasp on how Blender works by
creating some objects of your own.

Do not cross vertices! Crossing vertices occurs when edges or faces inter-
sect with each other and cross each other. The computer will not
read these faces properly, and the mesh will not work properly if the
vertices are crossed. Always count your vertices and prevent them from
crossing.

Tip

Editing Your Object 127

Figure 8-17: The Aztec Temple.

CHAPTER
Creating Your Assets

09

Chapter 09 Creating Your Assets130

You’ve designed your first level and played around with Blender. In this
chapter, you’ll learn how to bring your game to life. Up until this point
in the book, you’ve been seeing how to make your game playable and
how to create your basic game mechanics and code. You’ve created the
skeleton and muscle of your game. Now it’s time to give it its skin.

In this chapter, you’ll learn how to not only design and create your
characters, but also add a material to your characters within Blender. I
explain how parenting works so you can link the different parts of your
character together. Finally, you learn how and where you should save
your project to utilize Unity and Blender to their fullest.

THINKING ABOUT THEME AND STYLE
Before you begin to create your characters for your game, you need to
think about the theme and style discussed in Chapter 1. Think about how
different a game would be if instead of a plumber hopping on mush-
rooms, it was an alien hopping on astronauts. The mechanics and goals
may be the same, but the different theme and style change the feel of
the game. The mechanics are the most important part of any game, but
the theme is what introduces players to the world and pushes them to
actually play the game.

Theme helps give your game a story and a purpose. The mechanics
may have an objective, but the theme gives a player a goal. You aren’t
just getting to the end of a level — you’re defeating a dragon. When you
make your game, you have to consider what you want your players to
feel when they play it.

THEME: THE LANGUAGE OF YOUR GAME

The theme of the game is the story. Who your characters are matters just
as much as what they’re doing. Before you build your characters, ask
yourself who the player is. A blue hedgehog who runs while fighting an
evil egg-shaped professor with his super speed may seem like an absurd
concept, but it has persisted for more than 25 years because the theme
is memorable. Would Sonic have been as successful if he were anything
other than a hedgehog? The theme of the game is usually the first thing
people think about when they think of the game.

Thinking about Theme and Style 131

Mortal Kombat and Street Fighter are essentially the same type of game
but for different audiences, especially when the games first came out
and their controls were similar. The difference is how the games are
portrayed. Street Fighter has extremely stylized characters with large
muscles or petite forms fighting with large movements. Mortal Kombat
goes for a more “realistic” and gruesome approach. Both games are
about fighting, but they have very different themes.

STYLE : THE ACCENT OF YOUR GAME

When you think of your game, you probably consider the mechanics or
characters in the game. You may think of the theme of the game or the
story, but one thing that some early developers overlook is the style of
the game. Style is how your game looks. A game with the same story
and characters can vary in extreme ways in just style alone, and that also
changes how people perceive and play the game.

Think about what you want your game to be about when you design your
player and the enemies. Is the player even the “hero” of the game? Thinking
about your player’s place in the world of the game changes the game entirely.
Even in the platformer that you’re designing in this book, there are multiple
options that can change what the game is about. Perhaps the player is playing
as an escaped alien trying to sneak off of a space station to wreck havoc on
the world below. Maybe the player is playing as a mouse trying to avoid the
different traps and animals that want to stop him from getting his block of
cheese. Or maybe the character is just an average person trying to avoid the
creatures of the apocalypse while she tries to retrieve medical supplies for
her dying daughter. Each of those game themes can fit within the game you
designed but would create a completely different experience for the player.
The characters, obstacles, and objectives you create matter because they tell
the player what your game is about — not just what happens in the game, but
what it means. A game about war can change drastically simply by changing
what side you’re on.

Tip

Chapter 09 Creating Your Assets132

Games like Call of Duty or Modern Warfare take a more realistic
approach, dulling the color palette and using more realistic proportions.
On the other hand, Overwatch and Team Fortress go for a more animated
and stylized approach, choosing bright colors and distinctive shapes to
create their characters; large characters are larger than life, and small
characters are tiny. Think about how these two approaches change how
you perceive the game, as well as the audience that is attracted to the
games.

The best comparison to style in media is in animation. Animated mov-
ies are all stylized in some way to attract a certain feeling or audience.
Disney movies and shows use softer, more polished shapes with crisp
lines that separate them from the background. This approach emphasizes
the feeling of control and polish that Disney is known for in its films.
Disney movies and shows are all put together with thought and care, and
aim for a family audience.

Cartoon Network, on the other hand, uses a much more robust color
palette and has less polished lines. Its shows aim to bring life to every
part of the scene, even causing some of the characters to bleed into the
background. The shows on Cartoon Network appear to swap polish for
passion. Each line feels alive in the show, even if the line is dirty itself.

Tim Burton’s films are all stylized to have a very
dull color palette with splashes of crisp color and
elongated shapes. His movies are distorted and
gothic to engross audiences in his vision of the
world.

Sony Animation tries to build expressive charac-
ters and focuses on 3D characters that feel like
they could be 2D characters. Characters
move in ways that are larger than life and more
expressive than normal humans.

You’ll learn more about animation and what goes
into bringing the characters to life in Chapter 10,
but for now just keep in mind that style changes
the story even if the plot and characters don’t
change at all. None of the styles I just described
is bad, but they do change the way you think of
the films that the styles are used in. Imagine if Tim
Burton did a film about an overprotective vam-
pire trying to care for his daughter, or if Cartoon
Network did a show about a talking duck and his
three nephews traveling the world on adventures
in search of riches.

Style changes
games just as much
as mechanics and
story do. When you
work to make your
game, think about
what kind of style
you want in the
game. Is your game
going to be cartoony
or realistic? Are you
characters lifelike
or elongated? When
your characters
move, how fluid or
stiff are they? Before
you make your
assets, you should
have an idea of
what your the game
will look like.

REMEMBER

Creating Your First Character 133

CREATING YOUR F IRST CHARACTER
For the game you’re working on in this book, the theme and style have
been premade to maximize how much you’ll be able to do and learn.
The game is about a simple box person who is trying to escape from a
robot dystopian society. The characters themselves are very cartoony in
their style and will have big eyes as their key feature. This style is easy
to model and animate, so you’ll be able to easily build and animate your
game with limited modeling and animation experience.

The main character is a blue box with two round eyes. To start making
the character, open a new file in Blender. The cube that you have when
you open Blender is a good place to start because it’s the exact size and
proportions that you’ll need for your character.

CREATING THE EYES

After you open Blender and have a cube on the grid (see Figure 9-1), it’s
time to make the eyes for the character. The character’s eyes are just sim-
ple spheres that will be in the cube. To create the eyes, follow these steps:

1. Click the Create tab.

2. Scroll down to the Sphere, and rotate it 90 degrees on the y-axis.

This way, the eyes are facing forward.

3. Scale the eye down to be smaller than the cube.

Figure 9-1: Blender’s open screen.

Chapter 09 Creating Your Assets134

4. Place the eyeball in the cube so that it’s sticking out of the cube as
if it were an eyeball.

5. With the eye still selected, press Shift + D.

This will duplicate the eye so that there are two of them.

6. Move the other eye to the other half of the cube so that the
 character has two eyes (see Figure 9-2).

PARENTING THE EYES TO THE BODY

After you finish making the eyes, there is still a problem in the character.
The eyes don’t move with the body when you move the body. Most peo-
ple have no desire to leave their eyes behind when they start walking, so
the best way to solve this problem is to parent the eyes to the cube. To do
this, go to your outliner and find the cube and spheres.

Figure 9-2: The cube with eyes.

Double-clicking the object in the outliner will give you the option to rename
the objects. Rename the cube Player so that you’ll be able to keep track of
what object is what when you transfer everything over to Blender.

Tip

Creating Your First Character 135

To parent the spheres to the cube, simply drag the spheres to the cube.
When you do so, a little text box will pop up and say Drop to Set Parent.
When you see that text box, drop the spheres and they’ll be parented to
the object (see Figure 9-3).

CREATING A MATERIAL FOR THE CHARACTER

After you make the eyes, it’s time to add some
color to your characters. You can do this in both
Unity and Blender, but Blender gives you a few
more options when you’re making the materials
for your characters.

First, make sure that you select the object you want
to assign this material to. You’ll be able to use the
same materials for different objects later, but for
now you need to create a new material because this
is the first material you’ll be making in the game.

To create a new material, follow these steps:

1. Click the Material tab in the Properties
section.

2. If no material is available, click the plus sign
(+) to the right of the material box. If there is
a material, skip to Step 4.

Figure 9-3: The parented eyes.

You’re creating
a material, not a
texture, for your
character. Materials
act as the base that
textures can be
added to in Blender,
but because you’re
creating simple
characters, you
don’t need to worry
about adding
textures —
materials will
do just fine.

REMEMBER

Chapter 09 Creating Your Assets136

After you press the plus sign (+), you’ll see that a new empty mate-
rial has been made.

3. Fill in this new empty material by clicking the New button below
the material window.

This will create a basic Lambert material.

Below the Preview drop-down, you’ll see Diffuse and Specular.
Diffuse is the color of the object; Specular is the shine of your object.

4. Next to Diffuse, you’ll see a drop-down menu. Clicking this drop-
down menu will show all the different types of materials. Right
now just stick with Lambert as a material, but keep in mind that
each of the different materials renders slightly differently and can
create different effects. The intensity is just how rich the color is.

5. Change the Specular color so that the object’s shine isn’t just white.

Try changing it to a light blue color to match the character’s
coloring.

You can also change the intensity (how shiny the object is) and the
hardness (how soft the edges of the shine are — the higher the
hardness, the sharper the edges). CookTorr is similar to Lambert
because there is also a drop-down menu with different options.
CookTorr is just a specific type of shininess that changes the consis-
tency of the shine on the object.

6. Change the Diffuse color to a light blue (see Figure 9-4) and keep
the Specular the same.

Figure 9-4: The applied material.

Creating Your First Character 137

CREATING THE EYE MATERIALS

The materials for the eyes are done slightly differently than the body
because the eyes need two different colors for the eyeball and the pupil.
(You can also use these steps to create an iris, but that just involves an
extra step and isn’t necessary to make a decent cartoon eyeball.)

First, make sure you have either eye selected. Then follow steps 1
through 5 in the preceding section to create a white material instead of a
blue one. Then follow these steps:

1. Switch to Edit Mode.

2. Select the front two circles of faces (see Figure 9-5).

Figure 9-5: The selected faces.

You can select four-sided faces that are connected all around the mesh by
holding down the Alt key and selecting the edge that they connect to the
other faces on. This won’t work for any faces that have more than four sides
or less than four sides, but it can save you some valuable time.

Tip

Chapter 09 Creating Your Assets138

3. Click the Materials tab.

4. Create a new material (steps 2 and 3 in the preceding list).

5. Change the diffuse color to black.

6. Click Assign near the top.

This will assign the material to only the faces selected.

7. Return to Object Mode and repeat this process for the other eye.

SAVING YOUR CHARACTER

After you finish creating your character (see Figure 9-6), you need to
save the character so that you can use it in your game (or so that you
can animate the character in Chapter 10). Before you save your character,
select the lamp and camera in the scene and delete them — they won’t
be needed. Before you save any of the characters or objects in this game,
you’ll want to delete the lamp and camera.

1. Choose File ➪ Save As.

2. Locate your game folder that contains the Unity and Blender
folders.

3. Select the Blender folder.

4. Change the name of the file (currently untitled.blend in Figure 9-7)
to player.blend.

5. Click Save as Blender File.

To save time instead of creating whole new materials for the other eye, you
can reuse the same materials. When you create a new empty material (Step
2 in creating a new material), instead of clicking New, click the material
drop-down right next to it. The drop-down will list all the materials that
have been made in this project. Simply click the material that matches the
one that you want.

Tip

Creating Your First Character 139

This will save the project as a Blender file in the folder that you created
earlier. Now you’ll be able to keep your character file close to your Unity
files if you ever have to transfer the files.

Figure 9-6: The completed character.

Figure 9-7: The Save screen.

Chapter 09 Creating Your Assets140

CREATING THE ENEMY GRUNT
The enemy grunt characters help fill your game with peril. These charac-
ters must look threatening to indicate the danger they face to the player.
Generally speaking, the best way to create a threatening character is
make it look mean or unfeeling. In Mario, the Goombas have eyebrows
that point downward to make them look angry. In Sonic, the enemies are
machines that are clearly different from the animal character that you’re
playing. The early Sonic villains are also insectoid to help highlight the
difference. When you’re designing your enemy characters, you want to
also make sure that because they’re grunts they don’t have too many
unique features and can be used interchangeably so that the player can
recognize them as enemies throughout the games.

The other common thing about enemy units in platformers is that they
generally move back and forth in a pattern or toward the player character
to indicate hostility. I’ll cover this in more detail in Chapter 10 when you
learn more about animation, but for now just keep in mind that these
characters should look hostile and evil.

Using your character, first delete the eyes and save the file as enemy.
blend in the same location that you saved the player character file in.
Then create a cylinder. This will act as the “eye” for your evil robot char-
acter that will be the enemy in the game.

1. Rotate the cylinder 90 degrees on the Y so that the top of the
cylinder is facing the front.

2. Switch to Edit Mode.

3. Change the size of the back face so that it’s slightly smaller than
the front base (see Figure 9-8).

4. Switch to Object Mode, and move the eye into the cube so that the
two objects are overlapping.

5. Switch back into Edit Mode and, using the Inset Face, Extrude, and
Loop-Cut slide tools, create a lens for the eyestalk.

6. Inset the face in the front, size it down, and pull it into the cylinder
slightly.

7. Extrude that face and pull it out.

8. Inset the face again two more times, each time bringing the face
out slightly to create a rounder curve to the lens.

Creating the Enemy Grunt 141

9. Loop-cut slide the side of the cylinder near the front of the cylinder.

10. Use alt-select to select all the quads around the cylinder that are
near the front.

11. Using the S key as a shortcut, scale uniformly so that you create a
nice expansion in the lens stretching out (see Figure 9-9).

Figure 9-8: The robot’s eye.

Figure 9-9: The finished eyestalk.

Chapter 09 Creating Your Assets142

In Chapter 5, you made placeholder obstacles that the player had to avoid.
The player knew these obstacles were bad because the coloring was red,
which made the obstacle seem angry. In this case, you’ll also use the color
red. Select the cube and change the material’s diffuse color to red.

Machines are also reflective because they have metal surfaces. Luckily,
Blender makes it easy to add this reflectivity to our materials. In the
Material tab, go down to where you see Mirror. Click the box next to
Mirror so that it’s selected. The Mirror drop-down list has the following
options:

• Reflectivity: How reflective the material is. The more reflective it
is, the more like a mirror it is. An object that is 1.0 reflective will just
reflect what’s around it.

• A color choice: What color the reflection will be tinted to; white is
no tint. This will just be a block of color in the drop-down. By clicking
that block, you’ll be able to adjust the color.

• Fresnel: Determines how reflective the object is to materials at an
angle from the material.

• Blend: How much the reflection blends into the material.

• Depth: How many reflections within reflections are allowed. If your
scene has multiple reflected materials, and if the depth isn’t high
enough, those reflections won’t show up on this material.

• Max Distance: How far away another object can be to be clearly seen
in the reflection. (If the max distance is 0, it has no max distance.) If an
object is past the max distance, it will be faded and blurry and will get
more so until it can no longer be recognized in the mirror.

For the reflectivity of the metal, I suggest 0.110 with a blend of 1.25. This
will create a nice metallic-looking object that will still look shiny and
robotic. See Figure 9-10 as an example.

For the eye lens, you should follow the same steps as you did with the
eyes earlier. The difference is that while the metal part of the lens is going
to have a similar reflectivity to the metal body, the lens itself is made
from a more reflective kind of glass or plastic. After you create a mate-
rial for the metal part of the lens, select the lens parts of the object and
create a new material and change its color to black (see Figure 9-11). After
you do so, make sure that you up the reflectivity so that there is a much
higher reflection in the lens compared to the body.

Creating the Enemy Grunt 143

After finishing the eye lens, rename the cube
from player to enemy and parent the lens to
that. Then save your project. You’ll then have a
completed grunt character for your videogame
(like the one shown in Figure 9-12).

Figure 9-10: The enemy material.

Figure 9-11: The lens.

Delete the light and
camera in every new
asset you create.

REMEMBER

Chapter 09 Creating Your Assets144

CREATING AN ENVIRONMENTAL HAZARD
You’ve created the characters in the game. Now it’s time to design some
scenery. You can use Blender to design all sorts of different environments
and scenery, but here you’ll design environmental hazards that the
player has to avoid. The biggest difference between an environmental
trap and an enemy is the size of the trap. The enemy character’s size
is similar to the characters’ size and can be adjusted as needed, but in
order for the environmental trap to work properly, it has to have specific
measurements so that your characters can get through it.

In a 3D platformer, traps need to account for all three directions when
you design them. If the trap needs to be avoided from the side, you need
to think about how much distance it does cover and how to prevent play-
ers from jumping over it. If it’s supposed to be jumped over, you need
to design it with that in mind. It has to cover the entire section that the
player needs to pass but leave enough room for the player to jump over.

Environmental hazards, similar to falls, act as non-enemy ways to kill the
character and can help build the game to be more than just avoiding the
enemies. The environmental trap for your game is one of my personal
favorites in videogames, the crusher.

The crusher is a platform that the player needs to get past before the top of
the platform comes smashing down and crushes the character. This obstacle
requires two parts for it to work right: a bottom half for the player to climb
on, and a top half that falls down on the player if they don’t time it properly.

Figure 9-12: The finished grunt.

Creating an Environmental Hazard 145

Follow these steps:

1. Create a new file in Blender and save the file as crusher.blend.

2. Select the cube in the middle.

3. On the right side of the 3D viewer, click the small plus sign (+) in
the dark box.

4. In the menu that appears, you see position, scale, and rotation sec-
tions each with the three different axis and numbers next to them.
Change the X scale to 30, the Y scale to 3, and the Z scale to 0.5.

The size of the map on the x-axis is 30; this will prevent players from
being able to go around it. The Z being equal to 0.5 will ensure that
players will have to jump to just get on top of the platform — not
much but a little bit. The Y being equal to 3 will force the player to
land on the platform and, thus, in harm’s way for a split second. This
will force the player to time her movements even more carefully.

This will create a nice base (see Figure 9-13) to start from for the rest
of the model. Part of the fun of this platform is creating something that
forces the player to put himself in harm’s way for a split second. It helps
players learn the key to timing their actions. To make this even more
difficult for the player, put the platform at a slightly higher height. This
will really force the player to jump up to get past it, so it’ll take slightly
longer.

Figure 9-13: The base part of the platform.

Chapter 09 Creating Your Assets146

The way to do that, while still keeping to the whole robot dystopian
theme, is to make it even more obviously a platform. On the bottom of
the platform that you created, inset a face and size it so that it’s smaller
than the platform’s bottom and just big enough to look like a column of
some sort for the platform (see Figure 9-14).

After you make the bottom inset, extrude out the inset face. The extrusion
shouldn’t be too great; otherwise, the character will be able to just go
underneath the obstacle or it won’t be able to jump over it. In this case,
you should make the total height of the obstacle itself be equal to that
of the character’s height. From what we know, the character can jump
higher than his own height. Because of this, the character will be able to
make it over something that is the same height.

The obstacle’s height thus far is 0.5. Because the character’s height is 1,
you know that the platform right now is half the character’s height. So
just extrude out until the bottom part of the platform is the same size as
the top half of the platform (see Figure 9-15).

After you finish the bottom platform, it’s time to work on the crusher part
of this object. This will be the part of the platform that, when you animate
it in Chapter 10, will come crashing down and kill the character if the
character is on it. Luckily, you don’t need to design this part from scratch.
Because the platform and the crusher have to be the same size on the
x-axis, at the very least you can just duplicate the bottom platform and
rotate it 180 degrees on the y-axis so that it’s facing downward. You also
want to make sure that it’s far enough away from the bottom platform

Figure 9-14: The bottom inset.

Creating an Environmental Hazard 147

so that the player character can actually jump and make it through the
crusher without accidentally hitting the top. Drag the crusher part of the
platform up high so that it’s far enough away from the platform but still
isn’t too far away so that when it drops it isn’t taking too long to get to a
distance that would kill a player. If it’s too close or too far, the game’s dif-
ficulty can change dramatically. The crusher should look like Figure 9-16.

Figure 9-15: The finished bottom platform.

Figure 9-16: The crusher.

Chapter 09 Creating Your Assets148

Although this would be enough to make the crusher, from a mechanical
standpoint you want to actually create something that fits with the theme
that you’ve set in the game. In this case, the theme is a robot dystopia, so
on the top of the crusher you’re going to add a little police light.

Using the Inset Face, Extrude, and Loop-Cut tools start building up a
police light to put at the top of the crusher:

1. Inset a face on the small area on the top of the crusher that used to
be the platform bottom for the bottom half.

2. Scale that inset so that it looks closer to a square shape.

3. Move that inset line up along the z-axis so that there is a progres-
sive climb to the next height.

4. Extrude and bring the extrusion up, giving some space in between
to be the light itself.

5. Extrude again but go only a small distance up.

6. Extrude again, bringing it up slightly more and sizing it down a bit
at the top so it gets smaller the farther up it goes.

7. Extrude again at the top to give it a nice flat top.

8. Using Alt-select, select the small extrusion from Step 5 and select
all around it.

9. Extrude and use the x-axis and y-axis to expand the extrusion out so
that it looks like a roof to the light (see Figure 9-17 for an example).

Figure 9-17: The light.

Creating an Environmental Hazard 149

After you finish the top light, it’s time to actually
make the bottom part of the crusher to make it
more intimidating. One of the most common ways
to make the crusher look intimidating is by adding
spikes to it, but this is a robot dystopia where most
of the characters are cubes so spikes don’t feel right
in the environment. For this environment, a flat bottom crusher with some
indents feels more appropriate, so that’s what you’re going to make.

In order to create the necessary indents, you’ll need to be able to extrude
out on the bottom of the crusher only certain parts of the mesh as
opposed to the whole bottom face. In order to do this, you need to create
more faces. The best tool to do that with while still keeping quads is the
Loop-Cut Slide tool.

You can just use the tool multiple times to create the indents needed, but
there is actually a way to make multiple cuts at once with the Loop-Cut
Slide tool. While the tool is still pink, you can roll the middle mouse but-
ton forward and back to create multiple lines that will all cut at once. Do
this so that you cut six lines vertically across the bottom and horizontally
across the bottom (see Figure 9-18).

After you create the necessary lines, begin selecting every other face on the
bottom of the mesh. That way, the bottom of the mesh will look like a check-
erboard kind of pattern (see Figure 9-19). This will give you the ability to
extrude only the faces you want to extrude. For this project, you only want
to extrude these faces to give the crusher some sense of style and pattern.

Save your project.

REMEMBER

Figure 9-18: Loop-cut slide lines.

Chapter 09 Creating Your Assets150

After you have all the faces selected, you should extrude them out.
As before, you don’t want to extrude them out too much because you
want to leave room for your player to get underneath, but you also want
the size of the crusher to be notable in the game. Extrude the crusher
sections out a little more than what you extruded the original platform
out the first time. You’ll notice now that all the extrusions will look like
a bunch of rectangles. That’s because you only pulled out the selected
faces. The faces are still connected because of the shared vertices, but
they’ll look like they’re slightly separated, which is mechanically not any
different but helps build out the game’s style.

After you finish the model for the crusher (see Figure 9-20), you have to
also give it a material, similar to the enemy and player characters before.
Red could still work for the crusher’s color, but the model itself already
looks intimidating without that much color. So, instead, I suggest choos-
ing a much softer color and making only the police light red so that it
stands out on the crusher.

Create a new material for the crusher and make it a kind of greenish gray
to represent the mechanical nature of the crusher. Assign it to both the
top and bottom of the crusher. Then, following the same steps as you did
with the eyes, change the light at the top of the crusher to red to repre-
sent the light.

When you finish the crusher, like the one shown in Figure 9-21, save the
project and create a new file for the next asset.

Figure 9-19: The checkerboard pattern at the bottom of the crusher.

Creating an Environmental Hazard 151

Figure 9-20: The crusher model complete.

You can also make objects transparent in Blender by going down to the
Transparent section and selecting it so it’s on. Then you just need to adjust the
alpha. The lower the alpha, the less visible the player is.

Tip

Figure 9-21: The crusher model complete.

Chapter 09 Creating Your Assets152

CREATING THE MOVING PLATFORM
Platforms are a key part of platformers, for obvious reasons. One of
the most common platforms in any platformer is the moving platform.
Moving platforms are like regular platforms, but instead they move
around. In the game that you created, you may remember that you never
created a spot for a moving platform. This isn’t entirely true. In the level,
you created several planks that are across large gaps in the level. These
spots were planned to be the locations for the moving platforms as
opposed to the bridges that you were using earlier.

Moving platforms are discussed in more detail in the animation chapter
where you’re actually in charge of making the platforms move in your
game. But right now, your goal is to create the base of the platform that
you can animate later. Luckily, moving platforms are really simple to
make.

Start by opening a new file in Blender and saving it as moving platform.
blend. Select the cube in the middle of the grid and open the side win-
dow on the 3D view. Change the size of the moving platform to X=5, Y=5,
and Z=0.5. This will create a platform large enough that your character
can jump on and thin enough to look good as a platform. This would
work as a platform but once again you want to be able to stylize this for
your game.

Follow these steps:

1. Go to Edit Mode.

2. Select the top and bottom faces.

3. Inset both faces to make a square in the middle.

4. Extrude the insets.

5. Using the Scale tool, move the insets closer together in the mesh.

After you build the base for the model, change the material of it so it
looks mechanical. You can even make the center part of the mesh look
like glass. Simply go into Edit Mode, select the top and bottom insets,
and change the color to blue and the transparency to 0.3 to 0.5, which-
ever you prefer. Also, put the reflections on for all the materials for the
moving platform. This will create a nice moving platform for you to
animate later, like the one shown in Figure 9-22.

Creating the Coin Pickups 153

CREATING THE CO IN P ICKUPS
The last thing you should create in this chapter are coins to take the
place of the pickup items. When they’re completed, the coins will rotate
slowly and bounce up and down, but for now they’ll just stay still. To
start off, create a new file and name it Coins.blend. Delete the cube in
the center, as well as the lights and camera. Coins are a good objective
to pick up. We already associate coins with wealth and something to be
desired (symbolically) so a coin, shown in Figure 9-23, is a great pickup
item.

Follow these steps:

1. Create a cylinder.

2. Rotate that cylinder 90 degrees on the y-axis.

3. Reshape the coin so it’s thin and small.

4. Select the front and back faces.

5. Inset those faces.

6. Extrude and size the faces in.

Figure 9-22: The moving platform.

Chapter 09 Creating Your Assets154

Now, to give the coin some more personality, you want to add a hole in
the middle of the coin that indicates its value. In this case, just the number
one will do. This will require the use of a Boolean modifier. Booleans are
ways to combine two different objects together, by unifying them, taking
the parts where they intersect, or subtracting one from the other.

Follow these steps:

1. Create a new cube.

2. Size the cube so it’s tall and thin and looks like the number one.

3. Expand its size so that it will go through the coin (see Figure 9-24).

4. Select the coin.

5. Go to the Modifier tab in the Properties window.

6. From the Add Modifier drop-down, select Boolean.

There a three different operations for Boolean to choose from:

• Intersect: Only keeps the parts of the meshes that touch each
other.

• Union: Combines the two objects.

• Difference: Subtracts one object from the other.

Figure 9-23: The coin’s base.

Creating the Coin Pickups 155

7. Change the operation to Difference, as shown in Figure 9-25.

8. Change the Solve to Carve.

9. Underneath Object, click the empty slot and select Cube.

10. Press Apply and then delete the cube.

Figure 9-24: The number one intersecting.

Figure 9-25: The Boolean modifier.

Chapter 09 Creating Your Assets156

Now the coin will have a hole in it, giving it another reason to stand out
in the level. After you finish building the coin, it’s time to change the
coin’s color. As before, create a new material for the object and change it
so it’s both reflective and colorful (see Figure 9-26).

After you finish with the base model and color of the coin (like the one
in Figure 9-27), see what changes you can make to the coin or any of the
other objects created so that you can call it your own. In the case of the
coin, I rounded out the edges and made it slightly transparent to help
with the whole robot theme by making it seem more like a hologram that
the character picks up.

Figure 9-26: The hole cut out.

Customizing on Your Own 157

CUSTOMIZ ING ON YOUR OWN
After you finish making and customizing some of the objects discussed
in this chapter, try to make some more customizations to your level by
adding signs or different characters or buildings. Asset creation is about
creating any asset that you may need. This book only goes into the basic
assets that make up your game, including the main character and a few
of the enemies and environment hazards. Other ideas for objects you can
model are mailboxes, trashcans, trees, signposts, and light posts.

The asset creation is where you can really make your game your own!
So, think about what you can add to bring more life to your game. When
you design your own game, come up with a list of assets before you
begin. That way, when the time comes to build your own assets, you’ll
have a good idea of what to make and do.

Figure 9-27: The finished coin.

CHAPTER
Animating Your

Characters

10

Chapter 10 Animating Your Characters160

In this chapter, you’ll learn the fundamentals of what goes into anima-
tion. In Chapter 9, you created models of characters and objects that are
within your scene. Now it’s time to breathe life into the game. You’ll learn
how to examine movement in life and how to translate that movement
into your characters and game. You’ll learn some animation terms such
as squash and stretch and anticipation.

In Blender, you’ll learn how to create and use keyframes, how to set up
shape keys, and how to best animate within Blender. You’ll also learn
how to create animation loops that the game can refer to when the game
is played. You’ll have to create an animation loop for the non-playable
characters and environment, but for your player character, you’ll have to
animate an idle pose, a walking motion, and a jump.

DEF IN ING ANIMATION
Animation is the illusion of life. It tricks the audience or player into
believing that something is alive when it’s just a series of rapidly moving
pictures called frames. The goal of any animator is to make the viewer
believe that the character or object is real, alive, breathing.

Animation has been around for more than a century. Over time, it has
only become more elaborate and beautiful. Highly successful films and
TV shows have been made using animation. Some live-action modern
blockbusters use animation as a way to enhance their ability to tell their
story. Most important, the videogame industry has thrived thanks to the
advancements in animation. Without animation, videogames as we know
them today would not be possible. Characters such as Mario and Sonic
would never have come into being if animation weren’t a key part of the
videogame industry.

Today, with the use of 3D animation software, games can create vast and
wonderful stories and capture the imaginations of millions of people.
Animation has done a lot to help push the field of game development
forward. Now one of the best fields for an animator to be a part of is
game design. The two media — games and animation — are linked
together and help push one another in new and exciting directions.

LEARNING ANIMATION
The most important thing you can do in animation is to study everything.
Even if you’re just creating the animations for a game, there is so much

Learning Animation 161

to learn and understand about the world
around you before you can animate it.

How can you replicate life if you don’t
understand how life works? How can you
bring a game world to life if you’re unwilling
to examine what life looks like in the real
world?

With the limited processing power back
in the arcade game days, each sprite had
sprites to work with, so the animators had to
find workarounds. Even today, some of the
techniques they used, such as motion blur,
are used in modern games to help give the
punches and kicks more power despite not
changing how fast the actual character is
moving.

So, how do you examine motion and
translate that motion into the game? Is it as
simple as watching a person walking frame
by frame and drawing each frame? The truth
is that an accurate depiction of motion can
only get you so far in animation. Animation
isn’t about re-creating motion exactly. It’s
about capturing the feeling of the motion.

Understanding the mechanical motion of
a person walking is important in anima-
tion, but the most important thing for any
animator to understand, in any medium, is
that the feeling behind the motion is actu-
ally far more important to animating than
the motion itself. There have been many
motion-capture games and films over the
years, some of them far better than others.
But the problem that many motion-capture
studios face is that the animation recorded
with the motion capture often feels stiff and
unnatural, despite being literally recorded
from life. This is due to a concept called the
uncanny valley.

The uncanny valley is the feeling you get
when you watch or see something that is

The goal of your game
is to immerse the player.
Some of the best games
you’ve played do this
without your even realiz-
ing it. Mario’s world feels
alive because no decision
was made lightly — from
how the Goombas move
to how Mario jumps,
everything in that game’s
animation was done by
bringing a living place to
the player. Sonic’s run-
ning animation with the
feet disappearing to only
show what looks like a
blur of motion attached
to the bottom of the
body was an animation
choice — his whole
gimmick was speed, so
the animators made his
running sprite look like it
was moving at super-fast
speeds to sell the player
on that feeling. Fighting
games especially use
animation to their
advantage by taking into
account how we perceive
punches and kicks in
real life, especially when
watching expert fighters
like those depicted in the
games. In the original
Street Fighter, punches
could take as little as
five frames to complete.
That’s less than a second
per punch, but the
animation feels smooth
and right because the
developers knew how
to make the punch feel
right.

REMEMBER

Chapter 10 Animating Your Characters162

very close to being lifelike or human, but something feels just a slight bit
off. I liken it to coming home to your house and finding that something —
you’re not sure what is — is just a slight bit too far to the left of where it
was earlier. It fills you with a sense of unease. In animation, it makes you
see the animation as stiff or robotic. The motion just feels wrong.

Humans have a very keen ability to recognize other humans. We under-
stand universal body language because we can see the small details in
a person’s movement. We can always tell when something is human and
when something isn’t, and that’s why extremely realistic characters don’t
hit the same level of attachment as some of the more stylized charac-
ters do. The uncanny valley occurs only when something looks close to
human but isn’t perfect. The less human something looks, the more at
ease we are with them, but when something passes through the uncanny
valley, we’re able to relieve that uneasiness.

One of the best examples of this is the charac-
ter Wall-E from the movie by the same name.
Despite Wall-E and Eve clearly being machines
with limited expressions, the audience was
able to relate to the character because, instead
of animating the characters to be as human
as possible, the directors animated what the
character was feeling not what the character
was doing.

ANIMATING A FEEL ING

As a human, you know when something feels off. The best way to
counteract this feeling is by animating the character so that the charac-
ter looks how it feels. All the emotions should feel very different even
though multiple emotions can be expressed in similar ways. Anger and
sadness may look similar in real life, but if you don’t push the character’s
expressiveness, these characters will never capture the minds of the
players.

Here’s a summary of some common feelings you may want to animate:

• Happiness: Happiness is a very light emotion. You feel like you
weigh nothing. You may even have a skip to your step. Characters
who are happy often stand up tall and move at a much brisker pace.
Think of happiness like a freshly blown-up balloon. It’s larger than
life, and yet still feels very light.

The most important
thing for you to
 animate right is
the feelings behind
the character’s
motion, not just the
 character’s motion
itself.

REMEMBER

Learning Animation 163

• Sadness: Sadness is the exact opposite of happiness. When you’re
sad, you feel like the weight of the world is pulling you down. Each
step or movement is strained and heavy. Sadness is a heavy and
slow emotion. Characters who are sad might move more slowly and
have their heads down.

• Anger: Anger is a large emotion, too. Everything feels tighter when
you’re angry. It feels as if the world is crashing down and you’re just
pushing back. Anger is a very large but precise emotion. It’s driven.

• Fear: Fear is possibly the oddest of the emotions. When you’re
afraid, everything just feels bigger than you are. You feel small. You
may move slowly in one moment, but run away in another. Fear is a
frantic emotion, with very quick changes.

When you animate your characters, you have to consider not just what
the character is doing but what the character feels like he’s doing. The
human eye has been trained to recognize natural movement. No matter
how hard you try, you’ll never be able to animate something that looks
100 percent like a human. This is why it’s important to focus on how
motion feels.

USING THE SQUASH-AND-STRETCH TECHNIQUE

Imagine slapping your hand against a hard surface. It feels like your
hand is expanding out and snapping back into shape all at once when
it makes contact. In reality, the skin on the hand may expand out a little
and snap back into place, but it’s barely visible — not nearly to the extent
that it feels like when it happens. When you animate a scene, you want
that feeling to come across more, so you exaggerate the motions to
match the feeling rather than the actual motion. In animation terms, this
technique is called squash and stretch.

A technique pioneered by Ub Iwerks and Walt Disney, squash and stretch
gives weight and feeling to the characters. Before squash and stretch, ani-
mators never really paid attention to consistency. Characters would stretch
their limbs out as needed, because they could, but this gave the impression
that the shape and volume of the characters weren’t consistent. It never
gave the right feeling of a character actually existing in a real environment.
Squash and stretch aims to keep the volume and shape of the object con-
sistent even when the object expands or distorts it in extreme ways.

Squash is when a character slams against something. The body becomes
wider and shorter to emphasize the impact. Think of a ball hitting the

Chapter 10 Animating Your Characters164

ground or your hand slapping a hard surface. To help reinforce the
impact, the animator squishes the character down as if it were a balloon
and something is pushing down on it. Because the character is expand-
ing out, you also have to make the character shorter to keep the volume
of the character consistent.

Stretch is the opposite of squash. Think about a ball or car moving really
fast or someone swinging a baseball bat. Stretch elongates the object,
making it thinner and giving the object the feeling of movement. Think of
stretch as a kind of lag. One part of the object is moving, but part of it is
still trying to catch up, so stretching occurs. In real life, objects are solid,
so they don’t distort — but it feels like they should be distorting. When
something moves fast, it feels like it should be stretching,

One of the best ways to practice squash and stretch is to do a
bouncing-ball animation. Rubber balls already distort slightly when
they hit the ground, but in animation you need to exaggerate that
motion. Follow these steps:

1. On a pad of sticky notes, draw a circle at the top of the last note in
the pad.

2. Note by note, draw the ball slowly going down toward the ground.

3. Stretch out the ball in the middle so that it looks more like an oval
going toward the ground.

4. When the ball touches the ground, keep the bottom of the ball
touching the bottom of the sticky note.

5. Slowly expand the ball out into a horizontal oval shape.

6. When the ball is a horizontal oval, begin snapping it back to a cir-
cle, and then just before it’s a circle begin to bring the ball up again.

7. Stretch out the ball as it goes up.

8. Slowly have the ball snap back into a circle and then stop.

The total animation should only be about ten frames, but the result will
be a simple animation of a ball hitting the ground and bouncing back up,
giving you a perfect example of squash and stretch in motion.

BUILD ING ANTIC IPATION

In animation, every motion needs to be exaggerated. That goes for
the lead-up into a motion as well. Anticipation is the pre-action to a

Animating Your Player Character 165

motion. When you jump, you first have to bend down. When you punch
 someone, you pull your fist back slightly. In animation, these anticipation
moments help give the character a sense of realism.

No one just does an action — there is always a half-second delay. When
you animate these moments, the character’s anticipation is also exag-
gerated. Think of fighting games. When a character throws a punch, there
is a slight pause before the punch is thrown. This pause is even more
exaggerated when it’s supposed to be more powerful. When you animate
your characters, you should keep this anticipation in mind. Characters
don’t just jump up or attack. There has to be a moment of anticipation to
really sell the idea that these characters exist.

That said, you don’t want the delay to be too long. Otherwise, these
motions will kill the flow of gameplay. So, when you’re animating your
characters, you have to keep in mind both the gameplay and the animation.

ANIMATING YOUR PLAYER CHARACTER
The first thing you should animate for your game is your player character
because it requires the most animations. Unlike the other objects or char-
acters, the player character’s movements directly relate to what the player
is doing at any given time. The enemy characters or hazards have specific
animation loops that never change — they just repeat continuously.

The player character needs to do different things depending on what the
player needs:

• An idle animation: Most games these days don’t have the charac-
ters just stand still on the screen when the player isn’t moving. You’re
creating living characters for the players to control. If the character
stands still, this can break that immersion.

In the original Sonic the Hedgehog game, SEGA used the idle
animation to reinforce the personality of the main character as a “too
cool” speedster. If players don’t move Sonic, he’ll begin to tap his
foot impatiently, waiting for the player to make a movement. And if
players wait long enough, Sonic will even jump off the edge of the
level out of impatience and leave!

• A walking animation: The most standard animation in the game,
movement animations have existed since the days of Pac-Man. If a
character is just floating around the screen, it breaks player immer-
sion. Adding a walk cycle for whenever the character moves helps
give life to your character.

Chapter 10 Animating Your Characters166

• A jump animation: This animation adds more to how the character
moves around and helps reinforce the idea of the character as being
alive. When you jump, you don’t just move vertically. Jump motions
add animation to a jump, to help sell the illusion of playing as a real
character.

The main character of the game you’re creating in this book is a box (see
Figure 10-1), so the character’s actual movement is limited — but it’s still
possible to give a box life and feeling. (Consider the Luxo Jr. lamp from
Pixar as an example of how to get feeling from an inanimate object.) For
your game, you’ll focus on a way to get only the basic movement of the
character, keeping in mind that the techniques and tools that you’ll be
using can also be used to create far more extensive ranges of motion.

Figure 10-1: Boxo!

To create biped characters (characters that stand on two limbs) or simply
characters with limbs, think about how to rig your character, creating bones/
armatures that will give you the ability to move your character’s limbs.
Rigging isn’t complicated, but it can be confusing for first-time users so look
through Blender’s website for a comprehensive introduction to rigging.

Tip

Animating Your Player Character 167

USING SHAPE KEYS

Blender separates editing from object manipulation through the two
different modes. The problem is that you aren’t able to animate changing
the character’s shape with the vertices, edges, or faces within Blender.
Blender’s animation tools are limited to Object Mode (and Pose Mode
through rigging). Although you can animate many parts of the object
(including the textures and modifiers, as you’ll learn later in this chapter),
you can’t animate changes made within Edit Mode without an particular
Blender extension. And even then, the animation is limited and finicky
at best.

So, with a character as simple as a box, how are you supposed to
 animate the character so that it feels alive and moving? Luckily, Blender
has an answer for this in the form of shape keys.

Shape keys are different variations on the shape of the same object.
They allow you to mark changes in your edit and adjust the influence of
those changes on a scale from 0 influence to 1 influence. You can have
multiple shape keys on the same object, but when both shape keys are
being used at the same time, the object distorts to the midpoint of the
two different shape keys. Shape keys are useful tools for creating things
like facial animations because you can use multiple shape keys to affect
different parts of the face, such as the eyes and the mouth. You can also
combine shape keys to create more complex emotions.

For the player character, you’ll be using shape keys to help bring to life
their movement within the scene. Because the character designs are
so simplistic in nature, the way the character moves and expresses has
been reduced. But you can still rely on the cartoony nature of the style to
help bring the character to life.

First, you need to create a shape key:

1. Select the object that you want.

2. Go to the Object Data tab in the Properties section of the window.

3. Scroll down to Shape Keys.

4. On the right side, click the plus sign (+) button twice.

This creates a base shape key that all the other shape keys will use
as a reference. Clicking it a second time will also create your first
shape key (see Figure 10-2).

5. Select Key 1 and switch to Edit Mode.

Chapter 10 Animating Your Characters168

Now whatever changes you make in Edit Mode will automatically be
recorded into Key 1. All the changes you make will also have no effect on
the base key or any other shape key made after this.

Start off by adjusting one of the faces and switching back to Object
Mode. When you do, you’ll notice that the change resets itself. This is
because the shape keys are only active when you want them to be active.
By adjusting the value to the right of the key from 0 to 1, you can deter-
mine how much the shape changes to match the shape key. At a value of
1, the shape changes to match the shape key entirely.

Now switch back to Edit Mode and adjust the shape so that the cube
looks like it’s squatting down (see Figure 10-3).

Figure 10-2: Creating shape keys.

Figure 10-3: The first shape key.

Animating Your Player Character 169

After you finish the first shape key (see Figure 10-4), double-click that
shape key and rename it Walk. This shape key will serve as the primary
animation for your walk cycle. After renaming the shape key, reset the
influence to 0 and create two more shape keys by clicking the plus sign (+)
button. Rename these two shape keys Right Turn and Left Turn, and select
either one.

1. Enter Edit Mode.

2. Select the top face.

3. Use the rotate tool to rotate that face slightly to the side indicated
by the name.

4. Return to Object Mode and repeat this process for the other side.

Note how the eyes aren’t moving to match the shape key. This is because
the eyes are a separate object from the body and are not affected by
changes done within editing. The eyes are attached to the total body, not
the mesh, so changes to the mesh will have no effect on the eyes. But don’t
worry — you’ll be editing and animating the eyes soon.

Tip

Figure 10-4: The first shape key.

Chapter 10 Animating Your Characters170

BREAKING DOWN YOUR PLAYER CHARACTER’S ANIMATION

In most animations, including the ones you’ll be doing later in this
chapter for the game, you do only one major animation, with each
individual part of the animation flowing into the others naturally over
time. This isn’t the case for your player character, because you need
multiple animations in one Timeline so that your game can refer to them
in Chapter 12 when you import you characters.

CREATING A KEYFRAME

Keyframes are the specific points in your animation that indicate move-
ment. In old animations, they would be the major points in movement
the character makes with the in-between frames being the frames that go
from one keyframe to the next. In 3D animation, keyframes act much the
same except that the computer automatically calculates the in-between
frames.

There are three ways to create a keyframe in Blender:

• At the bottom of the Timeline there is a red button. This is for auto-
matic key framing. When you move along the Timeline and then
adjust the character when autokeying is on, it will automatically
record the movement. It will also record any other changes within
the Scene window, but it’s limited to only changes made within
the scene, and not outside of the scene, so shapeless and material
changes are not recorded by autokeying.

• The Animation tab to the left of the screen
has an Insert and Delete Keyframe button.
When you want to insert a keyframe, you
click Insert Keyframe, and a menu pops up
indicating all the different types of keyframes
you can add, from the transform tools to the
modifiers.

• The final way to insert a keyframe is to hover
over what you want the keyframe to affect and
pressing the I button on the keyboard. This
creates a keyframe that affects the selected
aspect of the object and can give you the con-
trol of inserting the keyframe via the animation
menu while still giving the convenience of the
autokeying. This can also affect modifiers and
materials as well.

The Delete Keyframe
button is a great
way to delete
keyframes that you
placed by accident.
The other way is
to use something
called a dope sheet
(see Chapter 12), or
to right-click the part
of the animation
affected by the key-
frame (highlighted
yellow) and click
Delete Keyframe.

REMEMBER

Animating Your Player Character 171

BEGINNING YOUR ANIMATION

Now that you’ve set up the shape keys and understand how key framing
works, it’s time to start animating your character. Because this is your
player character, you should figure out how much time each pose or
motion will have for the animation.

For the idle animation, you want about 3 to 5 seconds; for the walk cycle,
only about 2 to 3 seconds; and the jump animation should be only 1 to
2 seconds. If you use the max time for all the
animations, the total frame count should be
around 300 frames. Be sure to give some time in
between each animation to prevent bleed over
from one animation to another.

Let’s start with the idle animation. In this anima-
tion, the actual motion the character will make
will start when the player is idle for 3 seconds.
After 3 seconds, the character will look around to
the left and right side and then wait for another 3
seconds before doing so again. Three seconds in
an animation that is 30 frames per second means
that the animation will begin at frame 90.

1. At frame 0, insert keyframes for all the transform tools, as well as
for all the shape keys.

When you do this they should all highlight yellow (see Figure 10-5).

2. Go to frame 90 and insert frames the same way.

Figure 10-5: Inserting the first keyframe.

The character is
actually facing
toward the right
of the screen right
now, so to make
sure the character
is facing forward,
change the Z
rotation to –90.

Follow these steps:

REMEMBER

Chapter 10 Animating Your Characters172

3. Skipping 20 frames, change either the right or left turns to 1.

4. Insert keyframes.

5. Move two frames forward.

6. Insert keyframes.

7. At frame 120, change the shape keys to 0.

8. Insert keyframes.

9. Repeat steps 2 through 6.

10. At frame 150, change all the shape keys back to 0.

11. Insert keyframes.

ANIMATING THE CHARACTER’S EYES

You don’t want your character’s eyes to fall out of its head (see
Figure 10-6) in your game. Because of this, your player character’s eyes
also have to move an animate to match the body animation. The problem
is that animating the eyes individually (see Figure 10-7) can be tedious.
Plus, it may not guarantee that the eyes will rotate the right way.

Save!

REMEMBER

Figure 10-6: Your character before rotating the eyes.

Animating Your Player Character 173

The best way to fix this problem is to add a way to control both eyes
at once while still matching the rotation of the cube’s shape. Adding an
empty (as in Figure 10-8) that you can parent the eyes to will guarantee
that the eyes will move at the same rotation, and you can even make it
so the rotation of the empty matches the rotation of the body.

1. Create a new empty.

2. Rename the empty “eye control.”

Figure 10-7: A first attempt at rotating the eyes.

Figure 10-8: Placing the empty.

Chapter 10 Animating Your Characters174

3. Change the position of the empty to (0,0,0).

Because the cube is the same cube from opening up Blender, the
origin point is currently located at (0,0,0). By moving the empty
there, the eyes will be controlled and rotate along the same rota-
tion that the cube is distorting.

4. Parent the eye control to the cube.

5. Parent the eyes to the empty.

This will make it so that the eyes will rotate together along the same axis
that the box is distorting and turning on. Now it’s time to animate the eyes,
but a new problem arises: When the character turns, the faces on the top
actually get smaller when they turn so the eyes will be popping out. You
can fix this by adjusting the rotation and position of the eyes so that they
get slightly closer as the character turns (see Figure 10-9). Just be sure to
match the eye turning and adjustment with the keyframes of Boxo turning.

Figure 10-9: Boxo turning with adjusted eyes.

So you don’t have to match the XYZ every time, go to the spots where the
eyes are in their starting positions and put those keyframes in first while
the eyes are still there. Then do the eyes in their new positions when
they turn.

Tip

Animating Your Player Character 175

WORKING ON THE WALK CYCLE

The next movement on the list is the walk cycle. Although this may be
more difficult to animate for bipeds or quadrupeds, because the player
character is just a single box the walk cycle is actually much simpler to
animate than the idle animation.

To start off, you’ll want to make sure that your character is in its starting
pose before you begin. That way all the animations start out with the
same base and don’t rely on any other animations to come before or
after, giving more power to the player to control the character without
breaking the illusion.

Follow these steps:

1. Skip ahead 20 or so frames to give each section of animation room
in front and behind (see Figure 10-10).

2. Set the starting keyframe here.

3. Move ten frames.

4. Change the walk shape key to 1.

5. Set a keyframe.

6. Move ten frames.

7. Change the walk shape key to 0.

Figure 10-10: Setting up the next section for animation.

Chapter 10 Animating Your Characters176

8. Set a keyframe.

9. Repeat steps 3 through 8 one more time.

After you finish the walk cycle (like the one in Figure 10-11), it’s time to
adjust the eyes so that they don’t remain still while the body moves. Like
before, match the eyes to the motion of the body using the keyframes.
This one should be easier because all it requires is to move the eyes up
and down to match the changing of the mesh. This will give the illu-
sion of the character moving up and down as they walk (like the one in
Figure 10-12).

Figure 10-11: The finished walk.

Figure 10-12: The finished walk with eyes.

Animating Your Player Character 177

Because you’ve already coded the character walking in the game and
moving forward and backward, you don’t have to animate that move-
ment. The character will already move forward, left, right, and backward.
If you were to animate that sort of movement in the game, the character
could move in the wrong direction or extremely fast. Whenever you
make a character whose movement you control, you should have the
character remain still while still looking like it’s moving.

JUMPING

Jumping is the final animation you’ll need to do for this character, but it’s
also the hardest and probably the one that you’ll have to adjust at later
points to better fit the jumping in your game. When a character jumps,
you have to show both the anticipation of the jump and the jump itself,
all while not moving the character too much because of how the char-
acter interacts with the game. Animating the character to jump higher
will cause the character in the game to jump even higher than what you
want him to be able to jump. To fix this problem, you’ll also have to make
another new shape key (see Figure 10-13).

Up until this point, you’ve mainly been working
with squash animation. Now it’s time for you to
work with stretch animation. To give the appear-
ance of jumping fast, the character’s body
should elongate as if part of the body is being
left behind. In practice, this should help sell the
idea that the character is jumping high and fast
because, as the shape key returns to normal,
the box will be hitting its full height, making it
seem like the box jumped up fast to reach its
height. This gives the illusion of mass and life to
the character and the world, further immersing
the player in the world you’ve created.

If you find this difficult, try creating a large circle and placing it at the
bottom of your character’s feet. Think of this circle as a treadmill that your
character can’t get off. Parenting the character to the circle will allow you to
move around the circle without causing any problems and give you a clear
idea of the boundary when you animate.

Tip

The mass of the
object must remain
consistent in order
to succeed in giving
the audience the
feeling of weight.
What is taken or
given to height
or weight must
inversely be given
back.

REMEMBER

Chapter 10 Animating Your Characters178

Follow these steps to make a jump animation for the character:

1. Starting on frame 230, place your first keyframe down.

2. To not make the anticipation too long of a wait, make sure
that the crouch down (using the walk shape key for the crouch)
takes only about five frames to get to and only an extra two to
hold.

3. On frame 240, switch out the squash from the walking shape key
and instead use the jump shape key.

4. Have Boxo return to his normal shape on frame 245.

The last thing you need to adjust is the eyes themselves. Up until this
point, the eyes have just been moved or rotated around, but now it’s time
to apply the squash-and-stretch animation to the player character’s eyes
as well.

The eyes should stretch in a similar fashion to the box (see Figure 10-14).
That way, people know that the body and eyes are intact. Using the eye
control, change the shape and position of the eye to match the pose in
the animation (see Figure 10-15).

When Boxo returns to its normal shape, the eyes should also return to
their normal shape and size. Match the eyes to the keyframes and then
save your finished character so that you can import them into Unity in
Chapter 12.

Figure 10-13: The jump shape key.

Animating the Enemy Grunt 179

ANIMATING THE ENEMY GRUNT
These are the Goombas and the Koopa Troopas in your platformer.
Arguably the second most important characters in the game, the enemy
characters are just as important to think about when animating as the
player characters are. In the case of this game, the enemies are all robots
(like the one in Figure 10-16), so when you’re thinking about their move-
ments, you have to keep that in mind.

Figure 10-14: Boxo jumping.

Figure 10-15: The jumping with eyes.

Chapter 10 Animating Your Characters180

The player character is more organic in this game, so its movements are
more fluid and rubbery to give that extra sense of life. Creating a distinc-
tion between the player and the enemies can go beyond just aesthetic
differences in color or shape. You can even use the animation to help
highlight the differences between the player and the enemy. The player
character is fluid, so the enemy should be stiff; the player moves more
sporadically, so the enemy should have a consistent movement; and so on.

You need the enemy character to walk back and forth across the stage in
a circle. Where the enemy placeholder is currently located, you’ll place
the enemy character so that it can move back and forth in that spot. The
goal of the enemy character is to present a challenge that the player must
overcome or avoid. In 2D platformers, the character will move toward
and away from the player in a pattern. Because there were only two
directions that the player can move in, this posed a challenge that the
players would have to solve. In a 3D platformer, the character moving
only forward and backward doesn’t pose as much of a threat to the
player because the player could easily just move to the side and avoid
the enemy. To present an adequate challenge to the player, you must use
the animation of the enemy to block a path that the player must get by. In
this case, the character will be moving along the x-axis.

You know that the total size of the platforms is 30. As you’re placing the
character at the center of the platform, that means from the center point
of the animation, the character travels 15 units on either side of the cen-
ter point, which is 0. That means the two X positions that the character
will be traveling between are 15 and –15.

Figure 10-16: The enemy character.

Animating the Enemy Grunt 181

Follow these steps to create a moving enemy grunt:

1. Set the X Location to –15.

2. At frame 0, set the keyframes of the location, rotation, and scale
tools.

See Figure 10-17 for the starting position example.

3. Determine how fast you want the character to move across the
stage.

For example, if you want your character to move across the stage
in 3 seconds, that would be 90 frames. How fast the character is
moving across the stage affects the difficulty because players will
have to avoid hitting it.

4. Go to the frame you determined in Step 3 and set the X position
to 15.

5. Insert a keyframe.

Now instead of having the character just turn around and go the
other way to create a loop, you’re going to take advantage of the
3D environment by having the character move in a square rather
than in a straight line.

6. Go up by ten frames.

7. Change the rotation on the Z to 90 degrees.

Figure 10-17: The enemy grunt in his starting position.

Chapter 10 Animating Your Characters182

8. Insert a keyframe for the rotation only.

9. Insert another keyframe five frames earlier for the position.

See Figure 10-18 as an example.

10. Under the assumption that the frame in Step 4 was 90, go to frame
115. (Otherwise just add 25 to whatever frame you used in Step 4.)

11. Change the Y position to 5.

See Figure 10-19 as an example.

12. Insert a keyframe.

Figure 10-19: The enemy grunt in position 3.

Figure 10-18: The grunt character rotating in position 2.

Animating the Environmental Hazard 183

The next steps repeat this same process by having the character turn
around by 90 degrees in ten frames and move back to –15 in the same
amount of frames you had the character move in the original movement
(90 frames from before the turn in the example). When the character gets
back to –15 frames on the X, have it rotate one more time and move to
the Y position 0.

If you use the 90 frames as the time it takes for the character to cross
the stage, then the total frames of this animation should be 240. This
will create an enemy character that will be moving back and forth on the
game platform that the player will have to avoid, like the one shown in
Figure 10-20.

ANIMATING THE ENVIRONMENTAL HAZARD
The environmental hazard that you created was a crusher, like the one in
Figure 10-21, which means you need to animate it falling down onto the
platform after a certain amount of time, pause there for a moment, and
then rise up again for the player to get through.

Part of the benefit of the crusher as a hazard that the player has to
overcome is that the model already will expand the entirety of the
width of the stage, so it forces players to go through it to get to the end.
Unfortunately, that means that in order to give players a chance to get
through the crusher, you have to provide players with enough time to
jump through it. For this one, 3 seconds should be plenty of time for the
player to make it through the crusher without being hit by it.

Figure 10-20: The final enemy grunt animation.

Chapter 10 Animating Your Characters184

Follow these steps to create an obstacle that will provide a challenge for
the player without being punishing:

1. Set a keyframe at the beginning of the animation.

2. Go 90 frames and insert another keyframe (position).

The next thing you have to decide is how fast the crusher will fall
before hitting the bottom and stopping. For this, ten frames should
be more than enough for the falling animation.

3. Go to frame 100 and adjust the Z position until the top of the
crusher is touching the bottom of the crusher.

4. Insert a keyframe for the position at frame 100, and then add
another keyframe at frame 120.

This will ensure that the crusher stays in its position for a short
period of time and prevents the player from getting past it.

5. Go to frame 140 and move the crusher back to its starting position
on the z-axis.

To give the crusher more impact when it hits the bottom platform,
try adding some squash and stretch or even have it bounce a little
bit upon hitting the surface of the platform. By adding some squash
and stretch, it will make the falling of the crusher seem even faster
and the impact feel like it hits even harder. By adding a few frames
after where the crusher bounces up and falls back down into place,
you give the crusher more gravity. Even a brick bounces when it

Figure 10-21: The crusher.

Animating the Environmental Hazard 185

drops — it doesn’t bounce much, and it’ll even break, but there is
a slight impact reverb, and animating that into your game will help
sell the idea of weight.

6. Check frames 90 and 100 to make sure that there are keys set for
their scale.

7. Go to frame 95.

8. Change the Y scale to 2.7 and the Z scale to 0.8.

9. Insert a keyframe.

10. Go to frame 102 and make sure the scale is correct.

The X scale should be 30, the Y scale should be 3, and the Z scale
should be 0.5.

11. Insert a keyframe for the scale.

12. In frame 100, change the X scale to 30.68, the Y scale to 3.44, and
the Z scale to 0.42.

This will create a squash-and-stretch effect that will give the falling
of the crusher more impact when it hits. It doesn’t change anything
except the shape of the mesh, but that small change does a lot to
give the impression of power.

Next, you’ll animate the impact reverb of the crusher.

13. In frame 100, move the crusher down on the z-axis so that the
bottom of the crusher is touching the platform.

14. Insert a keyframe for the position.

15. Go to frame 102 and move the crusher slightly up on the z-axis.

16. Insert a position keyframe.

17. Go to frame 104.

18. Move the position of the crusher down and scale it so that the Z
scale is smaller and the X and Y scales are larger, but scale it less
than what you did for frame 30 in Step 12.

This represents the object coming to rest. It’s still hitting the plat-
form hard and distorting a slight bit, but by distorting less this time,
it gives the illusion that the mesh’s landing is slowing down.

19. Insert a keyframe.

20. Move to frame 105.

Chapter 10 Animating Your Characters186

21. Move the crusher up a slight bit so that it’s just off of the platform
and change its scale back to normal (see Step 10).

22. Insert a keyframe.

23. Move to frame 106.

24. Move the crusher to the platform and insert a keyframe.

When you’re done, you’ll have a finished crusher animation like the one
in Figure 10-22.

ANIMATING A MOVING PLATFORM
The moving platform is probably the easiest thing to animate within
Blender. Unlike the enemy character, which had rotation and moved in
multiple directions, or the crusher, which had to have a delay in it, the
moving platform just goes back and forth in one direction.

The moving platform is supposed to act as a sort of bridge for the char-
acter to use to jump across some chasms within the game. It should only
move a limited distance, though, so players will still have to jump onto it
and off of it to reach their goals, again presenting them with a challenge
that they must overcome within the game.

Following the example given in Figure 10-23, you’re going to animate the
moving platform moving across the y-axis:

Figure 10-22: The finished crusher animation.

Animating a Moving Platform 187

1. Go to Frame 0.

2. Set the Y position to 10.

The total range of movement for this platform is 20 units.

3. Insert a keyframe.

4. Go to frame 120.

5. Insert a keyframe.

6. Go to frame 60.

7. Set the Y position to –10.

8. Insert a keyframe.

9. Change the end frame count to 120.

After you make the animation, you’ll notice that the platform never
stops moving. This could be a problem because you’ll want to give
players at least a moment or two when the platform stops to give
the player time to jump on the platform. Five frames of waiting
should be enough.

10. Go to frame 5.

11. Change the Y position to 10.

12. Insert a keyframe.

Figure 10-23: The moving platform.

Chapter 10 Animating Your Characters188

13. Go to frame 65.

14. Change the Y position to –10.

15. Insert a keyframe.

You won’t need to add a pause after frame 120 because the animation
will automatically loop to a pause as it is.

ANIMATING THE CO INS
The last thing you need to animate for this game are the coins, shown in
Figure 10-24, for the player to pick up. You’re going to animate the coins
to spin and bounce up and down slowly on the game level. This will give
them a nice effect within the game and make them stick out for players.

You should animate objectives to move, even slightly, to help them stand
out from the background. For objects that you want to be picked up, you
should always give small indications to the players that these can be
picked up. Giving the item a highlight when the player passes near it,
making it a different color, or giving it a small in-place animation are all
things that can help add to the idea that these items can be picked up.
Because these are pickup items spread throughout the game, making
them float slightly off the ground is a good way to make them stand out
to the player while not making them threatening or getting them con-
fused with the enemies.

Figure 10-24: The coin.

Animating the Coins 189

First, let’s animate the object spinning. The total animation time shouldn’t
be long but it shouldn’t be too fast either, because you want these objects
to appear approachable. Objects that are moving fast aren’t as approach-
able as slower-moving objects. Five seconds is a good amount of time for
the animation, so set the frame count to 150 frames. Making the object
spin is easy because of the rotation tool. Again, going off of the idea that
you don’t want the objects to spin rapidly, one complete spin every five
seconds will look good on these coins, as shown in Figure 10-25.

Follow these steps:

1. Go to frame 0.

2. Insert a keyframe.

3. Go to frame 150.

4. Change the Z rotation to 360.

5. Insert a keyframe.

This will cause the coins to spin in place. Most of the changes to the
coin are purely for visual reasons. You want the coin to stand out so that
the player knows to pick it up. One other thing that you can do to make
it stand out is have it float up and down along the z-axis. That way the
players will be able to see the coin bouncing in place instead of moving
around like the enemy grunt or crashing down like the crusher. Slow,
simple animations, like the one shown in Figure 10-26, are the best.

Figure 10-25: The coin with the completed rotation.

Chapter 10 Animating Your Characters190

1. In frame 0, change the Z position to 2.

2. Insert a keyframe.

3. Go to frame 40.

4. Change the Z position to 1.

5. Insert a keyframe.

6. Go to frame 80.

7. Change the Z position to 2.5.

8. Insert a keyframe.

9. Go to frame 115.

10. Change the Z position to 1.

11. Insert a keyframe.

12. Go to frame 150.

13. Change the Z position to 2.

14. Insert a keyframe.

Figure 10-26: The finished coin animation.

CHAPTER
Coloring and Lighting

Your Game Level

11

Chapter 11 Coloring and Lighting Your Game Level192

This chapter is about setting up the level by adjusting the small things,
such as the ground color and the background, as well as the lighting.
In this chapter, I’ll explain how to change the ground material so that it
stands out from the background, how to change the ambient lighting
from the environment, and how to set up the lighting in the game.

You’ll also learn about how lighting changes a game and how to prop-
erly light a game so that the shapes are clearly distinguished in 3D. I’ll
explain how three-point lighting setups work and the difference between
the different lights you can create in Unity.

CHANGING THE GROUND COLOR
When you design your levels, think about how
you can separate your level from the back-
ground. This may seem like an obvious bit of
advice, but many game developers fall into the
trap of not distinguishing which parts of the
level can be interacted with and which parts
are just a part of the background. In your plat-
former, this isn’t as much of an issue because
the background and level don’t really mix, but
you should get into the habit of distinguish-
ing the background from the parts of your
level that players can interact with. Indicating
clearly what parts of the environment are able
to be hopped on or grabbed can help prevent
player frustration, which is the major balance
that you have to strike when developing your
game.

As of right now, the game has very little color
in it (see Figure 11-1). The level is just white on a
gray-blue background, with the only sprinklings
of color coming from the characters and pickup
items. The level is visually dull. This problem will
be partially fixed when you import the characters
you made in Chapter 10, but right now the level
needs to pop a little more from the background
to separate it and give the game some much-
needed color.

Frustration is okay
when you intend the
player to get
frustrated. Hard
levels can lead to a
positive frustration
because they
encourage the
player to continue
playing to conquer
the level, but you
have to understand
that there is a
difference between
frustration that’s a
result of difficulty
and frustration
that comes from
poor design. Dark
Souls is frustrating
on purpose, and
it’s designed to be
difficult. Sonic the
Hedgehog (Sonic
’06) has glitches and
poor design choices
that make it frustrat-
ing. Try to control
what the player is
feeling in particular
levels; if you don’t
design carefully,
player enjoyment
might take a hit.

REMEMBER

Changing the Ground Color 193

Follow these steps:

1. Create a new material and name
it Ground.

You’ll be using the new material
as the main color for the ground
and editing it so that it gives
a nice pop to the level itself.
Creating one material specifically
for the ground can help you
when you need to adjust the
color at different points because
all the objects assigned with that
material will change.

2. Change the Diffuse Color of
ground to a darker color.

This will make assigning the color to all the objects easier because
you’ll easily be able to tell which objects have been assigned the
color and which ones haven’t.

3. Assign the color from Step 2 to all the platform objects (the ground
of the level; see Figure 11-2 for an example).

Don’t assign the color to the stairs or the respawn areas yet. There’s
a faster way to change the color of all the stairs, and you want to
have the respawn points stick out from the new color. The new
color will be similar to the respawn color anyway, so altering it
won’t be necessary.

Figure 11-1: The game right now.

Figure 11-2: The level with the color assigned.

Chapter 11 Coloring and Lighting Your Game Level194

4. Assign the color from Step 2 to the stairs.

Just assign the color to one staircase. Then you can select the
whole stairs prefab and click Apply near the top to assign the color
across all the staircases (see Figure 11-3).

5. Change the Diffuse Color to a deep green color.

6. Change the Metallic Color to 0.

This will prevent the material from look-
ing metallic and having the specular tint
of a metallic object.

7. Change the Smoothness to 0.

Smoothness controls the specular of
the object and makes it smoother and
crisper or blurry along the edge. For
this ground, keep the smoothness 0.

8. Make sure Emission is off.

Emission controls whether the object
has its own personal glow so it’s less
affected by the lights in the scene, or not.

See Figure 11-4 for an example of what the
Inspector should look like.

Figure 11-3: Applying the color to the stairs.

Figure 11-4: The ground
color Inspector.

Editing the Environmental Lighting 195

ED IT ING THE ENVIRONMENTAL L IGHT ING
Now that the level’s ground has been set up and is a nice color that com-
plements the game’s already cartoony theme, it’s time to learn a bit more
about the environmental lighting of the game. Environmental lighting
controls the natural lighting that is affected by the environment. Think of
it as a tint to the scene that highlights the different parts of the scene but
also matches the coloring of the environment.

To access the lighting settings, choose Window ➪ Lighting ➪ Settings (see
Figure 11-5). A window appears showing the different lighting options
you have in Unity, but for the sake of this project you’ll only need to
worry about the Environment section
of the window (see Figure 11-6).

You control the individual lights in
the Inspector window in Unity, but
the lighting settings window helps
you control the various settings for
the scene’s lighting. The environment
settings can help you give the scene’s
lighting a tint to help make the scene
more lively and give the environment
a different feeling.

A red tint to the scene can give the
game a warmer feeling, making things

Figure 11-5: Accessing the lighting settings.

Figure 11-6: The lighting settings.

Chapter 11 Coloring and Lighting Your Game Level196

seem hot or feel as if the sun is setting within the game. A blue tint gives
a cooler feeling, making things seem colder. Colors can help indicate the
time or season that the game takes place in, which helps you better create
the world for your player. Naturally, the settings base the environmental
lightings off the skybox that the scene has — the background of the game.

In order to create a skybox, you would need to create six separate
images to cover the bottom, top, left, right, front, and back of the scene.
Adjusting the lighting and coloring of the scene will work just as well to
help give the environment a nice feeling for the player to be immersed
in. Follow these steps:

1. From the Source drop-down list, choose Gradient.

Here’s a description of the various options, for your reference:

• Skybox: Bases the colors off the currently set skybox background.
In this case, the colors are a light blue that go to a gray color.

• Gradient: Similar to Skybox except you can choose the coloring
for the fading in the light. You can choose three colors for the
gradient to fade among.

• Sky Color: The top color, this color affects the scene from above,
as if there were a light shining directly down onto the objects.

• Equator Color: The mid color, this color effects the objects as if
the light were coming from the front and sides of the object.

• Ground Color: The bottom color that affects objects from below.

• Color: Tints the color of the scene all at once with one specific
color. This can be useful
for quick lighting setups.

2. Change the sky color to a
light blue.

3. Change the equator color
to purple.

4. Change the ground color
to green.

The gradient in Figure 11-7 will
change the color setup of the
scene to better reflect the more
distinctive shapes within the Figure 11-7: The Gradient source.

Understanding Lighting 197

scene. The light blue will give the top of the shape a nice distinctive
bright color to indicate it’s the top. The purple will contrast nicely with
the light blue, giving the sides of the objects a distinctive difference
from the top. Finally, the green won’t affect much in the scene, but
it will imitate the bouncing of the light off of the ground so that the
bottom of the objects are tinted slightly green.

UNDERSTANDING L IGHT ING
Lighting is one of the most important parts of game design that is often
overlooked. Games can be changed by lighting, even subtly. A game that
looks like it takes place in the middle of the day with vibrant colors can
be drastically changed with just the angle of the lighting. Right now, the
scene looks like Figure 11-8. You’re going to be adjusting the direction of
the light to help give the scene more vibrancy.

Select Directional Light from the Hierarchy window. The directional light
acts as a light source that comes from an indistinct distance away. That
means that no matter where it is in the scene, the lighting will remain the
same because the directional light just adjusts the angle that the light is
coming in. Try rotating the light to better see how the lights change (see
Figure 11-9).

Figure 11-8: The scene colored.

Chapter 11 Coloring and Lighting Your Game Level198

There are four types of lights that you can choose from within Unity. To
create any of these lights, simply choose GameObject ➪ Light, and you’ll
see four different options:

• Directional lights: Directional lights light up the scene from a cer-
tain angle. They represent a sun or other bright object shining from
no specific distance away. In this game, these will be the lights you’ll
use to create a three-point lighting setup.

• Point lights: Point lights light up a certain point in the scene. They’re
like a small orb of light that lights up a particular spot in the scene.

• Spot lights: Spot lights are the combination of point lights and
directional lights. They’re a light pointing in a specific direction that
comes from a specific spot in the scene. They light up an area within a
cone of light. These lights are particularly good at creating flashlights.

• Area lights: Area lights light up an entire area of the scene. They’re
much larger than point lights and light up the entire area uniformly,
as opposed to point lights, which fade out near the edges.

Different lighting setups can change entire games. Imagine horror if
games like Slender: The Arrival or Resident Evil took place in the daylight.
Lighting is part of what builds an environment or feeling in a game.
Imagine if you were to attach a point light to the player character, and the
only light source they had was this one light (see Figure 11-10). The game
would be totally different and probably less fun. It would no longer be
a platformer game but an exploration game, with the player having to
navigate around the scene with very limited information.

Figure 11-9: Adjusting the angle of the directional light.

Understanding Lighting 199

In film and animation, there is a technique used by filmmakers that help
create a complete three-dimensional view of a character and environ-
ment. Three-point lighting is used to help visually show the character
in 3D while softening some of the darker shadows on the character and
separating them from the background. This is done with three lights:

• Key light: The brightest light in the scene, the key light’s goal is to
highlight the subject of the scene to show the audience the character’s
face or light up the object of the scene. This is the primary light. It’s
usually pointed at one side of the character or the subject of the scene.

• Fill light: The fill light is pointed at the other (front) side of the char-
acter to help fill in the dark shadows created by the key light. It isn’t
as bright as the key light because its job is to lessen the shadows
instead of drown them out.

• Back light: The purpose of the back light is to separate the character
from the background. Generally speaking, the purpose of this light is
to prevent the character from being seen as part of the background
by creating a small halo around the character to help distinguish
them from the rest of the game.

In your game, you’ll set up a simple three-point lighting setup to light up
your scene properly and give some nice shadows to your game and help
distinguish its 3D objects:

1. Duplicate your directional light two times (for a total of three).

2. Direct each light in a different direction toward the player
 character — two pointing from the camera down toward the player
and one pointing up from behind the player.

Figure 11-10: The scene lit by only a point light.

Chapter 11 Coloring and Lighting Your Game Level200

3. Select one light (near the camera) to be your key light.

In the Inspector, when you select the key light, you’ll see a
Light component. Change the color to White. Change the intensity
to 0.8 (1 is slightly bright and causes the scene to be slightly
overexposed, with too much light). Change the strength of the
real-time shadows to 0.15 to prevent the harsh shadows that you
have right now.

4. Select the other light near the camera and have that light be the fill
light.

In the Inspector, change the color to also be a slightly darker shade
of white. Change the intensity to 0.4. Make sure the strength of the
real-time shadows is 0.

5. Select the final light that’s behind the player — that’s your back
light.

Change the color to a light gray. Change the intensity to 0.2. Make
sure the strength of the real-time shadows is 0.

When you finish, your scene should look similar to Figure 11-11.

CREATING FOG
Another way to help bring the scene more to life is to add fog to the
scene. Fog, as the name suggests, disrupts the visibility of the scene and
makes objects further away from the camera blurrier and faded. Fog has
been used in games for years to help with processing power as well as to

Figure 11-11: The scene properly lit.

Creating Fog 201

give a sense of mystery or distance within the game. When you look off
to the horizon, shapes become faded the further away from you they are.

In games, you can simulate this effect using fog. First, you’ll have to go
back to the lighting settings window that you used earlier to change the
environmental lighting.

1. To create fog, scroll down in the lighting settings to the Other
Settings tab.

2. Check the box next to Fog in the drop-down.

This will create a fog for the game. The closer the camera is, the
less fog there is in the scene.

3. Change the color of the fog to a grayish green to match the color-
ing in the game already set.

4. Make sure the Mode is exponential squared.

5. Keep the Density at 0.01.

This will create a nice fog in the game window so that when you play
the game, the fog will appear on the horizon of the game, obscuring the
player’s ability to see beyond a certain point clearly. This will create a
sense of distance in the game’s world and give overall more life to the
game’s setting. As you can see in Figure 11-12, the fog helps shape the 3D
nature of the level and create a nice view for the player.

Figure 11-12: The scene with fog.

Chapter 11 Coloring and Lighting Your Game Level202

Now before you add characters and objects in Chapter 12, take a
moment to compare the images at the end of the chapter to the images
at the beginning of the chapter. Already, you can see how lighting and
color have brought more life to the scene than was previously there. The
game is hitting its final preparations!

In gaming, fog acts as a way to limit the player’s ability to see farther ahead in
the level. In some games, fog is used to add tension to the scene by limiting
the player’s ability to plan ahead; in other games, fog acts as a way to help
ease the need to render entire levels at once (which can be difficult, especially
for older consoles). In this case, the fog is more of an aesthetic choice.

Tip

CHAPTER
Importing Your
Characters into

Your Game

12

Chapter 12 Importing Your Characters into Your Game204

In this chapter, you’ll import your characters and objects into Unity to
finish setting up your game. This chapter is the culmination of all the
previous chapters in this book. You’ll combine what you’ve worked on
in Blender and Unity into one final version of the game, with very little
coding left to do.

Here, you’ll learn how to import the characters and animations into Unity
and set up the animations so that they begin to play when you start the
game. You’ll also learn how to set up animation controls for your main
player character so that the animations only play when the correspond-
ing controls are used in the game. The goal of this chapter is to have the
finished version of the game that will only require a little bit of alteration
and fixing up in the next chapter.

F IX ING YOUR PLAYER CHARACTER FOR
IMPORTING INTO UNITY
You’ll be able to import most of the animations that you made in
Chapter 10 with no problem. But Unity doesn’t like every type of
 animation — namely, shape keys. Unity was built to import a variation
of shape keys, called blend shapes, that are used within programs like
Maya. Luckily there are plenty of workarounds for this problem, but none
of these workarounds is within Unity itself, so that means you must dive
back into Blender one last time to export the file into a version that Unity
can read and use.

Open your character in Blender (see Figure 12-1). You won’t actually
be able to see the changes that you have to make to the character
on the screen right now because it involves something called a
dope sheet. In hand-drawn animations, dope sheets were outlines
for animators to use so that they could determine when a specific
animation would happen and for how long. It was a simple outline
for the animators to work from. In Blender, the dope sheet gives you
the ability to adjust the animation timing and order. You can use it
to move key frames around to either speed up or slow down certain
animations.

To open the dope sheet, go to the lower-left corner of the Timeline
and find the small clock icon that looks like a drop-down menu.
Click that clock and then click the Dope Sheet icon with three
dots (two gray, one orange). This will turn your Timeline into a
dope sheet.

Fixing Your Player Character for Importing into Unity 205

When you’ve opened up the dope sheet, you’ll see a menu bar at the bot-
tom. Next to that menu bar, you’ll see the Key drop-down. Select Shape
Key Editor from the Key drop-down menu.

Now what you’re doing is making the shape key animation so that it’s
being read as a location-based animation (something that Unity has no
issues reading). To do this, select all the frames:

1. Hold Shift and select each frame individually.

2. Press B (for bounding box) and drag across the Timeline to select
all the frames.

3. Press A (for all) while hovering your mouse over the dope sheet to
select them all.

Figure 12-1: Your character in Blender.

You can actually do this with any of the different windows in Blender. If you
look at the lower-left corner of any of the window sections, you’ll notice a
similar drop-down menu. This goes with Blender’s ability to be customized
to best fit your needs. I just prefer to switch the dope sheet, shown in
Figure 12-2, with the Timeline because both have similar functions and,
most of the time, when I use the dope sheet, I need the other windows.

Tip

Chapter 12 Importing Your Characters into Your Game206

When you’ve done this, at the bottom of the dope sheet, next to where it
says KeyAction, click the button that has an F. This saves the data block
even when it has no users. For the sake of simplicity, this will give you
the ability to import your shape key animations into Unity without any
problems.

Now change the Shape Key Editor to Action Editor. This will open up
the actions of the animation (the key frame changes to the location,
rotation, and scale, as shown in Figure 12-3). At frames 0 and 245 insert
a key frame using the animation tab in the 3D view window, and select

Figure 12-2: The dope sheet.

Figure 12-3: The Action Editor.

Importing Your Player Character into Unity 207

 location when Unity prompts you what this key frame will be affecting.
This will create a range for Unity to read the file in.

After you finish, save your file. Then choose File ➪ Export ➪ FBX (.fbx),
as shown in Figure 12-4, and save the file into your Blender folder that
the other files are saved in. This will save your work so that Unity will
be able to read it with little problems. Exit Blender now and open up
Unity.

IMPORTING YOUR PLAYER CHARACTER
INTO UNITY
Now it’s time to import your first character into Blender. To do this, follow
these steps:

1. Open Unity and go to the Prefabs folder in the Project window.

2. Open the Finder window on a Mac or Windows Explorer on a PC.

3. Drag the FBX file from the Blender folder directly into the Prefabs
folder.

This will create a prefab of your character. In the drop-down of the
character’s prefab are all the different components of your character.

4. Drag the prefab onto the screen to make the new character.

Figure 12-4: Saving the file as an FBX file.

Chapter 12 Importing Your Characters into Your Game208

The first thing you’ll notice in Figure 12-5 is how large the character
is compared to the rest of the scene. This is because Unity’s units
are half the size of Blender’s units.

5. To fix this import error, select the prefab of the player character that
you just created.

In the Inspector window, you’ll notice that the window has changed
to Import Setting. When you import an animation or external 3D
object, the window will open the Import Settings when you select
the prefab. You’ll go further into the Rig and Animation tabs later in
this chapter.

6. Click the Model tab.

You’ll see many different settings that can be checked or changed.

7. Change the Scale Factor to 0.5.

8. Make sure the following boxes are all checked:

• Use File Scale

• Read/Write Enables

• Import BlendShapes

• Generate Colliders

• Weld Vertices

• Import Visibility

Figure 12-5: The player character in the scene.

Importing Your Player Character into Unity 209

9. Go down to the Materials section in the model tab, and make sure
Import Materials is checked.

10. Change the Material Naming drop-down to Model Name + Model’s
Matter.

This will prevent multiple files from changing the materials to
match other materials with similar names.

SETT ING UP THE CHARACTER

Because of the animations you’ve made, when the player character
begins, it will automatically move to point (0,0,0). The way Unity reads
the animations causes the characters or objects to reset to where the
characters or objects move in relation to the center point of Unity. The
simplest way to fix this problem is to give the animation a new center
point for it to be based on. This is done via parenting.

These next steps are mainly to help you practice creating and placing an
object for the character and parenting the character to them. To save time,
you can just parent the player character to your practice character and turn
off the mesh render for that practice character. This will have the same
effect as doing it in the following way, but if you feel like practicing, these
steps are useful:

1. Delete the previous character cube.

2. Create a new cube.

3. In the Hierarchy, drag the player character
into the cube to parent it to the cube, as
shown in Figure 12-6.

4. In the cube’s Inspector, turn Mesh
Render off.

This will make it so that the cube won’t
render in the game and won’t be visible
in the game, despite it still affecting the
game itself.

5. Change the name of the cube to Character
Controller.

Tip

Figure 12-6: Parenting the cube.

Chapter 12 Importing Your Characters into Your Game210

SETT ING UP THE ANIMATION

Now you’ll notice that either the animation will only play once and not
again or it won’t play at all when you click the Play button to play the
game. This is because you still have yet to set up the animation for the
character. This will require you to use the Rig and Animation tabs of
the Inspector window of the prefab.

1. Open up the Rig tab in the inspector window.

There are four animation types to choose from in the drop-down:

• None: When you aren’t importing an animation.

• Legacy: The older way to import animations. This method
doesn’t work properly with an animation controller, so it’s not
good for using for the player character.

6. Position the cube to be in a location at
the beginning of the level.

7. Apply the char script to the cube (see
Figure 12-7).

8. Reapply all the targets so that they
match what they were in your origi-
nal character (see Figure 12-8).

9. In the Player_Character’s Inspector,
in the Hierarchy, change the position
to (0,0,0).

This will reset the character to the
center point of the cube, which
will be exactly in the Character
Controller’s location.

10. Click Play to make sure it works.

11. Change the rotation of the parent as necessary to
have the character facing the right way.

The character’s rotation will reset when the game begins because the
animation will have a very specific rotation attached to it. Changing the
rotation of the parent will change the direction that the character is facing.

Figure 12-7: The cube with the char script.

Figure 12-8: The cube with all targets set.

Importing Your Player Character into Unity 211

• Generic: The basic import method that imports the animations
while keeping the code in a way that Unity can read and alter as
necessary.

• Humanoid: Imports humanoid characters that have rigging,
attaching bones or armatures to the mesh so that different parts
can bend.

2. For this project, choose the Generic type.

3. Change the Avatar Definition to Create for This Model.

4. Change the Root Node to None.

5. Click the Animations tab (see Figure 12-9).

6. Scroll down to the Clips section.

You see a ton of options and break-
downs. These are just the different
 animation parts within the animation
that Unity can recognize. Sometimes
this is accurate but most of the time,
I find it’s more reliable to just do it
yourself.

7. Delete all the options and breakdowns
by selecting them and clicking the minus
sign (–) in the right corner.

8. Click the plus sign (+) once.

9. For the Source Take drop-down menu, choose Eye control|Eye
controlAction.

Figure 12-9: The first clip you create.

This just happens to be the one that I find works for this animation. Unity
breaks the animations into the different parts, so the animation for the
characters are different from the animations with the eyes that are parented
if they have their own animations. Sometimes this will require you to just
go through each of the different possible source takes and test them in the
View section at the bottom that tests the animation for you.

Tip

Chapter 12 Importing Your Characters into Your Game212

10. For this first animation, change the
name of the clip to Idle.

The blue highlights on the Timeline
indicate the part of the animation that
the clip is using.

11. Adjust the Timeline to include only
the Idle animation of the character.

My animation starts at 0 and ends at 154.

12. Follow steps 8 through 11 for the walk
and jump animations, naming them
Walking and Jump, respectively, as
shown in Figure 12-10.

After you finish setting up the animations,
you have to make sure that your character is
accessing them properly:

1. Select your character on the Hierarchy and look into the Inspector.

You’ll notice that there will be an animation component added to
your character. You’ll see an animation part with a place to put an
animation clip.

2. Select the little circle next to the none (Animation Clip).

The select AnimationClip window (shown in Figure 12-11) appears.

The clip that you choose will be the base animation for your charac-
ter (the animation that the character will start the game in).

Figure 12-10: The first clip you create.

Figure 12-11: Select AnimationClip

Importing Your Player Character into Unity 213

3. Select the Idle clip and double-click the Idle clip.

This will set your Idle animation as the starting animation for your
game.

4. From the Animations drop-down, select Size.

You’ll see a number of elements below it matching the size.

5. For your animation, you only need three
elements so change the size to 3.

6. Make sure that the elements that you do have
are the Idle, Walking, and Jump elements.

If they aren’t, change them.

CREATING THE ANIMATION CONTROLLER FOR YOUR CHARACTER

The character now has the animation set
up to work, but when you click Play nothing
happens. This is because there is nothing
telling the game that the animation should
be playing. In other words, there is nothing
controlling the animation.

To control the animation so that the proper
animations play when the character is mov-
ing, you need an animator controller. An
animator controller tells the character how
the animations interact with one another.

To create an animator controller, like the
one shown in Figure 12-12, right-click in the
Project window. You can create the animator
controller in any folder, but for the sake of
simplicity I prefer creating the controller
in either the prefabs folder or directly in
the assets folder. Choose Create ➪ Animator
Controller. A new animator controller will be
created. Rename it to Character_animator.
Double-clicking this new controller will open a
new tab on the Scene window called Animator.

After you open the controller window, you’ll
realize that it’s empty, except for two boxes: Any
State and Entry. To fix this, open your Player
character prefab and scroll down. At the bottom
of the prefab, you’ll see three tabs for the three

Save your project
and scene.

REMEMBER

Figure 12-12: Creating an animator
controller.

You’ll still be able
to access the Scene
 window simply by
clicking it in the
upper-left corner.
Double-clicking the
animator will only
open a new tab,
not close the Scene
window.

REMEMBER

Chapter 12 Importing Your Characters into Your Game214

clips you have for the different animations for the character. Drag all
three of them into the Animator window. Three new boxes will appear,
one for each of the different clips (see Figure 12-13).

You’ll also notice that there is now an orange arrow pointing from Entry
to Idle. This indicates that in the animator’s view, the Idle animation is
the primary animation for the character, which is useful because for your
game this is the case.

After you create these new boxes for each of the animations, move
them apart from each other so that you can clearly read each of them
and there is some space in between them all. Make sure that the default
state (currently Idle) is the one that is closest to Entry and Any State,

Figure 12-13: The different clips in the animator.

If the Idle animation is not highlighted orange with an orange arrow point-
ing to it, or if you want a different animation as the primary animation for
the game, right-click Entry and select Set StateMachine Default State. Then
select the desired default, and you’ll see the orange arrow move to that one
and change its color to orange.

Tip

Importing Your Player Character into Unity 215

with the other two below or to the side of Idle, with Idle between them
(see Figure 12-14). This will do nothing to the game itself but will make it
easier visually to navigate.

Now you have to determine how each of these states relates to each other:

1. Right-click Any State and choose Make Transition.

2. Select Idle After.

An arrow should now point from Any State to Idle.

3. Right-click Idle and choose Make Transition.

4. Select Jump.

This will make it so that the character can transition from the Idle
animation to the Jump animation.

5. Repeat Steps 3 and 4 for Walking instead of Jump.

After you create all these transitions (see Figure 12-14), you also need to
make it so that the character can transition back from Walking and Jump
to Idle, as well as from Walking to Jump and vice versa. Create transi-
tions as you did in the steps earlier, but instead of doing it from Idle, do it
from Walking and Jump to Idle and to each other.

This will create the transitions, so the animator knows how each of the
animations relate to each other, but there is still nothing to indicate when
these animations happen. As of right now, the only animation that will
play is the Idle animation. You need to create triggers, as in Figure 12-15,
to indicate when the controller will work.

In the Animator window, click the Parameters tab. On the Parameters
tab, you’ll see List Is Empty, indicating there is nothing that is affecting
the animations just yet. Click the plus sign (+) and select Trigger. This will
create a trigger for the animations to be affected by. Name this trigger
Jump and then create another one named Walk.

Figure 12-14: Creating the transitions.

Chapter 12 Importing Your Characters into Your Game216

After you create these triggers, you have to indicate when they’re used
(see Figure 12-16):

1. Select one of the arrows leading to Jump.

In the Inspector window, you see Transitions and Conditions.
In Conditions, it says non- with a drop-down menu.

2. From the Non- drop-down menu, select Jump.

3. Repeat steps 1 and 2 for all the arrows leading to Jump.

4. Repeat steps 1 and 2 for all the arrows leading to Walking.

5. Substitute Jump for Walk.

Figure 12-16: Setting the conditions.

Figure 12-15: Creating the trigger.

Importing Your Player Character into Unity 217

This will make it so that you can transition from the idle pose to the jump
and walk poses easily. The problem is that there is no way to transition
from those poses back to idle. So, create a third trigger named Idle and
repeat the steps to link the idle to the other poses.

CODING THE CONTROLLER

It always comes back to coding in computers and gaming. Now that
you’ve created the controller and the character, you have to link the
two so that the character’s animations can be properly controlled by
the animator controller and the animator controller can be linked to
certain button presses on the keyboard. The code for the controller
is actually super simple compared to some of the codes from earlier
chapters.

Before you begin coding, you have to link the controller to the player
character. To do this, select the player character on the Hierarchy and in
the Inspector select Add Component. In the Miscellaneous menu, you’ll
find an Animator component. After you add the component, inside the
component you’ll see a controller target. Select the circle next to it,
and select the animator that you just finished creating. This will link the
controller to the character.

After you link the controller with the character, go into the code folder
in the assets and create a new code named Animat. This will act as the
animation code for your player character. Attach it to the player character,
and open up the code.

You’ll open a blank code. Delete all the grayed-out comments and
change void Update to void FixedUpdate. This will set up the code

In the Inspector above the conditions, you’ll also see settings with a time-
line, and above it is Has Exit Time. This means that the animation will finish
before going into the new animation when it’s triggered. Although this can
be useful for some cases, you want to uncheck it so that it doesn’t interfere
with the animation of the game.

Tip

Chapter 12 Importing Your Characters into Your Game218

for what you need to control the character’s animations. Then follow
these steps:

1. Above void Start (), add Animator anim;.

This will indicate the type of code that anim is. This tells the code
that anim controls an animator and will affect it directly.

2. Inside void Start () add anim = GetComponent
<Animator> ();.

This tells the code that when the code begins the anim will access
the specific component within the object that is an Animator. In
this case, the animator is the player_controller that you made
earlier.

Let’s say you wanted to make multiple characters that move at
once. Instead of needing different codes for each of them, this
code can work for all of them because it doesn’t specify a specific
animator. Instead, it just goes off of the component.

3. Inside FixedUpdate, you’ll add several if statements:

if (Input.GetKeyDown (KeyCode.Space)) { anim.
SetTrigger ("Jump"); }

This will make it so that if the spacebar is pressed, the code will
send a message to the animator to activate the Jump trigger. This
will cause the jump animation to play.

if (Input.GetKeyDown (KeyCode.W)) { anim.SetTrigger
("Walk"); }

This will make it so that when the W key is pressed, the character’s
walk trigger will activate, causing the walk animation to begin.
Repeat this code three more times for the different movement keys
(A, S, and D) in place of W.

if (Input.anyKey == false) { anim.SetTrigger
("Idle"); }

This code is the odd code in the bunch. Although the other
codes trigger when a specific button is clicked, this code only
activates when no button is being clicked. When nothing is being
touched, the Idle trigger activates putting the character into the
Idle animation.

Importing the Other Characters and Objects 219

After you finish the coding (see Figure 12-17), go into the prefab
for player character and go into the Inspector. Click the Animation
tab and make sure that all of the clips have Loop Time checked so
that the player will continuously repeat the motion as long as the key
is held.

Save your project and then test the animation
by playing the game. The code should cause
the characters to move and animate on the key
presses. If they don’t, check back through the
codes to see if you missed anything.

IMPORTING THE OTHER CHARACTERS
AND OBJECTS
The player character is easily the hardest character to import into Unity.
The rest of the characters are fairly straightforward because they don’t
use shape keys or need a controller for their animations. First up: the
enemy grunt.

Figure 12-17: The finished code.

Save your project
and scene.

REMEMBER

Chapter 12 Importing Your Characters into Your Game220

IMPORTING THE ENEMY GRUNT

To import the enemy grunt (see Figure 12-18), follow these steps:

1. Delete the enemy grunt stand-ins that you already made, and
replace them with empties in their spots.

2. Using the Finder (Mac) or Windows Explorer (PC), drag the enemy.
blend file into Unity’s prefab folder.

3. Select the prefab, and in the Inspector, change the Scale Factor to 0.5.

4. Make sure the following tabs are all checked:

• Use File Scale

• Read/Write Enables

Figure 12-18: The enemy grunt.

Name the empties differently so that you can keep track of which empty is
which. Enemy Grunt is a good name for the empties. Just add a number or
letter at the end so that you can tell which empty is which.

Tip

Importing the Other Characters and Objects 221

• Import BlendShapes

• Generate Colliders

• Weld Vertices

• Import Visibility

5. From the Material Naming drop-down,
select Model Name + Model’s Matter.

6. Click the Rig tab.

7. Change the Rig to Legacy.

You aren’t using a controller for this character.
I find that Legacy import is actually more stable and easier to use for
importing the enemy characters and objects.

8. Click the Animation tab.

9. Make sure that the Wrap Mode is set to Loop.

In Generic, it’s Loop Time; in Legacy, it’s a Wrap Mode.

10. Drag and drop two enemy grunts into the Scene window.

11. Parent each of the grunts to one of the empties created in
Step 1.

12. Set the position of the empties to (0,0,0).

This will place them in the direct middle of the empty.

Think back to the player controller cube that you created earlier.
This is because the character will move around the (0,0,0) point. The
same rule applies for all the animations that you’ll be importing in.
The difference is that, because you want the collider to be on the
enemy character and not the center point, you’ll want to use an
empty instead of a box.

These steps are
actually identical
to the steps used
to import the
player character in
the beginning of
the chapter. Steps
2 through 5 will
be used in every
import.

REMEMBER

If the eye cylinder is not attached to the box, just select it in the Enemy
drop-down in the Hierarchy and move it so that it’s inside the enemy.

Tip

Chapter 12 Importing Your Characters into Your Game222

13. Moving the empty that the
enemy grunt is in, make sure the
grunt is just touching the ground
(as in Figure 12-19).

14. Select the enemy in the Hierarchy.

15. In the Inspector, make sure on
the Animation tab that Play
Automatically is clicked.

16. Choose Add a Component ➪ Physics ➪ Box Collider.

17. On the Box Collider tab, make sure Is Trigger is clicked.

This will make it so that the character will be affected by the
box collider.

18. Change the Tag at the top to Enemy.

19. Repeat steps 12 through 18 for the second
enemy grunt (see Figure 12-20).

IMPORTING THE CRUSHER

The crusher is slightly more complicated than the enemy grunt because
it actually requires two colliders to work properly. One of those colliders

Figure 12-19: The enemy grunt in position.

Save your project
and scene.

REMEMBER

Figure 12-20: Both enemies in their proper spots.

Importing the Other Characters and Objects 223

has to kill the player while the player only has to be able to jump on the
other one.

First, import in the Crusher using steps 2 through 5 from the “Importing
the enemy grunt” section. Delete the stand-in hazard and replace it
with the empty and name it Crusher (center the empty on the x-axis).
Follow these steps:

1. On the Rig tab, change the rig to Legacy.

2. On the Animation tab, change the Wrap Mode to Loop.

3. Drag the crusher into the scene and parent it to the empty
created.

You’ll notice that the crusher has something parented to it. This
is because in Blender the upper section and the lower section
of the crusher were two different objects. The upper section was
parented to the bottom section, and that parenting carries over
into Unity.

4. Set the position to (0,0,0).

5. Adjust the empty so that the crusher’s bottom is just touching
the level.

6. Select the crusher on the Hierarchy, and make sure that the anima-
tor has Play Automatically checked.

7. Choose Add a Component ➪ Physics ➪ Box Collider.

8. Do not make this collider a trigger, and do not add a tag.

This will make the bottom of the crusher a platform that the player
can go on.

9. Open the Crusher parent, and select the child inside of it (the top
part of the crusher).

10. Choose Add a Component ➪ Physics ➪ Box Collider.

11. Make the collider a trigger.

12. Change the tag at the top to enviroHazard 3.

After you do so, you’ll have a completed crusher like the one shown in
Figure 12-21.

Chapter 12 Importing Your Characters into Your Game224

This will make it so that the crusher’s top part will act as the environmen-
tal hazard stand-in did, while the bottom part will act as a platform that
the players can jump on. If you want to have two separate colliders on an
object, you can do so by adding a new collider in through adding a com-
ponent, but if you want it so that each collider does something different,
the object needs to have two separate parts.

IMPORTING THE CO INS

As before, the coins need to imported using steps 2 through 5 from
the “Importing the enemy grunt” section. Unlike before, because there
are so many pickup items, it’s easier to delete all the pickup items and
create one empty near the beginning. Name this empty coin_pickup.
Following the steps from earlier, make sure that the rig of the coin is
Legacy and that its wrap is Loop.

Drag the coin into the scene and parent it to coin_pickup. Then set its
position to (0,0,0) so that the coin is centered on the empty. Make sure
that its animation component has Play Automatically clicked and that it
has the pickup tag. Also, add a mesh collider to the coins instead of a box
collider because the shape is a cylinder and not a box. Make sure that
both Convex and Is Trigger are checked.

Then drag the coin_pickup into the prefabs menu so that it’s a prefab.
Using the coin_pickup prefab, place the coins throughout the level in
similar spots to the pickup stand-ins from earlier.

Figure 12-21: The crusher.

Importing the Other Characters and Objects 225

At the end of the level where the end goal prefab was, place another
coin, but change the size of the empty on this one coin to X = 3, Y = 3,
and Z = 3 so that it’s three times the size of the other coins and looks like
Figure 12-23. This coin will act as the end goal to the level, and its size
will help indicate its importance above the other coins. Go into the coin’s
Inspector and change the tag from pickup to final to make sure that when
the player runs into it, they’re given the win condition.

When placing the coins, keep in mind
that the coin is floating above the center
point, so you should place the coins
closer to the ground so that the coin
appears to be bouncing up and down
from the ground (see Figure 12-22).

Tip

Figure 12-22: The coins placed.

The bridges will be replaced by a moving platform next, so place coins with
the moving platform in mind in those sections.

Tip

Figure 12-23: The end coin.

Chapter 12 Importing Your Characters into Your Game226

Figure 12-24: The moving platform.

IMPORTING THE MOVING PLATFORM

The last thing to add into the game is a moving platform (see
Figure 12-24). Following the same steps as earlier, delete all the bridges
and replace them with empties. Parent a moving platform to each of the
empties so that they’re floating in spots that used to be covered by the
bridges. The only major difference in the steps for this part and the other
three is that the box collider that is added to the moving platform should
not have Is Trigger checked. When Is Trigger is checked, the character
falls through the mesh instead of landing on top of it. Also, the moving
platform does not need a tag.

With that, the level is finished and ready to play! Play the game and see
what has to be adjusted or fixed. You’ve finished your first designed and
playable level!

CHAPTER
Play Testing (Again)

13

Chapter 13 Play Testing (Again)228

This chapter acts as the final cleanup for your level. Like the previous
play-testing chapter (Chapter 6), the emphasis of this chapter is on
looking back at the aspects of the game that do and don’t work, as well
as fixing the problems that are within your game. In this chapter, you
won’t be learning anything new. Instead, you’ll refine the aspects of your
game that may not work as well as some of the others and ask yourself
the questions that will be useful when you aim to set your games apart
from other games.

The goal of this chapter is to come out with a completed level that you’ll
be able to play. This chapter forces you to look back on your game and
think about what you do and don’t understand about it. In the end, you’ll
see the benefit of play testing more than once.

TEST ING THE SECOND T IME
You should conduct play testing often in order
to create a better game. Game development is
about fixing and adjusting things so they work
better, so play testing is important at all times,
even when you’ve already done it.

This time, you’ll focus on other aspects of your
game than what you were focusing on before.
When you were looking at your game earlier, you
were focusing on the core aspects of the game,
what did and didn’t make sense, and what could
be clearer. This time you’re focusing on the parts
of your game that need more polish or need to
be fixed because they broke with the addition of
different parts of the game.

With new play tests come new questions that
have to be answered. On top of the questions
you asked in the previous play testing, you have
new questions that should be answered. These
questions range from some simple problems
within the game code to creating entirely new
assets. Again these questions are asked in no
particular order, but all of them should be con-
sidered in this new round of play testing.

Ask these questions on your second round of
play testing:

For this round of
play testing, try to
find players that
have and haven’t
played your game
before. The play
 testers you used
earlier will know
more about the
game and can look
deeper into some
of the problems
they may not have
noticed earlier or
be able to better
explain some of the
problems that they
had with the game
earlier. The players
who haven’t played
the game before
come in with fresh
eyes. They’ll help
you make sure that
the new controls to
the game are easy
to learn.

REMEMBER

229Testing the Second Time

• What has broken in the game? Why? This question is probably the
most obvious question when play testing — whether you’re doing it
early in the game development or later on. Sometimes aspects of the
game are working fine until a new factor comes in and ruins it all. When
you play test your game, keep an eye out for some of these problems.

• Is the game hard or frustrating? At this point in the development,
you should have a pretty good grasp on what works and what doesn’t
work in your game as it is. This question helps you understand if the
“harder” parts of your game are having the desired effect on the
players. Players should never feel cheated by the game. As soon as
that happens, the game developer has made a mistake in the game.

• What blocks did you find in the game? Are there parts of the
game that force the game to a halt? Are these parts even able to be
 overcome or are they impossible? Games
that are impossible aren’t fun. A player
never wants to feel like he can’t win a game.
Sometimes these blocks come in the form of
tasks that are too challenging, or just a wall
that is too high for the player to get across.

• Was the game too easy? Games aren’t fun
if they don’t have some sense of accom-
plishment for finishing them. Although
games that are too difficult can discourage
players, games that are too easy make the
accomplishments that the players achieve
less meaningful.

• Did the game make sense? Was the players
able to understand the game and play it with
little to no confusion? Games should not

Never assume that if something was working before, it will continue to
work. Game codes are a delicate balancing act. Any small change can break
the code, and sometimes these breaks are so small that you may not notice
them at first. Identifying these breaks is what play testing is for.

Tip

When you play
test your game,
 encourage your
players to ask these
questions and see
if they can answer
them. The game
should speak for
itself. Do not explain
the game — after
all, you won’t be
there to explain the
game to everyone
who plays it in the
future.

REMEMBER

Chapter 13 Play Testing (Again)230

confuse players (unless the point of the game is to be confusing).
Games should make sense and have rules that are clear and easy to
understand.

F IX ING YOUR GAME
When you finish play testing, acknowledge the problems that were
addressed and find ways to fix them. I’ll cover some of the problems
in this section, but your play testers may identify problems that I don’t
cover here. But using what you’ve learned in this book, try to figure out
ways to address these issues as they come up, and alter your game to
answer the questions the play testers come up with. The game is yours to
improve on! This book gives you the bare bones — it’s up to you to make
it your own.

THE WALL-CL IMBING PROBLEM IS BACK

One thing that broke when the game was given characters and animation
was the solution to the wall-climbing problem that you fixed earlier.
Using raycasting, you made it so that when the player runs into the wall,
he’s forced back, preventing him from using the wall as something that
they could climb up and use (see Figure 13-1).

Figure 13-1: Wall climbing.

Fixing Your Game 231

Checking the character, you see that nothing
much has changed. The player is still controlling
the character, and the animation is parented to
the base player, so although the animation plays,
nothing it does actually affects the movement of
the character. In the code, nothing is any differ-
ent. The char code hasn’t been changed at all.

The problem isn’t with the individual parts but
with how they relate to each other. Try running
into the staircase from either side and see what
happens. One side doesn’t change, but when the
other side runs into the wall, the character goes
backward as if he had the raycast on him. This is
because he does.

Raycasting is based on the object’s orientation,
not the global orientation like the vector directions
were. Because of this, the raycast that was on the
front of the mesh has been moved to one side of
the player. To fix this issue, you just need to change
one small aspect of the code, and the player’s
original movement in the game will be restored.

The vector3s that determined the direction of
the raycast need to be adjusted to account for
this rotation in the mesh. For the example given
in Figure 13-2, only the forward direction needed
to be changed to left. The down vector3 didn’t
need to be changed because the altering of the
character’s angle did not change the y-axis at all
so the down is still in the same place. That’s all
you need to do. After you finish, save the code
and test to make sure that it’s working properly.

THE CO INS ARE GOING DOWN BY TWO
EVERY T IME YOU GET HURT IN THE GAME

This problem was a head scratcher. Nothing seemed to change between
the variable and the code to affect this change in the game, but every
time you run into an enemy or fall off the edge, the character loses two
coins as opposed to just one, causing much faster game-overs.

Play testing isn’t
just about fixing the
problems; it’s about
 understanding
why a problem
happened in the
first place. When
something breaks,
there is a problem
in either the model
or the code.

REMEMBER

The animation was
facing the wrong
direction when you
imported it into
the game. So to
compensate for this
you adjusted the
angle or rotation
of the empty that
you attached
the character to
in Chapter 12.
Although this had
no effect on the
directions that the
character moves,
it did change the
raycasting.

REMEMBER

Chapter 13 Play Testing (Again)232

The problem stems from the game giving back too much information
to the code. Although the code isn’t on the player character itself, the
character is parented to an object with the code so it’s also slightly
affected by the code. Because of this, the collider on the player character
also registers the triggers and sends them back to the code to adjust the
score. This leads to the player losing two points instead of just one point
as originally designed. To fix this problem, you just have to turn the box
collider off of the player character. The parent of the character has all the
code needed and a box collider of their own, so removing the box col-
lider on the character itself just prevents the same thing from happening
twice within the game. See Figure 13-3 for an example.

Figure 13-2: Fixing the wall-climbing code.

Figure 13-3: Removing the box collider.

233Wrapping Up the Noticeable Issues

THE HE IGHT OF SOME PLATFORMS ARE H IGHER THAN
THE CHARACTER CAN JUMP

One of the last problems in the game comes from the level design of
the game. This problem didn’t come up earlier. Before this, the players
actually had the ability to jump higher because there was enough room
to give the characters a running start. With the introduction to enemies
and environmental hazards, that same jumping power has been limited.
Because of this, some of the platforms are too high for the players to
actually jump properly.

The fix for this problem is actually really simple: Just add stairs! For
the platforms that can’t be jumped or have no alternative ways of being
accessed, the addition of stairs (see Figure 13-4) doesn’t diminish the
 difficulty of the game. Instead, they improve the game by giving the
player the ability to actually progress forward.

WRAPPING UP THE NOT ICEABLE ISSUES
These are just a handful of the problems that players may experience
within the game. As a developer, your job is to listen to any and all of the
criticisms and do your best to resolve them. Glitches and bugs happen in
games. Even games that have been play tested multiple times have these
problems. You’ll likely never find all the possible bugs in your game,
especially the larger and more complex your game gets.

Figure 13-4: Adding stairs.

Chapter 13 Play Testing (Again)234

Take any criticism you get in stride and know
that no game is perfect. Strive to make the best
game possible, test it, and adjust it to better fit
the players you desire, but don’t get lost in fixing
everything.

Eventually, you’ll
have to put the
game out there,
and no one is ever
totally satisfied with
what they make.
Those who are will
never grow because
they aren’t looking
at where they can
improve. Strive for
perfection while
accepting flaws. This
doesn’t mean you
should ignore your
mistakes — you just
shouldn’t be devas-
tated by them.

REMEMBER

When you can, fix the problems that you notice — but know when to
prioritize. Some problems are far more noticeable than others and need
to be fixed right away, but other problems hardly effect gameplay at all so
you can put them off until later. The problems that affect the way the game
plays at its core are what you should fix first because they can interfere
with the flow and fun of the game.

Tip

CHAPTER
Finalizing Your Game

14

Chapter 14 Finalizing Your Game236

In the preceding chapters, you created and refined the first level of your
game. Now it’s time to put the final touches on the level so that you can
create new levels and move beyond just a single-level game.

In this chapter, you’ll learn how to code the game to load a new level
when it has been finished. You’ll also learn how to fix the code so that
you can get the character to respawn when they die in the level. Finally,
you’ll learn how to export your game so that you can play it anytime!

CREATING MULT IPLE LEVELS
You’ve made one level for your game so far, but games aren’t just one
level. Most games have multiple levels that players progress through,
increasing the difficulty as the levels go on. Your game should be no
 different. Unity gives you the ability to easily create new levels and
connect the levels together in your game.

First, you need to create the new level:

1. With your first level open, choose File ➪ New
Scene.

 This will create a new empty scene within
your overall project.

2. Save the new scene as Level2, and open
your first level again.

3. Create a new C# code, and name it Level2
(see Figure 14-1).

4. Open the new code.

5. At the top of the code, where the code lists
all the collections and engines that the code
will be using, type the following:

using UnityEngine.SceneManagement;

This code will give access to Unity’s Scene
Manager tool. The Scene Manager allows to
control the different scenes using the code.
You can use it to load levels and reload lev-
els with a touch of a button or when some-
thing is triggered. In this case the Level2
code will be added to the endpoint so that
when the player triggers the game object the
game will load level 2 on the screen.

Unity organizes
the game in two
parts: projects and
scenes. The project
is the overall game
that you’re making,
keeping all the
assets and levels
organized in one
folder. When the
game is compiled,
you’re compiling
the project and
chosen levels
together. Scenes
are the individual
levels in your game.
When you create a
new scene in the
project, the project
tracks those scenes
and even shares
the prefabs, codes,
and materials that
you’ve made in
other scenes within
the new scene.

REMEMBER

Creating Multiple Levels 237

6. Delete both the void Start and void Update strings.

They won’t be necessary for the code.

7. In place of the void Start and void Update strings, type the
following:

void OnTriggerEnter(Collider other) {

This will indicate to the code that this
string is activated when the collider has a
collision with another game object. Inside
the code, you’ll define what code will be
activated when the trigger happens and
how it will affect the rest of the game.

8. Inside the void trigger, type the following
code:

if (other.gameObject.CompareTag("Player")) {

This will make it so that when the
collider touches a game object with the
tag Player, the code that is within the
brackets will happen.

9. Add the following code within the if
 statement brackets:

Scene.Manager.LoadScene ("Level2");

Close off all open
brackets. Otherwise,
the code won’t be
able to be properly
read by the game.

REMEMBER

Figure 14-1: Creating the new code.

Be sure to check
that your player
controller has the
tag Player.

REMEMBER

Chapter 14 Finalizing Your Game238

This final bit of code will access the
Scene Manager tool and tell it to
load the scene titled Level2 that is
connected to your game. This code
can be used to load any of the other
scenes within your project. You can
see a completed version of what the
code should look like in Figure 14-2.

Now if you try to attach this code
to your endpoint object, you’ll
notice that it won’t attach. This is
because, even though the scenes are within the same project, they aren’t
actually linked together. Unity doesn’t automatically assume that all the
scenes within the project folder will be included within the final game. In
fact, this ability to pick and choose which levels are built into the game
can save you the headache of having to actually move the files out of the
project folder. Instead, you can just remove them from the build settings
or not even include them in the build settings.

To make it so that scenes can be linked together, follow these steps:

1. Choose File ➪ Build Settings.

The Build Settings window (shown in Figure 14-3) appears, giving
you different options for your game.

2. In the Platform box, select PC, Mac & Linux Standalone.

This indicates the type of platform that you want the game to be
played on.

Figure 14-2: The new code.

Figure 14-3: The Build Settings window.

239Resetting the Level

3. From the Target Platform drop-down list, select PC, Mac, or Linux.

The target platform is the platform that Unity will format the game
for. Unity can make games for all sorts of consoles, such as PS4
and Xbox One, but the controls that you coded the game to will
only work on a computer, so you want this to be PC, Mac, or Linux
(depending on what computer you’re using to build the game and
making the game for).

4. In the Scenes in Build box, select which scenes will be included in
the build.

To add a new scene, click Add Open Scenes and Unity will automat-
ically include the scene that is open into the build.

After you include Scene 1 in the build, open Level2 from earlier and
include it in the build. When both Level2 and Scene 1 are included in the
build, the scenes will be linked together and can be called upon by each
other.

Now you can attach your Level2 code to the endpoint object. When
the player touches the object, the level will automatically switch to
level 2. If you test this within Unity, it will automatically open Level2 in
Unity.

RESETT ING THE LEVEL
Up until this point, when the character dies, the player is destroyed
and the game sends a message saying that the player has lost. Instead,
you’re going to change it so that the game will still present you with
a lose screen, but when you press a certain key the game will restart.
Follow these steps:

1. Open your Char code.

2. Add the following to the top of the code:

using UnityEngine.SceneManagement;

This code alters and controls the scene.

3. At the end of all the if statements, within the void trigger string,
find the code if (count <= -1) and delete that entire section of
code, including the code within the if statement.

Do this for all the if statements within the void collider.

Chapter 14 Finalizing Your Game240

4. Where you deleted all that code, write the following:

if (count <= -1) {
winText.text = "You Lose :(Press R to Play Again"
dead = true;
}

This code will be within the void but on its own so that you don’t
need to change the code in each of the if statements like you had
to earlier (see Figure 14-4).

Instead of destroying the game object, you’ll use a new Boolean dead
to affect the gameplay. Right now, dead = true has no effect on the
game, but that’s because you haven’t defined dead yet. Follow these
steps:

1. At the top of the code, where you keep all the public and private
floats, text, and game objects, add the following code:

public bool dead = false;

This will give the value of false to the dead bool and make it so that
the code will recognize the value of the dead bool. The goal is to
have it so that whenever the player is dead (when the dead bool is
true), the player won’t be able to move or use her character.

2. Change all the if statements in the void FixedUpdate to include
the condition that dead needs to be false.

Similar to adding the sprint function, simply add at the end of the
if code && dead = = false. Repeat this for all the if statements
within the void FixedUpdate (see Figure 14-5).

Figure 14-4: Adding the level to the build.

241

Now, whenever the player is not dead, the character will be
able to move around freely, but as soon as the character dies,
all the movement controls are unable to be used because you
added the condition that the character has to not be dead in
order to move. The player stops working as soon as the character
dies, but how can you turn the player back on once the game
“ends”?

You’ve coded the character to stop working. Now you have to code the
reset button. In the losing statement, you’ve already told the player
what key she’ll need to press to reset the game, so you’ll be coding that
function in the code. At the end of the FixedUpdate code, but before the
raycasting codes, add a new if statement:

if (Input.GetKey(KeyCode.R) && dead = = true) {
SceneManager.LoadScene(SceneManager.GetActiveScene().

name);
}

This code gives the player the ability to reset the game when the char-
acter dies. Like the movement codes, this code only happens when the
player presses a certain button on the keyboard — in this case, the R key.
And because of the && dead = = true addition, this code won’t work
unless the player has already died. When the player presses R the Scene
Manager will reload the scene from the beginning, which resets the
game back to the way it was at the start of the level, so any and all text
and counts will be reset to their starting values. Figure 14-6 shows how
the code should look.

Figure 14-5: Making dead == false.

Resetting the Level

Chapter 14 Finalizing Your Game242

EXPORTING YOUR GAME
Now that your game is completed, you need to
export the game so that it can be played without
Unity. There are two ways to do this:

• You can choose File ➪ Build.

• You can build the game in the Build Settings
window after double-checking to make sure all
the settings are correct.

You’ll also be able to name the file whatever
you want. And when you export the game, you

can choose to export it out to a certain location. Exporting it into your
games folder will make it easy to find and open, but you don’t need
to keep it with the project folder
because the build is standalone,
apart from the project folders and
doesn’t need to reference them for
any of its parts.

When you open the game, you’ll
see the screen shown in Figure 14-7.

This just gives you the options
to open up the game with
 different screen resolutions
and with different qualities. The
best combination will vary from
computer to computer. The Input
tab shows the input controls that
the game could use if you used

Figure 14-6: The reset code.

The game that
you’ve made has
been designed with
a computer in mind,
so make sure that
when you export
the final build you
export with the
correct platform.

REMEMBER

Figure 14-7: The opening game screen.

Continuing Your Game Design 243

Unity’s built-in controllers as opposed to the ones that you made on your
own in this project.

Open the game and play to make sure that the game is working the way
that you programmed it to!

CONTINUING YOUR GAME DES IGN
Now that you’ve completed the game in this book, try your hand at
designing a game on your own. You’ve learned the tools of Unity and
some of the coding that goes into game development. Use the lessons
in this book as a guide to creating your own unique games that you can
publish and show your friends and family.

This book is just the first step in your game design career! Hopefully,
it’ll get you to think of game design from the bottom up. As a test, try to
make more levels for the game you created in this book with different
enemies and objectives. Play around and see how much you can change
and make your own in the game.

The most important thing is that you continue
to play videogames and ask questions. Think
about what you like about games, push yourself
to learn more, and create something that is
not only fun but special. Make games that are
your own and that mean something to you and you’ll will find a way to
succeed at designing from there. Keep learning and keep designing!

Have fun!

REMEMBER

245

PATRICK MCCABE is an instructor at the Digital Arts Experience.
He has spent the past year teaching students about everything from
 animation to game design. He graduated from SUNY Purchase in
2016 and studied at three different schools for film and animation. In
high school, Patrick won the first-ever award for Best Animation in the
 Greenwich Youth Film Festival for his short I Am an Animator.

He is also a not-so-secret Star Wars enthusiast and will not hesitate to tell
everyone about it.

DEDICATION
This book is dedicated to my fiancé, Shela, without whom I probably
never would have been able to finish. Thank you for always listening
when I talked your ears off about random videogames, and for making
sure that my glass of Diet Pepsi was always filled.

This book is also dedicated to Diet Pepsi. You were always there to pick
me up when I was down. I love you.

AUTHOR’S ACKNOWLEDGMENTS
Thank you to John Wiley & Sons for giving me the opportunity to write
this book. This was an amazing experience to write and really challenged
me to think through and put to words my feelings on game design and
develop a new appreciation for game design itself.

Thank you to Steven Hayes for keeping me on task and emailing me
the (many) times I fell behind schedule or was stuck on how I should
approach each chapter. I don’t think I would have been able to complete
this book without you.

Nick, without you I don’t think this book would be half as long as it is.
I think I came to you about seven different times a day to ask you to help
workshop the code when it wasn’t working. You are also the father of the
curriculum that I used as the basis for this class. Thank you so much for
all of the help.

Thank you, Cristina and Jordan, for the shoulders to cry on when I was
having trouble motivating myself to write. You two were the heroes I
didn’t deserve. Cristina, you especially in the last few weeks were like my
best book friend. Between our discussions of writing after every Thursday

ABOUT THE AUTHOR

246

meeting, to the times where we both tried to wrap our heads around our
formatting woes, you were the only person who understood the difficulty
I had in writing. Honestly, I don’t think there was anyone else who could
appreciate the pictures of Frodo I sent at the end like you could.

I also have to thank Rob Kissner. It just doesn’t seem fair not to. Rob and
his company, Digital Arts Experience, are the reason why I was even able
to write this book. I remember when Rob asked me to write this book.
“Hey, Pat, do you know Unity, and can you write a book on it?” Rob was
nothing but encouraging the entire time and whenever I was freaking out
about getting the chapters in on time he would just listen with a smile
and a joke ready. Rob, there is so much to thank you for, and to say that
you are one of the most wonderful people I’ve ever met would be an
understatement. Thank you, Bert, for everything.

Thank you, Shela, for being there for me throughout this entire book and
always pretending to be super interested in how the game mechanics of
Five Nights at Freddy’s create a sense of helplessness in the game to help
emphasize the horror of the situation. Shela, you were always there when
I needed you most and thank you so much for listening. You are the best
partner a guy like me could ever ask for. Between refilling my soda when it
was empty to giving me a hug when I’d had a long day writing, everything
you did was special and important. There are no words that can describe ev-
erything you did for me. You are my best friend in the world, and I love you.

Finally, thank you to Elizabeth Kuball for making me sound smarter than
I actually am. You are the reason this book is even remotely readable,
and I don’t think there are enough words to describe how grateful I am
to you for dealing with every delay and problem I’ve had while writing
this book. I am so happy and grateful I was able to work with you to help
bring this book into reality.

PUBL ISHER’S ACKNOWLEDGMENTS
EXECUTIVE EDITOR: Steven Hayes

PROJECT EDITOR: Elizabeth Kuball

SR. EDITORIAL ASSISTANT: Cherie Case

PRODUCTION EDITOR: Vasanth Koilraj

COVER IMAGE: © FrankRamspott / iStockphoto

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Where to Go from Here

	Chapter 1 What Is Game Design?
	Thinking about What Makes Fun Games Fun
	Asking the Right Questions before You Begin
	Creating Your Game on Paper

	Chapter 2 Unity: The Software You’ll Use to Build Your Game
	Getting Organized
	Creating a New File
	Understanding How Unity Is Laid Out
	Navigating the Scene
	Creating a Game Object
	Creating and Using Prefabs

	Chapter 3 Creating Level 1
	Understanding the Importance of Level 1
	Designing Your First Level
	Creating the Gray-Box Level
	Giving Your Level Objective and Direction

	Chapter 4 Camera, Character, and Controls
	The Three Cs of Game Development
	Creating a Character Stand-In
	Thinking about Code
	Adding Rigidbody Component and Understanding Box Colliders
	Coding Your Player
	Coding Advanced Movement
	Coding Pickup
	Creating Tags and a User Interface
	Coding Your Camera

	Chapter 5 Making Your “Game” into a Game
	Thinking About What a Game Is
	Creating and Coding Your Obstacles
	Creating Respawn Points
	Coding Respawn Points

	Chapter 6 Play Testing
	Defining Play Testing
	Knowing When to Start Play Testing
	Deciding Who Should Play Test Your Game
	Knowing What to Look For
	Handling Feedback
	Finding the Problems in Your Game

	Chapter 7 Fixing and Adjusting Your Game
	Turning Criticism into Construction
	Punishing Your Player Less
	Creating a User Interface Tutorial
	Preventing Wall Climbing with Raytracing

	Chapter 8 Animating in Blender
	Mixing Things Up with Blender
	Downloading Blender
	Opening Blender for the First Time
	Creating a New File in Blender
	Figuring Out the Blender Interface
	Navigating the Interface
	Editing Your Object

	Chapter 9 Creating Your Assets
	Thinking about Theme and Style
	Creating Your First Character
	Creating the Enemy Grunt
	Creating an Environmental Hazard
	Creating the Moving Platform
	Creating the Coin Pickups
	Customizing on Your Own

	Chapter 10 Animating Your Characters
	Defining Animation
	Learning Animation
	Animating Your Player Character
	Animating the Enemy Grunt
	Animating the Environmental Hazard
	Animating a Moving Platform
	Animating the Coins

	Chapter 11 Coloring and Lighting Your Game Level
	Changing the Ground Color
	Editing the Environmental Lighting
	Understanding Lighting
	Creating Fog

	Chapter 12 Importing Your Characters into Your Game
	Fixing Your Player Character for Importing into Unity
	Importing Your Player Character into Unity
	Importing the Other Characters and Objects

	Chapter 13 Play Testing (Again)
	Testing the Second Time
	Fixing Your Game
	Wrapping Up the Noticeable Issues

	Chapter 14 Finalizing Your Game
	Creating Multiple Levels
	Resetting the Level
	Exporting Your Game
	Continuing Your Game Design

	EULA

